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ABSTRACT OF THE DISSERTATION

Massive MIMO with Low-Resolution ADCs

By

Hessam Pirzadeh

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2021

Professor A. Lee Swindlehurst, Chair

A key potential of massive multiple-input multiple-output (MIMO) systems which has made

it interesting from a practical standpoint is its ability to substantially increase the network

capacity with inexpensive, low-power components. Nevertheless, the static power consump-

tion at the base station (BS) will increase proportionally to the number of antennas. Hence,

considering hardware-aware design together with power consumption at the BS seems nec-

essary in realizing practical massive MIMO systems.

Among the various components responsible for power dissipation at the BS, the contribution

of analog-to-digital converters (ADCs) is known to be dominant. Consequently, the idea

of replacing the high-power high-resolution ADCs with power efficient low-resolution ADCs

could be a viable approach to address power consumption concerns at the massive MIMO

BSs.

In this thesis, we study two different architectures in design of massive MIMO systems

with one-bit ADCs, namely, mixed-ADC architecture and spatial Σ∆ architecture. The

basic premise behind the mixed-ADC architecture is to achieve the benefits of conventional

massive MIMO systems by just exploiting small pairs of high-resolution ADCs. In spatial Σ∆

architecture, by subtracting the quantized output of one antennas radio frequency (RF) chain

from the signal at an adjacent antenna, coupled with spatial oversampling, the quantization

xi



noise is shaped to angular regions that the signal of interest is not present.

We start with finding the optimal distribution of high-resolution and one-bit ADCs in a

base station with energy constraint to maximize the spectral efficiency. Then, we use the

Bussgang decomposition to develop a linear minimum mean-squared error (LMMSE) channel

estimator for mixed-ADC architecture based on the combined round-robin measurements

and we derive a closed-form expression for the resulting mean-squared error (MSE). We

also perform a spectral efficiency (SE) analysis of the mixed-ADC implementation for the

maximum ratio combining (MRC) and zero-forcing (ZF) receivers, and obtain expressions

for a lower bound on the SE that takes into account the channel estimation error and the

loss of efficiency due to the round-robin training. Finally, the possible SE improvement that

can be achieved by using an antenna selection algorithm is investigated.

Next we introduce the spatial Σ∆ architecture by adopting the oversampling and Σ∆ quan-

tization approach in the time domain signal processing. We propose the appropriate design

of spatial Σ∆ architecture by applying a scalar version of Bussgang approach. The results

of the analysis indicate the significant gain of the Σ∆ approach compared with standard

one-bit quantization for users that lie in the angular sector where the shaped quantization

error spectrum is low. To alleviate the impact of strong interference in systems with one-bit

quantizer, we extend the Σ∆ approach to present spatial feedback beamformer (FBB) Σ∆

architecture. We compare the symbol error rate of the FBB Σ∆ array with that of a system

with high-resolution ADCs. The results show the superior performance of the one-bit FBB

Σ∆ architecture which achieves performance equivalent to that of a system with only high

resolution ADCs.

To complete our analysis, we study the impact of mutual coupling and space-constrained

arrays on the performance of mixed-ADC and spatial Σ∆ architectures. This phenomenon

can eliminate the need for round-robin training for channel estimation in mixed-ADC archi-

tectures. For spatial Σ∆ architecture which relies on spatial oversampling (antenna spacing

xii



less than half a wavelength), the impact of mutual coupling may become significant as the

antenna spacing decreases. Unlike temporal oversampling, there is a limit to the amount of

spatial oversampling that can be achieved, due to the physical dimensions of the antennas.

In the last section of this dissertation, we show that the one-bit Σ∆ array is particularly

advantageous in space-constrained scenarios, and can still provide significant gains even in

the presence of mutual coupling when the antennas are closely spaced. Through this thesis,

we show that by exploiting the advanced capabilities of (MIMO) signal processing meth-

ods, performance of massive MIMO systems with coarse quantization can be significantly

improved.
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Chapter 1

Introduction

The seminal work of Marzetta introduced massive multiple-input multiple-output (MIMO)

as a promising architecture for future wireless systems [1]. In the limit of an infinite number

of base station (BS) antennas, it was shown that massive MIMO can substantially increase

the network capacity. Another key potential of massive MIMO systems which has also

made it interesting from a practical standpoint is its ability of achieving this goal with

inexpensive, low-power components [2, 3]. However, preliminary studies on massive MIMO

systems have for the most part only analyzed its performance under the assumption of perfect

hardware [4, 5]. The impact of hardware imperfections and nonlinearities on massive MIMO

systems has recently been investigated in [6, 7, 8, 9, 10]. Although it is well-known that the

dynamic power in massive MIMO systems can be scaled down proportional to
√

M, where

M denotes the number of BS antennas, the static power consumption at the BS will increase

proportionally to M [11]. Hence, considering hardware-aware design together with power

consumption at the BS seems necessary in realizing practical massive MIMO systems.

Among the various components responsible for power dissipation at the BS, the contribution

of analog-to-digital converters (ADCs) is known to be dominant [12]. Particularly, since the

1



power consumption of ADCs grows linearly with the system bandwidth, for millimeter wave

(mmW) systems where the spectrum ranges between 10 − 30 GHz, using high-resolution

ADCs is not a feasible approach. Consequently, different architectures are proposed in

literature to cope with this problem. For example, hybrid beamforming (HB) which reduces

the number of radio-frequency (RF) chains or fully digital beamforming (DB) in which the

high-power high-resolution ADCs are replaced with power efficient low-resolution ADCs are

viable candidates to address the power consumption concerns at the massive MIMO BSs

[13, 14]. A comprehensive comparison between these two schemes is performed in [13].

It is shown that unlike usual claim, DB does not have a higher power consumption than

HB in all scenarios. Depending on the power consumption model, number of ADC bits,

number of antenna elements, technical characteristics of analog receiver components, and

even environmental changes (such as channel and SNR), each scheme can have a better

spectral or energy efficiency. Based on this study, DB always has a better performance than

HB in terms of SE. However, depending on the number of ADC bits and SE/EE trade-

offs, HB can provides slightly better EE in some scenarios. Generally, DB is preferable in an

architecture with low-power ADCs and moderately high-power phase shifters (PSs) while HB

provides a better performance in a scheme with cheap receivers fabricated with high-power

ADCs and low-power PSs. Besides, it is worthwhile to note that since the characteristics of

mmW systems are not completed yet, DB versatility is an advantageous feature compared

with HB. In addition, reducing the number of ADC bits in DB leads to less fronthaul rate.

Nevertheless, HB is a better option in terms of component dimension and cost. Shortly, the

appropriate choice of beamforming directly depends on the selection of receiver components

and model parameters. In this dissertation, we consider DB and study the performance of

the proposed architectures.

The impact of utilizing low-resolution ADCs on the spectral efficiency (SE) and energy

consumption of massive MIMO systems has been considered in [15, 16, 17, 18, 19, 20, 21,

22, 23]. In particular, studies on massive MIMO systems with purely one-bit ADCs show

2



that the high spatial multiplexing gain owing to the use of a large number of antennas

is still achievable even with one-bit ADCs [15, 16]. However, many more antennas with

one-bit ADCs (at least 2-2.5 times) are required to attain the same performance as in the

high-resolution ADCs case.

One of the main causes of SE degradation in purely one-bit massive MIMO systems is

the error due to the coarse quantization that occurs during the channel estimation phase.

While at low SNR the loss due to one-bit quantization is only about 2 dB, at higher SNRs

performance degrades considerably more and leads to an error floor [15]. The SE degradation

can be reduced by improving the quality of the channel estimation prior to signal detection.

One approach for doing so is to exploit so-called mixed-ADC architectures during the channel

estimation phase, in which a combination of low- and high-resolution ADCs are used side-

by-side. Mixed-ADC implementations were introduced in [24, 25] and their performance was

studied from an information theoretic perspective via generalized mutual information.

The basic premise behind the mixed-ADC architecture is to achieve the benefits of conven-

tional massive MIMO systems by just exploiting N � M pairs of high-resolution ADCs.

An SE analysis of mixed-ADC massive MIMO systems with maximum ratio combining

(MRC) detection for Rayleigh and Rician fading channels was carried out in [26] and [27],

respectively. The SE and energy efficiency of mixed-ADC systems compared with systems

composed of one-bit ADCs was studied in [28] for MRC detection, and conditions were de-

rived under which each architecture provided the highest SE for a given power consumption.

The advantage of using a mixed-ADC architecture in designing Bayes-optimal detectors for

MIMO systems with low-resolution ADCs is reported in [29]. Although the nonlinearity of

the quantization process increases the complexity of the optimal detectors, it is shown that

adding a small number of high-resolution ADCs to the system allows for less complex detec-

tors with only a slight performance degradation. Moreover, the benefit of using mixed-ADC

architectures in massive MIMO relay systems and cloud-RAN deployments is elaborated in
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[30, 31].

Another approach to mitigate the performance loss due to using low-resolution ADCs is

temporal oversampling with a corresponding increase in complexity and power consumption

[32, 33, 34, 35, 36]. Oversampled one-bit quantization has a long history in digital signal

processing, particularly using the so-called Sigma-Delta (Σ∆) approach, which quantizes the

difference (∆) between the signal and its previously quantized value, and then integrates (Σ)

the resulting output [37, 38, 39]. This has the effect of shaping the quantization noise to

higher frequencies, while the signal occupies the low end of the spectrum due to the over-

sampling. Higher-order Σ∆ modulators can be constructed that provide increased shaping

of the quantization noise from low to high frequencies. Compared with a standard one-

bit ADC, a Σ∆ ADC requires additional digital circuitry to implement the integration, but

very little additional RF hardware. Σ∆ ADCs have been commonly used in process control

and instrumentation applications, and more recently in the implementation of multi-channel

beamformers for ultrasound imaging systems.

The concept of Σ∆ modulation can also be applied in the spatial as well as the temporal

domain. In a spatial Σ∆ implementation, the difference signal is formed by subtracting the

quantized output of one antennas RF chain from the signal at an adjacent antenna. Coupled

with spatial oversampling (e.g., a uniform linear array with elements separated by less than

one half wavelength), the quantization noise is shaped to higher spatial frequencies, and

significantly reduced for signals arriving in a sector around broadside (0◦). Applying a phase

shift to the feedback signal allows one to move the band of low quantization error to different

angular regions.

Relatively little research has focused on the spatial Σ∆ architecture. Prior related work

has dealt with phased-array beamforming [40, 41], generalized structures for interference

cancellation [42], and circuit implementations [43, 44]. Applications of the idea to massive

MIMO were first presented in [45, 46], and more recently algorithms have been developed
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for channel estimation [47] and transmit precoding using Σ∆ DACs [48].

1.1 Contributions

In this dissertation, we study the performance of massive MIMO systems with mixed-ADC

and spatial Σ∆ architecture. We propose an optimal architecture for mixed-ADC MRC

massive MIMO systems under energy constraint. In addition, we examine the channel es-

timation performance and the resulting uplink SE of mixed-ADC architectures with and

without round-robin training, and compare them with implementations that employ uni-

form ADC quantization across all antennas. The main goals are to determine when, if at all,

the benefits of using the round-robin approach with ADC/antenna switching outweigh the

cost of increasing the training overhead, and furthermore to examine the question of whether

or not one should employ a mixed-ADC architecture in the first place.

In addition, we adopt the oversampling and Σ∆ quantization approach in the time domain

signal processing into spatial domain by introducing spatial Σ∆ architecture.

More precisely, the contributions of the dissertation can be summarized as follows:

• We find the optimal distribution of high-resolution and one-bit ADCs in a base station

with energy constraint to maximize the spectral efficiency.

• We present an extension of the round-robin training approach that incorporates both

high-resolution and one-bit measurements for the channel estimation.

• We use the Bussgang decomposition [49] to develop a linear minimum mean-squared

error (LMMSE) channel estimator based on the combined round-robin measurements

and we derive a closed-form expression for the resulting mean-squared error (MSE).
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• We perform a spectral efficiency analysis of the mixed-ADC implementation for the

MRC and ZF receivers, and obtain expressions for a lower bound on the SE that

takes into account the channel estimation error and the loss of efficiency due to the

round-robin training.

• We analyze the possible SE improvement that can be achieved by using an antenna

selection algorithm that connects the high-resolution ADCs to the subset of antennas

with the highest channel gain.

• We propose the appropriate design of spatial Σ∆ architecture by applying a scalar

version of Bussgang approach. The results of the analysis indicate the significant gain

of the Σ∆ approach compared with standard one-bit quantization for users that lie in

the angular sector where the shaped quantization error spectrum is low.

• We propose spatial feedback beamformer (FBB) Σ∆ architecture to alleviate the impact

of strong interference.

• We study the impact of mutual coupling on the performance of mixed-ADC and spatial

Σ∆ architecture.

1.2 Organization

The following chapters cover the above contributions. Chapter 2 considers spectral efficiency

of mixed-ADC MRC massive MIMO systems under energy constraints. We study the sum

SE of a mixed-ADC massive MIMO system with MRC detection while taking into account

channel estimation error. We derive a closed-form expression for the SE of a mixed-ADC

massive MIMO system. This expression gives insight into how mixing one-bit and high-

resolution ADCs affects the sum SE of a massive MIMO system. Then, we formulate an

optimization problem to determine the best distribution of full and one-bit resolution ADCs
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that maximizes the sum SE. Interestingly, the analytical and numerical analyses show that,

in realistic scenarios, using a large number of antennas with only one-bit ADCs is the optimal

approach.

In Chapter 3, we study the performance of mixed-ADC architecture with round-robin train-

ing and MRC/ZF receiver. Using an accurate model for the quantization noise based on

the Bussgang decomposition, we propose and study the performance of a true mixed-ADC

approach that uses both high-resolution and one-bit ADCs jointly in estimating the chan-

nel. It is shown that the mixed-ADC architecture improves the SE for both low and high

SNRs depending on the length of the channel coherence interval. We also discuss some of

the issues related to implementing an ADC switch or multiplexer in hardware that allows

different ADCs to be assigned to different antennas.

In Chapter 4, we study the uplink spectral efficiency of a massive MIMO base station (BS)

that employs one-bit spatial Σ∆ quantization, and compare it with the performance achiev-

able by systems with infinite resolution and standard one-bit quantization. We provide

some background on temporal Σ∆ modulation and introduce the spatial Σ∆ architecture.

We develop an equivalent linear model and characterize this architecture. The results of the

analysis indicate the significant gain of the Σ∆ approach compared with standard one-bit

quantization for users that lie in the angular sector where the shaped quantization error

spectrum is low.

The impact of mutual coupling on the mixed-ADC and Σ∆ architectures is proposed in

Chapter 5. Finally, Chapter 6 concludes the thesis.

Notation: We use boldface letters to denote vectors, and capitals to denote matrices. The

(i, j)-th element of matrix A and the i-th element of vector a are denoted by [A]i j and ai,

respectively. The symbols (.)∗, (.)T , (.)H , (.)†, (.)?, and � represent conjugate, transpose,

conjugate transpose, pseudo-inverse, optimal value, and Hadamard product, respectively. A
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circularly-symmetric complex Gaussian (CSCG) random vector with zero mean and covari-

ance matrix R is denoted n ∼ CN(0, R). Ruv denotes crosscorrelation of vectors u and v.

Ci(x) , γ+ log(x)+
∫ x
0

cos(t)−1
t dt, and Si(x) ,

∫ x
0

sin(t)
t dt denote cosine and sine integrals where

γ is the Euler-Mascheroni constant. The symbol ‖.‖ represents the Euclidean norm. The

operator vec(.) vectorizes a matrix and vec−1(.) performs the reverse operation. The identity

matrix is denoted by I , vector of all ones by 1, the expectation operator by E [.], and the

variance operator by V [.]. We use diag (C), diag (x), and diag (x1, · · · , xM) as the diagonal

matrix formed from the diagonal entries of the square matrix C, elements of vector x, and

scalars x1, · · · , xM , respectively. For a complex value, x = xr + j xi, we define xr = Re [x],

xi = Im [x], and arcsin(x) , arcsin(xr) + jarcsin(xi)
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Chapter 2

Spectral Efficiency under Energy

Constraint for Mixed-ADC MRC

Massive MIMO

To provide a compromise between SE loss and power consumption, so-called mixed-ADC

architectures have been proposed [24, 26, 27, 29]. In a mixed-ADC BS, a portion of the

antenna RF chains are connected to high-resolution ADCs, while the remainder are connected

to one-bit ADCs. Prior work has shown that mixed-ADC architectures can provide significant

gains in SE with considerably reduced power consumption. In [24, 27], the spectral and

energy efficiency trade-off of the mixed-ADC massive MIMO uplink is investigated, for both

cases involving perfect and estimated channel state information (CSI). Both [24, 27] assumed

a “round-robin” approach to obtain the estimated CSI, in which the high-resolution ADCs are

connected sequentially to each antenna over several training intervals to estimate the channel.

This significantly increases the training overhead and reduces the ultimate spectral efficiency,

but allows one to determine the “strongest” channels to select for the high-resolution ADCs

in the data transmission phase.
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In this chapter, we take a different approach and assume that the high-resolution ADCs

are connected to an arbitrary subset of the antennas to reduce the training overhead (no

round-robin training), and we maximize the SE subject to a fixed power budget. We show

that for a maximum ratio combiner, the optimal architecture uses either all one-bit or all

full-resolution ADCs, depending on the relative power consumed by each type of RF chain.

We further show that for typical power consumption parameters, an all-one-bit system is

likely the optimal approach in practice.

2.1 System Model

We model the uplink of a single-cell multi-user MIMO system consisting of K single-antenna

users and a BS equipped with M antennas. The M × 1 signal received at the BS from the K

users is given by

y =
√

pHx + n, (2.1)

where p represents the transmit power, H ∈ CM×K is the channel matrix whose elements are

distributed independently and identically as CN (0, 1), the symbol vector is x ∼ CN(0, IK),

and the additive noise is n ∼ CN(0, σ2
n IM).

We consider a mixed-ADC architecture at the BS in which M0 = µM antennas are connected

to high-resolution ADCs while M1 = (1 − µ)M antennas are fed to one-bit ADCs. Since M0

and M1 are integers, µ is restricted to certain rational values, but for the moment we ignore

this constraint. As a result, by partitioning the channel matrix H, we can rewrite (2.1) as


y0

y1

 =
√

p


H0

H1

x + n, (2.2)
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where H0 ∈ C
M0×K (H1 ∈ C

M1×K) contains the channel coefficients from the users to the M0

(M1) antennas connected to high-resolution (one-bit) ADCs. Therefore, the received signal

at the BS after one-bit quantization is

r =


r0

r1

 =


y0

Q (y1)

, (2.3)

where the element-wise one-bit quantization operation Q(·) replaces each input entry with

the quantized value 1√
2
(±1 ± j), depending on the sign of the real and imaginary parts. We

can represent the non-linear quantization using a statistically equivalent linear model based

on the Bussgang decomposition as (see [15] for details)

Q(y1) = Ay1 + q, (2.4)

where A is a linear gain and q denotes the statistically equivalent quantization noise which is

uncorrelated with y1. As explained in [15], the Bussgang approach provides a more accurate

analysis than the AQNM in the case of one-bit quantization.

We assume a block-fading model where the channel remains constant in a coherence interval

of length T symbols and changes independently between different intervals. At the beginning

of each coherence interval, the users send their η-tuple mutually orthogonal pilot sequences

(K ≤ η ≤ T) to the BS for channel estimation. The remaining T − η symbols are dedicated

to uplink data transmission.

2.1.1 Training Phase

The pilot sequences are stacked into an η × K matrix Φ, where the kth column of Φ, φk , is

the kth user’s pilot sequence and ΦHΦ = IK . Therefore, the M × η received signal at the BS
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in the training phase is

Yt =


Yt0

Yt1

 =
√
ηp


H0

H1

Φ
T +


N0

N1

, (2.5)

where N0 (N1) is an M0 × η (M1 × η) matrix with i.i.d. CN(0, σ2
n ) elements. Although it

has been shown that η > K can improve performance in one-bit massive MIMO systems

[15], we assume η = K in the sequel for analytical simplification. To apply the Bussgang

decomposition as in (2.4), we first vectorize (2.5)


vec

(
Yt0

)
vec

(
Yt1

) =
√

Kp


Φ̃0vec (H0)

Φ̃1vec (H1)

 +

vec (N0)

vec (N1)

, (2.6)

where Φ̃i = Φ ⊗ IMi , i ∈ {0, 1}. After quantization, from (2.4) we have


ỹt0

ỹt1

 =
√

Kp


Φ̃0vec (H0)

AtΦ̃1vec (H1)

 +


vec (N0)

Atvec (N1) + qt

, (2.7)

with At =
√

2
π

1
Kp+σ2

n
IM1K [15]. Accordingly, the linear minimum mean squared error (LMMSE)

estimate of H for a mixed-ADC architecture is [15, 50]

Ĥ =


Ĥ0

Ĥ1

 =


√
Kp

Kp+σ2
n
vec−1

(
Φ̃

H
0 ỹt0

)√
2
π

Kp
Kp+σ2

n
vec−1

(
Φ̃

H
1 ỹt1

) . (2.8)

This estimation leads to

σ2
0 =

1

1 + σ2
n

pK

σ2
1 =

2

π

1

1 + σ2
n

pK

(2.9)

where σ2
0 and σ2

1 are the variances of the independent zero mean elements of Ĥ0 and Ĥ1,

respectively.
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2.1.2 Data Transmission Phase

In the data transmission phase, using (2.3)-(2.4) the received signal after quantization is

[50]


r0

r1

 =
√

p


H0

AdH1

x +


n0

Adn1 + qd

, (2.10)

where Ad =
√

2
π

1
Kp+σ2

n
IM1 = αdIM1 and qd is the statistically equivalent quantization noise

with covariance matrix Cqd . For data detection, the BS employs the MRC detector W ∈

CM×K assuming that the channel estimate is the true channel. Note that the quantization

model considered in (2.4) does not preserve the power of the input of the quantizer since the

output is forced to be ±1. Thus we implement MRC as follows to offset this effect:

W =


Ĥ0

A−1
d Ĥ1

 . (2.11)

Therefore, the resulting signal at the BS is

x̂ =WH


r0

r1

 =
√

p


Ĥ0

Ĥ1


H 

H0

H1

x +

Ĥ0

Ĥ1


H 

n0

n1 +A−1
d qd

 . (2.12)

Note that premultiplication by A−1
d only makes the quantization a power-preserving operation

and does not alter the information of the quantizer output. Therefore, the kth element of x̂

is

x̂k =
√

pĥ
H
k hk xk +

K∑
i=1,i,k

√
pĥ

H
k hi xi + ĥ

H
k n + ĥ

H
1kA

−1
d qd, (2.13)
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where ĥk , hk , and ĥ1k are the kth column of Ĥ, H, and Ĥ1, respectively. The BS treats

ĥ
H
k hk as the desired channel and the other terms of (5.20) as worst-case Gaussian noise when

decoding the signal. Consequently, a lower bound for the ergodic achievable SE at the kth

user is [51]

Sk = R (SQINRk) , (2.14)

where R (θ) , (1 − η/T) log2 (1 + θ) and SQINRk is the effective signal-to-quantization-interference-

and-noise ratio at the kth user given by

SQINRk =
p
���E {

ĥ
H
k hk

}���2
p
∑K

i=1 E

{���ĥH
k hi

���2} − p
���E {

ĥ
H
k hk

}���2 + σ2
nE

{
‖ĥk ‖

2
}
+ α−2

d E
{
ĥ

H
1kCqd ĥ1k

} . (2.15)

The following theorem presents an expression for the sum SE of a mixed-ADC architecture

with MRC detection.

Theorem 2.1. The SE of the k-th user in a mixed-ADC massive MIMO system with MRC

detection is

Sk = R

(
M

K + σ2
n

p

(
µσ2

0 + (1 − µ)σ
2
1

)2

µσ2
0 + (1 − µ)

π
2σ

2
1

)
. (2.16)

Proof. The proof follows by calculating the expected values in (2.15) and using (2.9), fol-

lowing the reasoning in [15]. �

In the next section, we find the optimal values of M and µ by considering the power con-

sumption at the BS to maximize the sum SE in (2.16). We will denote the fixed power

consumed at the BS due to the local oscillator, baseband processors, etc, by PFIX and the

power consumed by a single RF chain with high-resolution and one-bit ADCs by P0 and P1,
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respectively. Hence, the total consumed power at the BS is

Ptot = PFIX + M0P0 + M1P1 = PFIX + M
(
µP0 + (1 − µ) P1

)
. (2.17)

Since P0 � P1, a small value for µ means a larger number of antennas and hence an increase

in the MIMO spatial multiplexing gain, but a loss of SE due to increased quantization noise.

Increasing µ reduces the SE loss due to quantization, but also decreases the size of the

antenna array. The problem of finding the optimal value of µ that maximizes the SE for a

given total power constraint P is addressed next.

2.2 Optimal Mixed-ADC Design

In this section, we determine what fraction of high-resolution/one-bit ADCs should be in-

stalled at the BS to maximize the sum SE, S =
∑K

k=1 Sk , subject to a given power budget

P. The optimization problem is expressed as

P :

maximize
µ

S

subject to Ptot ≤ P

0 ≤ µ ≤ 1.

(2.18)

The following theorem provides the optimal solution for µ, assuming µ can take on any value

in the interval [0, 1]. Once µ? is obtained, M0 and M1 are taken to be the integers closest to

µ?M and (1 − µ?)M that result in Ptot ≤ P.

Theorem 2.2. Assume P0 = ρP1 and denote ρth =
π2

4 . Then, the maximum spectral
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efficiency is achieved by

µ? =
0 ρ ≥ ρth,

1 ρ < ρth.

(2.19)

Proof. Denote the argument of R in (2.16) as γ(µ). Since R(γ) is a continuous and strictly

increasing function of γ, the first inequality constraint becomes equality, and the optimization

problem is equivalent to

P :
maximize

µ
γ (µ)

subject to 0 ≤ µ ≤ 1.

(2.20)

The proof is carried out by analyzing the behavior of the first derivative of

γ̄ (µ) =

(
µσ2

0 + (1 − µ)σ
2
1

)2

(µP0 + (1 − µ) P1)
(
µσ2

0 + (1 − µ)
π
2σ

2
1

) , (2.21)

in 0 ≤ µ ≤ 1 for different values of ρ > 1. The first derivative of γ̄ can be written as

dγ̄
dµ
= f (µ) = β

(
(a + b) µ − a

)
, (2.22)

where β is a positive constant in 0 ≤ µ ≤ 1, a = π
2 ρσ

4
1+(1−π)σ

2
0σ

2
1 and b = ( π2−2)ρσ2

0σ
2
1+σ

4
0 .

• For 1 < ρ ≤ ρ0 =
(π−1)σ2

0σ
2
1−σ

4
0

σ2
1 ((

π
2−2)σ2

0+
π
2σ

2
1 )

, we have a < 0, b > 0, and a+b < 0. Thus, f is a line

with negative slope and a root at µ > 1 which amounts to dγ̄
dµ > 0 and hence µ? = 1.

• In the interval of ρ0 < ρ ≤ ρ1 = (2 − 2/π)
σ2

0

σ2
1

, we have a ≤ 0, b > 0, and a + b > 0. As

a result, f has a positive slope and a root at µ < 0. Then, dγ̄
dµ > 0, i.e., µ? = 1.

• For ρ1 < ρ < ρ2 =
1

2−π/2

σ2
0

σ2
1

, a > 0 and b > 0. Consequently, f has a positive slope

with a root at 0 < µ < 1 which means either µ? = 0 or µ? = 1 in this interval. Since,

γ̄(0) = 2
π

σ2
1
P1

and γ̄(1) =
σ2

0
ρP1

, Then, µ? = 1 if ρ < π
2

σ2
0

σ2
1

and µ? = 0 if ρ > π
2

σ2
0

σ2
1

.
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• For ρ ≥ ρ2, it can be shown that b ≤ 0, a > 0 and a+ b > 0. Therefore f has a positive

slope with root at µ ≥ 1, which leads to dγ̄
dµ ≤ 0. Thus, γ̄(µ) is a strictly decreasing

function and µ? = 0.

Combining the above four intervals together and π
2

σ2
0

σ2
1

= π2

4 from (2.9) results in (2.19) and

the proof is complete. �

Theorem 2.2 states that, for a given power budget, the optimal approach is to deploy the BS

with either purely high-resolution or one-bit ADCs. The proof implies that when ρ = ρth,

the performance of a system with M0 antennas connected to high-resolution ADCs is the

same as that of with M1 = ρthM0 antennas connected to one-bit ADCs. This is consistent

with the results of [15, 50], where it was shown that for an MRC receiver, the SE loss due

to one-bit quantization can be offset by deploying π2/4 more antennas at the BS.

The question of whether to use all one-bit or all high-resolution ADCs boils down to whether

or not the cost of a high-resolution RF chain is more than ρth = π
2/4 ' 2.5 times that of an

one-bit RF chain. In the next section we show that this will likely be the case in realistic

scenarios, and thus a BS equipped with only one-bit ADCs is the most cost-effective solution.

2.3 Numerical Results

To find a typical value for ρ, we use as an example the RF power consumption model

considered in [27]:

PBS = PLO + PBB + M (PLNA + PH + 2PM) + 2M0

(
PAGC + PH

ADC

)
+ 2M1PL

ADC, (2.23)

where PLO, PBB, PLNA, PH, PM, PAGC, PH
ADC, and PL

ADC denote power consumption of the lo-

cal oscillator, baseband processing, low noise amplifier, π/2 hybrid and local oscillator buffer,
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mixer, adaptive gain controller, high-resolution ADCs, and one-bit ADCs, respectively. To

employ the result of Theorem 2.2, we can re-write (2.23) in the following form

PBS − PLO − PBB =

M0

(
PLNA + PH + 2PM + 2PAGC + 2PH

ADC

)
+ M1

(
PLNA + PH + 2PM + 2PL

ADC

)
. (2.24)

As a result,

ρ =
P0

P1
=

PLNA + PH + 2PM + 2PAGC + 2PH
ADC

PLNA + PH + 2PM + 2PL
ADC

∼ 6.8, (2.25)

where we have used the following power consumption values from [27, 12]: PLO = 22.5 mW,

PBB = 200 mW, PLNA = 5.4 mW, PH = 3 mW, PM = 0.3 mW, PAGC = 2 mW, PH
ADC =

25.6 mW, and PL
ADC = 0.2 mW. It is apparent from (2.25) that ρ > ρth ∼ 2.5. The model in

(2.23) may even be pessimistic for the one-bit case, since one-bit quantization can simplify the

LNA and subsequent baseband processing. Thus, we observe that using only one-bit ADCs

likely provides the highest SE for a given power budget assuming MRC processing. It is

worthwhile to note that this conclusion may change for different power consumption models.

However, every model can be written in the form of (2.17) and, hence, our result in Theorem

2.19 is general and can be evaluated based on different models for power consumption. In

addition, this conclusion may change for different approaches such as using a zero-forcing

receiver or antenna selection for the high-resolution ADCs, as these approaches tend to better

exploit such ADCs, albeit with higher cost, complexity and training overhead.

Fig. 2.1 shows the sum SE with respect to SNR , p/σ2
n for various values of µ under

the power constraint PBS − PLO − PBB = 200P1, and assuming η = K = 10 and T = 200.

As expected, the sum SE is maximized when the BS is equipped with a large number of

antennas connected to one-bit quantizers. Note that the simulated rates (symbols) match

the theoretical expression in (2.16) (lines) quite accurately.

18



-20 -10 0 10 20

0

5

10

15

20

25

30

35

Figure 2.1: Sum spectral efficiency S versus the average SNR for PBS − PLO − PBB = 200P1,
K = 10, and T = 200. Solid lines denote the theoritical expression in (2.16) and symbols
denote Monte-Carlo simulation for 1000 trials.
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2.4 Summary

In this chapter, we have studied the spectral efficiency of the mixed-ADC massive MIMO

uplink under energy constraint and assuming MRC processing. We derived a closed form

expression for the SE assuming the channel is estimated using both high-resolution and one-

bit ADCs, without using the training-intensive round-robin approach. We then maximized

the SE under a constraint on the power budget, and showed that in fact the mixed-ADC

approach is not optimal. Typical power consumption models indicate that a system with all

one-bit ADCs provides the highest SE for a given uplink power budget.
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Chapter 3

Spectral Efficiency of Mixed-ADC

Massive MIMO

In this chapter, we focus on channel estimation and spectral efficiency performance of mixed-

ADC massive MIMO systems. This architecture is depicted in Fig. 3.1. Most existing

work in the mixed-ADC massive MIMO literature has assumed either perfect channel state

information (CSI) or imperfect CSI with “round-robin” training. In the round-robin training

approach [24, 25, 27], the training data is repeated several times and the high-resolution

ADCs are switched among the RF chains so that every antenna can have a “clean” snapshot

of the pilots for channel estimation. This obviously requires a larger portion of the coherence

interval to be devoted to training rather than data transmission. More precisely, for M

antennas and N pairs of high-resolution ADCs, M/N pilot signals are required in the single-

user scenario to estimate all M channel coefficients with high-resolution ADCs. This issue

is pointed out in [24] for the single user scenario and its impact is taken into account.

This training overhead will be exacerbated in the multiuser scenario where orthogonal pilot

sequences should be assigned to the users. In this case, the training period becomes (M/N)η,

where η represents the length of the pilot sequences (at least as large as the number of user
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Figure 3.1: Mixed-ADC architecture.

terminals), which could be prohibitively large and may leave little room for data transmission.

Hence, it is crucial to account for this fact in any SE analysis of mixed-ADC massive MIMO

systems.

The round-robin training proposed in [24, 25, 27] based the channel estimate on only high-

resolution observations, assuming that no data was collected from antennas during intervals

when they were not connected to the high-resolution ADCs. In this chapter, we present

an extension of the round-robin training approach that incorporates both high-resolution

and one-bit measurements for the channel estimation. In contrast, our extension assumes

that antennas collect one-bit observations and combine this data with the high-resolution

samples to improve the channel estimation performance. We further illustrate the importance

of using the Bussgang approach rather than the simpler additive quantization noise model

in obtaining the most accurate characterization of the channel estimation performance for

round-robin training. The analysis illustrates that the addition of the one-bit observations

considerably improves performance at low SNR.
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After estimating the channel, we study the SE performance of mixed-ADC architecture for

different scenarios. We analytically derive the SE performance of the antenna selection

algorithm for MRC and numerically study its performance for ZF detection, comparing

against the simpler approach of assigning the high-resolution ADCs to an arbitrary fixed

subset of the RF chains.

We compare the resulting SE with that achieved by mixed-ADC implementations that do

not switch ADCs among the RF chains, and hence do not use round-robin training. We also

compare against the SE for architectures that do not mix the ADC resolution across the

array, but instead use uniform resolution with a fixed number of comparators for different

array sizes. We show that, depending on the SNR, coherence interval, number of high-

resolution ADCs, and the choice of the linear receiver, there are situations where each of

the considered approaches shows superior performance. In particular, using uniform low-

resolution ADCs is better than a mixed-ADC approach for an interference limited system.

On the other hand, a mixed-ADC system, even one with round-robin training, is superior at

higher SNRs when zero-forcing is used to reduce the interference.

In addition to the above contributions, we also discuss some of the issues related to imple-

menting an ADC switch or multiplexer in hardware that allows different ADCs to be assigned

to different antennas. We restrict our analysis and numerical examples to a single-carrier

flat-fading scenario, although our methodology can be used in a straightforward way to ex-

tend the results to frequency-selective fading or multiple-carrier signals (e.g., see our prior

work in Section III.B of [15] for the SE analysis of an all-one-bit ADC system for OFDM and

frequency selectivity). The reasons for focusing on the single-carrier flat-fading case are as

follows: (1) the mixed-ADC assumption already makes the resulting analytical expressions

quite complicated even for the simple flat-fading case, and it would be more difficult to gain

insight into the problem if the expressions were further complicated; (2) the original round-

robin training idea was proposed in [24] for the single-carrier flat-fading case, and thus we
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analyze it under the same assumptions; (3) the main conclusions of the chapter are based on

relative algorithm comparisons for the same set of assumptions, and we expect our general

conclusions to remain unchanged if frequency rather than flat fading were considered; and

(4) the flat fading case is still of interest in some applications, for example in a micro-cell

setting with typical path-length differences of 50-100 m, the coherence bandwidth is between

3-6 MHz, which is not insignificant.

Further assumptions regarding the system model are outlined in the next section. Section

3.2 discusses channel estimation using round-robin training, and derives the LMMSE channel

estimator that incorporates both the high-resolution and one-bit observations. A discussion

of hardware and other practical considerations associated with using a mixed-ADC system

with ADC/antenna switching is presented in Section 3.3. Section 3.4 then presents the anal-

ysis of the spectral efficiency for MRC and ZF receivers based on the imperfect channel state

estimates, including an analytical performance characterization of antenna selection and ar-

chitectures with uniform ADC resolution across the array. A number of numerical studies

are then presented in Section 3.5 to illustrate the relative performance of the algorithms

considered.

3.1 System Model

Consider the uplink of a single-cell multi-user MIMO system consisting of K single-antenna

users that send their signals simultaneously to a BS equipped with M antennas. Assuming

a single-carrier frequency flat channel and symbol-rate sampling , the M × 1 signal received

at the BS from the K users is given by

r =
K∑

k=1

√
pkgksk + n, (3.1)
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where pk represents the average transmission power from the kth user, gk =
√
βkhk is the

channel vector between the kth user and the BS where βk models geometric attenuation

and shadow fading, and hk ∼ CN (0, IM) represents the fast fading and is assumed to be

independent of other users’ channel vectors. The symbol transmitted by the kth user is

denoted by sk where E
{
|sk |

2
}
= 1 and is drawn from a CSCG codebook independent of

the other users. Finally, n ∼ CN
(
0, σ2

n IM
)

denotes additive CSCG receiver noise at the

BS. The assumption of symbol-rate sampling means that the matched filter at the receiver

must be implemented in the analog domain. Better performance (e.g., higher rates) could

be achieved by oversampling the ADCs, particularly those with one-bit resolution.

We consider a block-fading model with coherence bandwidth Wc and coherence time Tc.

In this model, each channel remains constant in a coherence interval of length T = TcWc

symbols and changes independently between different intervals. Note that T is a fixed system

parameter chosen as the minimum coherence duration of all users. At the beginning of

each coherence interval, the users send their η-tuple mutually orthogonal pilot sequences

(K ≤ η ≤ T) to the BS for channel estimation. Denoting the length of the training phase as

ηeff , the remaining T − ηeff symbols are dedicated to uplink data transmission.

3.2 Training Phase

In this section, we investigate the linear minimum mean squared error (LMMSE) channel

estimator for different ADC architectures at the BS. In all scenarios, the pilot sequences

are drawn from an η × K matrix Φ, where the kth column of Φ, φk , is the kth user’s pilot

sequence and ΦHΦ = IK . Therefore, the M × η received signal at the BS before quantization

becomes

X =
K∑

k=1

√
ηpkgkφ

T
k + N, (3.2)
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where N is an M×η matrix with i.i.d. CN(0, σ2
n ) elements. Since the rows of X are mutually

independent due to the assumption of spatially uncorrelated Gaussian channels and noise,

we can analyze them separately. As a result, we will focus on the mth row of X which is

xT
m =

K∑
k=1

√
ηpkgmkφ

T
k + nT

m, (3.3)

where gmk is the mth element of the kth user channel vector, gk , and nT
m is the mth row of

N . Since the analysis is not dependent on m, hereafter we drop this subscript and denote

the received signal at the mth antenna by x.

3.2.1 Estimation Using One-Bit Quantized Observations

In this subsection, to have a benchmark for comparison purposes, we consider the case in

which all antennas at the BS are connected to one-bit ADCs. The received signal xT after

quantization by one-bit ADCs can be written as

yT
t = Q

(
xT

)
, (3.4)

where the element-wise one-bit quantization operation Q(·) replaces each input entry with

the quantized value 1√
2
(±1 ± j), depending on the sign of the real and imaginary parts.

According to the Bussgang decomposition [49], the following linear representation of the

quantization can be employed [15]:

Q

(
xT

)
=

√
2

π
xTD

− 1
2

x + qT
t , (3.5)
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where Dx = diag{Cx} and Cx denotes autocorrelation matrix of x, which can be calculated

as

Cx =

K∑
k=1

ηpk βkφ
∗
kφ

T
k + σ

2
n Iη . (3.6)

In addition, qt represents quantization noise which is uncorrelated with x and its autocor-

relation matrix can be derived based on the arcsine law as [52]

Cqt =
2

π
arcsin{D

− 1
2

x CxD
− 1

2
x } −

2

π
D
− 1

2
x CxD

− 1
2

x . (3.7)

Much of the existing work on massive MIMO systems with low-resolution ADCs employs

the simple additive quantization noise model (AQNM) for their analysis [21, 22, 23], [26, 27,

28, 29, 30, 31], [53] which is valid only for low SNRs and does not capture the correlation

among the elements of qt , which turns out to be of crucial importance in our analysis.

Hence, we consider the Bussgang decomposition instead and will show its effect on the

system performance analysis. Stacking the rows of (3.5) into a matrix, the one-bit quantized

observation at the BS becomes

Y =

√
2

π
XD

− 1
2

x +Q, (3.8)

where Q is an M × η matrix whose mth row is qT
t . The LMMSE estimate of the channel

G = [g1, ..., gK] based on just one-bit quantized observations (3.8) is given in the following

theorem.

Theorem 3.1. The LMMSE estimate of the k-th user channel, gk , given the one-bit quan-

tized observations Y is [15]

ĝk =
βk

βk + σ
2
wk

√
1

ηpk
Yφ̄
∗
k, (3.9)
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where

φ̄k ,

√
π

2
D

1
2
xφk (3.10)

σ2
wk
=

1

ηpk

(
σ2

n + φ̄
T
k Cqt φ̄

∗
k

)
. (3.11)

Define the channel estimation error ε , ĝk − gk . Then we have

σ2
ĝk
=

β2
k

βk + σ
2
wk

and σ2
εk
=

σ2
wk
βk

βk + σ
2
wk

, (3.12)

where σ2
ĝk

and σ2
εk

are the variances of the independent zero-mean elements of ĝk and ε,

respectively.

From Theorem 3.1, it is apparent that in the channel estimation analysis of massive MIMO

systems with one-bit ADCs, the estimation error is directly affected not only by the inner

product of the pilot sequences, but also by their outer product as well [15]. To get insight

into the impact of the one-bit quantization on the channel estimation, in the next corollary

we adopt the statistics-aware power control policy proposed in [51]. Apart from its practical

advantages, this policy is especially suitable specially for one-bit ADCs since it avoids near-

far blockage and hence strong interference. Moreover, this power control approach also leads

to simple expressions and provides analytical convenience for our derivation in Section 3.4.

Although not the focus of this work, we note that in general a massive MIMO system em-

ploying a mixed-ADC architecture will be more resilient than an all one-bit implementation

to the near-far effect and jamming. This is an interesting topic for further study.

Corollary 3.1. For the case in which power control is performed, i.e., pk =
p
βk

for some

fixed value p and for k ∈ K = {1, · · · ,K}, the number of users is equal to the length of pilot
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sequences, i.e., η = K, and the pilot matrix satisfies ΦΦH = IK , we have

Cx =
(
Kp + σ2

n

)
IK = Dx (3.13)

Cqt =

(
1 −

2

π

)
IK, (3.14)

which yields

σ2
ĝk
=

2

π

βk

1 + σ2
n

Kp

(3.15)

σ2
εk
=

(
Kp
σ2
n

(
1 − 2

π

)
+ 1

)
βk

1 + Kp
σ2
n

. (3.16)

Corrollary 3.1 states conditions under which Cqt is diagonal. In addition, it is evident that

the channel estimation suffers from an error floor at high SNRs.

3.2.2 Channel Estimation with Few Full Resolution ADCs

Channel estimation with coarse observations suffers from large errors especially in the high

SNR regime. On the other hand, while estimating all channels using high-resolution ADCs is

desirable, the resulting power consumption burden makes this approach practically infeasible.

This motivates the use of a mixed-ADC architecture for channel estimation to eliminate the

large estimation error caused by one-bit quantization while keeping the power consumption

penalty at an acceptable level. In the approach described in [24, 25, 27] , N � M pairs of
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Figure 3.2: Transmission protocol for estimation using full-resolution observations.

high-resolution ADCs are deployed and switched between different antennas during different

transmission intervals in an approach referred to as “round-robin” training. In this approach,

the M BS antennas are grouped into M/N sets1. In the first training sub-interval, users

send their mutually orthogonal pilots to the BS while the N high-resolution ADC pairs are

connected to the first set of N antennas. After receiving the pilot symbols from all users

in the η-symbol-length training sub-interval, the high-resolution ADCs are switched to the

next set of antennas and so on. In this manner, after (M/N)η pilot transmissions (M/N

sub-intervals), we can estimate each channel based on observations with only high-resolution

ADCs. This round-robin channel estimation protocol is illustrated in Fig. 3.2 for a mixed-

ADC system with M/N = 5.

Stacking all N ×η full-resolution observations into an M ×η matrix, X, the LMMSE estimate

of the k-th user channel, gk , is [4]

ĝk =
1

1 + σ2
n

ηpk βk

1
√
ηpk

Xφ∗k, (3.17)

and the resulting variances of the channel estimate and the error are given respectively by

σ2
ĝk
=

βk

1 + σ2
n

ηpk βk

and σ2
εk
=

βk

1 + ηpk βk
σ2
n

. (3.18)

1We assume M/N is an integer throughout the chapter.
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Eq. (3.18) states that by employing only N pairs of high-resolution ADCs and by expend-

ing a larger portion of the coherence interval for channel estimation, the channel can be

estimated with the same precision as that achieved by conventional high-resolution ADC

massive MIMO systems. However, this comes at the high cost of repeating the training data

M/N times, which can significantly reduce the time available for data transmission. Indeed,

we will see later that in some cases, a mixed-ADC implementation with round-robin training

achieves a lower SE than a system with all one-bit ADCs because of the long training interval

(even with the improvements we propose below for the round-robin method). However, we

will also see that there are other situations for which the mixed-ADC round-robin method

provides a large gain in SE. The primary goal of this chapter is to elucidate under what

conditions these and other competing approaches provide the best performance.

Before analyzing the tradeoff between the gain (lower channel estimation error) and cost

(longer training period) of the round-robin approach, in the next subsection we propose

channel estimation based on the use of both full-resolution and one-bit data received by

the BS in order to further improve the performance of the mixed-ADC architecture with

round-robin channel estimation. To our knowledge, this approach has not been considered

in prior work on mixed-ADC massive MIMO.

3.2.3 Estimation Using Joint Full-Resolution/One-Bit Observa-

tions

While channel estimation performance based on coarsely quantized observations suffers from

large errors in the high SNR regime, it provides reasonable performance for low SNRs. Hence,

in this subsection we consider joint channel estimation based on observations from both high-

resolution and one-bit ADCs to further improve the channel estimation accuracy. Unlike the

previous subsection in which the one-bit ADCs were not employed, here we incorporate their
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Figure 3.3: Transmission protocol for estimation using full-resolution/one-bit observations.

coarse observations into the channel estimation procedure. The protocol for this method is

illustrated in Fig. 3.3 for a mixed-ADC system with M/N = 5. It can be seen that, in

addition to one set of full-resolution observations for each antenna, there are (M/N) − 1 sets

of one-bit observations which are also taken into account for channel estimation. The next

theorem characterizes the performance of this approach.

Theorem 3.2. Stacking all N × η full-resolution observations into an M × η matrix, X,

and all (M/N) − 1 N × η one-bit quantized observations into M × η matrices, Yt, t ∈ T =

{1, ..., M/N − 1}, the LMMSE estimate of the k-th user channel, gk , is

ĝk =

√
1

ηpk

©«w∞k
Xφ∗k + w1k

M
N −1∑
t=1

Ytφ̄
∗
k
ª®¬ , (3.19)

where

w∞k
=

ηpk
σ2
n

1
βk
+

ηpk
σ2
n
+ ςk(pk)

(3.20)

w1k =

( M
N − 1

)−1
ςk(pk)

1
βk
+

ηpk
σ2
n
+ ςk(pk)

(3.21)
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ςk(pk) =

( M
N − 1

)
σ2
wk
+

( M
N − 2

)
%k

(3.22)

σ2
wk
=

1

ηpk

(
σ2

n + φ̄
T
k Cqt φ̄

∗
k

)
(3.23)

%k =
1

ηpk
φ̄

T
k C̄qt φ̄

∗
k (3.24)

C̄qt =
2

π
arcsin{D̄

− 1
2

x C̄xD̄
− 1

2
x } −

2

π
D̄
− 1

2
x C̄xD̄

− 1
2

x (3.25)

C̄x =

K∑
k=1

ηpk βkφ
∗
kφ

T
k (3.26)

D̄x = diag{C̄x}. (3.27)

This approach yields the following variances for the channel estimate and the estimation

error, respectively:

σ2
ĝk
=

ηpk
σ2
n
+ ςk(pk)

1
βk
+

ηpk
σ2
n
+ ςk(pk)

βk (3.28)
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σ2
εk
=

1
1
βk
+

ηpk
σ2
n
+ ςk(pk)

. (3.29)

Proof. From (3.2), the observations from the high-resolution ADCs can be written as

v(0) =

√
1

ηpk
Xφ∗k = gk + ñ(0), (3.30)

where ñ(0) ∼ CN(0,
σ2
n

ηpk
IM). In addition, from (3.8), the observations from the one-bit ADCs

become

v(t) =

√
1

ηpk
Ytφ̄k

∗
= gk + ñ(t) + q̃(t), t ∈ T , (3.31)

where ñ(t) ∼ CN(0, σ
2
n

ηpk
IM) is independent of ñ(t′) for t , t′, and q̃(t) =

√
1
ηpk

Q(t)φ̄k
∗
.

Since the elements of v(t) are independent, we can estimate the mth channel gmk separately.

Therefore, stacking all the observations in a vector, we can write



vm(0)

...

vm(t)
...

vm(
M
N − 1)

︸         ︷︷         ︸
v

=



1

...

1

...

1

︸︷︷︸
1 M

N

gmk +



ñm(0)

...

ñm(t) + q̃m(t)
...

ñm(
M
N − 1) + q̃m(

M
N − 1)

︸                            ︷︷                            ︸
u

. (3.32)

As a result, the LMMSE estimation of the mth channel coefficient for the kth user is [54]

ĝmk =

(
1

βk
+ 1T

M
N

C−1
u 1M

N

)−1

1T
M
N

C−1
u v. (3.33)
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In Eq. (3.33), Cu denotes the covariance matrix of u which is a block diagonal matrix of the

form

Cu =



σ2
n

ηpk
0 . . . 0

0 σ2
wk

. . . %k

...
...

. . .
...

0 %k . . . σ2
wk


=


σ2
n

ηpk
0

0 S

 , (3.34)

where

%k = E{(ñm(t) + q̃m(t)) (ñm(t′) + q̃m(t′))
∗
}, t , t′, (3.35)

can be easily calculated with the aid of the Bussgang decomposition and the arcsine law as

in (3.24). Substituting (3.34) into (3.33), we have

ĝmk =

(
1

βk
+
ηpk

σ2
n
+ 1T

M
N −1

S−11M
N −1

)−1

×

[
σ2

n

ηpk
1T

M
N −1

S−1

]
v. (3.36)

To calculate the inverse of the matrix S, we re-write it as

S =
(
σ2
wk
− %k

)
IM

N −1 + %k1M
N −11T

M
N −1

, (3.37)

and use Woodbury’s matrix identity:

S−1 =
1

σ2
wk
− %k

IM
N −1 −

1(
σ2
wk
− %k

)2

(
1

%k
+
(MN − 1)

σ2
wk
− %k

)−1

1M
N −11T

M
N −1

, (3.38)

which yields

1T
M
N −1

S−1 =
1

σ2
wk
+

( M
N − 2

)
%k

1T
M
N −1

, (3.39)
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1T
M
N −1

S−11M
N −1 =

( M
N − 1

)
σ2
wk
+

( M
N − 2

)
%k
. (3.40)

Substituting (3.39) and (3.40) into (3.36) completes the proof. �

Theorem 3.2 demonstrates the optimal approach for combining the observations from high-

resolution and one-bit ADCs. In addition, this highlights the importance of considering the

correlation among the one-bit observations in the analysis of mixed-ADC channel estima-

tion, something that could not be addressed by the widely-used AQNM approach. More

precisely, it can be seen that the impact of joint high-resolution/one-bit channel estimation

is manifested in the variance of the channel estimation error by the term ςk(pk). To see this,

assume that the correlation among one-bit observations in different training sub-intervals is

ignored (as would be the case with the AQNM approach). As shown in the appendix, this

is equivalent to setting %k = 0 in (3.24). Under this assumption, ςk(pk) becomes

ςk0(pk) =

( M
N − 1

)
σ2
wk

> ςk(pk), (3.41)

and thus, σ2
εk
> σ2

εk0
where σ2

εk0
denotes the estimation error for %k = 0. Consequently,

the AQNM model yields an overly optimistic assessment of the channel estimation error

compared with the more accurate Bussgang analysis. We will see below that the impact of

the AQNM approximation is significant for mixed-ADC channel estimation.

The next corollary provides insight into the impact of the system parameters on the joint

high-resolution/one-bit LMMSE estimation.

Corollary 3.2. For the case in which power control is performed, i.e., pk =
p
βk

for k ∈ K,

the number of users is equal to the length of pilot sequences, i.e., η = K, and the pilot matrix
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satisfies ΦΦH = IK , we have

C̄x = KpIK = D̄x, (3.42)

and

C̄qt =

(
1 −

2

π

)
IK, (3.43)

which yields

σ2
ĝk
=

Kp
σ2
n
+ ς(p)

1 + Kp
σ2
n
+ ς(p)

βk and σ2
εk
=

1

1 + Kp
σ2
n
+ ς(p)

βk, (3.44)

where

ς(p) =

( M
N − 1

)
π
2
σ2
n

Kp +
(
π
2 − 1

) ( M
N − 1

) . (3.45)

In addition,

w∞ =

Kp
σ2
n

1 + Kp
σ2
n
+ ς(p)

and w1 =

( M
N − 1

)−1
ς(p)

1 + Kp
σ2
n
+ ς(p)

, (3.46)

where w∞ and w1 denote the weights of the high-resolution and one-bit observations in the

LMMSE estimation, respectively.

Corallary 3.2 states that in contrast to Theorem 1 where the correlation among one-bit

observations within each training sub-interval can be eliminated by carefully selecting the

system parameters as in Corollary 3.1, we cannot overcome the correlation among one-bit

observations from different training sub-intervals. This phenomenon makes the addition of

the one-bit observations less useful especially in the high SNR regime. For instance, in the

37



asymptotic case, as the SNR = p
σ2
n

goes to infinity, we have

ς −→
1

π
2 − 1

, (3.47)

w∞ −→ 1, w1 −→ 0. (3.48)

It is apparent from (3.47) that in the asymptotic regime ς tends to a finite value and also is

independent of M/N. Moreover, (3.48) implies that the optimal approach for high SNRs is

to estimate the channel based solely on the high-resolution observations.

The error for the three channel estimation approaches in Eqs. (3.12), (3.18), and (3.29)

is depicted in Fig. 3.4 for a case with M = 100 antennas, K = 10 users, and various

numbers of high-resolution ADCs, N and training lengths η. The label “Joint” refers to

round-robin channel estimation that includes the one-bit observations as described in the

previous section, ”Full resolution” indicates the performance achieved using a full array of

high-resolution ADCs, and “One-bit” refers to the performance of an all-one-bit architecture.

We also plot the performance predicted for the Joint approach based on the AQNM analysis,

which ignores the correlation among the one-bit observations. We see that the AQNM-based

analysis yields an overly optimistic prediction for the channel estimation error. In particular,

unlike AQNM, the more accurate Bussgang analysis shows that channel estimation with all

an one-bit BS actually outperforms the Joint method for low SNRs, a critical observation in

analyzing whether or not a mixed-ADC implementation makes sense. However, we see that

the mixed-ADC architecture eventually overcomes the error floor of the all one-bit system for

high SNRs and in such cases can reduce the estimation error dramatically. Fig. 3.4 focuses

on channel estimation performance, but does not reflect the full impact of the round-robin

training on the overall system spectral efficiency, since reducing N increases the amount
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of training required by the round-robin method. This will be taken into account when we

analyze the SE in Section 3.4.

3.3 Practical Considerations

The improvement in channel estimation performance provided by the round-robin training

clearly comes at the expense of a significantly increased training overhead. For example,

consider a simple worst-case example with a 400 Hz Doppler spread in a narrowband channel

of 400 kHz bandwidth; in this case, the coherence time is roughly 1000 symbols. For higher

bandwidths or smaller cells with lower mobility, the coherence time can easily approach

10,000 symbols or more. A mixed-ADC array of 128 antennas with 16 high-resolution ADCs

would require repeating the pilots 8 times, which for 20 users would amount to 160 symbols,

or 16% of the coherence time when T = 1000 symbols. This is a relatively high price to pay,

and as we will see later, in many instances the resulting loss in SE cannot be offset by the

improved channel estimate. However, we will also see that on the other hand, there are other

situations where the opposite is true, where the round-robin method leads to significant gains

in SE even taking the training overhead into account.

Besides the extra training overhead, the round-robin method has the disadvantage of requir-

ing extra RF switching or multiplexing hardware prior to the ADCs, as shown in Fig. 3.1.

It is unlikely that a single large M × M multiplexer would be used for this purpose, since

complete flexibility in assigning a given high-resolution ADC to any possible antenna is not

needed. A more likely architecture would employ a bank of smaller multiplexers that allows

one high-resolution ADC to be switched among a smaller subarray of antennas, ensuring

that each RF chain has access to high-resolution training data during one of the round-robin

intervals. Such an approach is similar to the simplified “subarray switching” schemes pro-

posed for antenna selection in massive MIMO [55, 56, 57]. In an interesting earlier example,
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a large 108 × 108 multiplexer chipset for a local area network application was developed in

[58], composed of several 36 × 36 differential crosspoint ASIC switches that consume less

than 100 mW each, with a bandwidth of 140 MHz and a 0 dB insertion loss.

In the 20 years since [58], RF switch technology has advanced considerably. For the example

discussed above involving a 128-element array with 16 high-resolution ADCs and 112 one-

bit ADCs, the multiplexing could be achieved using 16 8 × 8 analog switches arranged in

parallel. Consider the Analog Devices ADV3228 8× 8 crosspoint switch as an example of an

off-the-shelf component for such an architecture2. The ADV3228 has a 750 MHz bandwidth,

a switching time of 15 ns, and a power consumption of 500 mW, which is similar to that

of an 8-bit ADC (for example, see Texas Instruments’ ADC08B200 8-bit 200 MS/s ADC3).

Since the switches can be implemented at a lower intermediate frequency prior to the I-Q

demodulation, only one per subarray is required, and thus the total power consumption of

the switches would be less than half that of the ADCs.

Note that for the vast majority of the coherence time, the switch is idle. To accommodate

the round-robin training, the switches only need to be operated M
N − 1 times, once for every

repetition of the training data. This reduces the actual power consumption to below the

specification, and further reduces the impact of the additional training. Short guard inter-

vals would need to be inserted between the training intervals to account for the switching

transients, but these will typically not impact the SE. For the example discussed above with

128 antennas and 8 switches, 7 switching events are required for a total switching time of

105 ns, which is insignificant compared to the coherence time of 2.5 ms at a 400 Hz Doppler.

The insertion loss of the analog switches would also have to be taken into account in an actual

implementation, since this will directly reduce the overall SNR of the received signals. Har-

monic interference due to nonlinearities in the switch are likely not an issue; for example, the

2See http://www.analog.com/en/products/switches-multiplexers/buffered-analog-crosspoint-
switches/adv3228.html#product-overview for product details.

3http://www.ti.com/product/ADC08B200/technicaldocuments.
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specifications for a Texas Instruments switch (LMH6583) similar to the ADV3228 indicate

that the power of the second and third harmonic distortions were -76 dBc. Furthermore, it

has been shown that the use of signal combining with a massive antenna array provides sig-

nificant robustness to such nonlinearities and other hardware imperfections [6, 11, 7, 8, 9, 10].

3.4 Spectral Efficiency

Although channel estimation with a mixed-ADC architecture using round-robin training can

substantially improve the channel estimation accuracy, it requires a longer training interval

and, therefore, leaves less room for data transmission in each coherence interval. More pre-

cisely, (M/N)η symbol transmissions are required for round-robin channel estimation which

could be large when the number of high-resolution ADCs, N, is small4. Despite losing a

portion of the coherence interval for channel estimation due to the mixed-ADC architecture,

the improvement in the signal-to-quantization-interference-and-noise ratio (SQINR) can be

significant owing to more accurate channel estimation, and thus a higher rate would be

expected during this shorter data transmission period. In this section, we study this sys-

tem performance trade-off in terms of spectral efficiency for the three mentioned channel

estimation approaches.

In the data transmission phase, all users simultaneously send their data symbols to the BS.

To begin, assume the antennas are ordered so that the last N antennas are connected to high-

resolution ADCs in this phase. A more thoughtful assignment of the high-resolution ADCs

will be considered below. From equation (3.1), and based on the Bussgang decomposition,

4Note that in designing a mixed-ADC system with round-robin channel training, one should consider
the ratio M/N in scaling the system instead of just increasing the number of antennas M. In particular,
increasing the number of BS antennas requires increasing of the high-resolution ADCs, N, as well.
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the received signal at the BS after one-bit quantization is

yd =


√

2
π D̄−

1
2 0

0 IN

 r +

q̄d

0

︸︷︷︸
qd

(3.49)

D̄ = diag{Cr } (3.50)

Cr =

K∑
k=1

pk ḡk ḡ
H
k + σ

2
n IM−N, (3.51)

where ḡk denotes the M − N elements of gk corresponding to the M − N one-bit ADCs and

q̄d is the (M − N) × 1 quantization noise in the data transmission phase. It is apparent that

the covariance matrix in (3.51) is not diagonal which makes analytical tractability difficult.

However, by adopting statistics-aware power control [51], i.e., pk =
p
βk

, and assuming that the

number of users is relatively large (typical for massive MIMO systems), channel hardening

occurs [15], and (3.51) can be approximated as

Cr �
(
Kp + σ2

n

)
IM−N = D̄. (3.52)

As a result, according to the arcsine law (see (3.7)), the covariance matrix of the quantization

noise in the data transmission phase becomes Cq̄d � (1 − 2/π)IM−N and (3.49) simplifies to

yd � A

(
K∑

k=1

√
phk sk + n

)
+ qd (3.53)
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A =


αIM−N 0

0 IN

,
where α ,

√
2
π

1
(Kp+σ2

n )
.

For data detection, the BS selects a linear receiver W ∈ CM×K as a function of the channel

estimate. Note that the quantization model considered in (3.4) and (3.5) does not preserve

the power of the input of the quantizer since the power of the output is forced to be 1. Thus

we premultiply the received signal as follows to offset this effect:

ŷd = A−1yd . (3.54)

By employing the linear detector W, the resulting signal at the BS is

ŝ = WH ŷd . (3.55)

Thus, the kth element of ŝ is

ŝk =
√

pwH
k hk sk +

√
p

K∑
i=1,i,k

wH
k hisi + wH

k n + wH
k A−1qd, (3.56)

where wk is the kth column of W . We assume the BS treats wH
k hk as the gain of the

desired signal and the other terms of (3.56) as Gaussian noise when decoding the signal5.

Consequently, we can use the classical bounding technique of [51] to derive an approximation

for the ergodic achievable SE at the kth user as

Sk = R (SQINRk) , (3.57)

5Note that in general, the quantization noise is not Gaussian. However, to derive a lower bound for the
SE, we assume it is Gaussian with covariance Cqd

.
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where the effective SQINRk is defined by

SQINRk =
p
��E {

wH
k hk

}��2
p
∑K

i=1 E
{��wH

k hi
��2} − p

��E {
wH

k hk
}��2 + σ2

nE
{
‖wk ‖

2
}
+ α−2E

{
wH

k Cqdwk
} , (3.58)

and R (θ) , (1 − ηeff/T) log2 (1 + θ) where ηeff represents the training duration which is η and

(M/N) η for the pure one-bit and mixed-ADC architectures, respectively.

3.4.1 MRC Detection

3.4.1.1 Random Mixed-ADC Detection

In this subsection, we consider the case in which the high-resolution ADCs are connected to

an arbitrary set of N antennas. Denoting the estimate of the channel by Ĥ = [ĥ1, ..., ĥK],

setting W = Ĥ, and following the same reasoning as in [15], the SE of the mixed-ADC

architecture with MRC detection can be derived as

SMRC
k = R

©«
pMσ2

ĥ

pK + σ2
n +
(1− 2

π )
α2

(
1 − N

M

) ª®¬ , (3.59)

where the channel estimate variance σ2
ĥ
= σ2

ĝk
/βk depends on the estimation approach as

denoted in (3.12), (3.18), and (3.28).

From (3.59), it can be observed that the gain of exploiting the mixed-ADC architecture is

manifested in the SE expressions by two factors, channel estimation improvement by a factor

of σ2
ĥ
, and quantization noise reduction by a factor of 1 − N/M.
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3.4.1.2 Mixed-ADC Detection with Antenna Selection

Having an accurate channel estimate can help us to employ the N high-resolution ADCs in

an intelligent manner to further improve the performance of the mixed-ADC architecture. A

careful look at the SQINR expression in (3.58) reveals that the effect of one-bit quantization

on the SE is manifested by the last term of the denominator. Hence, one can maximize the

SE by minimizing this term through smart use of the N high-resolution ADCs. We refer

to this approach as Mixed-ADC with Antenna Selection. We consider an antenna selection

scheme suggested by the SQINR expression in (3.58). In this approach, the N high-resolution

ADCs are connected to the antennas corresponding to rows of Ĥ with the largest energy, i.e.∑K
k=1

���ĥmk

���2. Besides numerical evaluation in Section 3.5, in Theorem 3.3 we derive a bound

for the SE achieved by MRC detection with antenna selection.

Theorem 3.3. The spectral efficiency of the mixed-ADC system with antenna selection and

an MRC receiver is lower bounded by

S̄MRC
k = R

©«
pMσ2

ĥ

pK + σ2
n +
(1− 2

π )
MKα2

(∑M−N
m=1 χm

) ª®®¬ , (3.60)

where χm is defined as

χm =

M !

(m − 1) ! (M − m) !

M−m∑̀
=0

(−1)−`
(
M − m
`

)
(Γ(K))−m−` K1−m−`

Γ (1 + K (m + `))

× F
(m+`−1)

A (1 + K (m + `) ; K, · · · ,K; K + 1, · · · ,K + 1;−1, · · · ,−1) (3.61)

and FA denotes the Lauricella function of type A [59].
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Proof. Denote the energy of the mth row, m ∈ M = {1, ..., M}, of Ĥ by Em, i.e.,

Em ,
K∑

k=1

���ĥmk

���2. (3.62)

To do antenna selection, we must connect the N high-resolution ADCs to the antennas

corresponding to the largest Em. Suppose that the indices of the N antennas to which the

high-resolution ADCs are connected are contained in the set N . Hence, we have

K∑
k=1

E
{
ĥ

H
k Cqd ĥk

}
= KE

{
ĥ

H
k Cqd ĥk

}
=

(
1 −

2

π

) ∑
M\N

E{Em}. (3.63)

Eq. (3.63) provides a criterion for connecting the N high-resolution ADCs in the data

transmission phase. In fact, it states that, for the MRC receiver, the expected value in (3.63)

will be minimized if the high-resolution ADCs are connected to the antennas corresponding

to the largest Em. Denote E(m) as the mth smallest value of Em, i.e.,

E(1) ≤ E(2) ≤ · · · ≤ E(M).

Hence, E(m) is the mth order statistic, and assuming that the E(m) are statistically independent

and identically distributed, we have [60]

E{E(m)} = M
(
M − 1

m − 1

) ∫ ∞

−∞

x [F(x)]m−1 [1 − F(x)]M−m dF(x), (3.64)

where x is the realization of E(m) and F(x) is the cumulative distribution function of Em.

For the case that we have considered, where the channel coefficients are i.i.d. Rayleigh

distributed, the Em are independent Gamma random variables with

F(x) = γ

(
x
σ2

ĥ

,K

)
, (3.65)

where γ(., .) denotes the incomplete Gamma function. From [61], the integral (3.64) can be
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calculated in closed form for Gamma random variables as

E{E(m)} = σ
2
ĥ
χm. (3.66)

This is in contrast to the unordered case where E{Em} = Kσ2
ĥ
. As a result

min
{
E

{
ĥ

H
k Cqd ĥk

}}
=

(
1 −

2

π

) σ2
ĥ

K

M−N∑
m=1

χm. (3.67)

The remaining terms in (3.58) can be calculated similar to the case where the high-resolution

ADCs are connected to arbitrary antennas. Plugging these terms and (3.67) into (3.58) and

some algebraic manipulation results in (3.60).

�

The lower bound (3.60) explicitly reflects the benefit of antenna selection in the data trans-

mission phase. By comparing (3.60) with (3.59), it is evident that antenna selection has

improved the SE by replacing 1−N/M by
∑M−N

m=1 χm
MK . In Section 3.5 we illustrate how antenna

selection improves SE for different SNRs. Note that Theorem 3.3 assumes the ability to

make an arbitrary assignment of the high-resolution ADCs to different RF chains, which

may not be possible if the ADC multiplexing is implemented by a bank of subarray switches.

In the numerical results presented later, we show that this does not lead to a significant

degradation in performance.

3.4.2 ZF Detection

In this section, we study the SE of the mixed-ADC architecture with ZF detection. To design

a mixed-ADC adapted ZF detector, we re-write the last two terms of the denominator of
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(3.58) as follows:

wH
k

(
σ2

n IM + α
−2Cqd

)
wk =

[
WHCneff

W

]
kk
, (3.68)

where Cneff
= σ2

n IM +α
−2Cqd . Accordingly, the ZF detector for the mixed-ADC architecture

can be written as

W = C−1
neff

Ĥ
(
ĤHC−1

neff
Ĥ

)−1
. (3.69)

Plugging (3.69) into (3.58) yields

SQINRZF
k =

p

pK
(
1 − σ2

ĥ

)
E

{[(
ĤHC−1

neff
Ĥ

)−1
ĤHC−2

neff
Ĥ

(
ĤHC−1

neff
Ĥ

)−1
]

kk

}
+ E

{[(
ĤHC−1

neff
Ĥ

)−1
]

kk

}
(3.70)

Similar to the MRC case, the SQINR in (3.70) suggests the same antenna selection approach

for ZF detection. In general, calculating the expected values in (3.70) is not tractable

neither for arbitrary-antenna mixed-ADC detection nor mixed-ADC with antenna selection.

Hence, we numerically evaluate the performance of mixed-ADC with ZF detection in the

next section.

3.4.3 Massive MIMO with Uniform ADC Resolution

Contrary to the mixed-ADC architecture where the ADC comparators are concentrated in a

few antennas, uniformly spreading the comparators over the array is an alternative approach

[20, 21, 22, 62, 63]. In this subsection, we provide the SE expressions for such systems.

These expressions will be used in the next section for performance comparisons with the
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mixed-ADC architecture.

The SE for the case of all one-bit ADCs was derived in [15] using the Bussgang decomposition.

For ADC resolutions of 2 bits or higher, the AQNM model is sufficiently accurate. Using

AQNM and following the same reasoning as in [22, 62, 63], the SE of a massive MIMO

system with uniform resolution ADCs can be derived as

S̃MRC
k = R

©«
pMσ̃2

ĥ

pK + σ2
n +

(1−α0)

α2
0

(
p
(
σ̃2

ĥ
+ K

)
+ σ2

n

) ª®®¬ (3.71)

S̃ZF
k = R

©«
p (M − K) σ̃2

ĥ

pK
(
1 − σ̃2

ĥ

)
+ σ2

n +
(M−K)σ̃2

ĥ

α2 E
{
wH

k C0wk
} ª®®®¬ , (3.72)

for MRC and ZF detection, respectively. In (3.71) and (3.72),

σ̃2
ĥ
=

α2
0ηp

α2
0ηp + α2

0σ
2
n + α0 (1 − α0)

(
pK + σ2

n
) , (3.73)

α0 is a scalar depending on the ADC resolution and can be found in Table I of [22], wk is the

kth column of W = Ĥ
(
ĤHĤ

)−1
, and C0 denotes the covariance matrix of the quantization

noise based on the AQNM model [22]. The detailed calculation of E
{
wH

k C0wk
}

in (3.72) is

provided in [63] which we do not include here for the sake of brevity.

3.5 Numerical Results

By substituting from (3.12), (3.18), and (5.16) into (3.59), (3.60), and (3.70), we can evaluate

the performance of mixed-ADC architectures for different system settings. For all of the

following experiments, we consider a system with M = 100 antennas at the BS, and K = 10
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Figure 3.5: Weights used in the LMMSE channel estimator for high-resolution and one-bit
observations.

users. Also, we assume the power control approach of [51] is used, so that pk βk = p for all

k. We also assume that an optimal resource allocation has been performed [62, 64] such

that the training length, ηeff , transmission power during the training phase, pt , and data

transmission phase, pd are optimized under a power constraint ηeff pt + (T − ηeff )pd = PaveT .

In the following figures, the SNR is defined as SNR , Pave/σ
2
n .

Fig. 3.5 illustrates the optimal weights for combining high-resolution and one-bit observa-

tions for the joint high-resolution/one-bit LMMSE channel estimation. Interestingly, it can

be seen that when M/N is large, the one-bit observations are emphasized in the low SNR
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Figure 3.6: Sum SE for MRC detection versus SNR for M = 100, N = 20, and T = 400.

regime relative to the high-resolution observations. In addition, in contrast to the weights for

the high-resolution observations, which rise monotonically with increasing SNR, the weight

for the one-bit observations grows at first and then decreases to zero.

To study the performance improvement due to joint channel estimation and antenna selection

in mixed-ADC massive MIMO, the sum SE for the MRC and ZF detectors for a system with

coherence interval T = 400 symbols and N = 20 high-resolution ADCs is depicted in Fig.

3.6 and Fig. 3.7, respectively. In these and subsequent figures, “Joint with AS” indicates

that the channel estimation was performed with both one-bit and high-resolution ADCs and
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Figure 3.7: Sum SE for ZF detection versus SNR for M = 100, N = 20, and T = 400.

that antenna selection (AS) was used for data detection, “Joint without AS” represents the

same case without antenna selection, “Joint Subarray AS” means that the antenna selection

only occurred within each M/N-element subarray (one high-resolution ADC assigned to the

strongest channel within each subarray), and “Not Joint without AS” represents the case

in which channel is estimated based on only high-resolution observations and no antenna

selection is employed.

For both MRC and ZF, it can be seen that antenna selection slightly improves the SE

for high SNRs, where the channel estimation is most accurate. At low SNR, we see that
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joint channel estimation provides a gain from the use of one-bit ADCs, which provide useful

information at these SNRs. We also see that the constrained AS required when the switching

is only performed within subarrays provides nearly identical performance to the case where

arbitrary AS is allowed.

Note that the main reason for the small gain for antenna selection is due to the fact that,

with multiple users, selecting a given antenna does not benefit all users simultaneously, and

the strong users responsible for a given antenna being selected will in general be different for

different antennas. Thus, the improvement due to increased signal-to-noise ratio for some

users is somewhat offset by the fact that other users may experience a lower SNR on those

same antennas. We would see a much larger benefit for antenna selection if only a single

user were present.

Figs. 3.8 and 3.9 provide a comparison among a mixed-ADC massive MIMO system with

joint channel estimation and antenna selection, an all-one-bit architecture (“One-bit”), and a

mixed-ADC without round-robin training for which the high-resolution ADCs are connected

to a fixed set of antennas without ADC switching or antenna selection (“Non-round-robin”)

[28]. Since mixed-ADC channel estimation improves the channel estimation accuracy by

expending a larger portion of the coherence interval for training, its benefit is directly related

to the length of the coherence interval. For MRC detection, when T = 400, the mixed-ADC

architecture performs better than the all-one-bit architecture for N = 20, but when N = 10

the all-one-bit architecture is better due to the larger training overhead incurred when N is

smaller. However, for T = 1000, mixed-ADC outperforms the all-one-bit architecture at high

SNRs for both N = 10, 20, while the all-one-bit case is still better for N = 10 at low SNRs.

Round-robin training provides better SE performance at high SNR when N = 20 compared

to the case without antenna switching, especially for the larger coherence interval. However,

for other cases, the round-robin training overhead significantly reduces the SE, especially for

N = 10 and the shorter coherence interval.
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Figure 3.8: Sum SE for MRC detection versus SNR for M = 100, N = 20, 10, and T =
400, 1000.

For ZF detection, we see that the mixed-ADC architectures can provide very large gains

in SE compared to the one-bit case at high SNRs, regardless of T . For low SNRs, there is

little to no improvement. These cases still do not show a significant benefit for round-robin

training compared with a fixed ADC assignment; only when N = 20 and T = 1000 do we see

a slight improvement.

For N = 20, Figs. 3.10 and 3.11 show how the coherence interval T impacts the effectiveness

of the mixed-ADC architecture for MRC and ZF detectors, respectively. For mixed-ADC

MRC detection, it is apparent that the best choice among the three architectures (all one-bit,
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Figure 3.9: Sum SE for ZF detection versus SNR for M = 100, N = 20, 10, and T = 400, 1000.

mixed-ADC with and without round-robin training) depends on the SNR operating point

and the length of the coherence interval. The advantage of round-robin training becomes

apparent for long coherence intervals, where the increased training length has a smaller

impact. The gain for round-robin training is greatest at higher SNRs. For shorter coherence

intervals, mixed ADC with fixed antenna/ADC assignments provides the best SE, with the

largest gains again coming at higher SNRs. For this value of N, the all-one-bit system

generally has the lowest SE, although the difference is not large for MRC.

The next example investigates the impact of distributing the resolution (i.e., the comparators
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Figure 3.10: Sum SE for MRC detection versus T for M = 100, N = 20, and SNR = −10, 0, 10
dB.

of the ADCs) across the array with different numbers of antennas. If we assume that the

“high-resolution” ADCs consist of 5 bits [14], a mixed-ADC architecture with N = 20 high-

resolution and M − N = 80 one-bit ADCs will have 180 total comparators. Figs. 3.12 and

3.13 illustrate the SE achieved by distributing the 180 comparators across arrays of different

length for MRC and ZF detection, respectively. In these figures, “Joint with AS” and “Non-

round-robin” refer to mixed-ADC architectures with N = 20 5-bit ADCs and M − N = 80

one-bit ADCs, “One-bit” corresponds to M = 180 antennas with one-bit ADCs, and “Multi-

bit” indicates a system with either M = 90 2-bit ADCs or M = 60 3-bit ADCs. As we see
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Figure 3.11: Sum SE for ZF detection versus T for M = 100, N = 20, and SNR = −10, 0, 10
dB.

in the figures, it can be inferred that for MRC detection, which is interference limited, it is

better to have a larger number of antennas with lower-resolution ADCs instead of equipping

the BS with fewer antennas and high resolution ADCs. This is consistent with the results

of [31, 53], and is due to the fact that a larger number of antennas helps the system to

more effectively cancel the interference. On the other hand, for ZF detection which is noise

limited, the use of high-resolution ADCs avoids additional quantization noise imposed by

the low-resolution ADCs, and is more beneficial than having a larger number of antennas

with low-resolution ADCs at high SNR.
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Figure 3.12: Sum SE for MRC detection versus SNR for 180 comparators and T = 400, 1000.

Finally, Figs. 3.14 and 3.15 show the impact of the number of high-resolution ADCs in a

mixed-ADC system with M = 100 antennas, K = 10 users, and various numbers N of high-

resolution ADCs, where N = 100 denotes the all-high-resolution system. It is apparent that

with a large enough coherence interval and a sufficient number of high-resolution ADCs, the

mixed-ADC implementation with joint round-robin channel estimation and antenna selection

outperforms the all-one-bit architecture and mixed-ADC without round-robin training. The

gains are greatest when ZF detection is used and the SNR is high, but such gains must be

weighed against the increased power consumption and hardware complexity.
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Figure 3.13: Sum SE for ZF detection versus SNR for 180 comparators and T = 400, 1000.

3.6 Summary

We studied the spectral efficiency of mixed-ADC massive MIMO systems with either MRC or

ZF detection. We showed that properly accounting for the impact of the quantized receivers

using the Bussgang decomposition is important for obtaining an accurate analysis of the SE.

We introduced a joint channel estimation approach to leverage both high-resolution ADCs

and one-bit ADCs and our analytical and numerical results confirmed the benefit of joint

channel estimation for low SNRs.
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Figure 3.14: Sum SE for MRC detection versus N for SNR = −10, 0, 10 dB and T = 1000.

Mixed-ADC detection with MRC and ZF detectors and antenna selection were also studied.

Analytical expressions were derived for MRC detection and a numerical performance analysis

was performed for ZF detection. It was shown that antenna selection provides a slight

advantage for high SNRs while this advantage tends to disappear for low SNRs.

We showed that the SNR, the number of high-resolution ADCs and the length of the coher-

ence interval play a pivotal role in determining the performance of mixed-ADC systems. We

showed that, in general, mixed-ADC architectures will have the greatest benefit compared

to implementations with all low-resolution ADCs when ZF detection is used and the SNR
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Figure 3.15: Sum SE for ZF detection versus N for SNR = −10, 0, 10 dB and T = 1000.

is relatively high. In such cases, the gain of the mixed-ADC approach can be substantial.

Gains are also possible for MRC, but they are not as significant, and require larger numbers

of high-resolution ADCs to see a benefit compared with the ZF case. The more compli-

cated mixed-ADC approach based on ADC switching and round-robin training can achieve

the best performance in some cases, particularly when the coherence interval is long and

more high-resolution ADCs are available to reduce the number of training interval repeti-

tions. Otherwise, a mixed-ADC implementation without ADC switching and extra training

is preferred.
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Chapter 4

Spectral Efficiency of One-Bit

Sigma-Delta Massive MIMO

In this chapter, we study another approach in alleviating the performance loss due to coarse

quantization, i.e., spatial Σ∆ architecture. In this method, using minimal additional hard-

ware in the analog domain, the resulting spatial one-bit Σ∆ architecture can shape the

quantization noise to angles of arrival away from those that correspond to the users of inter-

est. Hence, performance close to that of systems with high-resolution ADCs can be achieved

while reducing power consumption and complexity.

First, we elaborate the temporal Σ∆ operation. Then, we show how this idea can be ex-

tended to the spatial case. After introducing the spatial Σ∆ architecture, by proposing an

appropriate linear model, we study the uplink spectral efficiency of a massive MIMO base

station that employs one-bit spatial Σ∆ quantization, and compare it with the performance

achievable by systems with infinite resolution and standard one-bit quantization for maxi-

mum ratio combining (MRC) and zero-forcing (ZF) receivers. Past work on quantifying the

SE for standard one-bit quantization (e.g., [15, 50]) has relied on a vectorized version of the
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well-known Bussgang decomposition [49], which formulates an equivalent linear vector model

for the array of non-linear quantizers assuming that the inputs to the quantizers are (at least

approximately) jointly Gaussian. However, the vector Bussgang solution is not appropriate

for the more complicated Σ∆ architecture, since it leads to a linear model that is inconsistent

with the corresponding hardware implementation. Thus, we are led to derive an alternative

linear model in which we apply a scalar version of the Bussgang approach to each quanitizer

individually. This model is then used in turn to determine the overall sum SE.

The results of the analysis indicate the significant gain of the Σ∆ approach compared with

standard one-bit quantization for users that lie in the angular sector where the shaped

quantization error spectrum is low. For MRC, the one-bit Σ∆ array performs essentially

the same for such users as a BS with infinite resolution ADCs. The angular sectorization

of users in the spatial domain is not necessarily a drawback in cellular implementations,

where cells are typically split into 120◦ regions using different arrays on the BS tower. In

addition, there are many small-cell scenarios both indoors and outdoors where the targeted

users are confined to relatively narrow angular sectors (auditoriums, plazas, arenas, etc.).

Such situations will become even more prevalent as frequencies move to the millimeter wave

band. However, the size of the sector of good performance for Σ∆ arrays depends on the

amount of spatial oversampling. Unlike the temporal case, where oversampling factors of

10 or higher are not uncommon, the physical dimensions of the antenna and the loss due

to increased mutual coupling for closely-spaced antennas places a limit on the amount of

spatial oversampling that is possible in massive MIMO. Fortunately, our results indicate

that spatial oversampling by factors of only 2-4 is sufficient to achieve good performance

for angular sectors ranging from 80◦ − 150◦. Furthermore, the ability of the Σ∆ array to

electronically steer the desired angular sector by means of the feedback phase shift provides

desirable flexibility. For example, multiple sectors could be serviced in parallel with a single

antenna array by deploying a bank of Σ∆ receivers tuned to different spatial frequencies, in

order to cover a wider angular region.
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At last, we introduce spatial feedback beamformer (FBB) Σ∆ architecture. This approach

can be useful in mitigating the strong interference which can have detrimental impact on

systems with one-bit quantizers.

In the next section we outline the basic system model, and provide some background on

temporal Σ∆ modulation. In Section 4.2, we introduce the spatial Σ∆ architecture. We

develop an equivalent linear model and characterize this architecture in Section 4.3. The

model is then applied to analyze the spectral efficiency of the Σ∆ array in Section 4.4. FBB

Σ∆ is discussed in section 4.5. While the analysis is conducted assuming that perfect channel

state information (CSI) is available, we also discuss the impact of imperfect CSI in Section

4.6. Several simulation results are presented in Section 4.6, followed by the summary of this

chapter.

4.1 System Model

Consider the uplink of a single-cell multi-user MIMO system consisting of K single-antenna

users that send their signals simultaneously to a BS equipped with a uniform linear array

(ULA) with M antennas. The M × 1 signal received at the BS from the K users is given by

x = GP
1
2 s + n, (4.1)

where G = [g1, · · · , gK] ∈ C
M×K is the channel matrix between the users and the BS and P

is a diagonal matrix whose kth diagonal element, pk , represents the transmitted power of

the kth user. The symbol vector transmitted by the users is denoted by s ∈ CK×1 where

E
{
ssH

}
= IK and is drawn from a circularly symmetric complex Gaussian (CSCG) codebook

independent of the other users, and, n ∼ CN
(
0, σ2

n IM
)

denotes additive CSCG receiver noise

at the BS.
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We consider a physical channel model described in the angular domain and comprised of L

paths for each user with azimuth angular spread Θ [65]. In particular, for the kth user, the

channel vector is modeled as

gk =

√
βk

L
Akhk, (4.2)

where Ak is an M × L matrix whose `th column is the array steering vector corresponding

to the direction of arrival (DoA) θk` ∈ θ0 +
[
−Θ2 ,

Θ
2

]
, βk models geometric attenuation and

shadow fading from the kth user to the BS, and the elements of hk ∈ C
L×1 are assumed

to be distributed identically and independently as CN (0, 1), and model the fast fading

propagation. For a ULA, the steering vector for a signal with DoA θk` is expressed as

a (uk`) =
[
1, z−1

k` , · · · , z
−(M−1)
k`

]T
, (4.3)

where uk` = sin (θkl), zk` = e jωsk` , and thus ωsk` = 2π d
λuk` represents the spatial frequency

assuming antenna spacing d and wavelength λ.

In a standard implementation involving one-bit quantization, each antenna element at the

BS is connected to a one-bit ADC. In such systems, the received baseband signal at the mth

antenna becomes

ym = Qm (xm) , (4.4)

where Qm (.) denotes the one-bit quantization operation which is applied separately to the

real and imaginary parts as

Qm (xm) = αm,rsign (Re (xm)) + jαm,isign (Im (xm)) , (4.5)

where αm,r and αm,i represent the output voltage levels of the one-bit quantizer. We will
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Figure 4.1: Block diagram for temporal Σ∆ modulator.

allow these levels to be a function of the antenna index m, unlike most prior work which

assumes that the output levels are the same for all antennas. The necessity for this more

general approach will become apparent later1. Finally, the received baseband signal at the

BS is given by

y = Q (x) =
[
Q1 (x1) ,Q2 (x2) , · · · ,QM (xM)

]T
. (4.6)

4.2 Σ∆ Architecture

4.2.1 Temporal Σ∆ Modulation

In this subsection, we elaborate on temporal Σ∆ modulation to clarify the noise shaping

characteristics of this technique.

Fig. 4.1 shows a block diagram representing the temporal Σ∆ modulator. To shape the

quantization noise, the output signal is fed back and subtracted form the input (∆-stage),

and then this error is integrated (Σ-stage). To characterize the transfer function of this non-

linear system, we substitute the one-bit quantizer with the equivalent linear model depicted

1While the one-bit ADC output levels will be optimized, this is a one-time optimization and the values do
not change as a function of the user scenario or channel realization. Thus the ADCs are still truly “one-bit.”
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Figure 4.2: Block diagram for temporal Σ∆ modulator with equivalent linear model for
quantization.

in Fig. 4.2 . The input-output relationship of the Σ∆ quantizer can then be written as

Y (z) =
γ

1 − (1 − γ) z−1
X (z) +

(
1 − z−1

)
1 − (1 − γ) z−1

Q (z) , (4.7)

where X (z) =
∑∞

n=0 x [n] z−n denotes the z-transform. Simply stated, the objective of Σ∆

modulation is to pass the signal through an all-pass filter and the quantization noise through a

high-pass filter. This objective can be realized by setting γ ≈ 1. Since commercial quantizers

are provided with a built-in automatic gain control (AGC), the γ ≈ 1 condition is inherently

satisfied in implementations of temporal Σ∆ modulators, and hence this issue is not generally

discussed in the literature. However, as we show in the next subsection, the choice of the

scaling factor is critical in the mathematical modeling of spatial Σ∆ architectures, and we

derive a criterion for addressing this issue.

4.2.2 One-Bit Spatial Σ∆ Modulation

As mentioned earlier, the basic premise of temporal Σ∆ modulation can be adopted in the

angle domain, in order to spatially shape the quantization noise in a desired way. Instead of
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Figure 4.3: Spatial Σ∆ architecture.

forming the ∆ component using a delayed sample of the quantized input as in the temporal

case, we use the quantization error signal from an adjacent antenna. A direct transfer of the

temporal Σ∆ idea to the angle domain as in [45, 46] pushes the quantization noise to higher

spatial frequencies, which correspond to DoAs away from the array broadside (|θ | � 0◦),

while the oversampling (reduced d/λ) pushes signals of interest near broadside closer to zero

spatial frequency. However, by phase-shifting the quantization error in the feedback loop

prior to the ∆ stage, a Σ∆ frequency response can be obtained in which the quantization error

is shaped away from a band of frequencies not centered at zero. This bandpass approach

has been proposed for both the temporal (e.g., see [37]) and spatial [48] versions of the Σ∆

architecture.
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Fig. 4.3 shows the architecture of an angle-steered Σ∆ array. Using Fig. 4.3 and

ym =
Q1 (x1) m = 1

Qm

(
xm + e− jφ

(
xm−1 + e− jφ

(
· · ·

(
x2 + e− jφ (x1 − y1) − y2

)
· · ·

)
− ym−1

))
m > 1

(4.8)

we can formulate a compact input-output description of the spatial Σ∆ array by defining

U =



1

e− jφ 1

...
. . .

. . .

e− j(M−1)φ · · · e− jφ 1


(4.9)

V = U − IM, (4.10)

and expressing the input to the quantizers as

r = Ux − V y. (4.11)

The output of the angle-steered one-bit Σ∆ array is then defined by

y = Q (r) . (4.12)
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4.3 Characterizing the Spatial Σ∆ Architecture

4.3.1 Linear Model

To analyze the performance of spatial Σ∆ processing, analogous to temporal Σ∆, we will

represent the one-bit quantization operation in (4.12) with an equivalent linear model as

follows:

y = Q (r) = Γr + q, (4.13)

where Γ is an M × M matrix and q denotes the effective quantization noise. The value of Γ

that makes the equivalent quantization noise, q, uncorrelated with r is Γ0 = RH
r yR

−1
r . For

the case where the elements of r are all jointly Gaussian, the computation of Rr y is possible

by resorting to the Bussgang theorem2 [49]. This was the approach used in [15, 50] for a

massive MIMO implementation with standard one-bit quantization, and the resulting Γ0 was

a diagonal matrix.

For the case of the Σ∆ architecture, even if the matrix Γ0 could be computed, this decom-

position would not be of interest, for at least two reasons. First, the equivalent quantization

noise q that results from setting Γ = Γ0 in (4.13) bears no connection to the quantization

error fed from one antenna to the next as shown in Fig. 4.3. Setting Γ = Γ0 would produce

a model in which rm and qm−1 are uncorrelated, but it is clear from Fig. 4.3 that rm for the

Σ∆ array directly depends on the quantization error from the (m − 1)-th stage. Second, Γ0

cannot be a diagonal matrix3, unlike the standard one-bit quantization case considered in

[15]. The presence of off-diagonal elements in Γ0 implies that the model in (4.13) represents

2The result can also be extended to cases where r belongs to a limited class of distributions, see [66] for
details

3 If Γ0 were diagonal, it could be made equal to the identity matrix by a proper scaling of each ym. How-
ever, Γ0 can never be the identity matrix because this implies that rm = xm − e−jφqm−1, while simultaneously
rm is uncorrelated with qm−1, which is impossible.
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the output of each quantizer as a linear combination of the inputs to that quantizer as well

as other quantizers in the array. Such a model does not have an apparent connection with

the scheme in Fig. 4.3, where each quantizer produces its output depending only on its input

alone. These inconsistencies between the mathematical model based on Γ = Γ0 and the

physical block diagram of the Σ∆ array in Fig. 4.3 are the result of attempting to force r and

q to be uncorrelated, when the architecture is actually propagating the quantization error

from one stage to the next.

Consequently, in order to derive an appropriate model for the analysis of the Σ∆ architecture,

we propose to apply the Bussgang decomposition to each quantizer individually. In partic-

ular, we formulate the model in (4.13) using a matrix Γ = diag (γ1, . . . , γM) that is forced

to be diagonal. This is equivalent to imposing a model in which r and q are uncorrelated

component-wise: E
[
rmq∗m

]
= 0. The elements of Γ are given by

γm =
E

[
rmy
∗
m
]

E
[
|rm |

2
] = αm

E [|Re [rm]| + |Im [rm]|]

E
[
|rm |

2
] , (4.14)

where in the last equality and from now on, we assume that rm is circularly symmetric. This

assumption implies that the quantizer output levels are identical for the real and imaginary

parts, and thus we use αm to represent both αm,r and αm,i. The expression in (4.14) has been

defined in the literature as the equivalent gain of a non-linear device [66, 67].

As we will see later on, since the elements of Γ depend only on the signals at one stage of the

Σ∆ architecture, they are much easier to compute than the elements of Γ0. Moreover, the

resulting decomposition is consistent with Fig. 4.3. Given that no precondition is imposed on

the correlation E
[
rmq∗l

]
for m , l, the model is compatible with the fact that the quantization

noise of one stage appears in subsequent stages.

Plugging (4.13) into (4.11) and using some algebraic manipulations, we obtain the following
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mathematical model for the Σ∆ architecture:

y =
(
I + ΓV

)−1
ΓUx +

(
I + ΓV

)−1
q. (4.15)

Equation (4.15) is the spatial Σ∆ equivalent to the temporal domain Σ∆ description in (4.7).

Similar to the temporal case, (4.80) indicates that Γ = I should hold for the spatial Σ∆ array

to work as desired, that is, to pass x and q through spatial all-pass and high-pass filters,

respectively. If Γ = I , then (4.80) becomes

y = x + U−1q , (4.16)

and the m-th element of y is expressed as

ym = xm +
(
qm − e− jφqm−1

)
, (4.17)

which explicitly shows the quantization noise-shaping characteristic of the spatial Σ∆ archi-

tecture. The only task remaining to complete our proposed linear model is to calculate the

power of the equivalent quantization noise. The condition Γ = I for the adequate operation

of the Σ∆ scheme determines the quantization levels that have to be set. Setting (4.14) equal

to 1, we obtain the optimum value of αm:

α?m =
E

[
|rm |

2
]

E [|Re [rm]| + |Im [rm]|]
=
E

[
|Re [rm]|

2
]

E [|Re [rm]|]
. (4.18)

It is worth noting that (4.18) is different from

αm = E [|Re [rm]|] , (4.19)

which leads to the Lloyd-Max one-bit quantizer that minimizes the mean-squared-error
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(MSE) between the input and the output of the quantizer. However, the Lloyd-Max ap-

proach makes the quantization error uncorrelated with the quantizer output, but not with

the input.

While the expression derived in (4.18) is useful, it is difficult to analytically evaluate the

expectations in closed form, and it is not clear how the output level could be tuned using

analog processing in the RF chain (e.g., via an AGC or some other type of calibration).

To address this issue, we use the assumption that rm is Gaussian inherent in the Bussgang

decomposition to find an approximation for α?m that is easier to deal with, both for the

subsequent mathematical analysis and from the viewpoint of a hardware implementation.

The validity of the approximation will be apparent in the numerical examples presented

later. If rm is Gaussian, we can write

α?m =

√
πE

[
|rm |

2
]

2
. (4.20)

In the discussion below, we show how to express (4.20) in terms of the statistics of the array

output x, which provides an analytical solution and clarifies how the quantizer output levels

could be set in a practical setting.

4.3.2 Quantization Noise Power

In this section, we calculate the power of the effective quantization noise and the power of

the quantizers’ inputs, which is needed to properly set the output levels using (4.20). With

Γ = I , (4.13) becomes

y = r + q. (4.21)
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Since rm and qm are uncorrelated, and using (4.20), we obtain

E
[
|qm |

2
]
= E

[
|ym |

2
]
− E

[
|rm |

2
]
=

(π
2
− 1

)
E

[
|rm |

2
]
. (4.22)

To determine E
[
|rm |

2
]
, we substitute (4.21) into (4.11), so that

r = x − U−1V q. (4.23)

It can be shown that

U−1V = e− jφZ−1 , (4.24)

where4

Z−1 =



0

1 0

...
. . .

. . .

0
. . . 1 0


. (4.25)

Moreover, following the same reasoning as in Appendix A of [15], it can be shown that

E
[
xm′q∗m

]
≈ 0, ∀m,m′ ∈ M = {1, · · · , M}. This results in Rqx ≈ 0. Therefore,

Rr = Rx + Z−1RqZ
H
−1 . (4.26)

Eq. (4.26) implies that

E
[
|rm |

2
]
=
E

[
|xm |

2
]

m = 1

E
[
|xm |

2
]
+ E

[
|qm−1 |

2
]

m > 1

(4.27)

4Note that Z−1 is the spatial domain equivalent of the delay operator z−1 for the z-transform in the time
domain.
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Substituting (4.22) into (4.27) and noting that E
[
|r1 |

2
]
= E

[
|x1 |

2
]
, we obtain the following

recursive equality to calculate E
[
|rm |

2
]

for m > 1:

E
[
|rm |

2
]
= E

[
|xm |

2
]
+

(π
2
− 1

)
E

[
|rm−1 |

2
]
. (4.28)

Let

pχ =
[
E

[
|χ1 |

2
]
,E

[
|χ2 |

2
]
, · · · ,E

[
|χM |

2
] ]T

, (4.29)

where χ can be any element of the set χ ∈ {r, x, q}. Then, using (4.22) and (4.28), we have

pr = Πpx (4.30)

pq =
(π
2
− 1

)
Πpx , (4.31)

where

Π =



1 0(
π
2 − 1

)
1

...
. . . 1(

π
2 − 1

)m . . .
. . .

. . .

...
. . .

. . .
. . .

. . .(
π
2 − 1

)M−1
· · ·

(
π
2 − 1

)m
· · ·

(
π
2 − 1

)
1



. (4.32)

Equation (4.30) shows that the calculation of E
[
|rm |

2
]

needed in (4.20) can be formulated

in terms of the power of the antenna outputs E
[
|xm |

2
]
, for which simple expressions exist

from (4.1). This further implies that control of E
[
|xm |

2
]

via an AGC would allow the quan-
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tizer output levels to be set without feedback from the digital baseband. In the following

remark, we show that, using the optimal quantizer output settings, the power of the quan-

tization noise does not grow with m despite the fact that it is propagated from one antenna

to the next.

Remark 4.1. Eq. (4.31) implies that, by appropriately selecting the quantizers’ output

levels, the quantization noise power does not increase without bound. In particular, consider

the case where the power of the received signal is constant over the array elements, i.e.,

px = px1. Then,

E
[
|qm |

2
]
=

(π
2
− 1

) 1 −
(
π
2 − 1

)m

1 −
(
π
2 − 1

) px −−−−→
m→∞

π
2 − 1

2 − π
2

px , (4.33)

which shows that, in the limit of a large number of antenna elements, the quantization noise

power converges to a constant value of approximately 1.33 times the input power.

4.3.3 Quantization Noise Power Density

In the time domain, it is well-known that sampling a band-limited signal by a rate N times

larger than the Nyquist rate and down-sampling after quantization can reduce the in-band

quantization noise power by a factor of 1/N and 1/N3 for standard one-bit and Σ∆ modu-

lation, respectively [68]. In this subsection, we look for a similar behaviour for quantization

across an array in space. More precisely, we want to quantify how spatial oversampling, i.e.,

decreasing the antenna spacing, d/λ, (or equivalently, increasing the number of antennas for

space-constrained arrays) can reduce the quantization noise power for the in-band angular

spectrum. To do so, we define the quantization noise power density as

ρq (u) ,
1

M
a (u)H R a (u), (4.34)
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where R is the covariance matrix of the quantization noise. To differentiate the two cases,

we denote the covariance matrix of the quantization noise for standard one-bit quantization

as Rq1
, and the covariance of the Σ∆ quantization noise as RqΣ∆ . Expressions for these

covariance matrices will be derived later in this subsection. Hence, the normalized received

quantization noise power over some angular region, Θ, is given by5

Pq =
1

2δ

∫ δ

−δ
ρq (u) du, (4.35)

where δ = sin
(
Θ
2

)
. Next we find Pq for standard one-bit and Σ∆ quantization.

4.3.3.1 One-bit Quantization

Unlike [15], for standard one-bit quantization, we choose the quantizer output levels as

αm =

√
πE

[
|xm |

2
]
/2 so that ym = Q (xm) = xm + qm. This causes no loss of generality for

standard one-bit quantization, since the value of the quantizer output has no impact on the

performance of the resulting system. Therefore, the covariance matrix of the quantization

noise can be written as

Rq1
= Ry − Rx , (4.36)

where the arc-sine law [52, 69] is used to obtain

Ry = diag (Rx)
1
2 sin−1 (Λ) diag (Rx)

1
2 , (4.37)

and

Λ = diag (Rx)
− 1

2 Re (Rx) diag (Rx)
− 1

2 + jdiag (Rx)
− 1

2 Im (Rx) diag (Rx)
− 1

2 . (4.38)

5To simplify the calculation of the quantization noise power, we assume without loss of generality that
the Σ∆ array is steered to broadside (θ = 0).
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Note that the arc-sine in (4.37) is applied separately to each element of the matrix argument,

and also separately to the real and imaginary parts of the matrix elements.

From [15], we have that diag
(
Ry

)
= π

2diag (Rx). Since the off-diagonal elements of Λ are

small, we use the approximation sin−1 (x) ≈ ζ x, where ζ > 1, to obtain

Rq1
≈ (ζ − 1) Rx +

(π
2
− ζ

)
diag (Rx) . (4.39)

Moreover, from (4.1), Rx becomes

Rx =

K∑
k=1

pk βk
1

L

L∑̀
=1

a (uk`) a (uk`)
H + σ2

n I, (4.40)

where for L � 1, uk` can be taken as a random variable uniformly distributed in [−δ, δ].

That is,

1

L

L∑̀
=1

a (uk`) a (uk`)
H ≈ E

[
a (u) a (u)H

]
=

1

2δ

∫ δ

−δ
a (u) a (u)H du. (4.41)

Therefore,

Rx =

K∑
k=1

pk βk
1

2δ

∫ δ

−δ
a (u) a (u)H du + σ2

n I . (4.42)

Now we are ready to calculate the standard one-bit quantization noise power, Pq1 .

Proposition 4.1. The normalized quantization noise power for standard one-bit quantiza-

tion is

Pq1 = (ζ − 1) ×[
σ2

n +
1

M

K∑
k=1

pk βk

M−1∑
n=0

M−1∑
m=0

sinc2

(
2π

d
λ
(m − n) δ

)]
+

π
2 − ζ

M
Tr [Rx] , (4.43)
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where sinc (x) , sin(x)
x .

Proof. Plugging (4.42) into (4.39) results in

Pq1 = (ζ − 1) × σ2
n +

1

4δ2M

K∑
k=1

pk βk

δ∬
−δ

��a (v)H a (u)
��2 dudv

 +
π
2 − ζ

M
Tr [Rx] . (4.44)

Using Eq. (10) in [70] yields

1

4δ2

δ∬
−δ

��a (v)H a (u)
��2 dudv = E

[��a (v)H a (u)
��2] =

M−1∑
n=0

M−1∑
m=0

sinc2

(
2π

d
λ
(m − n) δ

)
, (4.45)

which completes the proof. �

Remark 4.2. Consider the case that M � 1. Then, from (4.43)

Pq1

(a)
≈ (ζ − 1)σ2

n+

(ζ − 1)

[
1

2δ

(
d
λ

)−1

−
1

4π2δ2

(
d
λ

)−2

f
(

d
λ

)] K∑
k=1

pk βk +
(π
2
− ζ

) K∑
k=1

pk βk, (4.46)

where f (x) , 2
M

∑M−1
n=1

sin2(2πxδn)
n and in (a) we have used Eq. (14) of [70]. Equation (4.46)

states that, for standard one-bit quantization, increasing the spatial oversampling in a large

antenna array (d/λ→ 0) increases the quantization noise power proportional to (d/λ)−1.

Remark 4.3. Consider the fixed-aperture case where d0 = M d
λ is a constant (i.e., the antenna

spacing decreases proportionally to the increase in the number of antennas). Then, from
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(4.43)

Pq1 −−−−−→M→∞
(ζ − 1)

[
σ2

n + M
K∑

k=1

pk βk

]
+

(π
2
− ζ

) K∑
k=1

pk βk . (4.47)

Equation (4.47) states that, for standard one-bit quantization, increasing the number of an-

tennas for an array with a fixed aperture, d0, increases the quantization noise power linearly

with M.

4.3.3.2 Σ∆ Quantization

From (4.16), the covariance of the quantization noise for the Σ∆ architecture is RqΣ∆ =

U−1RqU
−H . We derive an expression for the normalized quantization noise power of the Σ∆

array, PqΣ∆ , in the next proposition.

Proposition 4.2. The quantization noise power for spatial Σ∆ quantization is

PqΣ∆ =
2

M

(
Tr

[
Rq

]
− σ2

qM

) [
1 − sinc

(
2π

d
λ
δ

)]
+
σ2

qM

M
, (4.48)

where σ2
qM
= E

[
|qM |

2
]
.

Proof. Substituting RqΣ∆ = E
[
U−1qqHU−H ]

into (4.34) leads to

PqΣ∆ =
1

M
1

2δ

∫ δ

−δ
E

[��a (u)H U−1q
��2] du. (4.49)

We set φ = 0 due to the assumption of u ∈ [−δ, δ] in the definition of the quantization noise

power, and we note that

U−1 = IM − Z−1 . (4.50)
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Then

U−1q = (IM − Z−1) q =



q1

q2 − q1

...

qM − qM−1


. (4.51)

In addition, from (4.23), and the fact that Rqx ≈ 0, it can be readily shown that E
[
qmq∗m±1

]
≈

0. Hence, for the sake of analysis, we approximate E
[
qmq∗m′

]
≈ 0, ∀m , m′ ∈ M, and

therefore Rq = diag
(
pq

)
. Consequently,

E
[��a (u)H U−1q

��2] =���1 − e j2π d
λ u

���2 M−1∑
m=1

E
[
|qm |

2
]
+ E

[
|qM |

2
]
= 4

(
Tr

[
Rq

]
− σ2

qM

)
sin2

(
π

d
λ

u
)
+ σ2

qM
. (4.52)

By integrating (4.52) and using some algebraic manipulation, we arrive at (4.48). �

Remark 4.4. Consider the case that M � 1. Then, from (4.48)

PqΣ∆
(a)
≈

4

3

π
2 − 1

2 − π
2

π2δ2

(
d
λ

)2

px , (4.53)

where in (a) we have used sinc (x) ≈ 1 − x2

6 and

1

M

(
Tr

[
Rq

]
− σ2

qM

)
≈

π
2 − 1

2 − π
2

px (4.54)

for M � 1 and assuming px = px1. Equation (4.53) states that, by increasing the spatial

oversampling (d/λ → 0), the quantization noise power for the Σ∆ array tends to zero pro-

portional to (d/λ)2. This result is in contrast to that for the standard one-bit quantization

power, which was shown earlier to increase proportional to (d/λ)−1. Hence, the spatial Σ∆

architecture brings about an oversampling gain of (d/λ)3 compared to the standard one-bit
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architecture. While this is a promising result, as mentioned earlier the practical limitations

of placing antenna elements close to each other prevent us from achieving a high degree of

spatial oversampling.

Remark 4.5. Consider the case that d0 = M d
λ is a constant. Then, from (4.48)

M2PqΣ∆ −−−−−→M→∞

4

3

π
2 − 1

2 − π
2

π2δ2d2
0 px . (4.55)

Equation (4.55) states that, for spatial Σ∆ quantization, increasing the number of antennas

for an array with a fixed aperture, d0, decreases the quantization noise power proportional to

1/M2. Hence, the spatial Σ∆ architecture brings about an oversampling gain of M3 compared

to the standard one-bit architecture.

In the next section, we study the spectral efficiency of a massive MIMO system with spatial

Σ∆ processing and discuss the impact of the spatial Σ∆ architecture on the system perfor-

mance.

4.4 Spectral Efficiency

In this section, we study the SE of a massive MIMO system with spatial Σ∆ processing. We

consider maximum ratio combining (MRC) and zero-forcing (ZF) receivers. We derive here

an approximation for the SE of the system with an MRC receiver, and evaluate the SE for

the ZF receiver in the next section, numerically. We first present the case where perfect

channel state information (CSI) is assumed to be available at the BS, and then we discuss

the impact of imperfect CSI on the system performance at the end of the section.

From (4.1) and (4.16), the received signal at a BS with a Σ∆ architecture can be modeled as
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y = GP
1
2 s + n + U−1q. (4.56)

Denoting the linear receiver by W , we have

ŝ = WHGP
1
2 s +WHn +WHU−1q , (4.57)

and the kth element of ŝ is given by

ŝk =
√

pkw
H
k gk sk +

K∑
i=1,i,k

√
pkw

H
k gisi + wH

k n + wH
k U
−1q, (4.58)

where wk is the kth column of W . We assume the BS treats wH
k gk as the desired channel

and the other terms of (4.58) as worst-case Gaussian noise when decoding the signal. Con-

sequently, a lower bound for the ergodic achievable SE at the kth user can be written as [71]

Sk = E

[
log2

(
1 +

pk
��wH

k gk

��2
Ω

)]
, (4.59)

where

Ω =

K∑
i=1,i,k

pk
��wH

k gi

��2 + σ2
n ‖wk ‖

2 + wH
k U
−1RqU

−Hwk . (4.60)

4.4.1 MRC Receiver

For the case of an MRC receiver, W = G. The following proposition presents an approxi-

mation for the achievable SE of a massive MIMO system with spatial Σ∆ processing and an

MRC receiver.
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Proposition 4.3. For a massive MIMO system employing a spatial Σ∆ architecture and an

MRC receiver, the SE of the kth user assuming perfect CSI is given by

Sk ≈ log2

(
1 +
N

D

)
(4.61)

where

N = pk βk

(
|Tr [Σkk]|

2 + Tr
[
Σ2

kk

] )
,

D =

K∑
i=1,i,k

piβiTr
[
ΣikΣ

H
ik

]
+σ2

n Tr [Σkk]+
4

L

(
Tr

[
Rq

]
− σ2

qM

) L∑̀
=1

sin2

(
φ − 2π d

λ sin (θk`)

2

)
+σ2

qM
,

and Σik ,
1
L A

H
i Ak .

Proof. From [71], an approximation for (4.59) can be calculated as

Sk ≈ log2

©«1 +
pkE

[��wH
k gk

��2]
E [Ω]

ª®®¬ . (4.62)

By setting wk = gk and using Lemma 2 of [11] and Lemma 1 of [72], the expected values

of the desired signal, interference, and thermal noise can be readily calculated. For the

quantization noise term, note that

U−1 = IM − e− jφZ−1. (4.63)

Therefore,

U−1q =
(
IM − e− jφZ−1

)
q =



q1

q2 − e− jφq1

...

qM − e− jφqM−1


. (4.64)
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In addition, the kth user channel vector can be written as

gk =

√
βk

L

L∑
l=1

hkla (θkl), (4.65)

where hkl is the lth element of hk . Hence,

E
[��gH

k U
−1q

��2] = βk

L
E


����� L∑̀
=1

hkl

(
1 − e− jφzkl

) M−1∑
m=1

qmzm−1
kl + qM zM−1

kl

�����2 , (4.66)

which, after some algebraic manipulation, leads to (4.61) and the proof is complete. �

Remark 4.6. The noise shaping characteristic of the spatial Σ∆ architecture is explic-

itly manifested in (4.61). A similar characteristic is observed in [48] for Σ∆ precoding.

It shows the importance of the design parameter φ which should be chosen to minimize

G = 1
L
∑L
`=1 sin2

(
φ−2π d

λ sin(θk`)

2

)
for all users. By writing the steering angle as φ = 2π d

λ sin (θ),

we have

G =
1

L

L∑̀
=1

sin2

(
π

d
λ

(
sin (θ) − sin (θk`)

))
. (4.67)

Eq. (4.67) indicates that G could be made arbitrarily small by decreasing the relative antenna

spacing d/λ (the spatial oversampling gain) or sin (θ) − sin (θk`) (the angle steering gain).

However, physical constraints on the antenna spacing and larger angular spreads, Θ, limit the

lower bound on G. For the case that L � 1, sin (θk`) = uk` can be taken as a random variable

uniformly distributed in [δ1, δ2] where δ1 = sin
(
θ0 −

Θ
2

)
and δ2 = sin

(
θ0 +

Θ
2

)
. Hence,

G ≈
1

δ2 − δ1

∫ δ2

δ1

sin2

(
φ − 2π d

λu

2

)
du =

1

2
+

1

4π

(
d
λ

)−1
1

δ2 − δ1
(b0sin (φ) − b1cos (φ)) , (4.68)

where

b0 = cos

(
2π

d
λ
δ2

)
− cos

(
2π

d
λ
δ1

)
86



b1 = sin

(
2π

d
λ
δ2

)
− sin

(
2π

d
λ
δ1

)
.

In this case, the optimal value of the steering angle that minimizes G can be simply derived

as

φ? =


0 δ2 = −δ1

−tan−1
(

b0
b1

)
otherwise

(4.69)

which indicates that the optimal steering angle is dependent on δ1, δ2, and the relative an-

tenna spacing d/λ.

4.4.2 ZF receiver

For the ZF receiver, W = G
(
GHG

)−1
. After substituting this for W in (4.62), the SE

achieved for the kth user with the Σ∆ architecture and ZF receiver can be written as

Sk = E


log2

©«
1 +

pk

‖wk ‖
2σ2

n +

[(
GHG

)−1
GHU−1RqU

−HG
(
GHG

)−1
]

kk

ª®®®®¬

. (4.70)

Although (4.70) does not provide direct insight into the effect of the shaped quantization

noise on the SE, in Section 4.6 we numerically evaluate this expression and show the superior

performance of the Σ∆ architecture compared with standard one-bit quantization.

4.5 FBB Σ∆ Architecture

One drawback of using one-bit ADCs is its susceptibility to strong interference, which can

occur in MIMO systems when a jammer is present. Since a one-bit ADC has zero dynamic
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range, a moderately strong jammer can effectively swamp the relatively weak signals of

interest and significantly degrade performance. With one-bit ADCs, jammer mitigation

must occur in the RF domain prior to sampling, in order for the coarsely quantized ADCs

to reveal the dynamics of the signals of interest. Simulations show that while the ordinary

spatial Σ∆ architecture is not effective in adequately alleviating the impact of the jammer,

our proposed spatial FBB Σ∆ quantizer can provide performance that is close to that of an

unquantized system.

In this section, we show that the feedback employed by the spatial Σ∆ architecture can be

generalized for this purpose. The genesis of the idea comes from work described in [42], which

is based on the use of temporally oversampled Σ∆ ADCs. Instead of simply using feedback

of the delayed ADC output as in a standard temporal Σ∆ architecture, the approach of [42]

employs an analog feedback beamformer (FBB) designed to temporally null the interference.

Unlike [42], in the method presented here we take a different approach that does not employ

temporal oversampling, but instead uses the spatial Σ∆ architecture. In particular, the

feedback between adjacent antennas is generalized to include an FBB signal that also serves

to spatially null the interference. We generalize the approach discussed in last sections to

develop an equivalent linear model for the Σ∆ array that includes the FBB signal and sets

the output level of the one-bit quantizers.

To analyze the FBB Σ∆ architecture, consider the uplink of a massive MIMO system consist-

ing of a legitimate, single-antenna user that send its signal to a base station (BS) equipped

with a uniform linear array of M antennas. In addition, a jammer is present that aims to

impair the performance of the legitimate user. Accordingly, the M × 1 received signal at the

BS is

x =
√

pgUsU + n +
√

qgJ sJ, (4.71)
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where p represents the average transmission power from the user, gU = 1/
√

L
∑L
`=1 h`a (θ`)

is the user’s channel vector where L denotes the number of signal paths, h` ∼ CN (0, 1) is

the complex channel gain for the `-th path, and

a (θ`) = [1, e− j2π d
λ sin(θ`), · · · , e− j(M−1)2π d

λ sin(θ`)]T (4.72)

denotes the array response vector for angle of arrival θ`, where d and λ represent the antenna

spacing and the carrier wavelength, respectively. The symbol sU ∈ C transmitted from the

user satisfies E
[
|sU |

2
]
= 1, and n ∼ CN

(
0, σ2

n I
)

denotes additive CSCG receiver noise at

the BS. In addition, q represents the jammer’s average power, gJ = 1/
√

L
∑L

j=1 h j a
(
θ j

)
is the

channel vector between the jammer and the BS, and sJ denotes the jammer’s signal, where

E
[
|sJ |

2
]
= 1.

Since each antenna element at the BS is connected to a one-bit ADC, the received baseband

signal at the BS becomes (4.6).

4.5.1 Temporal FBB Σ∆ Modulation

In this subsection, we elaborate on the temporal FBB Σ∆ modulation approach of [42] to

clarify the noise shaping characteristics of this technique.

Fig. 4.4 shows a block diagram representing the Nth-order temporal FBB Σ∆ modulator

with feedback weights w = [w0, · · · ,wN−1]
T . To shape the quantization noise, the weighted

output signals are fed back and subtracted from the input (∆-stage), and then this error is

integrated (Σ-stage).

To characterize the transfer function of this non-linear system, we substitute the one-bit

quantizer with the equivalent linear model depicted in Fig. 4.5. The input-output relation-
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Figure 4.4: Block diagram for the Nth-order temporal FBB Σ∆ modulator.
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Figure 4.5: Equivalent linear model for Nth-order temporal FBB Σ∆.

90



ship of the FBB Σ∆ quantizer can then be written as

Y (z) = A(z)X (z) + B(z)Q (z) , (4.73)

where X (z) =
∑∞

n=0 x [n] z−n denotes the z-transform and

A(z) =
γ

1 + (γw0 − 1) z−1 + γw1z−2 + · · · + γwN−1z−N (4.74)

B(z) =
1 − z−1

1 + (γw0 − 1) z−1 + γw1z−2 + · · · + γwN−1z−N . (4.75)

Unlike ordinary Σ∆ modulation that passes the signal through an all-pass filter and the

quantization noise through a high-pass filter, in (4.73) we see that X(z) is passed through

A(z) and Q(z) through B(z) for FBB Σ∆modulation. Hence, this approach not only provides a

tool for shaping the quantization noise, but proper design of the feedback weights w allows for

temporal filtering that passes the desired signal while eliminating undesirable contributions

from other sources such as a jammer.

4.5.2 One-Bit Spatial FBB Σ∆ Modulation

The idea underlying temporal FBB Σ∆ modulation can be adapted to the angle domain,

in order to spatially shape the quantization noise in a desired way and remove interference.

It is worthwhile to note that although ordinary Σ∆ modulation provides a noise shaping

characteristic, FBB Σ∆ not only shapes the quantization noise, but also suppresses the extra

quantization noise caused by the jammer with appropriate feedback beamforming.

Fig. 4.6 shows the architecture of the angle-steered FBB Σ∆ array. Using Fig. 4.6, we can
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Figure 4.6: Spatial FBB Σ∆ architecture.
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formulate a compact input-output description of the spatial FBB Σ∆ array by defining

V = e− jφZ−1UW, (4.76)

where

W =



w0 0

w1 w0

...
. . . w0

wN−1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

0 · · · wN−1 · · · w1 w0



, (4.77)

and expressing the input to the quantizers as

r = Ux − V y. (4.78)

The output of the angle-steered one-bit FBB Σ∆ array is then defined by

y = Q (r) . (4.79)

By using the linear model introduced in section 4.3.1, we obtain the following mathematical

model for the FBB Σ∆ architecture:

y = B−1Ux + B−1q, (4.80)

where B = I +V . Equation (4.80) is the spatial equivalent of the temporal FBB Σ∆ descrip-
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tion in (4.73), with the following equivalences:

B−1U ←→ A(z) B−1 ←→ B(z). (4.81)

Recall from section 4.3.1 that the condition Γ = I and assuming that rm is approximately

Gaussian leads to the following choice for the output levels:

α?m =

√
πE

[
|rm |

2
]

2
. (4.82)

Next, we calculate the power of the equivalent quantization noise q, which is needed both to

analytically assess the system performance and to compute α?m. In the discussion below, we

show how to express (4.82) in terms of the statistics of the array input x, which illustrates

how the quantizer output levels can be analytically chosen in a practical setting. Moreover,

we will show how spatial FBB Σ∆ impacts the power of the quantization noise and elaborate

on how it differs from the ordinary spatial Σ∆ approach.

With Γ = I , we have

y = r + q. (4.83)

Since rm and qm are uncorrelated, and using (4.82), we obtain

E
[
|qm |

2
]
= E

[
|ym |

2
]
− E

[
|rm |

2
]
=

(π
2
− 1

)
E

[
|rm |

2
]
. (4.84)

To determine E
[
|rm |

2
]
, we substitute (4.83) into (4.78), so that

r = B−1Ux − B−1V q. (4.85)

Let us denote Ψ = B−1U and Λ = B−1V . It is clear that Ψ is a lower triangular matrix and

94



Λ is a lower triangular matrix with zeros along the main diagonal. In addition, following the

same reasoning as in Appendix A of [15], it can be shown that E
[
xm′q∗m

]
≈ 0, ∀m,m′ ∈ M =

{1, · · · , M}. This results in Rqx ≈ 0. Therefore,

Rr ≈ ΨRxΨ
H + ΛRqΛ

H . (4.86)

Eq. (4.86) implies that

E
[
|rm |

2
]
≈

[
ΨRxΨ

H ]
mm m = 1[

ΨRxΨ
H ]

mm +
[
ΛRqΛ

H ]
mm m > 1

(4.87)

To approximate E
[
|rm |

2
]
, and for the sake of analysis, we assume Rq is diagonal. Since Λ is

a lower triangular matrix with zeros along the main diagonal, we only need the first m − 1

diagonal elements of Rq to specify E
[
|rm |

2
]
. Hence, we can recursively calculate E

[
|rm |

2
]

for m > 1 using (4.84) and (4.87). In the next section, we show that the diagonal elements

of Rq are much smaller than those for the ordinary Σ∆ architecture. This is because of the

appropriate design of the feedback weights that lead to the elimination of strong interference

before the one-bit quantization.

4.6 Numerical Results

4.6.1 Σ∆ architecture

In this section, we numerically evaluate the SE performance of Σ∆ massive MIMO systems

in various scenarios. We assume static-aware power control in the network [51] so that

pk = p0/βk . In all of the cases considered, unless otherwise noted, we assume M = 100

antennas, K = 10 users, and an angular spread of Θ = 40◦ centered at θ0 = 30◦. We assume
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the same DoAs for all users, i.e., Ak = A, ∀k, drawn uniformly from the interval [10◦, 50◦],

which corresponds to u = sin(θ) ∈ [0.17, 0.77], and the steering angle of the Σ∆ array is set

to φ = 2π d
λ sin (θ0). The SNR is defined to be SNR , p0

σ2
n
. We further assume CSCG symbols

and 104 Monte Carlo trials for the simulations.

Fig. 4.7 shows the simulated and analytically derived quantization noise power density,

i.e., ρq (u) , u ∈ [−1, 1], for Σ∆ and standard one-bit quantization when the relative antenna

spacing is d = λ/4. We see that the quantization noise power for the Σ∆ array is substantially

lower over the angles where the users are present, while the effect is the opposite for standard

one-bit quantization – the quantization noise is higher for angles where the amplitude of the

received signals is larger. We also observe that there is excellent agreement between the

simulations and our theoretically derived expressions for both cases. Note that the careful

design of the quantizer output levels is a critical aspect for achieving the desired Σ∆ noise

shaping characteristic shown here.

The impact of spatial oversampling on the shape of the quantization noise spectrum is illus-

trated in Fig. 4.8. We see from the figure that, as discussed in Remarks 4.2, the quantization

noise power for the standard one-bit ADC architecture grows as d/λ decreases. Analogously

to temporal Σ∆ modulation where increasing the sampling rate helps to push the quantiza-

tion noise to higher frequencies and widen the quantization-noise-free band, we can reduce

the quantization noise power over wider angular regions by placing the antenna elements

of the array closer together. For example, when d = λ/2, the Σ∆ quantization noise power

is below that of the standard one-bit quantizer over a beamwidth of 40◦. This beamwidth

increases to about 80◦, 150◦, and 180◦ for d = λ/4, d = λ/8, and d = λ/16, respectively.

Mutual coupling will impact these results as d decreases, but both the standard one-bit and

Σ∆ approaches would be expected to degrade.

In Fig. 4.9, we compare the SE performance of Σ∆ and standard one-bit quantization

for the case of an MRC receiver. It is clear that the derived theoretical SE expression in
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Figure 4.7: Spatial spectrum of the quantization noise for the Σ∆ and standard one-bit
architectures when L = 50, d = λ/4, and SNR = 0 dB.
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Figure 4.8: Spatial spectrum of the quantization noise for the Σ∆ and standard one-bit
architectures for different antenna spacings when L = 50 and SNR = 0 dB.
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Figure 4.9: SE versus SNR for MRC receiver with perfect CSI, L = 50, and d = λ/4.
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(4.61) very closely matches the simulated value of the expression in (4.59). The one-bit

Σ∆ implementation achieves a significantly increased SE compared with standard one-bit

quantization, and performs nearly identically to an MRC receiver with infinite resolution

ADCs. It should be emphasized that this performance gain is achieved without paying a

significant penalty in terms of power consumption (as with mixed-ADC architectures) or

complicated processing (as required by non-linear receivers).

In Fig. 4.10 and 4.11, we numerically evaluate the SE when the ZF receiver is employed,

using Eq. (4.70). The SE improvement of Σ∆ processing is much greater than for the case

of MRC. For example, at SNR = 0 dB, about a 50% improvement in SE can be achieved by

the spatial Σ∆ architecture compared with standard one-bit quantization, which confirms its

ability to provide high SE with a simple architecture and low power consumption.

The effect of channel estimation error on the performance of the algorithms is also shown

in Fig. 4.10 for the ZF receiver. For these results, we used a least squares (LS) channel

estimator for each of the algorithms. In this approach, the channel estimate, Ĝ, becomes

Ĝ =
1

η
√

p0
PAYΦ

∗, (4.88)

where η is the training length, PA = AA† is the orthogonal projection onto A, Y ∈ CM×η

is the received data during the channel estimation phase, and Φ ∈ Cη×K is the orthogonal

pilot matrix satisfying ΦHΦ = ηI . We set η = K and choose Φ from among the columns

of the discrete Fourier transform (DFT) matrix. Note that for the case of high-resolution

quantization, Y =
√

p0GΦ
T +N , where the elements of N are independent CN (0, 1) random

variables. For standard one-bit and Σ∆ quantization, we pass Y through the corresponding

quantization, and plug the output into (4.88) for channel estimation. Fig. 4.11 shows the

performance of the ZF receiver with and without perfect CSI versus the number of antennas.

The presence of imperfect CSI obviously degrades all of the algorithms, but we see that
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Figure 4.10: SE versus SNR for ZF receiver with and without channel estimation error.
L = 20, d = λ/4.
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Figure 4.11: SE versus M for ZF receiver with and without channel estimation error. L = 15,
d = λ/4, SNR = 10 dB.

the Σ∆ architecture provides a way to successfully bridge the performance gap between

standard one-bit and high-resolution quantization with only a minimal increase in hardware

complexity.

4.6.2 FBB Σ∆ architecture

This section describes the results of several Monte Carlo simulations in order to illustrate

the performance of the FBB Σ∆ quantizer. In our simulations, we assume L = 20 multipath

arrivals for both the legitimate user and the jammer with angles of arrival randomly uniformly
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distributed in θl ∈ [θ0 − δ, θ0 + δ], where the center angle θ0 is different for the user and the

jammer. We set θ0u = −20◦ and θ0j = 60◦ for the desired user and jammer, respectively,

with δ = 5◦. We further assume d/λ = 1/4, 8-PSK symbols, and 105 trials. The steering

angle of the FBB Σ∆ array is set to φ = 2π d
λ sin

(
θ0u

)
. We let σ2

n = 1, so that p and q denote

the SNR of the user and the jammer, respectively. In all simulations, we consider a strong

interference setting with q = 20 dB. We also assume that θ0u and θ0j are known at the BS6.

Hence, following the same reasoning as in [42], the feedback weights are estimated as

w =
(
e− jφZ−1UȲ

)†
(Ux̄ − ȳ) , (4.89)

where

Ȳ =



ȳ0 0

ȳ1
. . .

...
. . . ȳ0

...
...

...

ȳM−1 · · · ȳM−N


, ȳ = τa

(
θ0u

)
(4.90)

x̄ = τa
(
θ0u

)
+ a

(
θ0j

)
. (4.91)

and τ is a constant. In the simulations that follow, we selected τ =
√

10. Then, the solution

in (4.89) is followed by iterative refinement (see Section III-C in [42]) to find the desired

feedback weights.

Fig. 4.12 shows the simulated and analytically derived quantization noise power density

6Note that, although here we consider a single jammer in a known location, the feedback weights can in
general be designed to reduce the impact of signals arriving from multiple sectors in which the jammers are
known to lie, without precise knowledge of the actual jammer locations.
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Figure 4.12: Spatial spectrum of the quantization noise for the FBB Σ∆, regular Σ∆, and
standard one-bit architectures when d = λ/4, p = 0 dB, q = 20 dB, and N = 50.
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which is defined as

ρq (θ) ,
1

M
a (θ)H R a (θ), (4.92)

where R is the covariance matrix of the quantization noise for each approach (standard one-

bit, Σ∆, or FBB Σ∆). In this figure, we set the order of the FBB Σ∆ filter at N = 50. We see

that the quantization noise power for the FBB Σ∆ array is substantially lower over the angles

where the user is present, while the effect is the opposite for standard one-bit quantization

– the quantization noise is higher for angles where the amplitude of the received signals is

larger. In addition, we see that even the ordinary Σ∆ array suffers from large quantization

noise in the presence of strong interference. We also observe that there is excellent agreement

between the simulations and our theoretically derived expressions for both cases. Note that

careful design of the quantizer output levels is a critical component in achieving the desired

Σ∆ noise shaping characteristic shown here.

In Fig. 4.13, we compare the symbol error rate of the FBB Σ∆ array with that of a system

with high-resolution ADCs and a system with high-resolution ADCs and no strong interfer-

ence, i.e., xp =
√

pgUsU + n, as a benchmark. The methods that do not allow FBB in the

RF domain must attempt to cancel the interference digitally, after the quantization. Conse-

quently, for the systems implemented with high-resolution ADCs, standard one-bit ADCs,

and the original spatial Σ∆ architecture, we project the sampled signal onto the subspace

orthogonal to the interference in the digital domain. Denoting the signals received by the

standard one-bit and Σ∆ architectures by y1 and yΣ∆, respectively, the signals after the

projection for the three methods are given by B−1Ux, B−1Uy1, and B−1UyΣ∆. We assume

perfect channel state information (CSI) is available and use the maximum ratio combiner

(MRC) at the BS to decode the 8-PSK symbols. Fig. 4.13 shows the superior performance of

the one-bit FBB Σ∆ architecture which achieves performance equivalent to that of a system

with only high resolution ADCs. This performance is achieved with only minimal additional
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Figure 4.13: Symbol error rate versus p for a system with θ0u = −20◦ and θ0j = 60◦, d = λ/4,
q = 20 dB, N = 50.
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hardware in the analog domain, and thus has significantly reduced complexity and energy

consumption compared with a system employing high-resolution ADCs.

4.7 Summary

In this chapter, we studied the performance of massive MIMO systems employing spatial one-

bit Σ∆ quantization. Using an element-wise Bussgang approach, we derived an equivalent

linear model in order to analytically characterize the spectral efficiency of a massive MIMO

base station with a Σ∆ array, and we compared the results with the performance achieved

by an array that employs standard one-bit quantization. Our results demonstrated that

the spatial Σ∆ architecture can scale down the quantization noise power proportional to

the square of the spatial oversampling rate. This can be interpreted as scaling down the

quantization noise power proportional to the inverse square of the number of antennas at

the BS for space-constrained arrays. This result gains more importance by noting that in

standard one-bit quantization, the quantization noise power grows proportional to the inverse

of the spatial oversampling rate, or equivalently, proportional to the number of antennas at

the BS in space-constrained arrays. Furthermore, it was shown how this capability allows the

spatial Σ∆ architecture to bridge the SE gap between infinite resolution and standard one-bit

quantized systems. For the ZF receiver, the spatial Σ∆ architecture can outperform standard

one-bit quantization by about 50%, and achieve almost the same performance as an infinite

resolution system for the MRC receiver. While these results were obtained by assuming the

availability of perfect CSI at the BS, we also showed that the spatial Σ∆ architecture is able

to alleviate the adverse impact of quantization noise in the presence of channel estimation

error.

We presented a new spatial one-bit FBB Σ∆ architecture for mitigating strong interference in

massive MIMO systems with one-bit quantization. We showed that this simple architecture
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can effectively compensate for the vulnerability of one-bit ADCs against strong interference.

The critical challenges in designing this architecture are to find the appropriate output levels

for the one-bit quantizers and the values for the feedback weights. A recursive algorithm was

proposed to specify the quantizers’ output levels. The feedback weights were designed by

adopting an algorithm used previously for a temporal FBB Σ∆ implementation. However,

the behaviour of the feedback weights indicates that they amount to a spatial beamformer

pointing in the direction(s) of the interference, and hence could be designed by a less compli-

cated approach. Interesting directions for future work include studying the impact of angle

estimation errors on the performance of the FBB Σ∆ architecture, or using the approach

for combined quantization noise shaping and transmit beampattern design for the downlink

with low-resolution digital-to-analog converters.
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Chapter 5

Impact of Mutual Coupling

One of the challenges of deploying massive MIMO systems is to fit a large number of an-

tennas in a constrained physical space [73]. In this scenario, adding more antennas leads

to increasing spatial correlation and mutual coupling among adjacent antennas which can

cause severe performance degradation. Hence, it is not possible to arbitrarily increase the

number of antennas at the BS to offset the SE loss. In [70], it is observed that contrary

to the Rayleigh fading case, the user’s channels are no longer asymptotically orthogonal in

the space-constrained scenario. The SE and energy efficiency of massive MIMO systems

with space-constrained arrays are shown in [74, 75] to be concave functions of the number of

antennas. This demonstrates that in space-constrained arrays, it is not beneficial to increase

the number of antennas beyond a certain threshold within a limited physical space. In [76],

the increased correlation among adjacent antennas in the space-constrained array is lever-

aged to reduce the RF chain complexity. The SE of a space-constrained array with linear

receivers for Rayleigh and Rician fading channels is studied in [77] and [78], respectively.

The Mixed-ADC architecture is a suitable approach to bridge the gap between massive

MIMO with low- and high-resolution ADCs in space-constrained arrays. First, it does not
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require an increase in the number of antennas and therefore avoids the severe performance

degradation due to mutual coupling. Moreover, it can take advantage of intrinsic correla-

tion among adjacent antennas of a space-constrained array as done in [76]. In this chapter,

we analyze the performance of mixed-ADC massive MIMO with space-constrained arrays.

This phenomenon can eliminate the need for round-robin training for channel estimation

in mixed-ADC architectures. We first analyze the channel estimation performance of such

systems. Since the channel coefficients are correlated under the space-constrained assump-

tion, high-resolution ADCs in a mixed-ADC architecture are added to improve the channel

estimation accuracy of all channel coefficients. Based on this channel estimate, we exploit a

maximum-ratio-combiner (MRC) at the BS and derive a closed-form approximation for the

SE which explicitly shows the contribution of the low- and high-resolution ADCs on the SE

of a mixed-ADC architecture with a space-constrained array. It is shown that by equally

spacing the high-resolution ADCs over a uniform linear array, one can dramatically reduce

the performance gap between a system with all low-resolution and all high-resolution ADCs.

For spatial Σ∆ architecture which relies on spatial oversampling (antenna spacing less than

half a wavelength), the impact of mutual coupling may become significant as the antenna

spacing decreases. Unlike temporal oversampling, there is a limit to the amount of spatial

oversampling that can be achieved, due to the physical dimensions of the antennas. In the

last section of this chapter, we show that the one-bit Sigma-Delta array is particularly ad-

vantageous in space-constrained scenarios, and can still provide significant gains even in the

presence of mutual coupling when the antennas are closely spaced. For very small antenna

spacings, the noise shaping gain is offset by the loss due to mutual coupling, and the per-

formance remains relatively constant; this is in contrast to a standard high-resolution ADC

architecture without Σ∆, where the performance degrades monotonically as the antennas

move closer together.
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5.1 Channel Model and Mutual Coupling

Consider the uplink of a single-cell multi-user MIMO system consisting of K single-antenna

users that send their signals simultaneously to a BS equipped with a uniform linear array

(ULA) with M antennas. The M × 1 signal received at the BS from the K users is given by

x = GP
1
2 s + n, (5.1)

where G = [g1, · · · , gK] ∈ C
M×K is the channel matrix between the users and the BS, and P

is the diagonal matrix whose kth diagonal element, pk , represents the average transmitted

power of the kth user. The symbol vector transmitted by the users is denoted by s ∈ CK×1

where E
{
ssH

}
= IK and is drawn from a CSCG codebook independent of the other users,

and, n ∼ CN (0, Rn) denotes additive CSCG receiver noise at the BS. The channel matrix

can be decomposed as

G = T AHD
1
2 , (5.2)

where T is the mutual coupling matrix which is defined as

T =

(
IM +

1

R
Z

)−1

(5.3)

where R denotes low noise amplifier (LNA) input impedance. For thin half wavelength

dipoles, the elements of Z can be characterized as [79]

[Z]i j = 30

(
2Ci(2πdi j) − Ci(ξi j + π) − Ci(ξi j − π)

+ j
(
−2Si(2πdi j) + Si(ξi j + π) + Si(ξi j − π)

) )
, i , j
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[Z]ii = 30
(
γ + log(2π) − Ci(2π) + jSi(2π)

)
, (5.4)

where di j is the distance between antennas i and j normalized by the wavelength, ξi j =

π
√

1 + 4d2
i j , and γ denotes the Euler-Mascheroni constant.

We consider a physical channel model where the angular domain is comprised of L finite

directions, as in [65]. Hence, A is an M × L matrix whose `th column denotes the array

steering vector corresponding to the direction of arrival θ` and is given by

a (θ`) =
1
√

L
[1, e− j2πd12sin(θ`), · · · , e− j2πd1Msin(θ`)]T, (5.5)

and H = [h1, · · · , hK] ∈ C
L×K is the propagation response matrix and represents the fast

fading whose elements are distributed identically and independently as CN (0, 1). Geometric

attenuation and shadow fading are modeled by the diagonal matrix D whose kth diagonal

element is denoted by βk . In the remainder of the chapter, we assume that A and D are

priori known at the BS [77, 65]. By considering the mutual coupling effect, the additive noise

covariance matrix, Rn, can be derived as

Rn = T
(
σ2

i (ZZ
H + R2

N IM) − 2RNRe(ρ
∗Z) + 4kT BRe(Z)

)
TH, (5.6)

with E{iN i
H
N } = σ

2
i IM , E{uNu

H
N } = σ

2
u IM , RN =

σu
σi

,
E{uN iHN }

σuσi
= ρIM , where iN and uN denote

the equivalent noise current and voltage of the LNA and k, T , and B represent the Boltzman

constant, environment temperature, and bandwidth, respectively.
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5.2 Mixed-ADC Architecture

We consider a mixed-ADC architecture at the BS in which M0 antennas are connected to

high-resolution ADCs while M1 antennas are fed to low-resolution ADCs. As a result, by

partitioning the channel matrix G, we can rewrite (5.1) as


x0

x1

 =

G0

G1

P
1
2 s +


n0

n1

 . (5.7)

In (5.7), G0 = T0AHD
1
2 ∈ CM0×K (G1 = T1AHD

1
2 ∈ CM1×K) contains the channel coefficients

from the users to the M0 (M1) antennas connected to high-resolution (low-resolution) ADCs

and n0 (n1) denotes the corresponding elements of n, and similarly for T0 and T1. Therefore,

the received signal at the BS is

r =


r0

r1

 =


x0

Q (x1)

, (5.8)

where Q(·) represents the element-wise quantization operation. We adopt the additive quan-

tization noise model (AQNM) for the quantizer output [22, 27]

Q(x1) = αx1 + q, (5.9)

where 0 < α < 1 is a linear gain dependent on the number of quantization bits and q denotes

the quantization noise which is uncorrelated with y1 and whose covariance matrix is given

by

Rq = α (1 − α) diag
(
Rx1

)
, (5.10)

where Rx1 denotes the covariance of x1.
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We assume a block-fading model where each channel remains constant in a coherence interval

of length T symbols and changes independently between different intervals. At the beginning

of each coherence interval, the users send their η-tuple mutually orthogonal pilot sequences

(K ≤ η ≤ T) to the BS for channel estimation. The remaining T − η symbols are dedicated

to uplink data transmission.

5.2.1 Training Phase

In this section, we investigate the linear minimum mean squared error (LMMSE) channel

estimator for different ADC architectures at the BS. In all scenarios, the pilot sequences

are drawn from an η × K matrix Φ, where the kth column of Φ, φk , is the kth user’s pilot

sequence and ΦHΦ = IK . Therefore, the M × η received signal at the BS becomes

X =


X0

X1

 =
√
η


G0

αG1

P
1
2ΦT +


N0

αN1 + N q

, (5.11)

where N0 (N1) is an M0 × η (M1 × η) additive noise matrix and N q denotes the quantization

noise. The LMMSE estimate of the k-th user propagation response, hk , is

ĥk =
√
ηpβkB

H
(
ηpk βkBB

H + Rw

)−1

Xφ∗k, (5.12)

where

B =


T0A

αT1A

, Rw =


Rn0 αRn0n1

αRn1n0 (α
2Rn1 + Rq)

 (5.13)

Rq = α(1 − α)diag

((
K∑

k=1

pk βk

)
T1AA

HTH
1 + Rn1

)
. (5.14)
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By defining the channel estimation error, ε = hk − ĥ, we have

Rĥk
= ηpk βkB

H
(
ηpk βkBB

H + Rw

)−1
B (5.15)

Rεk =

(
IP + ηpk βkB

HR−1
w B

)−1

(5.16)

where Rĥk
and Rεk denote the covariance matrix of ĥk and ε , respectively.

In contrast with independent Rayleigh fading channel where each high-resolution ADC only

can improve the estimation accuracy of the channel associated with the antenna connected

to it [26], in this model each high-resolution observation sees information about all L channel

coefficients coefficients due to the coupling matrix T and array steering matrix A. Hence, the

high-resolution ADCs will have a stronger contribution to increasing the estimation accuracy

of all channel coefficients due to the correlation among the observations. In Section 5.2.3, we

numerically show to what extent adding a small number of high-resolution ADCs improves

the channel estimation accuracy.

5.2.2 Spectral Efficiency

In the data transmission phase, all users simultaneously send their data symbols to the BS.

Without loss of generality, we index the antennas such that the first N are connected to

high-resolution ADCs. From equation (5.1), the received signal at the BS after quantization

can be approximated as [27]:


r0

r1

 ≈


G0P
1
2 s + n0

αG1P
1
2 s + αn1 + qd

, (5.17)
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where qd denotes the quantization noise whose covariance matrix is given by:

Rqd = α (1 − α) diag
(
G1PG

H
1 + Rn1

)
. (5.18)

For data detection, the BS uses the MRC receiver W = Ĝ where Ĝ = [ĝ1, ..., ĝK] denotes the

estimate of the channel. Therefore, the resulting signal at the BS is

ŝ = WH


r0

r1

 =

Ĝ0

Ĝ1


H 

G0

αG1

P
1
2 s +


Ĝ0

Ĝ1


H 

n0

αn1 + qd

 . (5.19)

The kth element of ŝ is

ŝk =
√

pk

(
ĝH

0k ĝ0k + αĝ
H
1k ĝ1k

)
sk +
√

pk

K∑
i=1,i,k

(
ĝH

0k ĝ0i + αĝ
H
1k ĝ1i

)
si+

√
pk

K∑
i=1

(
ĝH

0kε0i + αĝ
H
1kε1i

)
si + ĝH

0kn0 + αĝ
H
1kn1 + ĝH

1k qd, (5.20)

where ĝ0k , ĝ1k , ε0k , g0k− ĝ0k , ε1k , g1k− ĝ1k are the kth columns of Ĝ0, Ĝ1, E0 , G0− Ĝ0,

and E1 , G1 − Ĝ1, respectively. The BS treats ĝH
0k ĝ0k + αĝ

H
1k ĝ1k as the desired channel and

the other terms of (5.20) as Gaussian noise when decoding the signal. Consequently, a lower

bound for the ergodic achievable SE at the kth user can be written as [27]

Sk =
(
1 −

η

T

)
E

{
log2

(
1 +

pk | ĝ
H
0k ĝ0k + αĝ

H
1k ĝ1k |

2

Ω

)}
, (5.21)
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where

Ω = pk

K∑
i=1,i,k

| ĝH
0k ĝ0i + αĝ

H
1k ĝ1i |

2 +

K∑
i=1

piβi

(
ĝH

0k A0Rε iA
H
0 ĝH

0k + α
2 ĝH

1k A1Rε iA
H
1 ĝH

1k+

2αR
{
ĝH

0k A0Rε iA
H
1 ĝH

1k
})
+ σ2

n

(
‖ ĝ0k ‖

2 + α2‖ ĝ1k ‖
2
)
+

α (1 − α) ĝH
1kdiag

(
pk

(
Ĝ1 − E1

) (
Ĝ1 − E1

)H
+ Rn1

)
ĝ1k (5.22)

with At , T tA.

An approximation for the achievable SE of a mixed-ADC system with mutual coupling and

MRC detection is presented in the next theorem.

Theorem 5.1. For a mixed-ADC massive MIMO system with MRC detection and an array

of thin dipoles, the SE of the kth user is

Sk ≈

(
1 −

η

T

)
log2

(
1 +

A

I + B +N + α(1 − α)Q

)
, (5.23)

when mutual coupling effects are considered, where A, I, B, N , and Q are

A = pk βk

(
|Tr(Γ0k)|

2 + Tr(Γ2
0k) + α

2
(
|Tr(Γ1k)|

2 + Tr(Γ2
1k)

)
+

2αR {Tr(Γ0kΓ1k)Tr(Γ0k)Tr(Γ1k)}

)
(5.24)

I =

K∑
i,k

piβi(Tr (Γ0kΓ0i) + α
2Tr(Γ1kΓ1i) + 2αR {Tr(Γ0kΓ1i)}) (5.25)

B =

K∑
i=k

piβi(Tr
(
Γ0kΓ

ε
0i
)
+ α2Tr(Γ1kΓ

ε
1i) + 2αR

{
Tr(Γ0kΓ

ε
1i)

}
) (5.26)
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N = Tr
©«Rĥk
(T A)H


Rn0 αRn0n1

αRn1n0 α2Rn1

T A
ª®®¬ (5.27)

Q =(
K∑

i,k

piβi

)
Tr(Γ̃1k � (A1A

H
1 )) + 2pβkTr(Γ̃1k � Γ̃1k)+

pk βkTr(Γ̃1k � Γ̃
ε
1k) + Tr

(
Rĥk
(T1A)

HRn1T1A
)

(5.28)

Γtk = Rĥk
AH

t At, t ∈ {0, 1} , Γεtk = Rεk A
H
t At, t ∈ {0, 1}

Γ̃tk = AtRĥk
AH

t , t ∈ {0, 1} , Γ̃εtk = AtRεk A
H
t , t ∈ {0, 1} .

Proof. From [27, 71], an approximation for (5.21) can be calculated as

Sk =
(
1 −

η

T

)
log2

(
1 +

pkE
{
| ĝH

0k ĝ0k + αĝ
H
1k ĝ1k |

2
}

E {Ω}

)
. (5.29)

Using Lemma 2 of [11], the expected values of the desired signal, interference, and noise can

be easily calculated. To calculate the expected value of the last term in (5.22), we have

E

{
ĝH

1kdiag

(
pk

(
Ĝ1 − E1

) (
Ĝ1 − E1

)H
+ Rn1

)
ĝ1k

}
=

pk

M1∑
m=1

K∑
i,k

E
{
|ĝ1km |

2
}
E

{
|g1im |

2
}
+ pk

M1∑
m=1

E
{
|ĝ1km |

4
}
+ E

{
|ĝ1km |

2 |ε1km |
2
}
+

E
{
ĝH

1kRn1 ĝ1k
}
.
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Given that E
{
|g1im |

2
}
= βi

[
A1A

H
1

]
mm, we need to calculate the expected values of

∑M
m=1 |ĝ1km |

2,∑M
m=1 |ĝ1km |

4, and
∑M

m=1 |ĝ1km |
2 |ε1km |

2. Since ĝ1km is a complex normal random variable with

variance E
{
|ĝ1km |

2
}
= βk

[
Γ̃1k

]
mm, we have E

{
|ĝ1km |

4
}
= 2β2

k

[
Γ̃1k

]2

mm. Hence

M1∑
m=1

E
{
|ĝ1km |

4
}
= 2β2

kTr(Γ̃1k � Γ̃1k). (5.30)

The expected value of
∑M

m=1 |ĝ1km |
2 |ε1km |

2 can be derived similarly. �

In the next section, we show how adding a small number of high-resolution ADCs impacts

the channel estimation accuracy and SE of the system.

5.2.3 Numerical Results

In this section, we numerically investigate the performance of the space-constrained mixed-

ADC massive MIMO system in terms of channel estimation error and SE. We assume static-

aware power control in the network [51], so that pk = p0/βk . Furthermore, we assume

K = η = 10, and a uniform linear array with uniformly distributed angle of arrivals, i.e.,

θ` = −π/3 + (` − 1)π/L, ` = 1, . . . , L as in [65]. The normalized distance between antenna

elements is denoted by d = dap/M where dap is the normalized array length. In all figures,

we assume T = 200, L = 20, and SNR , p0
Rn(1,1)

.

Fig. 5.1 shows the advantage of the mixed-ADC architecture in the channel estimation

phase for a system with M = 100 antennas and dap = 10. As a benchmark, we have sketched

the channel estimation error, i.e., 1
L Tr (Rε ), of a system with all 1-bit ADCs and all-high-

resolution ADCs. “Co-located” denotes a mixed-ADC system with M0 = 20 high-resolution

ADCs which are embedded in the array side by side. “Equidistant” refers to a mixed-ADC

system where the high-resolution ADCs are equally spaced over the array. It can be seen

that the mixed-ADC architecture with equidistant spacing reduces the gap between the
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all-high-resolution architecture and the all-1-bit architecture by one half at high SNRs.

As mentioned above, one approach to compensate for SE loss when all antennas are connected

to low-resolution ADCs is to increase the number of antennas. However, this is true only for

the case that there is no constraint on the size of the array. As we show in the next example,

when the array size is constrained, increasing the number of antennas can lead to saturation

in SE. Therefore, the only viable approach to achieve a predefined SE seems to be through

a mixed-ADC architecture.

Fig. 5.2 shows the impact of increasing the number of antennas for different array lengths

dap. It can be seen that as long as the antenna spacing is greater than half a wavelength, the

SE increases monotonically as a function of the number of antennas at the BS. Eventually,

the SE of the system saturates and is maximized at a certain number of antennas.

5.3 Σ∆ architecture

The channel estimation analysis of massive MIMO systems with Σ∆ architecture is studied

in [47]. This analysis could be easily extended to the case that mutual coupling is taken into

account. It is shown that, especially for low to moderate SNRs, Σ∆ architecture can provide

channel estimation accuracy almost similar to that of high-resolution massive MIMO archi-

tectures. Therefore, we assume perfect CSI for spectral efficiency analysis of Σ∆ architecture

with mutual coupling.

5.3.1 Spectral Efficiency

Due to the complicated structure of the mutual coupling matrix in (5.3) and the quantization

noise shaping matrix U−1, a closed-form expression for the spectral efficiency (SE), if it exists,
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Figure 5.1: Channel estimation error versus SNR.
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would likely not provide significant insight into its behavior with respect to antenna spacing,

nor would it provide a tool for the purpose of optimization. Hence, in the next section we

numerically evaluate the SE of the system.

The received Σ∆-quantized signal, y, at the BS is

y = Q (x) = GP
1
2 s + n + U−1q . (5.31)

The total effective noise η = n + U−1q has covariance matrix Rη = Rn + U−1RqU
−H . We

assume the BS employs a linear receiver W , and we will consider the case of maximum ratio

combining (MRC) and zero-forcing (ZF). For MRC, we do not account for the fact that Rη is

spatially colored, since pre-whitening G destroys the approximate orthogonality of the array

response and increases the inter-user interference. Thus, for MRC we set W = G. However,

knowledge of Rη can be exploited by the ZF receiver, and thus we assume the pre-whitened

solution W = R−1
η G(GHR−1

η G)−1.

For either receiver, the detected symbol vector is

ŝ = WH y = WHGP
1
2 s +WHn +WHU−1q. (5.32)

The k-th detected symbol can be written as

ŝk =
√

pkw
H
k gk sk +

√
pkw

H
k

∑
i,k

gisi + wH
k n + wH

k U
−1q, (5.33)

where wk is the kth column of W . We assume the BS treats wH
k gk as the desired signal and

the other terms of (5.33) as worst-case Gaussian noise when decoding the signal. Conse-

quently, a lower bound for the ergodic achievable SE at the kth user can be written as [71]
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pk
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H
k gi |

2 +
��wH

k n
��2 + ��wH

k U
−1q

��2
)]

. (5.34)

5.3.2 Numerical Results

In this section, we numerically evaluate the SE performance of the Σ∆ massive MIMO system

for various scenarios. Similar to previous section, we assume static-aware power control, i.e.,

pk = p0/βk . In all of the cases considered, unless otherwise noted, we assume K = 10 users

and equally spaced antennas with normalized spacing d. The DoAs for each user are drawn

uniformly from the interval [θ0 − δ, θ0 + δ], and the center angle of the Σ∆ array is steered

towards φ = 2πdsin (θ0).

To highlight the impact of mutual coupling, we will compare the performance when mutual

coupling is included to that when it is hypothetically absent. Simulating the case without

mutual coupling amounts to setting Z = RI in (5.3) and (5.6), which leads to T = 1
2 I and

Rn = σ
2
n I , with the noise power given by

σ2
n =

1

4

[
σ2

i

(
R2 + R2

N − 2RN RR(ρ)
)
+ 4kT BR

]
.

The factor of 1/2 in T results from the fact that x in (5.1) is the voltage on a load matched

to the antenna impedance. This voltage is half of the antenna open-circuit voltage, and

given that the load represents the input to the LNA, it is the signal available for further

processing. Thus, the per-antenna and per-user reference signal-to-noise-ratio (SNR) in the
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absence of mutual coupling is given by

SNR ,
1

4

p0

σ2
n
. (5.35)

The circuit parameters used in (5.3) and (5.6) are defined as σ2
i = 2kT B/R, and σ2

u = 2kT BR,

leading to RN = R where R = 50 Ω, T = 290 K, ρ = 0, and B = 20 MHz. This leads to a

value of σ2
n = 2kT BR, where the factor of 2 appears because we are accounting for noise in

both the antennas and the LNAs. We further assume CSCG symbols and 104 Monte Carlo

trials for the simulations.

In Fig. 5.3, we investigate the impact of the mutual coupling matrix, T , on the spatial

spectrum of the quantization noise when θ0 = 0. To do so, we define the quantization noise

power density as

ρq (θ) ,
1

c(θ)
E

[��a (θ)H THU−1q
��2] , (5.36)

where c(θ) = ‖T a (θ)‖2 is a normalizing factor and θ ∈ [−90◦, 90◦] denotes the DoA. We

see that the noise shaping characteristic of the Σ∆ array is not significantly affected by the

mutual coupling, except for the case of d = λ/8, where we see a small shift in the quantization

noise spectrum.

In Fig. 5.4, we show the effect of antenna spacing on the SE of a system with an MRC receiver.

We see that, when there is no constraint on the size of the array, better performance for the

standard one-bit architecture can be achieved by moving the antennas farther apart. We

see that the standard one-bit architecture outperforms the Σ∆ array when d > λ/2, due to

the fact that increasing the antenna spacing increases the quantization noise power for the

Σ∆ architecture across the DoA sector of interest, as observed in Fig. 5.3. Furthermore, we

see that the SE for the Σ∆ architecture is not monotonic and d = λ/2 provides the best

performance, which corresponds to no oversampling. The optimal value of d for the Σ∆

125



-50 0 50

-120

-115

-110

-105

-100

-95

-90

-85

-50 0 50

-120

-115

-110

-105

-100

-95

-90

-50 0 50

-120

-115

-110

-105

-100

-95

-90

-85

-50 0 50

-120

-115

-110

-105

-100

-95

-90

-85

Figure 5.3: Quantization noise power density for a system with θ0 = 0◦, 2δ = 40◦,
SNR = 0 dB, M = 100, L = 15.
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Figure 5.4: SE versus antenna spacing for a system with an MRC receiver and θ0 = −10◦,
angular sector 2δ = 40◦, SNR = 10 dB, M = 100, L = 15.
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array will of course decrease if the sector of user DoAs was widened.

The SE results for the ZF receiver are shown in Fig. 5.5. We again observe the degradation of

the Σ∆ performance as d increases, but in this case there is a more significant gain relative to

standard one-bit quantization for smaller antenna spacings, and the optimal antenna spacing

for the Σ∆ array is reduced to approximately d = λ/3.

While the standard one-bit architecture can outperform the Σ∆ approach when there is no

constraint on the dimension of the array (large d), Figs. 5.6 and 5.7 demonstrate that the

Σ∆ array provides a better result in space-constrained scenarios. For these simulations, we

consider a case in which the antenna array has a limited aperture of d0 = 50 and we increase

the number of antennas from M = 100 to M = 400, which corresponds to a decrease in

antenna spacing from d = 1/2 to d = 1/8. For the case of an MRC receiver in Fig. 5.6,

the Σ∆ architecture achieves a spectral efficiency nearly equal to that of an array with full-

resolution ADCs when M ≥ 250. For the case of ZF, Σ∆ provides a dramatic gain in SE over

standard one-bit quantization.

In Fig. 5.8, the optimal antenna spacing for the Σ∆ architecture with a ZF receiver is shown

for different SNRs, where we have quantized d to the nearest value of λ/10. It can be seen

that the optimal spacing is dependent on the SNR and DoA region width, δ. The optimal

antenna spacing decreases as SNR increases, and also as the size of the DoA sector of interest

increases. We expect this phenomenon since for wider DoA sectors, a wider noise shaping

characteristic is required to achieve the best performance. The same general conclusion holds

true for the case with the MRC receiver.
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Figure 5.5: SE versus antenna spacing for a system with ZF receiver and θ0 = −10◦, angular
sector 2δ = 40◦, SNR = 10 dB, M = 100, L = 15.
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Figure 5.6: SE versus number of BS antennas for a system with MRC receiver and θ0 = −10◦,
angular sector 2δ = 40◦, SNR = 10 dB, d0 = 50, L = 15.
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Figure 5.7: SE for a system with ZF receiver and θ0 = −10◦, angular sector 2δ = 40◦,
SNR = 10 dB, d0 = 50, L = 15.
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−10◦, M = 100, L = 15.
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5.4 Summary

We have studied the effect of mutual coupling on the performance of mixed-ADC and one-bit

Σ∆ massive MIMO systems. For mixed-ADC architecture, we see that by equally spacing a

small number of high-resolution ADCs over the array, one can dramatically reduce the per-

formance gap between a system with all low-resolution and all high-resolution ADCs. For

Σ∆ architecture, it was shown that this architecture is most suitable for array deployments

with an aperture size constraint. While the performance of standard one-bit quantization

saturates as the number of antennas increases in a constrained-aperture array, the perfor-

mance of the Σ∆ architecture tends to approach that of a system with high-resolution ADCs.

This is due to the noise-shaping gain achieved by the Σ∆ architecture when the users are

sectorized or the array is oversampled in space. It is worthwhile to note that the inevitable

power loss due to mutual coupling can to some extent be alleviated using, for example, a

matching network. This is a subject of future investigation.
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Chapter 6

Conclusion

In this work, two main approaches in bridging the performance gap between massive MIMO

systems with high-resolution and standard one-bit ADCs were investigated. The underlying

theme of this dissertation has been taking the advantage of signal processing techniques in

design and performance improvement of massive MIMO systems with coarse quantization.

In Chapter 2, we have studied the spectral efficiency of the mixed-ADC massive MIMO

uplink under energy constraint and assuming MRC processing. We derived a closed form

expression for the SE assuming the channel is estimated using both high-resolution and one-

bit ADCs, without using the training-intensive round-robin approach. We then maximized

the SE under a constraint on the power budget, and showed that in fact the mixed-ADC

approach is not optimal. Typical power consumption models indicate that a system with all

one-bit ADCs provides the highest SE for a given uplink power budget.

In Chapter 3, we studied the spectral efficiency of mixed-ADC massive MIMO systems with

either MRC or ZF detection. We showed that properly accounting for the impact of the

quantized receivers using the Bussgang decomposition is important for obtaining an accurate

analysis of the SE. We introduced a joint channel estimation approach to leverage both
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high-resolution ADCs and one-bit ADCs and our analytical and numerical results confirmed

the benefit of joint channel estimation for low SNRs. Mixed-ADC detection with MRC

and ZF detectors and antenna selection were also studied. Analytical expressions were

derived for MRC detection and a numerical performance analysis was performed for ZF

detection. It was shown that antenna selection provides a slight advantage for high SNRs

while this advantage tends to disappear for low SNRs. We showed that the SNR, the

number of high-resolution ADCs and the length of the coherence interval play a pivotal

role in determining the performance of mixed-ADC systems. We showed that, in general,

mixed-ADC architectures will have the greatest benefit compared to implementations with

all low-resolution ADCs when ZF detection is used and the SNR is relatively high. In such

cases, the gain of the mixed-ADC approach can be substantial. Gains are also possible for

MRC, but they are not as significant, and require larger numbers of high-resolution ADCs

to see a benefit compared with the ZF case. The more complicated mixed-ADC approach

based on ADC switching and round-robin training can achieve the best performance in some

cases, particularly when the coherence interval is long and more high-resolution ADCs are

available to reduce the number of training interval repetitions. Otherwise, a mixed-ADC

implementation without ADC switching and extra training is preferred.

In Chapter 4, the performance of massive MIMO systems employing spatial one-bit Σ∆

quantization was investigated. Using an element-wise Bussgang approach, we derived an

equivalent linear model in order to analytically characterize the spectral efficiency of a mas-

sive MIMO base station with a Σ∆ array, and we compared the results with the performance

achieved by an array that employs standard one-bit quantization. Our results demonstrated

that the spatial Σ∆ architecture can scale down the quantization noise power proportional

to the square of the spatial oversampling rate. This can be interpreted as scaling down the

quantization noise power proportional to the inverse square of the number of antennas at the

BS for space-constrained arrays. This result gains more importance by noting that in stan-

dard one-bit quantization, the quantization noise power grows proportional to the inverse of
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the spatial oversampling rate, or equivalently, proportional to the number of antennas at the

BS in space-constrained arrays. Furthermore, it was shown how this capability allows the

spatial Σ∆ architecture to bridge the SE gap between infinite resolution and standard one-bit

quantized systems. For the ZF receiver, the spatial Σ∆ architecture can outperform standard

one-bit quantization by about 50%, and achieve almost the same performance as an infinite

resolution system for the MRC receiver. While these results were obtained by assuming the

availability of perfect CSI at the BS, we also showed that the spatial Σ∆ architecture is able

to alleviate the adverse impact of quantization noise in the presence of channel estimation

error. We presented a new spatial one-bit FBB Σ∆ architecture for mitigating strong inter-

ference in massive MIMO systems with one-bit quantization. We showed that this simple

architecture can effectively compensate for the vulnerability of one-bit ADCs against strong

interference. The critical challenges in designing this architecture are to find the appropriate

output levels for the one-bit quantizers and the values for the feedback weights. A recursive

algorithm was proposed to specify the quantizers’ output levels. The feedback weights were

designed by adopting an algorithm used previously for a temporal FBB Σ∆ implementation.

However, the behaviour of the feedback weights indicates that they amount to a spatial

beamformer pointing in the direction(s) of the interference, and hence could be designed

by a less complicated approach. Interesting directions for future work include studying the

impact of angle estimation errors on the performance of the FBB Σ∆ architecture, or using

the approach for combined quantization noise shaping and transmit beampattern design for

the downlink with low-resolution digital-to-analog converters.

Finally, in Chapter 5, we analyzed the effect of mutual coupling on the performance of mixed-

ADC and one-bit Σ∆ massive MIMO systems. For mixed-ADC architecture, we see that by

equally spacing a small number of high-resolution ADCs over the array, one can dramatically

reduce the performance gap between a system with all low-resolution and all high-resolution

ADCs. For Σ∆ architecture, it was shown that this architecture is most suitable for array

deployments with an aperture size constraint. While the performance of standard one-
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bit quantization saturates as the number of antennas increases in a constrained-aperture

array, the performance of the Σ∆ architecture tends to approach that of a system with high-

resolution ADCs. This is due to the noise-shaping gain achieved by the Σ∆ architecture when

the users are sectorized or the array is oversampled in space. It is worthwhile to note that

the inevitable power loss due to mutual coupling can to some extent be alleviated using, for

example, a matching network. This is a subject of future investigation.
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