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T. INTRODUCTION
The new form of the strip approximation has been proposedl’2 as

a method of calculating scattering amplitude; in accordance with the

principles of maximal analyticity of the first and second kinds. The-

amplitudes:are constructed so that they satisfy the Mandelstam repre-
sentation, and all their poles are Regge poles. Such amplitudes will

have the correct behavior in the low-energy resonance region where the

poles dominate, and also in the high-energy region where Regge asymptotic

behavior is observed. It is hoped that these features %nclude sufficient
of the dynamics for the amplitudes to be self-consisten£ In the sense
that the "potential" due to the crosséd-channel singularities génerates
the direct channel singularities.

For the =x-n amplitude, in which identical processes occur in
the direct and crossed channels, this self-consistency amounts to a
"bootstrap" requirement. The dominant Regge trajectorles, p, P, and P'
should bootstrap themselves.

Chew and Jones2 have devised a set of equatiohs for investigating
this possibility using the N/D method, with the N function having
the cuts of the potential, ard the D function the unitarity cut in
the strip region. Results have already been reported3 for a self-
consistent p trajectory, but the p potential also generated an I = O
trajectory which was not included in the potential. In this paper we
complete the solution by obtaining a pair of mutually self-consistent .
trajectories, one having I = O and the other I = 1. However,

these trajectories have several unsatisfactory features,
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and we are led to discuss some deficiencies of tﬁe new form of the
strip approximation and how they might be rectified.

In the next twé sections the BV&) eqﬁations and the method
of calculating the potential from the exchange of Regge trajectories
are.reviewed. The fourth section is devoted to a discussion of the
potential for P exchahge, which is repulsive. The total potential
for I =20 exchaﬁge may be made attractive by means of a "normalization'
procedureh which is supposed to take éccount of the effect of trajectories
which do not reach the right-half anguler-momentum piane{ but whose presence
is implied by the fact that the elastic discontinuity must be positive.
However, doubt is thrown on éhe validity of this normalization proéedure.
In Section V we present results for the self-consistent p and
(normalized) P trajectories. The‘ P' is not fpund. These self-
consistent trajectories are unlike the physical o and P trajeétories
in several respects, having much larger residues than are found
experimentally, and smaller slopes. Tor this reason the trajectofies
violate unitarity in the asymptotic region. In Section VI it is shown
that the trajectories which are obtained from experiment, and which do
satisfy asymptotic unitarity, can not generate enough strength in the
new form of the strip approximation to. bootstrap themselves. In
Section VII we discuss the inability of the N/D method to treat
combinations of attraqtive and repulsive potentials such as we obtain
if the P potential is not normalized. Both these problems seem to

stem from treating the poténtial in the first Born approximation, and

[
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~ in the final section we conclude that a more adequate strength, and a

better treatment of the P repulsion,would result from iterating

the potential in the way originally proposed by Mandels’cam.5
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II. The N/D EQUATIONS ¢

The form of the N/b equations which we use has already‘been
discussed in previous papers}’z’a, We feview them here only for v
completeness.

We relate the partial-wa?e amplitude for isospin I to the total

~ N
d

1"  scattering amplitude A;(s,t,u) by

Al(s,6,0) = ) (2641) [1 + (_1)1+z] P,(1 + -

=28 s). ()
£ 2qs } v

We note thatlbecause of the Bose statistics of pions)only the even
signature amplitude A+I(s,t) exists for I = 0,2 )and only the

odd signature A_I(s,t) for I=1¢:
Al(s,t,u) = af(s,t) + (-1)F AT(s,u). (11:2) .

The forces in the I = 2 channel are repulsive and no trajectories are
produced, so we shall limit our attention to I =0 and 1 ¢
i% I(s) :
£ . I
I e sin 8, (s)
A, (s) = R (I1:3)
p(s) |

5

i

where p(s)

L2 .
(EEE is the phase~space factor, and we assume that
the phase-shift BzI(s) is real (i.e., elastic unitarity) in the range

h «s < Sy -
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We represent the partial~wave amplitude by
I 22 _ I 24 I I
a,7(s) = o B, (s) = o N, (s) /D, (s), (II:4)

where le(s) is the reduced partial~weve amplitude, with the

" kinematicel singularities at threshold removed, and NzI(s) has the
I
2 ( 10
DzI(s) has the right-hand unitarity cut from threshold to s

left-hand cut of B, (s) and its right-hand cut for s > s, .and

l L

Here s, t, u are the squares of the berycentric energies in the .

various channels with A &y the corresponding momenta, and Sy is
PARP4

the strip width. We use the plon mass as the unit of energy throughout.

We then obtain the equations

. 1 B,(s') -3,"(s)
M, (s) =Bz@)+%kvdy E@us)z pﬁy)%@g (11:5)
and
D,(s) = 1 - %J[ * ds' pz‘(s ) () ’ (11:6)
4 (s'= 3)
where
. , ,
o fe) = G (&Y,

and B, '(s) is the partiel-wave potential function.
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The integral equation (II:5) is not Fredholm because, as We
shall see in the next section, Bzv(s) has a logarithmic singularity *

at s1 . In fact

I v .
—> % In B, (sl) log (sl- s) , (I1:7)
s = s

1

B, (s)

and

. . 2 v . .
sin 6z(sl) pz(sl) Im B, (sl) o

(11:8)

= N (say) .

This singularity serves to match the phase shift below 8,

given by the solution of the N/D equations)to the value above S1 )

given by Regge asymptotic behavior. Clearly unitarity at s requires

1
that

A S1, (11:9)

and Chew6 has shown that if this condition 1s satisfied Eq. (II:5)

can be transformed, by the Wiener-Hopf method, into a Fredholm equation

: ~S
Nb() = 3 )+j ' ds' X( ')NO( ") (11:10) ™
g \8) = B, s N s' Kj(s,s 5 (s y :

o
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where NZO(S) is related to- Nz(s) by

51

Nz(s) = j; ds; Qz(s,s') Nzo(s’) , (TI:11)

Oz(s,s') and Kz(s,s') being known | functions of Bzv(s) » Ny» and

A TORTRAN program for solving these equations has been devised,8

9

Sy
but the Wiener~Hopf transformations are rather time-consuming.
"Equation (IT:10), being Fredholm,can be solved by matrix inversion.
Héwever,‘more recently, Jones andﬁiktopouloslo vhave shown
thét'ény integral equation, the norm of whose kernel 1s less than one,
can be solved'by matrix ;nversipn,whether or not it is Fredholm/and
" that for an equation such as (II:5) this is simply the requirement
that kz <1 . Thus, 1f wnitarity is satisfied in the asymptotic
fegion (s > sl), (II:5) can be sélved, as it stands, by matrix
inversionjproviding that cafe i3 taken with the choice of mesh polnts
for s near s¢ .ll In view of the difficulties in satisfylng the
unitarity condition we decided to use the Jones-Tiktopoulos method
rather than Chew's method?which had been used. in previous Work.a"9
A pole in the partial-wave amplitude is represented by a
zero of the D function, and the output trajectory 1s the function

a(s) such that

Da(s)(s) = 0 .

(11:12)
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Above threshold both ofs) and Dg(s) become complex, but
their imaginary parts are expected to be small}in which case we can

make the approximation of supposing that

Re ¢ D e[Ol(%) (‘) = 0 o
As previously,j- the solutioens we obtain turn out to have
Tm{a(s)] large just above threshold, arnd, since it is much more

difficult to solve the equations for complex £ , we are unable

to trace the trajectories above threshold.

'The output residue, 7(s), is obtained from the relation’
¥, (s) G _rlsy)
2
3= D, (s J af(sR)
= SR

where sp is the pole position.

(iI:13)

| (IT:1k)
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ITI. THE POTENTIAL FUNCTION

Tn Fig. 1 we show the six regions (i ) of the

1,2,91,2,%1,2
double spectral functlons employed in the new form of the strip
approximation,2 The double spectral function in regilon jl, for

example,ils given by

o(s,t) = 4, {g- I‘J(t), Py (%) Q 1 - ;%—)]e(s-sl), (1IT:1)
¥ e |

.where

< ' a,(t) |
rys) = [2age) e2] 6 (T, (111:2)

aj(t) being the trajectory function, and 7J(t) the reduced residue

function, of the Jth Regge trajectory. The contribution of this strip

(t)<l'2q >

to the amplitude isz

R,%L(s,t) = 3 Ty(t) J.* (111:3)
g\ 2
5y (s'~ s)
where this integral is defined, and for o >0 we use 1its analytic.
continuation
1,. 1l s \
(&%) = 3 1‘3(”1 EEEAG) a(t) (“2%2)
_ o (aIIh)
1 ds' .

i thtg (s' - s)‘
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The full amplitude is given by2

)

i

AI(s,t,u) 1 Ri‘LJL

(S;u)} 511

t I
[Ri s, 4) + (-1)
1

+ L B(LI,) [stle,s) * (-JL)I"j RJul(t,u)}
3 | |

!l
Za(mg[ <u,s>+<-1) Rk *u,t)
k
where the sums are over the leading trajectories In the yespective

channels.

The reduced partilal-wave amplitude for complex £ 1s defined

(1TI:5)

by
I 1 at : 4 I .
B, (s) = - 5 J =7 | ImQ, <1 + 2)];\ (s,t) , (111:6)
-0 q'S - . eq'S

P
a form first pointed out by Wong,l“

is3 (remembering the crossing symmetry)

o

and the partial-wave potential function

. / . t
Z — f at |Im Q{1+ 2)]
J %5 les) ) eqs
S
s 1 - 1
J u 1 1
X PJ (t) J 5 du' P j(t) (: l =~ 2q-t2> [u'_ S T ]
a II
"; J i . Jren , .oou! 1 - I 1
+ ( l) Jf du I‘J (t ) }aj(tf) -1- o 12 [uy_u '( l) u' t:l
S ' o
1

N
ez}
=)
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© elther
I
x T () I, |
)] ._L -
+—«»—~1————Sin — [-1)‘ 13 (t)(l- --—->+ Py (2 +2qt2>}, if < 2;2>< 1
J - _
21_‘_
' tﬂ%(w I oé}
I, - Cob =T 1y =
+ 1T, @) (x p oy (-1- —] ~ -1- ———-}
P ot 2%>_tan nagm o - f (t)( )
(22 2;2>> Y (@)
bt I (s')s
1 7 l ' J 1T t . ‘ 1 ) 4
e = [T E)n )
(s -s)(~q ] ) -s' - Sl Ggr 7/

where the sum is over the leading trajectories, and

S s+t+u=s+t +u o= b,

Also, r, Ig) = B(I,IJ)I‘J(’C) , | ,(III:B)

B(I,I') being the isotoplc spin crossing matrix

L 2
5 03
B(LI) = 3 3 -2 (111:9)
111
3 T3 [ .



Note that : |

- 7 _ . :
Im {QI(?O} = 5 Pz(}) for = 1 <2/<+1
v
(I11:10)
= ~-sinx £ Qﬂ(ny) for 3/ < -1 .
From the first term of (III{7) s
3B, (s.) = 2. L [ at (Im qQ (14. =t T, 9(t)
2 \C1 202 L JA 2 13 .
J an q - 2qs
51 1 _
- (IIT:11)
s
1\
X P \ <E 1l - e
aﬁt, A 2%ﬁ/
We have included the contributions of the strips 1 to the left-

 hand cut in B,'(s), which we have called the partial-wave potential

funetion, Strietly these contributions are not part of the potential,
but represent the reaction to the potential. However, these extra
contributions are wnimportant and it seems reasonable to use the term..

The "potential" is the expression in breces’ . {} in Eq. (IIT:7).



‘IV. THE TREATMENT OF THE POMERANCHUK REPULSION
When Egq. (ITI:7) 1s used to eveluate the poténtial for an
even signature trajectory such as the P or P' 4t is found that.

the potential function is negative (i.e., repulsive). Thus if we make

the approximation of setting o = 1l we obtain

+

- Z ) - log %fj’ﬂﬁ} , (1v:1)

51
51

II | o
VP(S;’?) = v ) {- 5, 2»‘qu.+ (2, %+ 2) [log(

N

S ) !
where VP(s,t)v 1s the expression in !traces: {} in (III:7). For - -

3

t <K g we get

. ' IIJ [ 5 . Bt s '
VP(s,t) ~ I Y(t) -5 + «suflogz.(S - s)_, (1V:2)
and BEv can be approximated by the partialvwave projection of this

_expression, It will be noted that there is a repulsion depending on

Sy s end the expected logarithmic singularity.” For s <<s

1
- 1T o '
VP(s,t) z I j(t) [w s, + 5. 'o..]y (IV:3)
- L toa ] |

s

and the s‘2 term ls related to the spin-two (fo) paft of -the P, but

it is reduced by a factor compared with the repulsion. The lack

s 2
1
of s dependence of the repulsion Indicates that it results from the

spin-zero part of the P exchange.

s

W
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Chew has shown13

how one can understand this repulsion also in
‘terms of the Khuri-Jones formuls for VP(s,t). By expanding VP(s,t) .

in partial waves in the + channel,one finds

<3

V(s,8) = ) (2341) vp(t) Bl + =) o (TIv)
dqt .
with 5 op(t) 7p(t) -[T-ap(6)] &, (), (1V:5)
Vo (t) = 8(1,0) (g, ") FoaE) ©
where o , ]
b (8) = log (x4 (t) - [3°() - 1B
and : 7 (8) = 1+ mi%g .

For + << SJ we have

(t);e

BE) = B0 (@) 70 5 T /e - age)]
and ’ ' ) (IV:6)

» (6)
vy8) = - B(5,0) 7p(8) s, T/ an(s),

We again see a much reduced attraction from the fo and a strong

repulsion from spin O. : " ' w



‘Then, neglecting the strips 1 in Fig. 1, we have
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At{first sight 1t would seeﬁ that this-repulsioﬁ muét be
inéorrect,,of at least that it must be cancelled by other contributions
to J = 6 exchange. Fbr,suppose-we use the Fi‘oissa.rt-Gr;!.‘bov2 form of
the partial-wave projection instead of the Wong form (III:6),

/ ' T
i.e., Bﬂ(s) = g; ‘{ g;+2 Q \\_+ t i) Dt(t,s) s (IV:7) ’
P a -

s

vhere Dt(t,s) is the *t~channel discontinuity of the amplitude.

1,2

£

B,'(s) = B_%-Qf 2“2 Q€+ )D (t,8).  (IV:8)

Because we take the double gpectral functions to be zero outside the
strips of Fig. 1, we can expand D,c(t,s) in a convergent partial-~

wave series for 4 < s < 8y ~and obtain

v gL, 0
By (s) = 2(‘52—)' ;m‘e'%
L

> (p,e + 1) Im A, (t)
s 2 even .

%t<£+2%;>’

and since, for elastic unitarity; Im A, (t) must be positive,we can
&

2q4

(1v:9)

see that Bzvgs) must be positive. Thus, if the strip approximation -

I
is to be correct, there must be other contributions to Im A, (t) apart
t

. from the " P (df P") trajectory. These could be provided by trajectories

NS
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which do not reach the right-half angwlar-momentum plane, but give a

. background contribution., (See Fig. 2.) Since such trajectories sre
not manifest, either physically, or in this type of calculation, there
can be no hope of including them individually in the bo&tstrap scheme,
but Chew and TeplitzlLL have shown how to represent thelr effect by
"normalizing" the potential. This procedure consists simply of
subtracting from VP(s,t) the part VP(o,t) and then adding back
V(o,t) from (VI:9).

Thus

(o]

| | (
B,"(s) = ._...._}_é.ﬁ.g fm at {Im Q, Q. N : 2>1VP(s,t)‘- v (o, t)

an qg

(vI:10)

+

ﬁi%%lg !,s at q, Kl + ) (24,+1) Tm A, (£)
27 2q 2 LEven t

and Im Azt(t) can be made self-consistent in the s and + channels,
It turns out that the second term of this equation iz very small, and

in practice we shall simply use thé first term, which 1s itself
sufficlent to ensure that the T = Q@ exchange force is positive, It

© will be seen in Section VI that this "normalization" drastically

| alters the form of the potentlal function. It would be difficult to,
add the second term in a self-consistent way because an adequate solution
for £ =0, which is sensitive to short-range forces not included in the
strip approximﬁtion, can not be found, and our solutions for £ =

and higher canZnot be believed because we have considered only a'single

two~body channél whose particles (pions) have no spin. Our conclusion
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that this term would be smﬁllAif it wefe inclﬁded is based on ﬁhe :
‘fact that even.the forée frbm saturated unitarity in the S wave |
[Im Ao(t) = l/po(t)] is small; and . for the D--wave,the contribution
of & fixed-spin f_ , when modified by Chew's form factor, 3 4
negligible;

Howevery the argument presented to show thet the I = O force
must be positive could well be iﬁcorrect, since it éssumes %hat elastic

uniterity holds for L4 <t <'s In fact it will hold exfictly only l

1
for 4 <t <16 . The double spectral functions'are really non-zero
within the boundaries shown in Fig. 1. The region A coptains the
elastic double spectral function for the s channel’which,by
definition, should not be included in the potentisl, but which wili
contribute to the +t - channel discontinulty where it represenﬁs inelastic
processes. Thls sort of contradiction between the sign of the t - channel
discontinulty and the s~ channel potential has been noted previously,l5
and we shall conslder it further in the final .section.

In the next section we describe the results obtalned when the

‘normalization procedure, whatever its merits is in fact used.
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.V. . THE BOOTSTRAP TRAJECTORIES

In é previoﬁs paper3 a self-consistent p trajectory was
obtained, but the p force also produced an I = 0 trajectory which ‘ _ %
had not been included in the input. If now we include a narmalized
Pomeranchuk trajectory it is possible tc obtain a completely self-
consistent solution.
As in reference 3 we use a pole formula to parameterlze the
~ trajectory functions, insisting that the I =1 trajectory pass through
a=1 for t =28, corresponding to the p particle, aﬁd that the P
pass through « =2 for % = 80, corresponding to the £ » end through
the unitarity limit a=1 for t = O,

Thus
ap(t) = 1=a8 tB/28 -a(l - ’cB/28) / (1 - t/tB),. (v:1)
where (l-a) 1s the intercept of the trajectofy with t =0, and
aP;-(t) = 2 - tA,/Bo - (1 - tA/ao)"/ (1~ t/tA) - (vi2)

where 'tA and tB are the positions of the poles; which we expect to

lie towards the upper end of the étrip. | ' ' )
The same type of parameterizatlon of the residue as was used

in Ref, 3, maﬁing use of the Chew-Teplitz formula, was found to be

satisfactory;
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ife., | o a /.w e " -ozp(t . |
.7p(t) = Cp O!p"(t) [Ep- t]“QOlp(t) 1 +,(%_p_?_§_l:7 /(—9-&-—) | ’ (V:j)
| | S, ap(6)+1
%3(t) = aé(t> [Ef- ?] Q3P<t) <§ + K£§§§§> <1 .. (Val)

The merit of this parameterization stems from the fact that the principl

force.in the system is p~.exchange, and the Reggeized p force is

similar in its energy dependence to the elementary p force. The
. , , , ,

parameter 'EE P 1s some mean energy within the strip. Thus in searching
s

for self-consistency we have to vary the Regge parameﬁers

& by by C, Cp 'Ep, and T, and the strip width si .

For a given choice of the parameters we calculate the potential,

using (III:7) for a range of £ and s , and then solve the N/b

' eqpationé for I =0and 1, obbtaining cutput residue and trajectory

- functions. It was indicated previously3 that a large amount of éomputer

time 1is required to find self-consistent solutions, but the self-
conslstency 1s now much more neerly unigue than 1t was for the p  alone.

Only with 80 < s, <130 1is one able to approach self-consistency at

1

all closely, and we concentratedvon 8y = 100 . We were then able to

obtain fairly good Self«consistency for a = 0,18, t, = 110, tB = 70,

A

¢, =125, Cp = 230, 76 =0.40 and t = 50.

A comparison of the input and output trajectory and residue

functions is givan in Figs. 3 and 4. A slightly different parameterization

\,
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of the 7's might have resulted in some improvement, but the solution

shown 1s obviously close to the best self-consistent solution. -
Idealy, in a bootstrap calculation, one ought not to'fix any

of the. paremeters beforehand, but, since the forée only depends on

a(t) for +t <0, fixing 05(28) = 1 1s not a strong restriction.

If the trajectory is made to lie too high or too low the force obtained

is too strong or too weak for self~consiéﬁency to be possible. ‘Fixing

: aP(o) = 1 doeé, nowever, restrict the solution greatly. The self-

consistent p alocne repgrted in Ref. 3 gave rise to a )P trajectory

which exceeded the unitarity limit. It is the exclusion of this type

of solution which has caused the greater restriction in the range

of the parameters for which approximate self-consistency can be obtained.

3 the output diverges widely from the input as t

As before
becomes positive, the rapid variation of the output - a's and ¥'s
indicating that they have large imaginary parts just above threshold;
The input parameters, %%28) / aé(zs), correspond to a p width of
1.2 m , but the output I = 1, £ =1 cross-section (Fig. 5) shows
aAwidth of 4,2 m. . In fact,tﬁe equivalent input p width is much
larger than 1.2 m because of the unrealistic way In which our
residue function decreases for t > 0, Similarly the input 70(0)
correspondsl6 to a m-n total cross section of 36 mbp...rather than
the expected 11 mb . deduced from Ref. 17. As in Ref. 3,1t was not
possible to find solutions in which ¥{t) falls off sharply as %t 1s° >

decreased freﬁ zero, and it was thought wise to set (%) = O artificially

=

s
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"for t < - s.+ 4. This makes the second term of (III:7) zero, whereas

1
it would be much larger than is consistent with the strlp approximation
wvere this cutoff not imposed. As vas mentioned in Ref. 3,‘it is
necessary to have rapldly decreasing residues in order to produce steep
trajectories, and it is the fallure to obtain such residues as output
which forces us to solutions Vith high trajectories,.quite unlike those
‘found from experiment in Ref. 18,

| In fact, our trajectories are not admissible solutions to the
problem because they do not satisfy‘unitarity in the asymptotic region.
From Egq. (II:8), we see that for unitarity to be satisfiea at Sy

;\- pz<s"> Im BZV<SJ> <1 L] (v‘-‘j)

A plot of N, vs £ 1s shown in Fig.,G,lwhere we see that
this condition 1s not satisfied for £ <0.82 for I = 1, and
£ <0,9 for I =0, The difference between the tﬁo isotople spins
is simply that the p trajectory contribdbutes twice as strongl& to
I =0 because of thé crossing matrix. As we mentioned iIn Section II,
. *w
the integral equation (II:5), and so the trajectories plotted in Fig. 3

<1 1s the condition for matrix inverslon to give the solution of

are not to be relied upon below these values of £ . However, there
is no discon%inuity in the solutlon of the matrix inversion equations
as hﬂ bec%ﬁes greater than one, so we can expect the solution obtained

to be close to the true solution to the integral equation. But Fig. 6

shows that for £ = O unitarity is so far from being satisfied that the
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)

self-consistent trajectorles we have found can not possibly correspond

at all closely to the physical trajectories. One can see from Eq. (ITT:11) -

‘“that 1f « and % did decrease more rapidly, and ¥ were smasller,
this problem wouid not arise, In fact, Thillips and Rarita checked
that their trajectorles satisfied unitarity at high energy.

Our conclusion from the results reported in this section is
that there is no bootstrap solution to the Chew-Joneé equations which
satlsfies unltarity in the asymptotic region, but that, 1f we ignore
this conditiothrajectories which are completely,self¥consistent for
t <0 can be found, which bear a rather remote resemblance to those
determined from experiment. -

There was no sign of a secondary I = 0 +trajectory corrésponding

to the P', even when attemptswere made to include it as a force.

18 y
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VI. FURTHER ASPECTS OF THE REGGE POTENTIALS

Desplte our inability to find & bootstrap solution of the
Chew~jonés equations 1t 1s important to understend the naturevof
“the potentials produced by Regge poles,

Chew,'has'shown15 how the fixed-spin exchange potentlal 1s .
modified, by what he calls a "form factor," when continuation in
angwlar momentum 1s taken inﬁo account., This form factor may enhance
or reduce the force, depending on the spin of the particle exghanged.
" For a particle of high spin the-form factor always results in a
reduction of the force, but for the p the situation ig less certain.

It is well_known that though the p 1is the principal'force
in the mn-x @roblem, a fixed~spin particle of the physical width
doeslnot give a sufficignt strength to bootstrap itself in the first
- Born approximation,

The potential function is

, . o _
. : m ,
sz(s) = 3 g mp 1+ -%§~; Qz 1+ _215 B (VI:l)
. mp - 1 eq

where g 1s the width of the exchanged p in pion mass units, and
the results of using such a force in the N/b equations with a cutoff

at sl = 200 are shown in Flg, 7. It is seen that a width of 2.3 mk

is required to produce a trajectory which passes through mp2 at a=1.
We compare this with the force obtained from two different parémeteriza»

Rt

tions of théa;p “trajectory in Fig. 8., The p of case (b) produces a
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force which 1s similar to that from the fixéd-spin o for £ = 1,
though it 1is smaller for lower wvalues 6f £ , but it still suffers
from the difficulty that wnitarity 1n the agymptotlic region can nof
be satisfled even 1f we neglect the fact that thé P and P’
trajectories also contribute strongly to Im Bzv(s). In casel(c) .the
input trajectories are similar to those found by Phillips4and Rarita,l8
and the ‘force 1s much smaller. | |

The addition of the even-signature trajectories is of little
help because 1f the normalization procedure is used the femaining P
force is very small,as Fig. 9 shows. -If we use input pérameters.based
on those of Paillips and Rarita for the p and (normalized) P the
force 1s too weak to produce any output.trajeetory at all, If the
P contribution is not normalized the resulting total forge is
repulsive,and 1t is not possible to obtain a sensible solution to the
N/b'equations. fhis point is taken up-in the next section.

To summarize, the forces from the sort of trajectories found .
by Phillips and Rarita are even smaller han those from the exchange
of a fixed~spin p with the experimental width, and are too weak to
produce any output trajectorles. The force can be increased by‘using
residue and trajectory functions which fall less rapldly with increasing
[t], but 1f they are flattened sufficiently to produce & force equal to
that from the exchange of & fixedvspin p, unitérity in the asymptotic
region 1s violgted 8t least for low angular momentum, and even this
force 1s too ﬁéak by a sizable factor to produce output trajectories

correspondingFio experiment.
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VII. THE REPULSION AND THE N/D METHOD

We can see from Figs. 8 and 9 fhat, if we do not normallze
the P contribuﬁion,-the P repulsioh is much greater than the ]
attraction for both the I = Cand I = 1 channels excepf for s

near s If we try to solve the N/b equations with'sﬁch forces

1
we obtaln trajectories of poles with negative residues, that is to
say we find "ghost" resonances which lie on .the physical sheet (at a
in Fig. 10). >What is mare, the stronger the repulsion the the more
highly bound these rescances become. Since dynamical cdlcolations
have usually dbtained resoance widths whicﬂ are too largel9 (e.g., 8t
b 1n Fig. 10) it might be hoped that some more moderate amount of
repulsion would result in oarrow'resonances (at c).

To explore this phenomenon further we examined a potential |

scattering model in which there was & similar combination of attractive

and repulsive potentials, i. e.,

V() = -g o 8y T L, m <my . (VII:1)

{

If one solves the Schroedlnger equation with any such potential

P

one is guaranteed that any resonances produced will lie on the unphysjcal

sheet, but 1if we use Lhe first Born approximation

.8 4 N
3,'(s) 4 - —37m Qz( mlz
2q_ \\ 2q, /

BT s e
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and solve the N/D equations (II:5),(II:6) with a .nonrelativistic

phase-space factor

1
fé~h o2
oy (s) = T (VII:3)

and let ‘s, = @, we find similar ghost trajectories. For example,

1
at £ =0, with g, = 10.5, m, = 10, and m =1 (there 1s no
2 :
particular reason for these values),we find that for g, = 0 a

normal bound.state is produced at s = ~ 3+1 and NO:: BY . Ifwe

e
add repulsion by increasing 8y there is, paradoxicelly, greater
attraction, so that for g = 2.6 .the bound state has moved to -23.
Plots . of ,Bov, NO , and Do are given in Fig. 1la . TFor gl =27 =&
pole is produced in the N ‘function at threshold and the bound state
moves to -~ co ., For & = 2.8 the N function just above thfeshold
has changéd sign (Fig. 1lc), with a ghost polé appearing at s = 8.5 . |
We see that again No:x BOV, because the. changing sign of N makes
the contribution of the integral in (II:5) very small, but this clearly
does not mean that the first Born approximation still holds good.
Increasing 8 further increases the biﬁding of the ghost resonance,.

This result stems from the féiluve of the first Born approximation,

and would be improved 1f we were tb iterate the potential in the way
suggested by Mandeistam.5' After an infinite'numbgr of iterations the

solution .to the Schroedinger equation would be obtainei?o and 1t

would not be ﬁbssible to have resonances except on the unphysical sheet.

5

2\
~— N}
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One would expeét the iterations to be mére imﬁortant for a repulsive
pétential than for an attractive one because of the aiternating signs
‘of the successive iterations in.the forﬁer case,

o It would seem that in our relativistic problem we are facing-
the same sort of 1nadeqﬁacy of the Born approximation;

The normalizatiqn procedure is & valid way of correcting.the

t = channel discontinulty in.the rﬁnge L <4 <16 where elastic
unitarity is exact, and probably further ou£ thanvthis,since we expect
" the discontinuity of the potential to be smali in the whgle of the
lower part of the strip where there are narrow resonanceé. This is
because the double spectral functiqn in the strip is approximately
proportional to Im a(t)~{seg Eq. (IIIﬂ)] and the width of a resonance
21

at tR is

d R

I = Im ot )/ etR%‘ (VII:L)
In the upper region of the strip we can have no such confidence in
the normalization procedure, since here the discontinuity has contribu-
tions nof only from the sfribs but also from'the‘corner section of the
~ double spectrallfunction (A in>Fig.ll). This cornér is not included
in the potenﬁial, by definition, but if it is an Important contribution
to the amplitude its neglect is a serioﬁs defect of the new form of the
strip approximation.
 This part of the double spectral function could be calculated,

by means of the Mandelstam iteration procedure, from the eqyations
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o0

o ' . p_(t,'s,) D (t,"s ) -
p(s,t) = L J:[‘dt'dt" t + . — (VII:5) -
: 7 qSJE %0 Ke(s,t,t,'t")

where Dt(t,s) 1s the t- chennel discontinuity, and

i

tt't"]

2
s

K(s,t,t',t") [t2+ £%4 "2 L 2(6 b+ £ s £") -

and
| B | |
P s',t S
Dt(t,si) = V%(t,s) + = .],ds' EéT:Lgl T p(g;t).o (VII:6)

Starting with the t discontinuity of the potential, Vt (t,s), one
could calculate pA(s,t) » the elastic s double spectral function
in the region A [though this would require a knowledge of the residue
and trajectory functlons above threshold where they are complex, a
fegion which hitherto we have been éble to avold by using the Wong
partial-wave projection (III:6)]. If we knew pA(s, t) we could find
1ts contribution to Bzv(s), and this would enasble us to treat the P
force properly instead of using the normaliza‘cioﬁ procedure for
t >> 16, where its walidity is rather doubtful:

However, 1f pA(s,t) is importa.p.t, so by symmetry is pB(é,t),
the elastic t double spgctral function obtained by iterating the
s - channel digcontinuity, and this imples that the assumption of- : -

elastic unitarity in the s strip for the N/D equations is incorrect;

%

ot
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pé(s,t) will:also contribute to Bzv(s), of course.

Thus the new form of the strip approximation is seen to have
 two deficiéncks, in that the cuts of the N function are taken to be
simply those of the potential, and elastic unitarity‘is supposzed tp
hold right out to the'boundary’ofithe strip.

Chew has argued22 that a proper inclusion of the P repulsion‘should
. result .in a narrowing of thé output rescnances. The argument is .
based partly on the fact that,in'controlling the gsymptotic behavior)
the P 1is the main contribution to the potential for s£> Sy and
represents the effect of the many channels opening up above the
resonance region, and in classical nuclear physics it is the preéence
of such channels which ig responsibdle for the narrow resonances. 'In
terms of the N/b eqpatioﬁs, the incluslon of the long-range P
repulsion should reduce the N function near threshold, and hence
* the width of low-energy resonances, without greatly altering the
pbsition of the zero of the D function, whilch - depends ° on the

shorter-range p force.

WS
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VIII. CONCLUSIONS

We have ﬁot succeeded in bobtstrapping trajectories in the
new form_ofAtﬁe strip approximation as it stands. This appears to | i_ -
be due to the treatmentvof the poteﬁtial in the first Born approximation,
which does not produce sufficient‘force.ﬁo regenerate the true physical
trajectories when.the physical trajectories are gsed as the input, and
gives rise to a repulsion from the P .end P' 'traJectoriés which
.‘ we are only able to cope with by making doubtful assumptions about the
presence of a background contributibn. If we neglect thé requirement
that the input forces should-correspond.to the known trajectory
varameters, we find that 1t 1is possible to obtain self~consistent'
trajectoriés, but these_violate upitarity very seriously in.the asymptotic
region, require the input of a p resonancé of too large e width, and
result in an even larger output width.

It 1s hoped that by iteraﬁing tﬁe potential 1t will be possible
to include the P force properly. and.obtain narrover resonancés,.and
that the 1tefation will produce sufficient extra strengﬁh from both
p and P ©to make up the deficit. ,Héwever, in view of the fact that
it il no longer be possibie to ldentify the left-and far right-hand
cuts of the partial.wave amplitudes with those of the potential, nor
to use elastic unitarity within the strip, there does not seem to be any
advantage in using the N/D method. Rather one should try to obtain
crossing analf%icity‘by iterating the potential from a given set of

v’trajectoriesfﬁut to the asymptotic region, and discover whether the

;?%.
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| asymptotlc behavior appears to bevcéntrolled by identicai trajectories
in~the crossed chamnel.. The success of Bransden et.a.l.23 in iterating
& non-Regge potential and obtaining‘sensible output trajectorles gilves
strong grbundélfor hoping that this approach will sébceed, énd it is

expected that results will be available before very 1ong.2)+
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Fig, 2.

Fig. 3.

Fig. b4, .
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' FIGURE CAFT'IONS _ .

The Mandelstem disgram for the new form of the strip approxims-

tion, showing the six strips (shaded) 11’2 ’ 31’2. and ki,e . .
The curve enclosing A 1s the boundary of the elastic double

spectral function for the s channel, and that enclosing B

is the boundary of the t - channel.elastic double spectral

function, .

The I = 0 trajectories, including two hypoth?tical'low-lying
trajectories which might give a positive backgfound contribu-

tion to the potenfial.

A comparison of thelinﬁut and output, approximately.self-

consistent p and P trajectories. The input trajectories

are:
@ = 0.55 + 0.27 / (1 - t/70),
ap = 0.625 + 0.375 / (1 - t/110) .

A comparison of the Input and output, approximetely self-
conslstent p and P trajectories. The input residue

functlons are
_ a (t) + 1
125 o [ (t) (bo-t) Q, 4y (2.55) / (9) ° '
P | o (t) + 1

230 a'p(t) (50-t) % (t) (2.22) / (11.5) © . o

1

7o

7p
The I =1, £ =1 cross section obtained with the self-

consistent trajectories. The width is about 4.2 m. . -
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- Fig. 6. A plot of N, VS £ for the self-consistent trajectories,

.'showing that the wnitarity condition, xﬂps 1, 1s satisfied
only for the tops . of the trajectories. ' »
Fig. 7. The trajectofies obtained with the exchange of a fixed-

spin p of width -- A =0.Tm_, B=1l.h m , and

=200 2.

1 I 4

Fig. 8. A comparison of the potential functions, Bzv(S), for three

C=2.3 m with a .cutoff at s

values of £ , with Si = 200 mﬁ2 . The input parameters

‘for the three cases are: : : S
(a) E;ued spin p of width 0.7m_ .

(b) A p trajectory with the parameters

= 0.107 + 0.393/(1-t/50),

0,22 x(h9)1- o / (1-t/200) .

R
I

=
il

(¢c) A p trajectory with the parameters -

@) = -1.5 + 2/(1- t/140),
l-cx (%)
7, = 0.01 x(24) P /(1 t/100),
Both sets of parameters correspond to a physica% )p of width
0.7 m . [The presence of (numerical factor) 1s to make

a(t)
dimenSionless.]

r(s) @ 7(t) (-q.°)

Fig. 9. A comparison of the ' unnormalized (a)) and normalized (b))

potential functions for en Inrut P trajectory having the

paréheters
o, = -1.0 + 2.0 /(1- t/240),
C () |
7p = 0.007 x(2k) x op(t)/(1-t/100) .
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. for £ = 0. These parameters correspond to & xn-m total

cross éection of 1lm e, The multiplication of the residue
by a(ﬁ) is to ensure tha® 1t vanishes where the trajectory

cuts anguler momentum zero,- so that there is no "ghost" pole.

Fig. 10. Positions of resonance poles in the complex s plane at:
(8) - on the physical sheet, .

(b) . well onto the unphysica} sheet, giving e wide resdnance,

(9) ~ Just onto the unphysical sheet, giving avnarrow resonance .

Fig. 11. A comparison of the potential tunction, Bzv(s), and the N
‘and D functions, for the potential mbdel described In the

text. The three cases differ in having:

i

(a) g, 2.6,

(v) e = 2.7,

(e) &, 2.8,

CRctanes
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