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Abstract

If yields are assumed to have an exact unit-root, it has previously been shown

that the rational expectations hypothesis of the term structure (REHTS) has

been rejected by single-equation tests. However, small deviations from ex-

act unit-root produce substantial changes in the small sample distributions

of those tests and the normal approximation is no longer satisfactory. We

assume that the yield of 1-period zero-coupon bond follows a local-to-unity

process with parameter c (c=0 for exact unit root) and use asymptotics to

derive alternative distributions, which are far better approximations to �-

nite sample distributions. Those asymptotic distributions depend crucially

on c, and that allows us to analyze the impact of small deviations from

unit-root on the distribution of the tests. Interestingly, for small values of

c, the results obtained in the data do not imply a rejection of the REHTS.

The above results are useful only when c is known or consistently estimable.

Thus, the REHTS is cast into a triangular representation, where the cointe-

grating vectors are a function of c. Consistent and asymptotically unbiased

estimators of c are proposed. A Wald test for the restrictions imposed by the

REHTS on the cointegrating relationship is derived. The relevance of the

asymptotic results for samples of practical sizes is investigated with Monte

Carlo simulations. The methods are applied to the yield data of McCulloch

and Kwon (1993). Although the REHTS is statistically rejected, the results

are encouraging and suggest interesting directions for further research.



1 Introduction

The rational expectation hypothesis of the term structure (REHTS) is the-

oretically simple and appealing, even if it does not have the virtues of fully

speci�ed general equilibrium models as in Vasicek (1977) and Cox-Ingersoll-

Ross (1985). However, the REHTS has been questioned numerous times on

empirical grounds, because it has failed to provide even simple forecasting

expressions. Indeed, single-equation and VAR-based tests reject the the-

ory quite consistently (Campbell and Shiller (1987, 1991), Campbell et al.

(1997) and references therein). However, the econometric testing of such

models in not always straight forward. It is �rst assumed that yields fol-

low a certain process (usually an integrated process of order one, or I(1)).

Statistical tests about the predictions of the model are then constructed,

conditional on such an assumption, which is often justi�ed by �rst-stage

pretesting (Campbell and Shiller (1987, 1991)). However, small deviations

from the unit root assumption, small enough that they cannot be detected

by a statistical pretesting in �nite samples, may produce large modi�cations

in the distributions of the REHTS tests. In sum, if the REHTS holds but

incorrect assumptions are made about the process driving the yield data,

the distributions of the tests change dramatically (see Bekaert et al. (1997)

for a Monte Carlo demonstration).

This paper has two main goals. First, we ask the question: Given that

the REHTS holds, what process should the short yield follow in order for

previously employed single-regression tests to replicate the �ndings in the

data (Campbell and Shiller (1991), Shiller (1990), Campbell et al. (1997))?

The short term yield of a zero-coupon bond is parameterized to follow a

local-to-unity process (Bobkoski (1983), Cavanagh (1985), Chan and Wei

(1987), and Phillips (1987)) with the largest root Á = 1 + c
T , where a nui-

sance parameter c measures deviations from unit-root in a decreasing (at
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rate T) neighborhood of 1. Since yields are believed to be highly persistent,

this parameterization is quite appropriate. It is shown that the limiting

distributions of the single-regression tests of the REHTS depend crucially

on c. The expressions of these distributions, which are functionals of di¤u-

sion processes, will allow us to understand why small changes of the yield

process produce large changes in the distribution of the tests. Monte Carlo

simulations suggest that the derived asymptotic distributions are very good

approximations to the �nite sample distributions. More importantly, for

some values of the nuisance parameter, previous results obtained from single-

regression tests cannot be interpreted as a rejection of the REHTS. The only

practical di¢culty stems from the dependence of the limiting distributions

on the unknown parameter c:

The second goal, and the main contribution of this paper, is to construct

a consistent estimator of the nuisance parameter. In general, c cannot be

estimated consistently from univariate analysis1. We exploit the REHTS

to write the term structure as a cointegrated system where the cointegrat-

ing vectors are a function of c. T-consistent, asymptotically unbiased, and

simple to implement estimators of c are proposed. The asymptotic distribu-

tion of those estimators is a mixture of normals. Monte Carlo simulations

suggest that the asymptotic distribution is a good approximation to the

�nite sample distributions, even in samples of 100 observations. The cross-

equation restrictions implied by the REHTS are tested with a Wald test,

whose asymptotic distribution is shown to be chi-square.

The econometric procedures presented below are quite general in nature.

They are applicable to a wide class of rational expectations present value

models, where assumptions about the data generating process are critical

1However, it is possible to obtain median unbiased estimators and centered con�dence

intervals of the nuisance parameter as in Stock (1991), Andrews (1993), and Dufour (1990).
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and controversial. But the proposed methods are particularly germane to the

term structure literature. For example, the data generating process of the

short rate is a discrete analogue of an Ornstein-Uhlenbeck process, which

is assumed to underlie the general equilibrium model of Vasicek (1977)2.

Moreover, even though we focus on a term structure driven only by the

short rate, results from the paper suggest that there might be gains from

using higher dimensional processes, thus paralleling the a¢ne-yield, multi-

factor models, analyzed in the general equilibrium literature. The extensions

of estimating and testing a matrix of nuisance parameters using the long run

restrictions imposed by linear rational expectations models are the focus of

current research.

The paper is structured as follows. Section 2 is a brief exposition of

the rational expectations theory of the term structure, its forecasting im-

plications and empirical failure. Local-to-unity asymptotics are employed

to derive the distributions of some widely used single-equation tests of the

REHTS. These distributions are extremely sensitive to the magnitude and

sign of the parameter c. In section 3, the REHTS is cast into a triangular

cointegrated system (Phillips (1991)). Consistent and asymptotically un-

biased estimators of c are derived and a Wald test for the REHTS is also

proposed. In section 4, we conduct a Monte Carlo simulation of the dis-

tributions derived in Sections 2 and 3. Interestingly, for highly persistent

interest rates (c 2 (¡1; 0)), the results observed in the yield data can be

explained. Moreover, the simulations suggest that the asymptotic distribu-

tions are very satisfactory approximations to the �nite sample distributions.

In section 5, the above methods are used to estimate c and test the REHTS

using the yield data from McCulloch and Kwon (1993). A strictly univari-

2More precisely, the short rate follows a discrete version of an Ornstein-Uhlenbeck

process with a constant drift parameter c and a constant di¤usion parameter of unity.
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ate way of constructing median unbiased estimators and centered con�dence

intervals of c by inverting the Augmented Dickey-Fuller test (ADF) is also

used (Stock (1991)). Section 6 concludes.

2 Single-Regression Tests of REHTS

2.1 The rational expectations hypothesis of the term struc-

ture

Let the yield of a zero-coupon bond with maturity n at time t be yn;t.

Assume that the yield of the 1-period bond follows the process:

y1;t = Áy1;t¡1 + u1;t (1)

where Á = 1 + c
T , or Á is local to unity with parameter c, T is the sample

size, and u1;t is an error term, whose properties will be speci�ed below.

The literature often assumes that y1;t = y1;t¡1 + u1;t, or c = 0; and this

assumption is often justi�ed with unit-root tests. However, unit-root tests

have very little power against local-to-unity alternatives.

Under the linearized REHTS, yields on long and short term bonds are

related by the present value expression

yn;t = ®n +
1

n

n¡1X
i=0

Et [y1;t+i] (2)

where Et [:] denotes mathematical expectation, given information at time t;

and ®n is a premium. Since statistical tests cannot reject the null that yields

have a unit root, the literature has investigated two testable expressions,

which contain only I(0) variables (provided that the yields are truly a unit

root process): 1
n¡1snt = Et [yn¡1;t+1 ¡ ynt] and snt = Et

h Pn¡1
i=1 (1 ¡ i

n) 4 y1;t+i

i
where snt = ynt ¡ y1t is the spread. The �rst expression, in which the high
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yield spread forecasts increases in long rate, is tested by running a regression

(OLS):

(yn¡1;t+1 ¡ ynt) = cn + ¯
1

n ¡ 1
snt + ²nt (3)

and under the REHTS, ¯ = 1: This implication of the theory is not sup-

ported by the data: the estimated ¯ are always signi�cantly di¤erent from

1 and in most cases also signi�cantly di¤erent from zero, very often with

a negative sign (Shiller et al. (1983), Shiller (1990), Campbell and Shiller

(1991), Campbell et al. (1997)).

In the second expression, the high yield spread forecasts long-term in-

creases in short rates. Let�s use ex-post short rate changes and de�ne

s¤n;t =
Pn¡1
i=1 (1 ¡ i

n) 4 y1;t+i: One way of testing the theory is by running

the regression (OLS):

s¤n;t = °n + Ãsn;t + "t (4)

where Ã = 1 under the REHTS. This regression seems to have a bit more

support in the data (Campbell and Shiller (1991), Campbell et al. (1997)).

2.2 Single-Regression Local to Unity Asymptotics

Using Monte-Carlo simulations, Bekaert et al. (1997) show that if Á is close

to unity, the �nite sample distributions of ^̄ and Ã̂ are very poorly approxi-

mated by the normal distribution for samples as big as 524. In fact, it takes

the authors 20,000 observations in order to get normal-looking distributions.

Even then, the distributions have a considerable spread and seem to depend

on n, the maturity of the bond. All those observations, corroborated by our

own simulations, prompted us to look for a more systematic way of analyzing

the impact of small deviations from unit-root on the statistics of interest.

In this section, we derive alternative asymptotic distributions of ^̄ and Ã̂

that approximate very well the �nite sample distributions for c 6= 0 (if c = 0;

standard asymptotic theory is satisfactory). Those distributions, which are

5



functionals of stochastic integrals, depend crucially on the nuisance parame-

ter c, in the sense that a very small change in c, indistinguishable in a �nite

sample from a statistical point of view, leads to dramatically di¤erent dis-

tributions. Furthermore, we are able to show how the distributions change

when Á is close to, but not exactly at unity. Of course, a Monte Carlo

approach is also possible (see Bekaert et al. (1997)), but then, no analytic

results showing the dependence of the distributions on Á would be available.

It is known that local-to-unity asymptotics provide a good approximation to

the �nite sample distributions when Á is close to one (see Stock (1994) and

references therein), and simulations rea¢rm this fact in the present setup.

Hence, we adopt the view in Stock (1995) that local-to-unity asymptotics

provide �a magnifying glass which focuses on the problematic dependence

of the �nite-sample distributions� on Á:

We use the parameterization n = [¼T ], where [:] is the greatest integer

less than ¼T; 0 < ¼ < 1. All limits are taken as T " 1, for ¼ �xed and

known. Strictly speaking, when T " 1; then n " 1, and the analysis is

de facto focusing on the short and the in�nite-maturity (consol) bonds, not

on the entire term structure. However, in practice T is �xed, and for any

maturity n we can �nd a ¼ such that n = [¼T ] holds. In other words, the

asymptotic distributions derived below can be interpreted as an approxima-

tion of the �nite sample distributions, where ¼ is �xed and known. A Monte

Carlo simulation demonstrates that such an approximation is satisfactory

for 100 or more observations and ¼ ¸ 0:05:

We make the following assumption:

Assumption A 3Let fu1;tg10 be a random variable that satis�es: u1;t =

3Assumption A can be relaxed considerably to allow for weakly dependent hetero-

geneously distributed innovations, but will not add anything to the arguments laid out

below. See Phillips (1987) and Hansen (1992).
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b(L)"t; where "t is a martingale di¤erence sequence with E("2t ) = ¾2

and �nite fourth moment, b(L) =
Pq
j=0 bjL

j , b0 = 1, all roots of b(L)

are outside the unit circle, and §1j=1j jbjj < 1:

Let ! be 2¼ times the spectral density of u1;t at frequency 0; or ! =

¾2b2(1). Also de�ne ¸j = E(u1;0u1;j); and !1 =
P1
j=1 ¸j: Let W (s) be a

standard Brownian motion, and Jc(s), a Ornstein-Uhlenbeck process, de-

�ned as dJc(s) = cJc(s)ds + dW (s); Jc(0) = 0: The demeaned Ornstein-

Uhlenbeck process is J ¹
c (s) = Jc(s)¡R

Jc(¿)d¿ , where all integrals are from

0 to 1 unless denoted otherwise. Also, let ) denote weak convergence on

D [0; 1] ; and ´ , equality in distribution. All proofs are relegated to the

appendix.

Theorem 1 If ^̄ and Ã̂ are the least squares estimators of the parameters

¯ and Ã in equations (3 ¡ 4) ; then, under assumption A and c 6= 0,

1. ^̄ ) ³ ¼(c)

2. Ã̂ ) » ¼(c)

3. t^̄ =
^̄¡1
s^̄

= Op(1) and T¡1=2tÃ̂ =
T¡1=2(Ã̂¡1)

sÃ̂
= Op(1)

where ³ ¼(c) ´ c·1(c; ¼) + ·1(c; ¼)
n£R

(J ¹
c ) 2

¤¡1 £R
J ¹
c dW + !1=!

¤o
and » ¼(c) ´ ·2(c; ¼)g ¼(c)¡¼·2(c; ¼), g ¼(c) = fR 1

0 Jc(s)
R ¼+s
s Jc(¿)d¿ds

¡
hR 1
0 Jc(s)ds

i hR 1
0

R s+¼
s Jc(¿)d¿ds

i
g= ©R

(J ¹
c ) 2

ª
; ·1(c; ¼) and ·2(c; ¼)

are non-stochastic functions de�ned as ·1(c; ¼) = (ec¼¡1)¼
ec¼¡1¡c¼ ; ·2(c; ¼) =

c
ec¼¡1¡c¼ . The double integrals are de�ned as

R 1
0

R s+¼
s Jc(¿)d¿ds =R 1¡¼

0

R s+¼
s Jc(¿)d¿ds +

R 1
1¡¼

R 1
s Jc(¿)d¿ds:

The least squares estimators ^̄ and Ã̂ are not consistent, and their distri-

butions depend on c through the Ornstein-Uhlenbeck processes and through

the non-stochastic functions. Using similar arguments, it can be shown that
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s2 converges in probability to ((ec¼ ¡ 1) =c¼)2 ¸0 in the �rst regression and

diverges in the second. Furthermore, the usual t-statistic, testing for unity

of a parameter, converges to a functional of Ornstein-Uhlenbeck processes in

the �rst regression and diverges in the second. The exact functional forms of

the t-statistics yield little insight but can be readily derived from the proofs

in the appendix.

Monte Carlo simulations for various T 0s; c0s and ¼0s show that the above

asymptotic distributions approximate closely the �nite sample distributions

of b̄ and bÃ: More details on the simulations are presented in section 4. The

exact density of b̄ and the simulated asymptotic distributions (smoothed

with a normal kernel) are shown in �gures 1a�1c. For T = 100 and above,

the asymptotic and small-sample distributions are very similar for all ¼0s

and c0s: The distributions are extremely sensitive to small changes in c as

expected from Theorem 1. Similar results are obtained for Ã̂ and thus

omitted. To put this in perspective, recall that for Á close to one, sample

sizes of tens of thousands of observations are needed in order for the usual

asymptotically normal approximations to be tenable (Bekaert et al. (1997)

for an example). Moreover, the asymptotic distributions in Theorem 1 are

extremely easy to simulate (they are nothing but rescaled sums of y1;t):

Small deviations from c = 0 have a big impact on the distributions

above. Note that limc!0 ·1(c; ¼) and limc!0 ·2(c; ¼) are unde�ned. For

the location parameter in ³ ¼(c), limc!0 (c·1(c; ¼)) = 2: To demonstrate

the dependence of the distributions above on the nuisance parameter; we

simulated them 5,000 times. The 10th and 90th quantiles as well as the

mean are plotted in �gure 2, for c = (¡10;¡3;¡1; 1; 3); T = 500; ¼ = 0:1:

On both sides of the asymptote c = 0; the intervals widen and the entire

distribution changes. Interestingly, for values of c=1 or c=¡1, which are

essentially indistinguishable with unit-root tests, the distributions of ^̄ and

8



Ã̂ are very di¤erent.

Using the results above, we can ask the question: Given that (1) and (2)

hold, what value of c is likely to yield results similar to those observed in

the data4? The simulated distributions of ^̄ and Ã̂ for di¤erent c0s and ¼0s

can provide an answer to this question (section 4). Recalling the empirical

results of Campbell and Shiller (1991, tables 1-2), least squares estimates in

the vicinity of ¡4 and above were observed in (3) and in the vicinity of 0:7 in

(4). Those estimates are contained within the intervals graphed in �gure 2

for a small (positive or negative) c: This might suggest that the expectations

hypothesis is not false, but instead, the short yield is very persistent, with

c contained in (¡1; 0).

3 Multivariate Estimation and Testing

We have argued that if (1) and (2) hold, the least squares estimators in

(3) and (4) will have distributions shown in Theorem 1. Furthermore, the

distributions above depend crucially on c, and for some values of this param-

eter close to 0, the results obtained from the yield data do not necessarily

contradict the theory.

The natural question to ask is: Can we estimate the nuisance parameter

c consistently? In general, the answer is no5. In the univariate case, the best

we can do is �nd a median unbiased estimate of c, by inverting a statistic

(Andrews(1993), Dufour (1990), Stock (1991)). In section 4, we use Stock�s

(1991) method of inverting the Augmented Dickey Fuller (ADF) test and

obtain centered con�dence intervals and a median unbiased estimate of c:

4See Campbell and Shiller (1991) and Campbell et al. (1997).
5To see why consider regression (1) and let Á̂ be the OLS estimator of Á. Then T (bÁ¡

Á)) £R
(J ¹c (s))

2 ds
¤¡1 £R

J ¹c (s)dW(s) + !1=!
¤

and since bc = T (Á̂¡1); we have (bc¡c))£R
(J ¹c (s))

2 ds
¤¡1 £R

J ¹c (s)dW (s) + !1=!
¤
.
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If the REHTS holds, a consistent estimator of c can be constructed as

shown below. First, the term structure is cast into a triangular representa-

tion, where the cointegrating vectors are a function of c: The feasible esti-

mators of the cointegrating vectors are consistent but asymptotically biased.

Using delta-method arguments, a consistent (but asymptotically biased) es-

timator of c is constructed. A parametric and a non-parametric methods

for eliminating the bias are proposed. The implications of the REHTS in

the triangular representation and the restrictions on c can be tested with a

Wald test.

3.1 Triangular Representation of the Term Structure

It is useful to think of the term structure as a sequence of yields fyn;tgn2N

at date t: However, as a practical matter, we often have yields of only a

selected number of maturities. Therefore, it would be convenient to de�ne

the subsequence
©
ynj ;t

ª
j2A ; for A = f1; 2; :::; qg and q �xed and �nite; to

be a selection of some of the yields yn;t taken in order and with maturity

less than the sample size, or nj < T . To simplify notation, we will refer to

the subsequence of available yields ynj ;t as yj;t; keeping in mind that their

corresponding maturities are nj; and j = 1; 2; :::q:

For a sample of size T and a given yield yj;t; let ¼j be such that nj =

[¼jT ], ¼j > 0, as above. From equations (1 ¡ 2), yj;t = ®j+
³

1
[¼jT ]

Pnj¡1
i=0 Ái

´
y1;t+

Et
n
1
nj

Pnj¡1
i=0

Pi
k=1 Ái¡ku1;t+k

o
¼ ®j+

ec¼j¡1
c¼j

y1;t+Et
n
1
nj

Pnj¡1
i=0

Pi
k=1 Ái¡ku1;t+k

o
6.

If the expectations hypothesis holds, yj;t and ec¼j¡1
c¼j

y1t must di¤er only be-

cause of uj;t, or

yj;t = ®j + e°j(c)y1;t + uj;t (5)

6Strictly speaking, yj;t = ®j+
µ

1

[¼jT ]

Pnj
i=0 Á

i

¶
y1;t+Etf 1

nj

Pnj¡1
i=0

Pi
k=1 Á

i¡ku1;t+kg¡
Áj

[¼jT ]
y1;t; but since all expressions involving the last term are op(1); we omit it from this

point on, for clarity of exposition.
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where uj;t = Et
n
1
nj

Pnj¡1
i=0

Pi
k=1 Ái¡ku1;t+k

o
is an I(0) process and e°j(c) =

ec¼j¡1
c¼j

: Thus, yj;t and y1t are cointegrated7 and the cointegrating vector is a

function of c: However, e°j(c) is not de�ned at c = 0; but limc!0 e°j(c) = 1;

and we can de�ne the continuous function

°j(c) =

8<: 1e°j(c)
, c = 0

, otherwise

The function e°j(c) is di¤erentiable everywhere except at c = 0: De�ne
d°j (c)

dc jc=0 = limc!0
de°j (c)
dc : Hence °j(c) is continuous and di¤erentiable everywhere:

Furthermore °j(c) is a strictly increasing function of c and its inverse exists

and is continuous. To clearly understand the relationship between c, ¼j and

°j(c); notice that °j(c) ¼ 1 +
c¼j
2 ; or c ¼ 2(°j(c) ¡ 1)=¼j: For c = 0; we

have the usual result that the long and short rates are cointegrated, with

cointegrating vector (1 ¡1) (Campbell and Shiller (1987)).

It is important to emphasize that the parameterization nj = [¼jT ] was

only used to motivate the arguments leading to the cointegrating vectors.

However, ¼j is �xed. The reasoning is justi�ed using the same arguments

as in section 2: for arbitrarily large T , we can always �nd ¼j such that

nj = [¼jT ] : In other words, the �nite sample arguments are used to show

that, if the REHTS holds, there should be a cointegrating relationship be-

tween the short and long rates. The asymptotics (T " 1) will be used to

derive the distributions of the estimators of the cointegrating vectors and of

the nuisance parameter c; assuming ¼j is �xed and known. The large sam-

ple distributions can be interpreted as approximations for the �nite sample

distributions.

The following structure is assumed for ut:

Assumption B Let futg10 be a q £ 1 vector of random variables that sat-

isfy: ut = B(L)"t; where "t = ("1;t; "2;t:::; "q;t)0 is a martingale di¤er-
7Here, the term �cointegrated� is used loosely, since y1;t is local-to-unity.

11



ence sequence with E("t"
0
t) = § and �nite fourth moments, B(L) =Pr

i=0 BiL
i , B0 = Iq, all roots of B(L) are outside the unit circle, and

§1i=1i jBij < 1:

Partition ut and "t after their �rst elements as ut = (u1;t u2;t) and

"t = ("1;t; "2;t) and partition B(L) and § appropriately: Let ­ be 2¼ times

the spectral density of ut at frequency 0; or ­ = B(1)§B(1)0 and partition ­

conformably with (u1;t u2;t). Also de�ne ¤i = E(u1;0u1;i);and e­ =
P1
i=1¤i:

If the REHTS holds, the term structure must be generated by a trian-

gular system (Phillips (1991)). Stack the equations in (5) for 2 · j · q

and let Y 0
2;t = (y2;t; y3;t; :::; yq;t)

0 ; ® = (®2; ®3; :::; ®q)0, c = (c2;c3; :::; cq)

¡(c) =
¡
°2(c2); °3(c3); :::; °q(cq)

¢0 be (q ¡ 1) dimensional vectors and e is a

(q ¡ 1) vector of 10s. The triangular representation of the term structure is:

y1;t = Áy1;t¡1 + u1;t (6a)

Y 0
2;t = ® + ¡(c0)y1;t + u2;t (6b)

where c0 = c ¤ e. It must be emphasized that, if the REHTS holds, then

c2 = c3 = ::: = cq = c.

Campbell and Shiller (1987) also use a triangular representation to study

the term structure and they make an assumption similar to Assumption B8.

However, the triangular representation above di¤ers from Campbell and

Shiller�s in two important ways.

First, we do not constrain y1;t to be unit root, although the unit root

case is nested in (6a) : Elliott (1994, 1998) demonstrates that if y1;t is local

to unity (c 6= 0); the estimators of ¡(c); constructed under the assumption

that c = 0; are consistent but have a bias, resulting in size distortions of the

8 In Campbell and Shiller (1987), ut is a �nite order VAR.
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usual t and Wald tests involving y1;t. The distortions can be quite severe if

the covariance between u1;t and u2;t is high9. In the term structure setup,

it is reasonable to suspect that u1;t and u2;t are very highly correlated.

From a methodological viewpoint, our use of the triangular representa-

tion also di¤ers from Campbell and Shiller�s. They assume that c = 0 (and

known) and perform various volatility tests. Here, we want to �nd a consis-

tent estimator of c and test whether all its elements are equal, since this is

a direct implication of the REHTS. Keeping in mind the results from Part

2, we also want to know if c is statistically di¤erent from 0.

3.2 Consistent and Asymptotically Unbiased Estimators of

¡(c), c and c

Numerous estimators have been proposed for estimating ¡(c): For a review

of the literature, see Watson (1994). Although the least squares estimator

of ¡(c) in (6b) is consistent, it is also asymptotically biased (Stock(1987)).

There are several ways to deal with this bias, and here we follow the ap-

proach suggested by Phillips and Loretan (1991), Saikkonen (1991) and

Stock and Watson (1993). The idea is to make the errors in (6a) inde-

pendent of the errors in (6b) and apply the results in Park and Phillips

(1988) and Sims et al. (1990). Following Stock and Watson (1993), let

Proj(u2;tj fu1;tg1¡1) = Proj
¡
u2;tj f(1 ¡ ÁL)y1;tg1¡1

¢
= D(L) (1 ¡ ÁL) y1;t,

where Proj(rj fs1:::skg) is the linear projection of r onto fs1:::skg and D(L)

is a two sided polynomial. We assume that D(L) is a polynomial of �nite

leads and lags of equal length, D(L) =
Pk
i=¡k diL

i:

Assumption C 10Assume D(L) =
Pk
i=¡k diL

i where k is a �nite and

9Elliot (1994) shows that the size of the Wald test approaches 1 as the long-run covari-

ance increases, provided c 6= 0:
10 If an in�nite number of leads and lags is necessary in the projection, but we use a
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known integer.

Let vt = u2;t ¡ Pk
i=¡k di e4y1;t¡i; where e4 = (1 ¡ ÁL) is the quasi-

di¤erencing operator. We can augment (6b) as Y 0
2;t = ®+¡(c)y1;t+

Pk
i=¡k di e4y1;t¡i+

vt: Note that vt is independent of all right hand side variables. The gen-

eralization of the dynamic OLS (DOLS) estimator of Phillips and Loretan

(1991), Saikkonen (1991) and Stock and Watson (1993) in the local-to-unity

case is:

Y2;t = ¡(c)y1;t +
kX

i=¡k
di e4y1;t¡i + vt (7)

where di is an (q ¡ 1) dimensional vector of coe¢cients and Y2;t = Y 0
2;t ¡

1
T

P
t Y

0
2;t. If c is known, estimating (7) by least squares yields a T-consistent

estimator of ¡(c) with an asymptotic distribution, which is a mixture of

normals. This result, shown in Elliott (1994) in the bivariate case, is a

straight forward extension of Stock and Watson (1993) and is provided here

for completeness.

Theorem 2 Suppose the data is generated by the process (6a ¡ 6b) and as-

sumptions B and C hold. Let Tq¡1 = T ¤ Iq¡1, Iq¡1 is the identity matrix,

and ¡(c0) is the true value of the parameters. Then, the least squares esti-

mator of ¡(c) in (7) has the following asymptotic distribution

T
³ d¡(c) ¡ ¡(c0)

´
) ­

¡1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

µZ
(J ¹
c )2

¶¡1
where T¡1

P[sT ]
t=1 vt ) ­

1=2
2:1 W2:1(s) and ­2:1 = ­22 ¡ ­21­

¡1
11 ­12.

Not surprisingly, the results are a straight forward generalization of Stock

and Watson (1993), with the Brownian Motion functionals replaced by the

di¤usion process J ¹
c .

truncated polynomial instead, the error from the truncation vanishes asymptotically if the

number of included leads and lags increases at T r ; 0 < r < 1=3 (Saikkonen (1991)).
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The distribution of d¡(c) depends on c: However, c is precisely the un-

known parameter, and the estimator above is unfeasible. One might be

tempted to assume that c = 0 ¤ e (i.e. e4 = 4 = (1 ¡ L)) and use the usual

DOLS

Y2;t = ¡(c)y1;t +
kX

i=¡k
di 4 y1;t¡i + vt (8)

Elliott (1994, 1998) shows that if y1;t follows (6a) ; the least squares estimator

of ¡(c) in (8) ; call it
dd¡(c); is T-consistent, but asymptotically biased, with

bias B = ¡­¡111 ­21c, and a Wald test, involving parameters of y1;t will have

incorrect size.

In our case, since ¡(c) is a consistently estimable function of c, delta-

method arguments are used to �nd a consistent estimator of c, bbc:
Theorem 3 If

dd¡(c) is the least squares estimator of ¡(c) in (8) ; G (:) :

Rq¡1 ! Rq¡1 is such that G (¡(c)) = c with Jacobian D(c) = @G
@¡0 j¡(c) then,

T
³bbc ¡ c0

´
)

µ
D¡1
0 ­11

Z
(J ¹
c )2D¡1

0

¶¡1
D¡1
0

µ
­
1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
¡­¡111 D0­21c

where G

µ dd¡(c)

¶
= bbc, G (¡(c0)) = c0; D(c0) = D0:

Moreover, using the results from Park and Phillips (1988), we can make

the following observation:

Remark 4 Let bV = ­̂2:1
³
T¡2

PT
t=1 y1;t

´¡1
; where ­̂2:1

p! ­2:1 and D̂ =

D(bbc): Then,³
D̂bV D̂

´¡1=2 h
T

³bbc ¡ c0

´
+ ­¡111 D­21c

i
a» N(0; In¡1)

Two issues need to be addressed. First, any of the q ¡ 1 elements of the

vector bbc is a consistent estimator of the scalar c; but which one should we

choose? A natural way is to take a convex combination of the elements of bbc
such that its variance is as small as possible. More precisely,
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Corollary 5 If D̂ and bV are as above and ec = â0bbc; where the q¡1 vector â =

[â1;:::; âq¡1]0 is a solution of the minimization problem mina a0
n

D̂bV D̂
o

a;

s.t. 0 · ai · 1and
Pq¡1
i=1 ai = 1; then

T (ec ¡ c) ) â0
µ

D¡1
0 ­11

Z
(J ¹
c )2 D¡1

0

¶¡1
D¡1
0

µ
­
1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
¡­¡111 â0D0­21c

Second, the estimators bbc and ec are consistent but asymptotically biased.

We propose a parametric and a non-parametric methods to eliminate the

bias.

Since c and ­ can be estimated consistently (the latter follows from the

consistency of the least squares estimators of Á and ¡(c) in 6a�6b); then a

consistent estimator of the bias is bB = ¡b­¡111 b­21ec: Correcting
dd¡(c) for the

estimated bias produces an asymptotically unbiased estimator of ¡(c). The

delta method is used to obtain an asymptotically unbiased estimator of c;

that we call the nonparametric quasi DOLS (NQDOLS):

Theorem 6 Suppose ec p! c and b­ p

! ­ : Let bB = ¡b­¡111 b­21ec; and b¡1(c) =dd¡(c) ¡ bB
T : Then, using the notation of Theorem 3,

T
³b¡1(c) ¡ ¡(c0)

´
)

µ
­11

Z
(J ¹
c )2

¶¡1µ
­
1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
and the NQDOLS estimator of c is bc1 = G

³b¡1(c)´ and:

T
¡bc1 ¡ c0

¢ )
µ

D¡1
0 ­11

Z
(J ¹
c )2D¡1

0

¶¡1
D¡1
0

µ
­
1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
Another way of correcting for the bias is to use ec to de�ne the estimated

quasi-di¤erencing operator
^e4= (1 ¡ (1 + ec

T )L): The least squares estimator

of ¡(c) in the regressions

Y2;t = ¡(c)y1;t +
kX

i=¡k

^e4 diy1;t¡i + vt (9)
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will be asymptotically unbiased. We can consequently derive a parametric

quasi DOLS estimator of c0, called the QDOLS.

Theorem 7 Let b¡2(c) be the least squares estimator of ¡(c) in (9) andec p! c. Then, using the notation of Theorem 3,

T
³b¡2(c) ¡ ¡(c0)

´
)

µ
­11

Z
(J ¹
c )2

¶¡1µ
­
1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
and the QDOLS estimator of c is bc2 = G

³b¡2(c)´ and:

T
¡bc2 ¡ c0

¢ )
µ

D¡1
0 ­11

Z
(J ¹
c )2D¡1

0

¶¡1
D¡1
0

µ
­1=211 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
It is possible to iterate on the previous procedures, but simulations sug-

gest that the bene�t is small to negligible. Finally, we can use the min-

imization in Corollary 5 to �nd an asymptotically unbiased estimator of

c:

3.3 Testing Rc = r

Given the results in the previous subsection, the asymptotic distribution of

the Wald test for the null hypothesis Rc = r; where rank(R) = s, can be

obtained using the results from Park and Phillips (1988).

Corollary 8 For the asymptotically unbiased estimators bc1 and bc2 above,b­2:1 p

! ­2:1 and under assumptions B and C, de�ne

W = (Rbc ¡ r)0
·
RD (bc)µb­2:1 nX

(y1;t)
2
o¡1¶

D (bc)R0
¸¡1

(Rbc ¡ r)

Under the null;

W ) Â2s

As mentioned above, the REHTS implies that c2 = c3 = ::: = cq = c.

A rejection of the implication of the REHTS would imply a rejection of the

theory itself.
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4 Monte Carlo Simulations

4.1 Single-Regression Tests

We investigate whether the asymptotic distributions derived in section 2

adequately approximate the �nite sample distributions of ^̄ and Ã̂. For

tractability, the system (1 ¡ 2) is simulated for two yields, y1;t and yn;t. For

any value of the triplet (c; ¼; T ) ; the data is simulated 5; 000 times as in

(1 ¡ 2) ; y1;0 = 0; and di¤erent speci�cations of u1;t:

The results for c = (¡10;¡5;¡1; 1; 3); ¼ = (0:05; 0:1; 0:25), T = (100; 500)

and u1;t » NIID(0; 1) are presented in tables 1 and 2. Various AR and MA

processes for u1;t were also simulated, but the results were similar and hence

omitted. Tables 1a and 2a present percentiles, mean and standard deviation

of the slope coe¢cients in (3 ¡ 4) estimated by least squares, for various val-

ues of (c; ¼; T ) : The functionals of stochastic integrals, ³ ¼(c) and » ¼(c), are

simulated using scaled partial sums of y1;t; with y1;0 = 0. Their percentiles,

mean and standard deviation are in tables 1b and 2b, respectively, for var-

ious (c; ¼; T ) : Comparing tables 1a with 1b, and 2a with 2b, we see that

the exact and the asymptotic distributions are very close. To illustrate this

point even further, �gure 1 shows the �nite and asymptotic distributions of

^̄: They are very similar, even for T=100. In regressions (3 ¡ 4) the local-to-

unity asymptotics provide a far better approximation to the distributions of

^̄ and Ã̂ than does the normal distribution. Bekaert et al. (1997) conduct a

similar experiment, with Á = 0:986 and T=524, which corresponds roughly

to our case c = ¡10, T = 500. Not surprisingly, the results here coincide

with theirs (up to a simulation error and smoothing). However, the local-

to-unity parameterization used in this paper, o¤ers a way of understanding

how small changes in the data generating process can result in big changes

in the distribution of the coe¢cients.
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It is evident from �gures 1a�1c and tables 1�2 that the distributions of

^̄
n and Ã̂n change dramatically for small changes in c: Di¤erent values of ¼

have very little impact, con�rming the results from Theorem 1. Moreover,

for values of c in the range of (¡1; 0), the estimates ^̄
n and Ã̂n might be in

the range observed in the yield data. Therefore, if we are willing to accept

the possibility that the short yield is highly persistent (in �nite samples),

the results presented by Shiller et al. (1983), Shiller (1990), Campbell and

Shiller (1991), Campbell et al. (1997) are not necessarily in con�ict with

the REHTS.

4.2 Median Unbiased Simulations

Following Stock (1991), a median unbiased estimator of c might be obtained.

Since (1¡ÁL)y1t = u1t and (1¡ÁL)Y 0
2;t = (1¡ÁL)®+(1¡ÁL)¡(c; ¿)y1y +

(1 ¡ ÁL)u2;t; we can rewrite

Y 0
2;t = e® + ÁY 0

2;t¡1 + vt (10)

where vt = ¡(c; ¿)u1;t + (1 ¡ ÁL)u2;t and vt = (v2;t; v3;t; :::; vq;t), vj;t =

°(cj; ¿ j)u1;t+(1¡ÁL)uj;t: Taking the jth equation in (10) and inverting the

augmented Dickey Fuller (ADF) test produces a median unbiased estimator,bcMUj . Note that the error terms vj;t are autocorrelated. The autocorrelated

structure depends on the cointegrating vector and might be fairly persistent.

As shown recently, the size and power of the augmented Dickey Fuller (ADF)

test depends on the number of augmenting lags included in the test and this

in turn impacts the precision of our con�dence intervals (Ng and Perron

(1998)). As discussed in Ng and Perron (1996), there is no satisfactory way

of �nding the appropriate lag structure. Information-based methods (AIC,

Schwartz) under-parameterize the test and hence, do not entirely correct

for serial correlation. The real size of the test is bigger than the nominal
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one. On the other hand, a t-test for the signi�cance of the last lag tends

to over-parameterize the test, resulting in loss of power. In this particular

application we are more concerned with size distortions11 and choose the lag

structure with sequential t-tests. In the notation above we have allowed the

c0s to vary from equation to equation, but according to the Expectations

Hypothesis, c should not change with j: This is a testable implication of the

REHTS.

Using simulated data for various speci�cations of ¼0s; c0s and error speci-

�cation, the ADF test is inverted using the tables published in Stock (1991),

to �nd 95%, 90%, 80%, 70% centered con�dence intervals as well as a me-

dian unbiased estimate of c: The real coverage of the intervals is veri�ed by

reporting the fraction of times that the calculated con�dence interval con-

tains the true value of c; for di¤erent speci�cations. The results are reported

in Table 8.

The case ¼ = 0 corresponds to Stock�s simulations, and indeed our re-

sults concur. For ¼ > 0; the coverage is still acceptable even for high ¼0s:

The missing (c; ¼) speci�cations in table 8 could not be computed, because

the values of the tests were often outside the range of the tables in Stock

(1991). If more than one percent of the tests could not be inverted, the

speci�cation was eliminated altogether. Since the Monte Carlo simulations

yield satisfactory results, we will use the median unbiased estimator as a

staring point in the analysis.

11This choice is made on the basis that in the term structure example, we have a fair

amount of observations and power will be satisfactory. Furthermore, obtaining precise

con�dence intervals of c relies on the test being correctly sized.
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4.3 Multivariate Tests

In a Monte Carlo experiment, we simulate the bivariate series (y1;t; yn;t) as in

(1 ¡ 2) with ¼ = (0:05; 0:1; 0:2; 0:3) ; c = (¡5;¡3;¡1; 1; 3) , T = (200; 400) ;

and y1;0 = 0.12 For each experiment (c; ¼; T ), ut follows one of two processes,

speci�ed in the tables below, and "t » NIID(0; §); drawn from the Matlab

pseudo-random number generator �randn�. Each simulation is repeated

5; 000 times. The mean from the OLS, DOLS, QDOLS, iterated QDOLS,

and nonparametric QDOLS estimators of c is tabulated for each (c; ¼; T ) :

OLS is the original estimator of the cointegrating vector, proposed by Engle

and Granger (1986). The other estimators were de�ned in section 3. The

augmenting leads and lags for each procedures are chosen with sequential

t-tests.

Table 3a shows the results for ut = "t; "t » NIID(0;§). The matrix §

is speci�ed in the notes under the table. As expected, the OLS estimates are

very biased even for T = 400. The DOLS is also biased, but considerably

less than the OLS. The QDOLS and the nonparametric QDOLS are almost

unbiased. As we can see, the iterated QDOLS does not necessarily perform

better than the QDOLS.

Similar results for ut = Aut¡1 + "t; "t » N(0;§) are shown in table 3b.

The matrices A and § are speci�ed in the notes the tables. Admittedly,

the long-run variance of ut was chosen to yield OLS estimates with extreme

biases. The bias in the DOLS is smaller, but still sizeable even for T = 400.

The QDOLS estimators (parametric and nonparametric) are less biased.

The di¤erence in biases between the DOLS and QDOLS estimators is best

seen for T = 400.

The empirical distributions (smoothed with a normal kernel) of the

QDOLS estimator of c for the case ut = "t, are plotted in �gures 3a-3e

12We abstract from the non-zero initial condition issues.
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for various (c; ¼; T) : The distributions are standardized by subtracting the

mean and dividing by the standard deviations. As we can see, the estimator

is purged from the bias. From remark 1 in section 3, we know that the

standardized distributions should approximate the standard normal distri-

bution. For comparison, the standard normal density is also plotted, and

we notice that the approximation is quite good for all values of c: By nor-

malizing the QDOLS distributions, we are not able to observe the rate of

convergence. Table 4 intends to demonstrate the convergence at rate T of

the estimators. The entries in the table are the ratios of the variances for

T = 200 versus T = 400 of the various estimators for a given experiment

(c; ¼) : If the estimators converge at rate T; the entries should be close to 4:

This is indeed the case.

Figures 3a-3e suggest that the standardized distributions of the QDOLS

estimators is well approximated by the normal distribution. But in order to

conduct inference, we must know if the con�dence intervals, suggested by

the standard normal distribution have an adequate real coverage. The real

coverage of the, say, 95% con�dence interval, is veri�ed by reporting the

fraction of times that the true value of c is contained within 1.96 standard

deviations from the calculated mean. The results for the parametric and

nonparametric QDOLS are reported in tables 5a and 5b, for various speci-

�cations of (c; ¼; T ) and error terms. As we can observe, the nominal and

real coverage are remarkably similar even for positive values of c:

One last useful fact is worth mentioning. The variance of the QDOLS

estimators depends on ¼ only through the Jacobian, D(c): For bivariate

series (y1;t; yn;t) ; D(c) is a scalar. To analyze the e¤ect of ¼ on the variance,

D2(c) is plotted as a function of c and ¼ in �gure 4. For ¼ close to zero,

the variance increases exponentially, for all c because in the bivariate case

D2(c) ¼ 4
¼2

: In other words, rates at the short end of the term structure will
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have a much higher variance than rates at the long end. The same argument

is re-enforced in table 6. The ratio of variances of the QDOLS estimators for

various ¼0s is computed from the Monte Carlo experiments and compared

the theoretical ratio. Once again, the variance decreases dramatically as ¼

increases.

5 Estimations and Testing of the REHTS

Monthly data of continuously compounded yields to maturity of US Gov-

ernment securities from McCulloch and Kwon (1993) is used in this section.

Bills, notes and bonds with maturities from 1 month to 13 years, span-

ning the period 1946:12�1991:2 are available, but pre-1952:1 numbers are

discarded so that no calculations (including lags) use data prior to the Trea-

sury Accord of 1951. This dataset has been used by Campbell and Shiller

(1991) and Campbell et al. (1997) among others to study the term structure

of zero-coupon bonds. We take y1;t to be the one-month yield, and maturi-

ties of 2, 3,...,18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 144, 156 months

are used in Y2;t. The sample size varies from the lag and lead con�gurations

of the tests, but is never below 460 observations.

5.1 Median Unbiased Estimation of c

The median unbiased estimates of c are only used as a starting point in the

investigation. The ADF test for each equation in (10) is inverted, using the

number of lags chosen by sequential t-tests.

The median unbiased estimate for c from y1;t is ¡5:99 and the 90%

centered con�dence interval is (¡14:84; 2:97) : As the maturity increases,

so do the median unbiased estimates. The results from the estimation are

plotted in �gure 5a. In the high-end of the term structure, the estimates
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are positive. However, the con�dence intervals are too wide for a conclusion

to be drawn. For example, the range (¡14:84; 2:97) covers processes with

an autoregressive root anywhere from 0:97 to 1:01. A few alternative lag

speci�cations are plotted in �gure 5b as a way of verifying the robustness of

the results to the lag structure of the test.

A positive median unbiased estimate of c in the yield data should not

come as a complete surprise. Using a more aggregated dataset, Stock (1991)

�nds that among several macroeconomic series, only the bond yield has a

90% con�dence interval above unity. Based on all this evidence, the possi-

bility that c is in the neighborhood of 1 cannot be ruled out. But neither

can the possibility that c is, say, ¡3:

5.2 Consistent and Asymptotically Unbiased Estimators of

c and c

The methods developed in section 3 and tested in section 4 are now applied

to the US yield data. Since the parametric and non-parametric estimator

performed similarly in the Monte Carlo experiments, we use the parametric

one (QDOLS) only. The lead-lag speci�cation is chosen with sequential

t-tests. The long-run variance of ut is estimated with an autoregressive

spectral estimator, whose truncation is also determined by sequential t-tests.

We estimate three separate systems. In the �rst one, Y2;t is comprised

of yields with one or more years to maturity. The second system includes

yields with 18 months and over, and the third one, 3 years and over. In

all three systems, y1;t is the one-month rate. Yields between two months

and one year are not included in the analysis, because the variance of their

estimates is too big ( ¼ is too small). However, the results do not change

considerably if all available yields are included in Y2;t:

The sequential t-tests selected the same 3 leads and lags speci�cation in
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all three speci�cations. For each system, the following algorithm is imple-

mented. First, we �nd the consistent but biased estimate of c . Second, we

minimize the quadratic criterion in Corollary 5 to �nd a consistent but bi-

ased estimate of c: Third, a consistent and asymptotically unbiased estimate

of c is obtained with the QDOLS. Finally, a consistent and asymptotically

unbiased estimate of c is produced. This estimate is ¡0:37 for the �rst sys-

tem, ¡0:35 for the second one, and ¡0:35 for the third one. The estimates

of c are plotted in �gure 6a, along with con�dence bands at plus and minus

two standard deviations. As seen in section 4, if the REHTS holds, those

bands provide quite an adequate coverage of the 95% con�dence interval.

The last plot in �gure 6a represents the unbiased estimates of c for

the system with maturities of 3 years and more. First, we notice that the

95% error bands are very small, compared to those provided by inverting

the ADF test. More interestingly, the estimates at the long end of the term

structure seem to be very close to each other, just as implied by the REHTS.

Looking at the corresponding plots in �gures 6b-6d, the results seem quite

robust to various lead/lag speci�cations. However, the Wald test, suggested

in section 3.3, rejects the REHTS at any signi�cance level. The results are

reported in table 7. This rejection might come as a surprise considering

the very tight con�dence intervals around each estimate. However, it is

known that GMM-based Wald tests tend to have a small-sample size that

exceeds the asymptotic one. Burnside and Eichenbaum (1996) �nd that the

size discrepancy is very severe particularly when multiple restrictions are

imposed, and suggest that a big part of the problem is in the estimates of

the weighing matrix. Since our regressions can be viewed within the GMM

framework, we expect that the same size distortions would be present even

more so because we impose many restrictions in all three systems and the

covariance matrix is particularly di¢cult to estimate. A small Monte-Carlo
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study, not reported in the paper, con�rms our suspicions. A more complete

study of the small sample properties of Wald tests with I(1) variables needs

to be performed.

The �rst two plots in �gure 6a show the estimates of c for the �rst

two systems. The implications of the REHTS do not seem to hold at the

short end of the term structure. The Wald test rejects the REHTS at any

signi�cance level. Various systems with di¤erent lead/lag speci�cations were

tested. Some of the computed Wald statistics are reported in table 7. We

could not reject the REHTS only for very small systems, with only a few

long-end yields. The robustness of the results for di¤erent lead and lag

speci�cations are reported in �gures 6b-6d; the results change very little

with di¤erent lag/lead speci�cations.

In sum, the plots in �gures 6a�6d bear little similarity to the ones from

�gures 5a and 5b. In both sets of �gures, the estimates are more tightly

estimated at the long end of the term structure, where the estimates are

close to zero. But the similarities stop here. The median unbiased estimates

at the long end seem to be slightly positive, although the centered con�dence

intervals are much too wide for a conclusion to be drawn. On the contrary,

the con�dence bands around the negative QDOLS estimates are very tight.

Moreover, at the short end, the DOLS yields positive estimates when the

median unbiased estimates are negative (but again the con�dence intervals

of the latter are very wide). The DOLS estimates of c at the long end of

the term structure are very similar, although formal Wald tests reject the

REHTS. Estimates at the short end are very di¤erent from those at the

long end, suggesting that some of the dynamics of the system are not well

captured by a single local-to-unity process. There might be gains from using

a multi-dimensional driving process with more than one nuisance parameter.
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6 Conclusion

The methods presented above can be applied to various other econometric

problems. Indeed, it is often assumed that the variables of interest have been

reduced to I(0) processes after some linear transformation. If the assumption

is untenable (and it probably always is), asymptotic normality might not

be an adequate approximation of the �nite distributions of the statistics

of interest. A link between the distributions of those statistics and the

local-to-unity parameter c can be established, using standard local-to-unity

asymptotics.

Consistent estimators of c are not available for a general local-to-unity

process. In this paper, we exploit the structure of the REHTS to construct

consistent and asymptotically unbiased estimators of c: In that sense, our

estimators are �structural.� Monte Carlo simulations demonstrate the va-

lidity of the procedures even in samples of reasonable size. Moreover, when

the proposed methods are applied to the US yield data, we obtain very ac-

curate estimates of the nuisance parameter. However, even if the estimates

at the long end of the term structure seem to follow the implications of the

theory, a formal Wald test rejects the REHTS. The estimates at the short

end of the term structure are very di¤erent from those at the long end. This

result might suggest that the rejections of the expectations hypothesis are a

consequence of using unrealistic assumptions about the driving process. One

might speculate that a multi-dimensional local-to-unity process is needed to

capture the dynamics underlying the term structure, much as in the a¢ne

multi-factor general-equilibrium literature of the term structure.

The REHTS is just one example of rational expectations present value

models in economics where the data follows a very persistent process. The

estimators above can be cast more elegantly into a GMM framework. Ob-

taining an estimate of c and testing the restrictions of the model can also
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be carried out more readily in that fashion. Lastly, the driving process y1;t

might be a vector instead of a scalar. In that case, c will be a square ma-

trix, thereby increasing the complexity of the problem. All these non-trivial

extensions are the focus of current research.
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Appendix

Lemma 9 Under assumption A,

1. T¡1=2yn;t ) ec¼!1=2Jc(s); where n = [¼T ]

2. T¡1
PT
t=1 y1;t¡1u1;t ) !

R 1
0 Jc(s)dW (s) + !1

3. T¡1=2snt ) !1=2
¡
ec¼¡1¡c¼

c¼

¢
Jc(s)

4. T¡1=2s¤nt ) !1=2
n
1
¼

R ¼+s
s Jc(¿)d¿ ¡ Jc(s)

o
Proof. Results (1-4) follow by applying local-to-unity asymptotics, such

as in Phillips (1987), Lemma 1. Starting with (1), then y1;t+k = Áky1;t +Pk
j=1 Ák¡ju1;t+j; and since u1;t = b(L)"t; y1;t+k = Áky1;t+

Pk
j=1 Ák¡j

³
b(L)
Lj

´
"t:

Taking conditional expectations at time t and using [:]+, the annihilation

operator to obtain: Et (y1;t+k) = Áky1;t +
Pk
j=1 Ák¡j

h
b(L)
Lj

i
+

"t = Áky1;t +P1
i=0

Pk
j=1 "t¡iÁk¡jbi+j = Áky1;t +

P1
i=0 "t¡i

³Pk
j=1 Ák¡jbi+j

´
= Áky1;t +P1

i=0 qi;k"t¡i; where qi;k =
Pk
j=1 Ák¡jbi+j : Now we will show that qi;k are ab-

solutely summable.
P1
i=0 jqi;kj =

P1
i=0

¯̄̄Pk
j=1 Ák¡jbi+j

¯̄̄
· P1

i=0

Pk
j=1

¯̄
Ák¡j

¯̄ jbi+jj ·P1
i=0

Pk
j=1 ejcj jbi+jj

· ejcj
P1
i=0

P1
j=1 jbi+jj = ejcj

P1
i=0 i jbi+j j < 1: Therefore

P1
i=0 qi;k"t¡i =

op(T
1=2): Using the parameterization k = [¼T ]; ¼ 2 [0; 1], T¡1=2Et (y1;t+k) =

T¡1=2Á[¼T ]y1;t + op(1) ) ec¼!1=2Jc(s); where t = [sT ] and ! is the long run

variance of u1t: Since yn;t = ®n + 1
n

Pn¡1
i=0 Et [y1;t+i] ; using the above result

and n = [¼T ] , we obtain: T¡1=2yn;t = 1

[¼T 3=2]

P[¼T ]
i=0 Et [y1;t+i] + op(1) )¡

ec¼¡1
c¼

¢
!1=2Jc(s): Parts 2 and part 3 are obtained with similar calcula-

tions. For part 4, note that s¤nt = 1
n

Pn
i=0 y1;t+i ¡ y1;t ¡ 1

ny1;t+n; T¡1=2s¤nt =

1

[¼T 3=2]

P[¼T ]
i=0 y1;t+i¡ 1

T1=2
y1;t¡ 1

[¼T3=2]
y1;t+n ) 1

¼!1=2
R ¼+s
s Jc(¿)d¿¡!1=2Jc(s):¥

Theorem 1 Proof. Follows from Lemma 1. For example, for the �rst

regression (omitting the intercept for clarity of exposition,) b̄
n =

P
(yn¡1;t+1¡yn;t)(snt=(n¡1))P

(snt=(n¡1))2 :
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After noting that yn¡1;t+1¡yn;t = ec¼¡1
c¼

©
c
T y1t + u1;t+1

ª
+op(1); the numera-

tor simpli�es to: (ec¼¡1)(ec¼¡1¡c¼)
c¼3

1
T 2

P
y1;t+

(ec¼¡1)(ec¼¡1¡c¼)
c2¼3

1
T

P
y1;tu1;t+1+

op(1) ) (ec¼¡1)(ec¼¡1¡c¼)
c¼3

!
R

J2c + (ec¼¡1)(ec¼¡1¡c¼)
c2¼3

£
!

R
JcdW + !1

¤
: Simi-

larly, the denominator converges to: (ec¼¡1¡c¼)2
(c¼)2

1
¼2!

R
J2c : Therefore, b̄ )

(ec¼¡1)c¼
(ec¼¡1¡c¼) + (ec¼¡1)¼

(ec¼¡1¡c¼)
R
JcdW+!1=!R

J2c
: If we let zt = yn¡1;t+1 ¡ yn;t; xt =

snt=(n ¡ 1), z = 1
T

PT
t=1 zt; and x = 1

T

PT
t=1 xt then s2 = 1

T

P
(zt ¡ z)2 ¡

^̄2
n
1
T

P
(xt ¡ x)2 = 1

T

P
z2t ¡ z2 ¡ ^̄2

n
1
T

P
x2t + ^̄2

nx
2 = A¡ B ¡ ^̄2

nC + ^̄2
nD:

It is easy to see that A
p! ¡

ec¼¡1
c¼

¢2
¸1;0, and B = C = D = op(1):

Therefore, s2
p! ¡

ec¼¡1
c¼

¢2
¸1;0: Also, T¡1

P
(xt ¡ x)2 = T¡1

P
x2t + x2 )

!
¡
ec¼¡1¡c¼

c¼3

¢ R
J2c ; because x = op(1): Then, t ^̄ =

^̄
n¡1

s[
P
(xt¡x)2]¡1=2

= Op(1):

(We can put the above pieces together to �nd the expression of the asymp-

totic distribution, but no useful insights are obtained).

For the second regression, Ã̂n =
P
(s¤nt¡s¤n)(snt¡sn)P

(snt¡sn)2 ; where x = 1
T

PT
t=1 xt:

After some tedious calculations, the numerator is: T¡2
P

(s¤nt ¡ s¤n) (snt ¡ sn) )
1
¼

¡
ec¼¡1¡c¼

c¼

¢ hnR 1
0 Jc(s)

R s+¼
s Jc(¿)d¿ds

o
¡

nR 1
0 Jc(s)ds

onR 1
0

R s+¼
s Jc(¿)d¿

oi
¡ ¡

ec¼¡1¡c¼
c¼

¢·R 1
0 J2c (s)ds ¡

³R 1
0 Jc(s)ds

´2¸ def
= 1

¼

¡
ec¼¡1¡c¼

c¼

¢ R 1
0 J ¹

c (s)
R s+¼
s J ¹

c (¿)d¿ds ¡¡
ec¼¡1¡c¼

c¼

¢ R 1
0 (J ¹

c (s))
2
ds: Since the denominator is T¡2

P
(snt ¡ sn)

2 )¡
ec¼¡1¡c¼

c¼

¢2 R 1
0 (J ¹

c (s))
2
ds; we obtain the result in the theorem. Similar

calculations yield the rest of the results.¥
Theorem 2 Proof. Let z1t = (e4y1;t+k; :::; e4y1;t¡k)0; z2t = y1;t: Note

that z1t is I(0) and z2t is I(1). Let zt =
³
z1

0
t ; z2t

´0
be a (2k + 2) dimensional

vector of canonical regressors (Sims et al. (1990)). De�ne A = (a1; :::; aq¡1)

where aj = (d¡k;j; :::; dk;j ; °(cj+1))
0 and d¡k;j is the jth coe¢cient of d¡k:

In other words, the jth equation in (7) is: yj+1;t = a
0
jzt + vj+1;t: Let Y =

(Y2;1; :::; Y2;T )0, Z = (z1; :::; zT )0 ; and V = (v1; :::; vT )0 be T £ (q ¡ 1); T £
(2k + 2) and T £(q¡1) matrices. If we stack the equations in (7) observation

by observation, then Y = ZA + V . If ey = vec(Y 0), ea = vec(A0) and ev =
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vec (V 0) ; then we can rewrite the stacked regression as ey = (Z
N

In¡1)ea+ev:

The least squares estimator of ea is

ba =
hX

ztz
0
t

O
In¡1

i¡1 hX ³
zt

O
In¡1

´
Y2;t

i
De�ne ¨ = diag

¡
T 1=2I2k+1; T

¢
: Follow arguments identical to Sims

et al. (1990) or Stock and Watson (1993), we can show that the ma-

trix (¨
N

In¡1)
hP

ztz
0
t

N
In¡1

i
¡1 (¨

N
In¡1) is asymptotically block di-

agonal, conformable with the partition of (¨
N

In¡1) (i.e. the o¤-diagonal

elements of the matrix are op(1)): To see this, note that ¨¡1
³P

ztz
0
t

´
¨¡1 =24 T¡1

P
z1t z

10
t T¡3=2

P
z1t z

2 0
t

T¡3=2
P

z2t z
10
t T¡2

P
z2t z

2 0
t

35, and T¡3=2
P

z1t z
2 0
t = T¡3=2

hP
z1

0
t z2t

i0
=

op(1). Therefore, taking the last (q ¡ 1) elements of ea; appropriately scaled,

T
³ d¡(c) ¡ ¡(c)

´
=

h
T¡2

X
(y1;t)

2
i¡1 h

T¡1
X

(y1;t) vt

i
+ op(1)

and noting that T¡1
P[sT ]
t=1 vt ) ­2:1W2:1(s); where ­2:1 = ­22¡­21­

¡1
11 ­12;

then

T
³ d¡(c) ¡ ¡(c)

´
) ­

¡1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

µZ
(J ¹
c )2

¶¡1
¥

Theorem 3 Proof. Under assumptions equivalent to assumptions B

and C, Elliott (1994,1998) shows that

T

µ
\\¡(c)¡¡(c)

¶
)

µ
­11

Z
(J ¹
c )2

¶¡1µ
­
1=2
11 ­

1=2
2:1

Z
J ¹
c dW2:1

¶
¡ ­¡111 ­21c

Since G(:) and D(:) are both continuous functions of c, use the Mean

Value Theorem to write G(
dd¡(c))¡G(¡(c0)) =

³bbc ¡ c0

´
= D(c¤)

µ
\\¡(c)¡¡(c0)

¶
where

c¤ is a vector whose elements are between the corresponding elements of bbc
and c0; and then delta-method arguments to obtain
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(Tn¡1)
³bbc ¡ c0

´
)

³
D¡1
0 ­11

R
(J ¹
c )

2
D¡1
0

´¡1
D¡1
0

³
­
1=2
11 ­

1=2
2:1

R
J ¹
c dW2:1

´
¡

­¡111 D0­21c: ¥
Corollary 5 Proof. Note that â0c0 = c and â0b̂c= ec: Then, T (ec ¡ c) =

T
³
â0

³bbc ¡ c0
´´

) â0
³
D¡1
0 ­11

R
(J ¹
c )

2
D¡1
0

´¡1
D¡1
0

³
­
1=2
11 ­

1=2
2:1

R
J ¹
c dW2:1

´
¡ ­¡111 â0D0­21c using the results from Theorem 3.¥

Theorem 6 Proof. Using b¡1(c) =
dd¡(c) ¡ bB

T ; T
³b¡1(c) ¡ ¡(c0)

´
=

T

µ dd¡(c) ¡ ¡(c0)

¶
¡ bB: Since T

µ
\\¡(c)¡¡(c0)

¶
)

³
­11

R
(J ¹
c )

2
´¡1 ³

­
1=2
11 ­

1=2
2:1

R
J ¹
c dW2:1

´
+

B; the �rst result is obtained immediately, because
³
B ¡ bB´

= op(1). The

second result is obtained by applying the delta-method as in Theorem 3.¥
Theorem 7 Proof. From (9) ; Y2;t = ¡(c)y1;t +

Pk
i=¡k di

be4y1;t¡i +

vt: Adding and subtracting
Pk
i=¡k di e4y1;t¡i to obtain Y2;t = ¡(c)y1;t +Pk

i=¡k di e4y1;t¡i +
Pk
i=¡k di

be4y1;t¡i ¡
Pk
i=¡k di e4y1;t¡i + vt

= ¡(c)y1;t +
Pk
i=¡k di e4y1;t¡i + c¡bc

T

Pk
i=¡k diy1;t¡i¡1 + vt = ¡(c)y1;t +Pk

i=¡k di e4y1;t¡i+rt; where rt = c¡~c
T

Pk
i=¡k diy1;t¡i¡1+vt. Following closely

the steps of the Theorem 2 proof above, let z1t = ( e4y1;t+k; :::; e4y1;t¡k)0;

z2t = y1;t: Let zt =
³
z1

0
t ; z2t

´0
be a (2k + 2) dimensional vector of canoni-

cal regressors. De�ne A = (a1; :::; aq¡1) where aj = (d¡k;j; :::; dk;j ; °(cj+1))
0

and d¡k;j is the jth coe¢cient of d¡k: In other words, the jth equation in

(7) is: yj+1;t = a
0
jzt + rj+1;t: If Y = (Y2;1; :::; Y2;T )0, Z = (z1; :::; zT )0 ; and

R = (r1; :::; rT )0 be T £ (n¡ 1); T £ (2k + 2) and T £ (n ¡ 1) matrices, then

Y = ZA + V . Let ey = vec(Y 0), ea = vec(A0) and er = vec (R0) ; then we can

rewrite the stacked regression as ey = (Z
N

In¡1)ea + er: The least squares

estimator of ea is ba =
hP

ztz
0
t

N
In¡1

i¡1
[
P

(zt
N

In¡1) Y2;t] : De�ne ¨ =

diag
¡
T 1=2I2k+1; T

¢
: Again, the matrix

h
(¨

N
In¡1)¡1

hP
ztz

0
t

N
In¡1

i
(¨

N
In¡1)¡1

i¡1
is asymptotically block diagonal, conformable with the partition of (¨

N
In¡1) :

Therefore, we can write T
³b¡2(c) ¡ ¡(c0)

´
=

£
T¡2

¡P
y21;t

¢¤¡1 £
T¡1

P
y1;trt

¤
+op(1): Using local-to-unity asymptotics,

£
T¡2

¡P
y21;t

¢¤¡1 )
h
­11

R
(J ¹
c )2

i¡1
.
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Also T¡1
P

y1;trt = T¡2 (c ¡ ~c) d¡k
P

y1;ty1;t+k¡1+:::+T¡2 (c ¡ ~c)dk
P

y1;ty1;t¡k¡1+

T¡1
P

y1;tvt = op(1)+:::+op(1)+ Op(1) ) ­1=211 ­1=22:1
R

J ¹
c dW2:1: Note that,

since
P

y1;ty1;t¡j = Op(T 2) for all j integer, the fact that (c ¡ ~c) = op(1) was

critical in the last step. Therefore, T
³b¡2(c) ¡ ¡(c0)

´
) ­

¡1=2
11 ­

1=2
2:1

hR
(J ¹
c )

2
i¡1 R

J
¹
c dW2:1,

and since J
¹
c and W2:1 are independent, we obtain the �rst result. The sec-

ond result is obtained by applying delta-method arguments.¥
Corollary 8 Proof. Follows directly by using the results in Theorems

6 and 7, the independence of J ¹
c and W2:1; and Corollary 5.3 of Park and

Phillips (1988).¥
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Empirical distribution of the OLS esimator of ¯ (regression 2.3)

T c ¼ .1 .2 .5 .8 .9 mean s.d.

100 -10 0.05 1.104 1.328 1.943 2.724 3.222 2.067 0.865
100 -10 0.10 1.142 1.401 1.998 2.778 3.326 2.150 0.883
100 -10 0.25 1.055 1.292 1.827 2.633 3.103 1.989 0.823

100 -5 0.05 1.228 1.690 2.719 4.056 5.132 2.967 1.578
100 -5 0.10 1.352 1.721 2.766 4.371 5.295 3.130 1.677
100 -5 0.25 1.282 1.687 2.716 4.311 5.455 3.069 1.663

100 -3 0.05 1.550 2.095 3.550 5.769 7.156 4.034 2.381
100 -3 0.10 1.504 2.265 4.016 6.517 8.418 4.532 2.643
100 -3 0.25 1.568 2.134 3.941 6.494 8.251 4.490 2.687

100 -1 0.05 2.554 4.098 8.270 14.584 19.229 9.721 7.011
100 -1 0.10 2.959 4.478 9.088 17.184 21.424 11.054 7.697
100 -1 0.25 2.972 4.954 9.548 17.635 22.936 11.597 8.473

100 1 0.05 -14.483 -10.008 -4.079 -0.563 0.549 -5.687 6.369
100 1 0.10 -16.986 -11.877 -4.528 -0.557 0.947 -6.622 7.868
100 1 0.25 -16.927 -12.257 -4.788 -0.453 1.132 -6.868 8.324

100 3 0.05 -1.781 0.197 1.305 1.564 1.683 0.579 1.888
100 3 0.10 -1.319 0.473 1.515 1.796 1.916 0.778 1.996
100 3 0.25 -2.073 0.416 1.701 2.076 2.241 0.800 2.483

500 -10 0.05 1.335 1.630 2.362 3.345 3.995 2.555 1.117
500 -10 0.10 1.361 1.615 2.276 3.304 3.895 2.499 1.029
500 -10 0.25 1.122 1.343 1.853 2.712 3.126 2.056 0.898

500 -5 0.05 1.451 1.882 3.232 5.301 6.463 3.685 2.085
500 -5 0.10 1.395 1.909 3.196 5.014 6.196 3.575 2.007
500 -5 0.25 1.359 1.795 2.980 4.446 5.528 3.265 1.774

500 -3 0.05 1.735 2.421 4.312 7.299 9.474 5.041 3.235
500 -3 0.10 1.788 2.506 4.419 7.435 9.421 5.142 3.173
500 -3 0.25 1.784 2.437 4.142 7.218 9.014 4.847 2.981

500 -1 0.05 3.242 5.490 10.606 17.927 23.713 12.406 8.626
500 -1 0.10 2.904 4.800 9.962 18.934 23.913 11.999 8.714
500 -1 0.25 3.436 5.558 10.612 17.871 24.738 12.620 9.182

500 1 0.05 -18.878 -12.880 -4.965 -0.854 0.517 -7.314 8.246
500 1 0.10 -18.948 -13.395 -4.975 -0.547 0.824 -7.389 8.625
500 1 0.25 -19.404 -12.950 -4.604 -0.412 1.112 -7.427 9.777

500 3 0.05 -1.600 0.543 1.594 1.876 2.007 0.790 2.220
500 3 0.10 -1.785 0.389 1.661 1.960 2.093 0.802 2.270
500 3 0.25 -1.302 0.860 1.873 2.184 2.348 1.091 2.278

Table 1a: Empirical distribution of the OLS estimator of ¯ for c = (¡10;¡5; ¡3;¡1; 1; 3) ; T = (100; 500) ;

¼ = (0:05; 0:10; 0:25) and ut = "t; "t » N(0; I2): The 10th, 20th, 50th, 80th, and 90th quantiles are reported
as well as the mean and the standard deviation. The parameter c has a big impact on the distributions.



Simulated limiting distribution of ¯ (regression 2.3)

T c ¼ .1 .2 .5 .8 .9 mean s.d.

100 -10 0.05 1.380 1.659 2.428 3.405 4.027 2.584 1.081
100 -10 0.10 1.269 1.556 2.220 3.087 3.696 2.388 0.981
100 -10 0.25 1.099 1.346 1.904 2.742 3.232 2.072 0.857

100 -5 0.05 1.535 2.113 3.398 5.070 6.415 3.709 1.972
100 -5 0.10 1.503 1.912 3.073 4.856 5.883 3.477 1.863
100 -5 0.25 1.335 1.758 2.829 4.490 5.682 3.197 1.733

100 -3 0.05 1.937 2.619 4.437 7.211 8.945 5.042 2.976
100 -3 0.10 1.671 2.517 4.463 7.241 9.354 5.035 2.937
100 -3 0.25 1.633 2.223 4.106 6.764 8.595 4.677 2.799

100 -1 0.05 3.193 5.123 10.337 18.230 24.036 12.151 8.764
100 -1 0.10 3.288 4.975 10.098 19.093 23.805 12.282 8.552
100 -1 0.25 3.095 5.160 9.946 18.370 23.892 12.080 8.826

100 1 0.05 -18.103 -12.510 -5.098 -0.703 0.686 -7.109 7.961
100 1 0.10 -18.873 -13.197 -5.032 -0.619 1.052 -7.358 8.742
100 1 0.25 -17.632 -12.768 -4.987 -0.472 1.180 -7.155 8.671

100 3 0.05 -2.226 0.246 1.631 1.955 2.104 0.724 2.360
100 3 0.10 -1.465 0.525 1.683 1.995 2.129 0.865 2.217
100 3 0.25 -2.159 0.433 1.772 2.163 2.334 0.834 2.587

500 -10 0.05 1.391 1.698 2.460 3.485 4.162 2.662 1.164
500 -10 0.10 1.389 1.648 2.322 3.371 3.974 2.550 1.050
500 -10 0.25 1.131 1.354 1.867 2.734 3.151 2.073 0.905

500 -5 0.05 1.511 1.961 3.367 5.522 6.733 3.838 2.172
500 -5 0.10 1.423 1.948 3.261 5.116 6.322 3.648 2.048
500 -5 0.25 1.370 1.810 3.004 4.482 5.573 3.292 1.788

500 -3 0.05 1.807 2.521 4.492 7.603 9.868 5.251 3.370
500 -3 0.10 1.825 2.557 4.509 7.587 9.613 5.247 3.237
500 -3 0.25 1.798 2.457 4.175 7.277 9.087 4.886 3.006

500 -1 0.05 3.377 5.719 11.048 18.674 24.701 12.923 8.986
500 -1 0.10 2.963 4.898 10.166 19.320 24.401 12.244 8.892
500 -1 0.25 3.463 5.603 10.698 18.016 24.938 12.721 9.256

500 1 0.05 -19.665 -13.417 -5.172 -0.889 0.538 -7.619 8.589
500 1 0.10 -19.335 -13.669 -5.077 -0.558 0.841 -7.540 8.801
500 1 0.25 -19.560 -13.055 -4.641 -0.415 1.121 -7.487 9.856

500 3 0.05 -1.667 0.565 1.661 1.954 2.090 0.823 2.313
500 3 0.10 -1.821 0.397 1.695 2.000 2.136 0.819 2.316
500 3 0.25 -1.312 0.867 1.888 2.202 2.366 1.100 2.296

Table 1b: Simulated limiting distribution of the OLS estimator of ¯ for c = (¡10;¡5; ¡3;¡1; 1; 3) ;

T = (100; 500) ; ¼ = (0:05; 0:10; 0:25) and ut = "t; "t » N(0; I2): The stochastic integrals are simulated by
rescaled partial sums of y1;t: The 10th, 20th, 50th, 80th, and 90th quantiles are reported as well as the
mean and the standard deviation. The parameter c has a big impact on the distributions.



Empirical distribution of the OLS estimator of ° (regression 2.4)

T c ¼ .1 .2 .5 .8 .9 mean s.d.

100 -10 0.05 1.173 1.389 1.932 2.520 2.906 1.986 0.671
100 -10 0.10 0.976 1.179 1.552 1.973 2.198 1.571 0.456
100 -10 0.25 0.985 1.115 1.345 1.530 1.599 1.316 0.245

100 -5 0.05 1.267 1.646 2.535 3.709 4.401 2.739 1.292
100 -5 0.10 1.053 1.313 2.031 2.823 3.257 2.082 0.836
100 -5 0.25 0.979 1.284 1.686 2.132 2.278 1.670 0.503

100 -3 0.05 1.404 1.984 3.386 5.259 6.428 3.707 2.036
100 -3 0.10 1.243 1.741 2.694 4.101 4.821 2.914 1.395
100 -3 0.25 1.197 1.499 2.143 2.866 3.210 2.165 0.774

100 -1 0.05 2.497 4.099 7.722 12.749 15.524 8.473 5.240
100 -1 0.10 2.276 3.354 6.335 10.009 12.065 6.770 3.923
100 -1 0.25 1.995 2.928 5.112 6.852 7.725 4.963 2.193

100 1 0.05 -13.046 -9.126 -3.292 -0.375 0.568 -4.969 5.838
100 1 0.10 -9.045 -6.497 -2.450 -0.207 0.627 -3.440 3.851
100 1 0.25 -5.904 -4.684 -1.996 -0.117 0.629 -2.348 2.468

100 3 0.05 -0.873 0.382 1.218 1.447 1.542 0.708 1.370
100 3 0.10 -0.560 0.457 1.019 1.183 1.277 0.656 0.991
100 3 0.25 0.056 0.577 0.941 1.078 1.141 0.725 0.645

500 -10 0.05 0.847 0.994 1.401 1.918 2.157 1.467 0.533
500 -10 0.10 0.873 1.034 1.367 1.754 1.947 1.389 0.412
500 -10 0.25 0.940 1.067 1.286 1.481 1.568 1.267 0.245

500 -5 0.05 0.898 1.181 1.884 2.798 3.399 2.031 0.988
500 -5 0.10 0.963 1.193 1.807 2.489 2.952 1.875 0.763
500 -5 0.25 0.981 1.180 1.626 2.024 2.220 1.599 0.480

500 -3 0.05 1.062 1.504 2.612 4.072 5.092 2.835 1.554
500 -3 0.10 1.002 1.388 2.305 3.393 4.053 2.429 1.186
500 -3 0.25 1.153 1.492 2.128 2.783 3.131 2.120 0.757

500 -1 0.05 1.921 3.107 5.720 9.414 11.790 6.390 4.055
500 -1 0.10 1.809 3.088 5.569 8.583 10.505 5.921 3.443
500 -1 0.25 1.670 2.651 4.649 6.589 7.414 4.617 2.176

500 1 0.05 -8.809 -6.431 -2.546 -0.245 0.461 -3.422 3.799
500 1 0.10 -7.839 -5.712 -2.365 -0.161 0.545 -2.986 3.222
500 1 0.25 -5.292 -4.061 -1.502 -0.002 0.533 -1.973 2.226

500 3 0.05 -0.668 0.328 0.889 1.035 1.102 0.511 1.038
500 3 0.10 -0.314 0.490 0.863 1.010 1.077 0.588 0.814
500 3 0.25 -0.199 0.530 0.881 1.011 1.077 0.655 0.640

Table 2a: Empirical distribution of the OLS estimator of Ã for c = (¡10; ¡5;¡3; ¡1; 1; 3) ; T = (100; 500) ;

¼ = (0:05; 0:10; 0:25) and ut = "t; "t » N(0; I2): The 10th, 20th, 50th, 80th, and 90th quantiles are reported
as well as the mean and the standard deviation. The parameter c has a big impact on the distributions.



Simulated limiting distribution of ° (regression 2.4)

T c ¼ .1 .2 .5 .8 .9 mean s.d.

100 -10 0.05 0.997 1.180 1.641 2.141 2.468 1.687 0.570
100 -10 0.10 0.925 1.117 1.471 1.870 2.084 1.489 0.432
100 -10 0.25 0.979 1.108 1.336 1.520 1.589 1.307 0.243

100 -5 0.05 1.046 1.359 2.093 3.063 3.634 2.262 1.067
100 -5 0.10 0.976 1.217 1.883 2.616 3.018 1.929 0.775
100 -5 0.25 0.962 1.262 1.657 2.096 2.239 1.642 0.494

100 -3 0.05 1.146 1.618 2.762 4.290 5.243 3.023 1.661
100 -3 0.10 1.140 1.596 2.470 3.760 4.420 2.672 1.279
100 -3 0.25 1.168 1.463 2.091 2.796 3.132 2.113 0.755

100 -1 0.05 2.010 3.301 6.218 10.267 12.502 6.824 4.220
100 -1 0.10 2.062 3.039 5.739 9.067 10.929 6.133 3.554
100 -1 0.25 1.928 2.829 4.938 6.619 7.462 4.794 2.118

100 1 0.05 -10.366 -7.252 -2.616 -0.298 0.452 -3.948 4.639
100 1 0.10 -8.085 -5.807 -2.190 -0.185 0.560 -3.075 3.442
100 1 0.25 -5.628 -4.464 -1.903 -0.111 0.600 -2.238 2.353

100 3 0.05 -0.684 0.299 0.955 1.134 1.208 0.555 1.074
100 3 0.10 -0.494 0.402 0.897 1.042 1.125 0.578 0.873
100 3 0.25 0.053 0.541 0.882 1.009 1.069 0.679 0.604

500 -10 0.05 0.822 0.966 1.361 1.863 2.095 1.425 0.518
500 -10 0.10 0.864 1.024 1.353 1.736 1.927 1.375 0.407
500 -10 0.25 0.939 1.066 1.284 1.479 1.566 1.266 0.244

500 -5 0.05 0.867 1.141 1.820 2.702 3.283 1.962 0.954
500 -5 0.10 0.950 1.176 1.781 2.453 2.909 1.849 0.752
500 -5 0.25 0.978 1.176 1.620 2.017 2.212 1.594 0.478

500 -3 0.05 1.023 1.450 2.517 3.924 4.907 2.732 1.498
500 -3 0.10 0.986 1.365 2.267 3.337 3.987 2.389 1.166
500 -3 0.25 1.148 1.485 2.118 2.769 3.116 2.109 0.753

500 -1 0.05 1.847 2.986 5.498 9.050 11.333 6.142 3.898
500 -1 0.10 1.775 3.030 5.465 8.423 10.309 5.810 3.378
500 -1 0.25 1.658 2.633 4.618 6.544 7.364 4.586 2.161

500 1 0.05 -8.445 -6.166 -2.441 -0.235 0.442 -3.280 3.642
500 1 0.10 -7.671 -5.590 -2.315 -0.158 0.533 -2.923 3.153
500 1 0.25 -5.242 -4.022 -1.488 -0.002 0.528 -1.954 2.205

500 3 0.05 -0.639 0.313 0.850 0.990 1.054 0.488 0.992
500 3 0.10 -0.307 0.478 0.842 0.986 1.051 0.573 0.794
500 3 0.25 -0.197 0.523 0.870 0.998 1.063 0.647 0.632

Table 2b: Simulated limiting distribution of the OLS estimator of Ã for c = (¡10;¡5; ¡3;¡1; 1; 3) ;

T = (100; 500) ; ¼ = (0:05; 0:10; 0:25) and ut = "t; "t » N(0; I2): The stochastic integrals are simulated by
rescaled partial sums of y1;t: The 10th, 20th, 50th, 80th, and 90th quantiles are reported as well as the
mean and the standard deviation. The parameter c has a big impact on the distributions.



OLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -9.228 -6.943 -6.007 -4.353 -2.739 -1.848 0.333 0.699 2.902 2.934

0.10 -7.590 -6.145 -4.500 -3.780 -1.918 -1.457 0.689 0.862 2.941 2.960

0.20 -6.895 -5.839 -4.015 -3.471 -1.492 -1.221 0.856 0.932 2.970 2.986

0.30 -6.820 -5.740 -3.810 -3.385 -1.341 -1.160 0.909 0.957 2.979 2.990

DOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -6.333 -5.597 -3.956 -3.294 -1.356 -1.107 1.130 1.130 3.567 3.280

0.10 -5.910 -5.357 -3.332 -3.211 -1.198 -1.095 1.070 1.057 3.228 3.117

0.20 -5.693 -5.283 -3.303 -3.129 -1.094 -1.023 1.044 1.029 3.097 3.048

0.30 -5.715 -5.258 -3.231 -3.094 -1.057 -1.016 1.029 1.018 3.048 3.025

QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -4.798 -4.937 -3.061 -2.951 -1.078 -1.031 0.946 1.064 2.919 2.991

0.10 -5.043 -4.994 -2.901 -3.013 -1.071 -1.046 0.973 1.015 2.962 2.989

0.20 -5.097 -5.026 -3.040 -3.011 -1.028 -0.995 1.000 1.007 2.995 2.999

0.30 -5.178 -5.030 -3.032 -3.000 -1.012 -0.995 1.001 1.004 2.992 2.998

Iterated QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -5.279 -5.036 -3.329 -3.005 -1.164 -1.051 0.988 1.081 3.064 3.024

0.10 -5.206 -5.025 -2.970 -3.029 -1.089 -1.051 0.985 1.018 2.989 2.996

0.20 -5.174 -5.041 -3.066 -3.016 -1.033 -0.996 1.003 1.008 3.000 3.000

0.30 -5.244 -5.042 -3.047 -3.004 -1.015 -0.995 1.002 1.004 2.994 2.998

Nonparametric QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -5.709 -5.366 -3.473 -3.130 -1.138 -1.032 0.972 1.054 2.938 3.000

0.10 -5.524 -5.230 -3.102 -3.121 -1.122 -1.057 0.999 1.019 2.971 2.998

0.20 -5.468 -5.183 -3.157 -3.074 -1.054 -1.005 1.010 1.013 3.003 3.001

0.30 -5.497 -5.160 -3.125 -3.051 -1.027 -1.004 1.007 1.008 2.998 3.001

Table 3a: Estimation of c with various estimators. The data is simulated 5000 times using equations
(3:2a ¡ 3:2b) for two yields, c = (¡5;¡3;¡1; 1; 3); T = (200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; and ut = "t;

"t » N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
:



OLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 28.278 23.975 27.411 22.940 25.952 21.453 21.275 16.814 10.898 8.214

0.10 13.259 11.111 13.130 10.938 12.825 10.310 10.770 8.600 6.845 5.396

0.20 5.979 4.738 6.115 4.809 6.281 4.975 5.779 4.670 4.548 4.154

0.30 3.662 2.741 3.776 2.986 3.973 3.199 3.892 3.282 3.944 3.621

DOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -5.797 -5.683 -3.389 -3.369 -0.909 -1.114 1.379 1.142 3.599 3.319

0.10 -5.531 -5.416 -3.138 -3.203 -0.951 -1.070 1.197 1.058 3.271 3.149

0.20 -5.341 -5.293 -3.108 -3.123 -0.979 -1.028 1.096 1.031 3.113 3.061

0.30 -5.355 -5.250 -3.085 -3.105 -0.977 -1.020 1.061 1.019 3.061 3.032

QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -4.429 -4.873 -2.649 -2.916 -0.745 -1.065 1.139 1.088 2.975 2.961

0.10 -4.771 -4.965 -2.762 -2.968 -0.855 -1.003 1.091 1.000 3.015 2.994

0.20 -4.835 -4.987 -2.880 -2.983 -0.924 -0.993 1.050 1.004 3.013 3.001

0.30 -4.900 -4.979 -2.906 -2.993 -0.938 -0.995 1.033 1.002 3.008 3.000

Iterated QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -4.763 -4.990 -2.818 -2.979 -0.799 -1.091 1.196 1.116 3.085 3.000

0.10 -4.879 -5.003 -2.809 -2.985 -0.867 -1.008 1.100 1.003 3.035 3.002

0.20 -4.884 -5.005 -2.898 -2.989 -0.928 -0.994 1.052 1.004 3.017 3.002

0.30 -4.939 -4.993 -2.916 -2.997 -0.940 -0.996 1.034 1.002 3.009 3.000

Nonparametric QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 -4.394 -5.013 -2.625 -2.999 -0.714 -1.000 1.104 1.033 2.849 3.016

0.10 -4.741 -5.040 -2.752 -3.009 -0.848 -1.013 1.080 1.009 2.958 3.020

0.20 -4.816 -5.040 -2.875 -3.008 -0.922 -0.999 1.046 1.008 2.991 3.010

0.30 -4.880 -5.025 -2.900 -3.013 -0.937 -1.000 1.031 1.005 2.997 3.005

Table 3b: Estimation of c with various estimators. The data is simulated 5000 times using equations
(3:2a ¡ 3:2b) for two yields, c = (¡5;¡3;¡1; 1; 3); T = (200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; and ut =

Aut¡1 + "t; "t » N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
; A =

"
¡0:5 ¡0:5
0:05 ¡1:0

#
:



Ratio of variances of various estimators, for T= 200 and 400
c -5 -3 -1 1 3
¼ 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

OLS 6.2 6.0 6.8 7.6 4.2 4.5 5.4 4.6 4.0 5.2 4.9 4.6 3.9 4.3 4.6 4.1 3.0 3.3 5.0 4.1
DOLS 5.6 5.1 5.6 6.6 4.1 4.3 4.8 4.0 3.7 4.8 4.5 4.2 3.9 3.9 4.5 4.8 3.5 3.7 4.6 4.4

QDOLS 4.5 3.8 4.7 4.9 3.2 3.6 4.3 3.7 2.9 4.3 4.2 4.0 3.1 3.6 4.3 4.6 3.3 3.4 4.6 4.4
IQDOLS 5.1 4.2 4.9 5.3 3.6 3.8 4.4 3.8 3.2 4.4 4.2 4.1 3.4 3.7 4.3 4.6 3.3 3.4 4.6 4.4
NQDOLS 6.2 4.9 5.7 6.7 3.6 4.0 4.4 4.0 3.2 4.7 4.3 4.2 3.2 3.7 4.4 4.7 3.1 3.1 4.4 4.3

Ratio of variances of various estimators, for T= 200 and 400
c -5 -3 -1 1 3
¼ 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

OLS 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.8 0.9 1.1 1.1 1.0 1.1 1.5 1.7 1.4 1.7
DOLS 5.2 4.1 4.9 4.8 4.2 4.9 4.3 4.2 3.7 5.1 4.1 4.4 5.0 4.6 4.9 4.6 7.7 4.0 4.9 5.5

QDOLS 4.0 3.6 4.4 4.4 3.3 4.3 4.0 4.1 3.2 4.7 3.9 4.3 4.6 4.4 4.7 4.5 6.9 3.9 4.8 5.7
IQDOLS 4.4 3.7 4.5 4.4 3.7 4.4 4.0 4.1 3.2 4.8 3.9 4.3 4.5 4.5 4.7 4.5 7.1 3.9 4.8 5.7
NQDOLS 3.7 3.3 4.1 4.0 3.1 4.2 3.8 3.8 2.9 4.5 3.8 4.2 4.1 4.3 4.8 4.5 7.9 5.0 5.9 6.4

Table 4:Empirical simulation of the rate of convergence of ec: The data in the �rst table is simulated
5000 times using equations (3:2a ¡ 3:2b) for two yields, using c = (¡5;¡3; ¡1; 1; 3); T = (200; 400) ;

¼ = (0:05; 0:1; 0:2; 0:3) ; and ut = "t; "t » N(0; §); § =

"
0:5 ¡0:5
¡0:5 5

#
: In the second table, the errors

are: ut = Aut¡1 + "t; "t » N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
; A =

"
¡0:5 ¡0:5
0:05 ¡1:0

#
: The entries are ra-

tios of the variances of ec for T = 200 versus T = 400: If ec converges at rate T, the ratios should be close to 4.



Real Coverage between the § 1.96 std. dev., QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 0.956 0.940 0.947 0.947 0.941 0.941 0.939 0.933 0.947 0.944

0.10 0.938 0.946 0.952 0.947 0.942 0.945 0.938 0.943 0.951 0.944

0.20 0.941 0.947 0.964 0.946 0.944 0.944 0.948 0.938 0.935 0.942

0.30 0.955 0.949 0.952 0.948 0.938 0.939 0.940 0.936 0.947 0.947

Real Coverage between the § 1.96 std. dev., NQDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 0.955 0.932 0.940 0.947 0.941 0.938 0.936 0.938 0.950 0.949

0.10 0.945 0.933 0.948 0.943 0.950 0.943 0.939 0.939 0.953 0.947

0.20 0.939 0.942 0.956 0.944 0.945 0.943 0.951 0.932 0.936 0.949

0.30 0.958 0.946 0.950 0.942 0.935 0.935 0.941 0.936 0.951 0.946

Table 5a: Real versus Nominal Coverage. The data is simulated 5000 times using equations (3:2a ¡ 3:2b)
for two yields, using c = (¡5; ¡3;¡1; 1; 3); T = (200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; and ut = "t; "t »

N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
: The entries are the fraction of Monte Carlo replications for which the true

value of c was contained within 1.96 standard deviations from the estimated c:

Real Coverage between the § 1.96 std. dev., QDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 0.920 0.941 0.923 0.953 0.917 0.939 0.946 0.934 0.948 0.936

0.10 0.936 0.947 0.921 0.947 0.934 0.941 0.938 0.941 0.929 0.943

0.20 0.934 0.942 0.924 0.938 0.924 0.950 0.926 0.941 0.933 0.930

0.30 0.938 0.940 0.932 0.953 0.931 0.954 0.919 0.932 0.931 0.935

Real Coverage between the § 1.96 std. dev., NQDOLS

c=-5 c=-3 c=-1 c= 1 c= 3

¼ j T 200 400 200 400 200 400 200 400 200 400

0.05 0.915 0.948 0.920 0.955 0.925 0.939 0.948 0.939 0.955 0.942

0.10 0.925 0.947 0.919 0.953 0.932 0.940 0.938 0.941 0.939 0.942

0.20 0.930 0.946 0.919 0.936 0.923 0.951 0.925 0.938 0.950 0.926

0.30 0.936 0.943 0.931 0.953 0.930 0.954 0.923 0.936 0.951 0.937

Table 5b: Real versus Nominal Coverage. The data is simulated 5000 times using equations (3:2a ¡ 3:2b)
for two yields, using c = (¡5;¡3; ¡1; 1; 3); T = (200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; and ut = Aut¡1 + "t;

"t » N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
; A =

"
¡0:5 ¡0:5
0:05 ¡1:0

#
: The entries are the fraction of Monte Carlo

replications for which the true value of c was contained within 1.96 standard deviations from the estimated
c:



QDOLS: Ratio of variances of �c for various ¼

T=200 T=400

Ratio c=-5 c=-3 c=-1 c=1 c=3 c=-5 c=-3 c=-1 c=1 c=3

0.05/0.10 3.022 3.062 2.753 3.412 4.305 2.567 3.474 4.084 3.919 4.452
2.897 3.287 3.744 4.278 4.904 2.897 3.287 3.744 4.278 4.904

0.05/0.20 5.053 5.968 9.121 13.512 19.390 5.271 8.015 13.113 18.474 26.787
6.215 8.952 13.127 19.583 29.690 6.215 8.952 13.127 19.583 29.690

0.05/0.30 5.804 10.800 16.480 31.047 57.536 6.336 12.682 22.934 45.778 75.938
7.734 13.859 25.923 50.483 102.043 7.734 13.859 25.923 50.483 102.043

Nonparametric QDOLS: Ratio of variances of �c for various ¼

T=200 T=400

Ratio c=-5 c=-3 c=-1 c=1 c=3 c=-5 c=-3 c=-1 c=1 c=3

0.05/0.10 3.566 3.312 2.892 3.708 4.561 2.826 3.646 4.242 4.236 4.570
2.897 3.287 3.744 4.278 4.904 2.897 3.287 3.744 4.278 4.904

0.05/0.20 6.233 7.148 10.441 15.184 21.758 5.748 8.790 13.984 20.624 30.660
6.215 8.952 13.127 19.583 29.690 6.215 8.952 13.127 19.583 29.690

0.05/0.30 6.464 12.716 19.071 35.270 65.867 6.939 13.984 24.721 51.365 92.237
7.734 13.859 25.923 50.483 102.043 7.734 13.859 25.923 50.483 102.043

QDOLS: Ratio of variances of �c for various ¼

T=200 T=400

Ratio c=-5 c=-3 c=-1 c=1 c=3 c=-5 c=-3 c=-1 c=1 c=3

0.05/0.10 2.567 2.683 2.977 3.742 5.919 2.343 3.488 4.435 3.548 3.316
2.897 3.287 3.744 4.278 4.904 2.897 3.287 3.744 4.278 4.904

0.05/0.20 4.935 6.533 10.181 14.844 25.848 5.441 7.801 12.532 15.153 17.798
6.215 8.952 13.127 19.583 29.690 6.215 8.952 13.127 19.583 29.690

0.05/0.30 6.052 10.175 18.122 41.996 68.979 6.667 12.549 24.237 40.642 56.969
7.734 13.859 25.923 50.483 102.043 7.734 13.859 25.923 50.483 102.043

Nonparametric QDOLS: Ratio of variances of �c for various ¼

T=200 T=400

Ratio c=-5 c=-3 c=-1 c=1 c=3 c=-5 c=-3 c=-1 c=1 c=3

0.05/0.10 2.642 2.620 2.873 3.825 5.680 2.359 3.588 4.424 4.013 3.576
2.897 3.287 3.744 4.278 4.904 2.897 3.287 3.744 4.278 4.904

0.05/0.20 4.788 6.479 9.856 15.167 26.474 5.347 8.000 13.006 17.693 19.807
6.215 8.952 13.127 19.583 29.690 6.215 8.952 13.127 19.583 29.690

0.05/0.30 6.212 10.238 17.566 42.639 77.325 6.629 12.765 25.167 47.199 62.852
7.734 13.859 25.923 50.483 102.043 7.734 13.859 25.923 50.483 102.043

Table 6: Dependence of the variance of ec on ¼: The data in the �rst tableau are simulated 5000 times
using equations (3:2a ¡ 3:2b) for two yields, c = (¡5; ¡3;¡1; 1; 3); T = (200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ;

and ut = "t; "t » N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
: In the second tableau, the errors are: ut = Aut¡1 + "t;

"t » N(0; §); § =

"
0:5 ¡0:5
¡0:5 5

#
; A =

"
¡0:5 ¡0:5
0:05 ¡1:0

#
: The entries are ratios of the variances for

¼ = 0:05 versus ¼ = 0:1; 0.2, 0.3. The numbers in italics are the theoretical values of the ratio.



System

Hypothesis 5mo-13yr 13mo-13yr 17mo-13yr 3yr-13yr

-0.5 1244 1053 993 661

0.00 912 1177 1039 772

1.00 9986 21044 16452 14306

unspeci�ed 703 947 869 593

Table 7: Wald statistics for various null hypotheses and various speci�cations of the system in (3.2a-3.2b),
using the US yield data from McCulloch and Kwon (1993). For example, the value of the test for Ho :
ck1 = ck2 = ::: = ckn = ¡0:5; where k1 = 36; k2 = 42; .... ; kn = 156 (months), is 661. The statistics in
the last rows test for Ho : ck1 = ck2 = ::: = ckn: The REHTS is rejected.

Real coverage

c ¼ 0.90 0.80 0.70 median

-5 0.00 0.89 0.79 0.70 0.45

-3 0.00 0.89 0.79 0.67 0.50

-3 0.05 0.83 0.74 0.65 0.65

-3 0.10 0.83 0.71 0.61 0.65

-1 0.00 0.91 0.81 0.72 0.50

-1 0.05 0.86 0.75 0.65 0.60

-1 0.10 0.86 0.74 0.66 0.61

-1 0.20 0.87 0.75 0.66 0.65

Real coverage

c ¼ 0.90 0.80 0.70 median

-5 0.00 0.88 0.77 0.66 0.47

-5 0.05 0.88 0.77 0.68 0.46

-5 0.10 0.85 0.76 0.65 0.49

-5 0.20 0.87 0.75 0.65 0.47

-3 0.00 0.90 0.81 0.70 0.45

-3 0.05 0.88 0.77 0.66 0.44

-3 0.10 0.89 0.77 0.67 0.46

-3 0.20 0.89 0.80 0.71 0.46

-1 0.00 0.89 0.80 0.71 0.48

-1 0.05 0.90 0.79 0.69 0.50

-1 0.10 0.88 0.77 0.67 0.47

-1 0.20 0.89 0.79 0.72 0.47

Table 8: The fraction of Monte Carlo simulations for which the true value of c was contained within the
respective centered con�dence intervals or below the median unbiased estimate. The data in the �rst tableau
is simulated 5000 times using equations (3:2a ¡ 3:2b) for two yields, c = (¡5; ¡3;¡1; 1; 3); T = (200; 400) ;

¼ = (0:05; 0:1; 0:2; 0:3) ; and ut = "t; "t » N(0;§); § =

"
0:5 ¡0:5
¡0:5 5

#
: In the second tableau, the errors

are: ut = Aut¡1 + "t; "t » N(0; §); § =

"
0:5 ¡0:5
¡0:5 5

#
; A =

"
¡0:5 ¡0:5
0:05 ¡1:0

#
: For a given experiment

(c; ¼; T ) ; if more than one percent of the test values could not be inverted (outside of Stock�s tables), the
experiment was omitted from the table.



0 2 4 6 8
0

0.2

0.4

0.6

0.8
c=-10, π=0.05,T=100 

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
c=-10, π=0.05,T=500 

0 5 10 15
0

0.1

0.2

0.3

0.4
c=-5, π=0.05,T=100 

0 5 10 15 20
0

0.1

0.2

0.3

0.4
c=-5, π=0.05,T=500 

-5 0 5 10 15 20
0

0.05

0.1

0.15

0.2
c=-3, π=0.05,T=100 

-10 0 10 20 30
0

0.05

0.1

0.15

0.2
c=-3, π=0.05,T=500 

-20 0 20 40 60
0

0.02

0.04

0.06

0.08
c=-1, π=0.05,T=100 

-20 0 20 40 60 80 100
0

0.02

0.04

0.06

0.08
c=-1, π=0.05,T=500 

-60 -40 -20 0 20
0

0.05

0.1

0.15

0.2
c=1, π=0.05,T=100 

-100 -80 -60 -40 -20 0 20
0

0.05

0.1
c=1, π=0.05,T=500 

Exact

Asymptotic

Figure 1a: Comparison of the empirical distributions of ^̄ and the simulated asymptotic distributions for various
(c; ¼; T )
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Figure 1b: Comparison of the empirical distributions of ^̄ and the simulated asymptotic distributions for various
(c; ¼; T )
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Figure 1c: Comparison of the empirical distributions of ^̄ and the simulated asymptotic distributions for various
(c; ¼; T )
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Figure 2: Mean, 10th, and 90th percentiles of the asymptotic distributions of ^̄ and Ã̂ for ¼ = 0:1, T = 500; and
c = (¡5;¡3;¡1; 1; 3) : The intervals are simulated 5000 times from rescaled partial sums of y1;t:
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Figure 3a: Empirical distributions of ec computed by QDOLS. The data are simulated from equations (3:2a ¡ 3:2b)
for two yields, using c = ¡5; T=(200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; ut = "t; where "t » N(0;§); and

§ =

�
0:4 0:5
0:3 0:4

¸
: The empirical distributions of ec, standardized by their mean and standard deviation are

compared to N(0,1).
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Figure 3b: Empirical distributions of ec computed by QDOLS. The data are simulated from equations (3:2a ¡ 3:2b)
for two yields, using c = ¡3; T=(200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; ut = "t; where "t » N(0;§); and

§ =

�
0:4 0:5
0:3 0:4

¸
: The empirical distributions of ec, standardized by their mean and standard deviation are

compared to N(0,1).
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Figure 3c: Empirical distributions of ec computed by QDOLS. The data are simulated from equations (3:2a ¡ 3:2b)
for two yields, using c = ¡1; T=(200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; ut = "t; where "t » N(0;§); and

§ =

�
0:4 0:5
0:3 0:4

¸
: The empirical distributions of ec, standardized by their mean and standard deviation are

compared to N(0,1).
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Figure 3d: Empirical distributions of ec computed by QDOLS. The data are simulated from equations (3:2a ¡ 3:2b)
for two yields, using c = 1; T=(200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; ut = "t; where "t » N(0;§); and

§ =

�
0:4 0:5
0:3 0:4

¸
: The empirical distributions of ec, standardized by their mean and standard deviation are

compared to N(0,1).
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Figure 3e: Empirical distributions of ec computed by QDOLS. The data are simulated from equations (3:2a ¡ 3:2b)
for two yields, using c = 3; T=(200; 400) ; ¼ = (0:05; 0:1; 0:2; 0:3) ; ut = "t; where "t » N(0;§); and

§ =

�
0:4 0:5
0:3 0:4

¸
: The empirical distributions of ec, standardized by their mean and standard deviation are

compared to N(0,1).
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Figure 5a: Median unbiased estimates of c and centered con�dence intervals found by inverting an ADF statistic,
using the yield data from McCulloch and Kwon (1993) for zero-coupon bonds of maturities from 1 month to 13

years. Monthly data for the period 1952:1�1991:2. The inversion of the statistic was performed by linear
interpolation from the tables in Stock (1991). The ADF test is speci�ed with 8 lags, chosen with sequential t-tests.
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Figure 5b: Robustness analysis of the median unbiased estimation. The ADF test is speci�ed with various lag
structures, from 4 to 20 lags.
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Figure 6a: Consistent and asymptotically unbiased estimate of c using QDOLS, plotted for the respective
maturities, using the yield data from McCulloch and Kwon (1993). Error bands are computed using §2 standard
deviations. The �rst plot uses bonds with maturity higher than 1 year, the second with maturity of 18 months or
higher, and the third with maturity of 3 or more years. The QDOLS uses 3 leads and 3 lags, chosen by sequential

t-tests.
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Figure 6b: Robustness analysis for the consistent and asymptotically unbiased estimate of c from �gure 6a. The
results do not change signi�cantly, when the QDOLS is estimated using di¤erent lead/lag structures. The �rst plot
uses bonds with maturity higher than 1 year, the second with maturity of 18 months or higher, and the third with

maturities of 3 or more years. The QDOLS is estimated with 2 leads and 2 lags.
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Figure 6c: Robustness analysis for the consistent and asymptotically unbiased estimate of c from �gure 6a. The
results do not change signi�cantly, when the QDOLS is estimated using di¤erent lead/lag structures. The �rst plot
uses bonds with maturity higher than 1 year, the second with maturity of 18 months or higher, and the third with

maturities of 3 or more years. The QDOLS is estimated with 4 leads and 4 lags.
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Figure 6d: Robustness analysis for the consistent and asymptotically unbiased estimate of c from �gure 6a. The
results do not change signi�cantly, when the QDOLS is estimated using di¤erent lead/lag structures. The �rst plot
uses bonds with maturity higher than 1 year, the second with maturity of 18 months or higher, and the third with

maturities of 3 or more years. The QDOLS is estimated with 5 leads and 5 lags.




