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Abstract

Primary graft dysfunction (PGD) is a major cause of early mortality after lung transplant. We 

aimed to define objective estimates of PGD risk based on readily available clinical variables, using 

a prospective study of 11 centers in Lung Transplant Outcomes Group (LTOG). Derivation 

included 1255 subjects from 2002–2010; with separate validation in 382 subjects accrued from 
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2011–2012. We used logistic regression to identify predictors of grade 3 PGD at 48/72 hours, and 

decision curve methods to assess impact on clinical decisions. 211/1255 subjects in the derivation 

and 56/382 subjects in the validation developed PGD. We developed 3 prediction models, where 

low-risk recipients had a normal BMI (18.5–25 kg/m2), COPD/CF, and absent or mild PH 

(mPAP< 40mmHg). All others were considered higher-risk. Low-risk recipients had a predicted 

PGD risk of 4–7%, and high-risk a predicted PGD risk of 15–18%. Adding a donor-smoking lung 

to a higher-risk recipient significantly increased PGD risk, although risk did not change in low-

risk recipients. Validation demonstrated that probability estimates were generally accurate and that 

models worked best at baseline PGD incidences between 5–25%. We conclude that valid 

estimates of PGD risk can be produced using readily-available clinical variables.

Keywords

Primary Graft Dysfunction; Prediction; Lung transplantation; Acute Lung Injury

Introduction

Primary graft dysfunction (PGD) is a form of acute lung injury affecting the lung allograft 

within 72 hours of transplantation (1). PGD is common, occurring in 10–30% of transplant 

recipients, and it is the leading cause of mortality in the early post-transplant period, 

accounting for nearly 50% of deaths within the first 30 days (2, 3). Additionally, PGD is a 

risk factor for other long-term complications of lung transplantation, including bronchiolitis 

obliterans syndrome (4, 5).

Given the clear association between PGD and poor outcomes after lung transplantation, the 

ability to risk stratify recipients prior to transplantation is important for several reasons. 

First, better identification of higher and low-risk recipients groups may allow the caring 

team to be better prepared for the likelihood of development of PGD. Second, improved pre-

operative prediction may facilitate attempts to safely expand the donor pool by 

characterizing lower risk recipient groups. Third, identification of higher-risk groups of 

recipients will facilitate therapeutic interventions or clinical trials aimed at reducing PGD 

both before and/or immediately after transplantation.

In this study, we aimed to define and validate objective estimates of the risk of development 

of PGD based on readily-available clinical variables. Furthermore, we used decision curve 

analysis to demonstrate the net benefit of different models across a range of baseline PGD 

incidence.

Methods

Study Participants

Subjects aged 18–80 were enrolled from 11 US transplant centers within the Lung 

Transplant Outcomes Group (LTOG), a multi-center prospective cohort study of lung 

transplant recipients (bilateral and single), designed to evaluate risk factors and build a 

prediction model for PGD. (3, 6–11). The derivation population included subjects enrolled 

between May 2002 and December 2010; we have previously published on individual risk 
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factors for PGD in the derivation cohort (clinicaltrials.gov identifier: NCT00552357) (3, 10, 

12). A new and separate validation population included subjects enrolled between January 

2011 and August 2012. Clinical data were collected prospectively for all subjects (13). The 

Institutional Review Boards at each site approved our study. Informed consent was obtained 

from each subject.

Outcome Definition

PGD in both the derivation and the validation cohorts was graded according to ISHLT 

criteria, defined using PaO2/FiO2 ratio and the presence of diffuse infiltrates in the lung 

allograft(s) (14). Two blinded physicians interpreted chest radiographs independently, with 

adjudication of conflicts by a third reviewer (kappa for agreement on subject-level grade 3 

PGD classification=0.95) (14). The primary outcome was grade 3 PGD at 48 or 72 hours 

after transplantation, which has been validated and has been used as an outcome in previous 

studies, including clinical trials (3, 15, 16).

Prediction Model Development

Variable Definitions—We transformed continuous variables into categorical variables for 

simplification. As much as possible, categories were based on clinically useful algorithms 

(e.g. WHO classification criteria) and not derived from the data. Body mass index and 

pulmonary artery pressure were categorized using WHO classification (17). Two variables 

representing donor smoking were evaluated for use in the prediction model. The first 

variable was prospectively collected by LTOG personnel, based on Donor Net data and 

reported history by surrogates, and was categorized as yes, any history of donor smoking, or 

no, a never smoker (3). The second variable was obtained from UNOS data, which stratified 

patients as a “yes/no/unknown” history of smoking based on a >20 pack year smoking 

history. The UNOS dataset contains additional cigarette smoking variables that had too 

much missing data to be included as predictors, including a field for “continued cigarette 

use” which was missing in 85% of subjects. Pulmonary artery pressures at the time of listing 

were used preferentially to allow the model to be valid when used prior to transplant; 

however, if unavailable, pressures at the time of transplant were used. Pre-transplant 

recipient diagnosis was grouped into three categories based on predicted PGD risk: COPD 

or CF, ILD, and all other diagnoses (including sarcoidosis and PAH) (3).

Missing Data in the Derivation Cohort—To avoid incorrect choices in candidate 

predictors and model misspecification, we engaged in a formal three-step missing data 

imputation process in the derivation dataset before modeling. First, we examined each 

candidate predictor for out of range values or errors and set those values to missing. Second, 

using the method of chained equations, we created 20 imputed datasets with values for 63 

variables using multinomial, ordinal, and linear regression models containing demographic 

and clinical factors from both donor and recipients (18–20). Third, after the imputation 

process we then identified out-of range values and truncated them to fall within clinical 

bounds.

Statistical Analysis in the Derivation Cohort—For this study, we considered all 

possible recipient and donor risk factors as potential predictors, not just those studied in 
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prior publications (21). We used several methods to narrow the number of candidate 

predictors for a final model based on the development dataset. First, we performed all 

regressions with the set of 20 imputed datasets; then estimated statistical significance based 

on the sum of between and within imputation components of variance to avoid overstating 

statistical significance. Second, while we initially considered the statistical significance of a 

factor’s association with PGD, we guarded against overfitting in multivariable models by 

mean of an automated test of stepwise model building with bootstrap resampling. Within 

each of 1000 bootstrap samples, we performed logistic regression and noted the number of 

times that a candidate predictor remained in the resulting model. To reduce the number of 

candidate recipient predictors, we included in the final model only those predictors that were 

associated with PGD in the stepwise regressions with p-values <0.05 in >67% of bootstrap 

re-samples. Although different thresholds may be used to identify candidate predictors, we 

felt 67% was most inclusive (22); and conducted sensitivity analyses of this threshold to 

include ranges from 25–75% of bootstrap resamples

After identifying candidate predictors, we focused on the ability of competing models using 

only these predictor variables to generate high and low risk patient subgroups with objective 

estimates of PGD risk. We chose this method to maximize the clinical utility of the 

prediction estimates for groups of patients, as opposed to methods that focus solely on 

maximizing discrimination as measured by the area under an ROC curve (or c-statistic), 

which may be more suitable to ranking individual patients (such as on a wait list) but often 

do not generate values that have clinical meaning. To that end, and in addition to calculating 

c-statistics as measure of model discrimination, we identified candidate risk thresholds for 

use in clinical practice (23), based on a range of baseline PGD incidences and generated 

three different models with varying definitions of low and high risk recipients. Standardized 

risks for PGD were generated in the derivation cohort for the high and low risk groups. 

These risk estimates were generated using post-estimation marginalized standardized 

predictive probabilities from the regression equations, and represent predicted PGD risk 

assuming all subjects have equal distribution of other clinical covariates, with the only 

difference being their membership in the low or high risk group (24). We identified three 

potential models: first, a “restrictive” model in which the presence of any predictor 

categorized a subject as higher-risk; second, an “additive” model, in which the presence of 2 

or more predictors categorized a subject as higher-risk; and third, a “simple” model, which 

required having only one predictor necessary to be higher-risk, with different variable 

cutoffs. Both the selection of candidate predictors and the definition of these alternative risk 

classifications reflected our findings based on the analysis of candidate predictors and their 

statistical significance.

As donor smoking was the only donor variable identified for inclusion as a potential 

predictor, we quantified the effect on adding a donor with smoke exposure on the predicted 

PGD risk over-and-above the estimated risk based on recipient variables alone. We 

accounted for center as a main effect in our analysis using logistic regression conditioned on 

center, based on previous data that there was a variable incidence of PGD between centers 

(3). We did not perform a stratified analysis within center because of limited numbers. In 

sensitivity analyses, the derivation analysis was also performed within transplant type, 

acknowledging inherent differences in single and bilateral transplant recipients.

Shah et al. Page 4

Am J Transplant. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In secondary analyses, we used the same set of candidate models to evaluate prediction of 

30-day and 1-year mortality.

Model Validation

Study Population—The validation set purposely contained data from the same centers, 

but from a separate time period immediately following the development dataset. This 

approach permitted use of all available data at the time of model development and then all 

patients whose data accrued subsequently for the validation. Temporal validation was also 

chosen because other multicenter validation datasets with well-phenotyped PGD data were 

not available at the time of study conduct.

We did not employ multiple imputation in the validation dataset to be consistent with 

clinical practice where complete data on all subjects is unlikely.

Validation of PGD Probability Estimates—Using the predictors identified in the 

model development stage, we tested the predicted and observed probabilities of PGD in the 

separate validation dataset. We primarily focused on whether the observed PGD 

probabilities in the validation set fell within the confidence intervals of the predicted 

probabilities that were generated in the derivation set (25). We also employed decision curve 

analyses to compare alternative models against treating all patients as either “low risk” or 

“high risk” (26). Decision curves combine traditional measures of sensitivity and specificity 

with more formal assessment of risk thresholds at which clinicians and their patients might 

makes decisions about risk and treatment choices. They describe a) whether the candidate 

prognostic models will perform better than the alternative of classifying everyone (or no 

one) as high PGD risk and b) the net benefit of the model across a range of decision 

thresholds (where the decision threshold is the predicted risk of PGD from a particular 

model). The net benefit is a calculated number derived by subtracting the proportion of all 

patients who are false positive from the proportion who are true positive within a range of 

threshold probabilities (formula: (true positive count/n)−(false positive count/n)*(pt/1−pt), 

where pt represents the threshold probability that would change clinical decision making) 

(26). Using net benefit at various probabilities allowed us to generate the decision curve in 

Figure 1. We chose this method as a more clinically useful way of assessing the utility of the 

prediction model, because it takes into account consequences of actions across risk 

thresholds (25). Decision curves plotting the net benefit on the y-axis vs the threshold PGD 

probabilities on the x axis, using the “dca” command in STATA v13.

Sample Size—We estimated the number of subjects needed to validate the model, while 

maximizing the number of subjects in the derivation cohort to optimize power for model 

generation. Since the primary focus was to identify a group of low-risk, we focused on 

identifying patients whose predicted probability of PGD was 50% of our estimated baseline 

incidence of PGD. We considered this relative reduction in risk of PGD as clinically 

significant, which would be commonly accepted as a low risk phenotype. As our observed 

incidence was 17% in prior studies (3) we estimated that a validation sample of 350 with an 

overall risk of PGD of 8% (a 50% reduction from 17%) would have a risk upper bound of 

11% (therefore, be distinct from the overall incidence of 17%).
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STATA v11.2-13.0 (STATA Corp. College Station, TX) was used for all analyses.

Results

Of the 1255 subjects in the derivation cohort, 211 (17%, 95% CI: 15%, 19%) developed 

PGD. Of the 382 subjects in the validation cohort, 56 (15%, 95% CI: 11%, 19%) developed 

PGD. In both cohorts, recipients with PGD were more frequently overweight or obese, had 

ILD as a pre-transplant diagnosis, and more frequently had moderate-severe pulmonary 

hypertension (Table 1). Percentages of data imputed for variables in the derivation cohort 

are listed in Table S1.

Derivation

Table 2 presents the results of bootstrap modeling on variable selection of candidate 

predictors. Consideration of alternate thresholds ranging from 25–75% did not alter the 

predictor variables selected. Recipient factors with significant predictive utility included: a 

pre-transplant diagnosis that was not COPD or CF, abnormal body mass index (BMI), and 

elevated mean pulmonary artery pressure (mPAP, which was defined as ≥ 25mmHg). Using 

these three recipient predictors; we were able to categorize recipients into “higher-risk” and 

“low-risk”. We tested the three recipient prediction models based on different cutoffs using 

diagnosis, BMI, and PA pressure, summarized in table 3. Table 4 displays PGD probability 

estimates for the three models generated. The first model, or the “restrictive model” 

identified 14% of recipients as low-risk, which was defined as no PGD predictors, i.e. 

normal BMI, no pulmonary hypertension, and a diagnosis of COPD or CF. Low risk 

recipients in this model had a predicted risk of PGD of 5% (95% CI: 0, 10). In the high risk 

category (86% of recipients), there was a predicted PGD risk of 15 % (95% CI: 13, 18%). 

The second, or “additive model” categorized significantly more recipients as low risk (37%). 

In this model, a low-risk recipient had at least 1 of the predictors, and had a predicted PGD 

risk of 7%, (95% CI: 4, 11%) and a high risk recipient (63%) had a predicted PGD risk of 

18% (14, 21%). Finally, the third model, the “simple model” identified 24% as low-risk. 

This model also categorized a low risk recipient as having no more than one predictor, but 

considered high risk recipients to have a mPAP ≥ 40mmHg (as opposed to 25mmHg in the 

restrictive model). In this model, a low risk recipient had a predicted incidence of PGD of 

6% (95% CI: 2, 10%), and the low risk phenotype was defined by a pre-transplant diagnosis 

of COPD or CF, normal BMI (18.5–25), and either absent or mild pulmonary hypertension 

(mPAP<40mmHg). The higher-risk recipient had a predicted PGD risk of 16% (95% CI: 13, 

19%) In all models, the goodness of fit test indicated good calibration (p>0.05 for all three). 

C-statistics were similar in the models (Table 4)

History of any smoking was the only donor risk factor that consistently predicted PGD. We 

therefore evaluated the impact of adding a lung from a smoking donor to recipients in the 

higher and low-risk categories (Table 4). The addition of a donor with smoke exposure to a 

higher-risk recipient significantly increased the risk of PGD in all three models. However, 

the addition of a donor with smoke exposure to a low-risk recipient did not significantly 

increase the risk of PGD in the derivation set. Similar results were found when we evaluated 

the model stratified by single or bilateral transplant procedure type (Table S3).
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Validation Cohort

We next evaluated whether observed PGD incidences in the validation cohort were similar 

to those predicted from the derivation cohort (Table 4). The observed incidences of PGD in 

the low-risk groups ranged from 5–11% and fell within confidence intervals of predicted 

probabilities in all strata of all models. In the higher-risk groups, again the observed 

incidences of PGD were 13–16% and fell within predicted risk values from the derivation 

cohort for these strata. With the addition of donor with smoke exposure to the low-risk 

groups, the observed risk increased to 13–15%; however, the small number of subjects in 

these strata limited our ability to determine the significance of the increase in risk. In 

particular, there were low numbers of subjects with moderate or severe pulmonary 

hypertension in the validation cohort. In the higher-risk groups, the addition of donor lungs 

from smokers significantly increased the PGD risk in all 3 models, and observed incidences 

in the validation cohort all fell within the predicted risks from the derivation cohort for these 

strata.

Next, we classified patients according to the three risk models and assessed whether use of 

these risk models would increase overall net benefit across a range of thresholds of PGD 

incidences, compared to the alternatives of defining all patients (or no patients) as high risk. 

As displayed in Figure 1, for expected ranges of incidences of 5–25%, use of the three 

prediction models demonstrated benefit over a strategy of treating everyone as either higher 

or low-risk. As shown in Figure 1, the “restrictive model” seemed to perform better at lower 

PGD thresholds (as low as 5%), while the “additive model” performed best at higher PGD 

risk thresholds.

Mortality Prediction

Given previously demonstrated association of PGD with early mortality, we tested the utility 

of our model for mortality prediction. Mortality information was available on 1229 of the 

1255 subjects (98%). In the derivation cohort, 98 subjects died within 90 days of transplant 

(8%), and 167 died within 1 year of transplant (13%). Numbers were too small to evaluate 

the association with mortality in the validation cohort (only 21 of 376 with mortality 

information died within 90 days). When using any of the three models in the derivation 

cohort, low risk recipients had a lower risk of 90-day mortality than higher risk recipients. 

When we evaluated 1 year mortality, low risk recipients again had a lower mortality than 

higher-risk recipients. The addition of a smoking donor did not significantly affect the 

predicted risk of 90-day or 1-year mortality (Table 5).

Discussion

In this study, we generated three prediction models for PGD that distinguish low risk from 

high risk recipients for PGD groups based on variables that are readily available prior to 

transplantation. In a subsequent validation sample, we validated these PGD estimates in 

recipient groups and then used decision curve analysis to compare alternative models across 

realistic risk thresholds. We found that abnormal body weight, moderate-severe pulmonary 

hypertension, or a pre-transplant diagnosis other than COPD or CF determined a higher-risk 

recipient. Furthermore, we identified history of smoking in a donor as significantly 
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increasing the risk of PGD in higher-risk recipients. Finally, we demonstrated that our 

prediction models are also useful in predicting mortality based on recipient factors. 

Predicted probabilities from the model were validated in a separate, temporally distinct, 

population.

We believe our models are useful in several ways. First, these simple models can be used to 

identify those recipients who are at higher risk, so that clinicians can prepare patients and 

families for the possibility of PGD and practitioners can anticipate the need for salvage 

therapy, such as ECMO. Second, although the low risk groups are relatively small, we 

believe the information is useful at the time of transplant, to facilitate the use of emerging 

therapies aimed at expanding donors in these lower risk recipients’. Finally, we presented 

several models, which perform similarly, to allow each center to evaluate the model based 

on the risk profile of the potential recipients and their threshold of an acceptable PGD risk.

While there are many ways to approach predictive modeling, we chose to focus on 

identifying subgroups of recipients and generating objective estimates of PGD risk for these 

groups. We then validated these risk estimates in a separate population, as evidenced by the 

observed probabilities falling within the confidence intervals of the predicted probabilities. 

While the models demonstrated good fit and generated reproducible PGD probabilities, the 

c-statistics were not very high, likely because we chose to define recipient groups yielding 

two discrete categories of risk. Other methods, such as those based on maximizing c-

statistics curves may yield outputs that, while potentially useful for ranking individual 

patients (such as on a wait list), do not have direct clinical meaning in estimating PGD risk 

for patient groups (26). In contrast, we chose to create PGD probability estimates for simple 

subgroups of patients, and used decision curve analysis to demonstrate the utility of the 

predictive models. Our models worked best at PGD incidences between 5 and 25%. At 

incidences below or above this range, our models do not add significant prognostic utility 

over treating everyone as high risk. Based on our prior data, the incidence of PGD is around 

15–17%, therefore, we believe that our model will be applicable at most transplant centers.

We chose to include all three models so that the practitioners may choose which model best 

applies to their practice, based on various factors such as the acceptable threshold in their 

practice that would characterize a recipient as low or high risk and the incidence of PGD at 

their center. For example, if the goal at a particular center is a PGD risk of 5%, the more 

restrictive model may be best suited for identifying low-risk recipients, as shown in Figure 

1. At the time of allocation, the risk of PGD can be readily estimated using our model and 

allow for the ability to make appropriate management decisions. For example, being 

prepared for the use of ECMO or other salvage therapies prior to the transplant may 

facilitate preparation for early interventions and avoid emergent rescue of a potentially 

rapidly deteriorating patient. Likewise, objective PGD probability estimates may have utility 

in preparing recipients for the possibility of post-transplant complications. In addition, our 

model risk stratifies recipients to provide a framework for refinement of use of extended 

criteria, DCD, or ex-vivo conditioned donor lungs.

Donor smoke exposure conferred a significant predictive impact for PGD risk in the higher-

risk recipient. Prior work has established that use of lungs from donors with smoke exposure 
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led to worse outcomes after lung transplant; however, overall waiting list mortality was 

increased if lungs from donors with smoke exposure were not used (27). However, in U.S. 

administrative datasets this effect is not consistent (28), perhaps due to the way smoke 

exposure is defined. All three of the models demonstrated that while addition of a donor 

with smoke exposure to the low-risk recipient group increased the risk of PGD; the risk 

increase did not reach a level that would likely favor the alternative of not being 

transplanted. In contrast, the use of a donor with smoke exposure in the higher-risk recipient 

group conferred an increased PGD risk. However, use of lungs from donors with a smoke 

exposure should be considered acceptable pending more accurate quantification of smoke 

exposure. Yet, care providers may choose to prepare for a higher risk of PGD when using 

donors with smoke exposure in high-risk recipients as defined by our models. Importantly, 

the current methods for defining and quantifying donor smoke exposure seem inadequate, as 

they rely on proxy reports of timing, quantity, and duration of smoke exposure. Recently, 

the use of biochemical measures to quantify tobacco exposure more accurately in critically 

ill patients has yielded promising results and may represent a method that may improve 

prediction in the lung donor population (29). Likewise, BMI may be an inadequate measure 

of adiposity, and may be better quantified by biochemical or imaging methods (10, 30). In 

the future, these models may aid in allocation decisions, such as matching a low risk 

recipient with a donor who has smoke exposure; however, improved measurement of 

predictor variables, as well as clarification of the mechanisms by which they increase PGD 

risk are necessary steps prior to changing policy. (29).

The current work builds on our prior studies of PGD by employing advanced statistical 

methods aimed at selecting those variables with the greatest predictive utility to define 

subgroups of patients with lower and higher risk, and by using a separate validation 

population of nearly 400 new subjects to validate the risk estimates in these groups (3, 10). 

Many prior studies sought to identify individual independent risk factors whereas this study 

employed different modeling techniques to identify subgroups of patients with distinct 

predicted probabilities of PGD based on combined variables that are readily available and 

present prior to the transplant episode. In the validation population, we found that our model 

was better than treating everyone as either high risk or no risk. Furthermore, we evaluated 

donor and recipient prediction separately, and then assessed the impact of donor factors on 

the recipient-based model. Prior to our study, validation of PGD prediction in a multicenter 

prospectively-assessed population had not been attempted.

There are limitations to this study. We used a temporal validation population, meaning 

subjects for the validation were taken from the same centers in an ongoing prospective 

cohort study but transplanted at a different timepoint. However, subjects from this study 

were recruited from 11 centers throughout the United States; therefore, we believe there is 

adequate diversity in the validation cohort. Additionally, although temporal validation could 

introduce bias, there have been minimal changes in donor or recipient management for PGD 

during this time period. Furthermore, as our study is a large multicenter study, our temporal 

validation population represents an external population with representation of many centers; 

alternate multicenter external datasets with well-phenotyped PGD are not currently 

available. Our validation study was designed and powered to provide probability estimates 

in the overall population; therefore, we were unable to perform stratified analyses in the 
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validation set (e.g. by transplant type). There was significant variation in the recruitment of 

patients by center, with both number and percent of subjects enrolled between centers 

varying which may have contributed to the differences in risk by center. However, we 

derived our model conditioned on center, with the goal of identifying universal factors not 

affected by center variations. Our multivariable bootstrap methods for variable selection 

included a threshold of 67%, which may have been considered restrictive, perhaps excluding 

individual variables that appear to have univariate associations with PGD (such as race). 

However, our multivariable models methods were focused on identifying stable and 

generalizable groups of predictor variables, and did not yield different results when this 

threshold was varied between 25 and 75%. We were limited in our ability to validate the 

effects of donor smoke exposure on low-risk recipients due to low numbers in this stratum 

and ensuing wide confidence intervals. In particular, there were low numbers of subjects 

with moderate or severe pulmonary hypertension in the validation population. We included 

both single and bilateral lung transplant recipients in our analysis. PGD grading in single 

lung transplants can potentially be biased given intrinsic v/q mismatch and shunt after 

transplant; however, we have published multiple prior studies using both single and bilateral 

transplants, and have also presented a sensitivity analysis stratified by transplant type, which 

did not significantly change results.

In conclusion, we have developed and validated simple prediction models that easily 

categorize recipients into higher and low-risk groups with reproducible estimated 

probabilities of PGD. Logical future directions include impact studies of these models in 

clinical practice, studies focused on improving measurement of specific predictors such as 

smoke exposure and obesity, and targeted intervention studies based on risk estimates 

generated for lower and higher risk subgroups.
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Figure 1. 
Decision curve analysis of alternative strategies for prognostic models for primary graft 

dysfunction after lung transplantation. The plot compares three models against the 

alternatives of (a) considering everyone to be higher-risk (downward sloping dotted gray 

line) or (b) foregoing any prognostic modeling and treating no one as being at high risk 

(solid horizontal line). The y axis is net beneft (the tradeoff between true positive and false 

positive classifications for high risk status), and the x axis represents the threshold 

probability for classifying a patient as being at high risk for PGD. Net benefit will vary 

depending on the threshold risk because that threshold probability reflects the relative loss of 

missing high risk patients (fralse negatives) and of considering too many low risk patients 

(false positives). Because the threshold might vary with individual patients and their centers, 

the decision curves plot net benefit against a range of thresholds. In this setting, typical 

threshold probabilities might range from 5% to 20%. In that range of thresholds, the 

proposed prognostic models are not only simple to implement but also superior in net 

benefit in the classification of higher-risk PGD patients than treating all patients as being at 

high risk.
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Table 1

Univariate analysis of donor, recipient in peri-operative variables stratified by Primary Graft Dysfunction 

(PGD) status. PGD is defined as grade 3 PGD on day 2 or 3 after lung transplantation. The distribution of 

variables presented is from the pre-imputation data in the derivation cohort. The validation data reflects the 

data used in the analysis.

Derivation Validation

Covariate PGD
(n=211)

Non-PGD
(n=1044)

PGD
(n=56)

Non-PGD
(n=326)

Donor Variables

  Male Gender, n, (%) 115 (55) 646 (62) 33 (59) 217 (67)

  Age, mean 35.2 34.4 37.1 34.9

  Race, n (%)

    Caucasian 135 (65) 660 (64) 35 (65) 180 (55)

    African American 43 (21) 214 (21) 12 (22) 83 (26)

    Other 29 (14) 160 (15) 7 (13) 62 (19)

  Any smoking, yes 92 (48) 335 (35) 22 (39) 64 (20)

Recipient Variables

  Male Gender 117 (55) 592 (57) 30 (54) 192 (59)

  Age, mean 53.3 53.6 54.2 56.7

  BMI category, n (%)

    <18.5 11 (9) 77 (12) 3 (5) 29 (9)

    18.5–25 30 (25) 281 (43) 23 (41) 126 (39)

    25–30 51 (41) 224 (34) 18 (32) 126 (39)

    >30 31 (25) 79 (12) 12 (21) 45 (14)

  Pulmonary Diagnosis, n (%)

    COPD 56 (27) 418 (40) 14 (25) 124 (38)

    Idiopathic pulmonary fibrosis 91 (43) 364 (35) 30 (54) 133 (41)

    Cystic Fibrosis 16 (8) 162 (16) 5 (9) 41 (13)

    Sarcoidosis 17 (8) 26 (2) 1 (2) 7 (2)

    PAH 12 (6) 28 (3) 5 (9) 9 (3)

    Other 19 (9) 45 (4) 1 (2) 12 (4)

  mPAP severity category, n (%)

    <25 mmHg (normal) 71 (41) 463 (51) 23 (41) 176 (54)

    25–40 mmHg (mild) 70 (40) 380 (42) 27 (48) 122 (37)

    41–55 mmHg (moderate) 22 (13) 41 (5) 5 (9) 22 (7)

    >55 mmHg (severe) 11 (6) 20 (2) 1 (2) 6 (2)

  Race, n (%)

    Caucasian 167 (79) 902 (86) 45 (80) 292 (90)

    African American 32 (15) 84 (8) 6 (11) 22 (7)

    Other 12 (6) 57 (5) 5 (9) 12 (4)

BMI: Body mass index
mPAP: mean pulmonary artery pressure
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COPD: Chronic Obstructive Pulmonary Disease
ILD: Interstitial Lung Disease

Percentages may not exactly equal 100% because of rounding.
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Table 2

Results of logistic regression model to evaluate candidate predictors in the recipient in each bootstrap sample 

of the derivation set (n=1000).

Candidate Predictor
Variable

% of 1000 datasets
Predictor p<0.05

Transplant Type 4.70

BMI Category 99.40

Recipient Diagnosis 99.60

Recipient gender and parity 5.70

Mean PA pressure 99.80

Donor Smoking (any) 77.4

>20 pk year history of donor smoking 13.0
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Table 3

Definition of each model

Model Low Risk High Risk

Restrictive Normal BMI (BMI<25) AND
Mean PAP≤25 AND
COPD or CF

1 of the following:
Abnormal BMI (BMI>25)
Mean PAP>25
Any diagnosis other than COPD or CF

Additive Either no risk factors or 1 of the following:
Abnormal BMI OR
Mean PAP >25 OR
Any diagnosis other than COPD or CF

2 or more:
Abnormal BMI
Mean PAP >25
Any diagnosis other than COPD or CF

Simple Normal BMI (BMI<25) AND
Mean PAP < 40 AND
COPD or CF

1 of the following:
Overweight or obese OR
Non-COPD or CF OR
mPAP ≥ 40
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Table 5

a and b Predicted risk of 90-day and 365-day mortality in derivation cohort

Model Predicted risk of
90-day mortality
(95% CI)

Restrictive

Low risk 6 (1, 10)

Low risk + Smoking Donor 2 (0, 5)

High risk 8 (6, 10)

High risk + Smoking Donor 10 (7, 13)

Additive

Low risk 6 (3, 9)

Low risk + Smoking Donor 8 (4, 12)

High risk 8 (6, 11)

High risk + Smoking Donor 10 (6, 13)

Simple

Low risk 5 (2, 8)

Low risk + Smoking Donor 6 (1, 10)

High risk 9 (7, 11)

High risk + Smoking Donor 10 (6, 13)

Model Predicted risk of 1
year mortality (95%
CI)

Restrictive

Low risk 8 (3, 13)

Low risk + Smoking Donor 10 (2, 17)

High risk 15 (12, 17)

High risk + Smoking Donor 14 (11, 17)

Additive

Low risk 11 (8, 15)

Low risk + Smoking Donor 13 (8, 18)

High risk 15 (12, 18)

High risk + Smoking Donor 14 (10, 18)

Simple

Low risk 9 (6, 13)

Low risk + Smoking Donor 9 (4, 15)

High risk 15 (12, 18)

High risk + Smoking Donor 16 (12, 20)
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