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Double Diffraction at a Pair of Coplanar Skew Edges

Filippo Capolino,Member, IEEE Matteo Albani, Stefano Maciyember, IEEE and Roberto Tiberiorellow, IEEE

Abstract—A high-frequency solution is presented for the scat-
tering in the near zone by a pair of coplanar skew edges when
they are illuminated by a source at a finite distance. The solution
is obtained by using a spherical-wave spectral representation of
the first-order diffracted field from each edge. The final closed-
form asymptotic solution includes terms up to the second order.
It is shown that this second-order contribution is of the same
order as the first one in overlapping transition regions. Moreover,
the solution is cast in a convenient form, which is also directly
applicable to treat the case when the two edges share a common
face for both soft and hard boundary conditions. By choosing
appropriate reference systems, the formulation for the scalar case
is directly used to construct the solution of the more general
electromagnetic problem for an arbitrarily polarized incident
field. Numerical results are presented and discussed.

Index Terms—Electromagnetic scattering, geometrical theory
of diffraction.

I. INTRODUCTION (b)

HE high-frequency description of diffraction mechanism&ig- 1. Geometry at two skew half planes. (a) Angles with respect to the
dges. (b) Transverse angles.

at a pair of interacting edges has been thoroughly con-
S|der_ed in the I|terat_ure. In several pracncal appllcathns, tri1r% rovement was given in [9] and [10], where the problem of
ray-field representation of the scattering phenomenon |nvolvq<
sKewed coplanar wedges was analyzed.

significant contributions from doubly diffracted ray fields from In this paper, a closed-form high-frequency solution is

the wo edges (i.e., when the leading singly diffracted ray erIdSresented for describing double diffraction (DD) mechanisms

are shadowed). It is rather well known that the subsequélir]]tthe near zone of a pair of skew knife-edges, when they are

application of the ordinary uniform theory of diffraction (UTD). : . LT
coefficients [1] fails when the second edge is located in t|IIum|nated by a spherical wave. For the sake of simplicity, in

L : : . ' Section 11, the scalar case is formulated, when either hard or
transition region of the first edge and the diffracted field ISt boundary conditions (BC) are imposed on the faces of the

calculated at the shadow boundary (SB) or reflection boundzi\\r/?/o half-planes. The DD analysis, consists of two steps. First,

(RB) of the second edge. This is due to the rapid Spat't%e spherical wave spectrum of the diffracted field from the

variation and the nonray optical behavior of the incident fielﬁirst wedge [11] when it is illuminated by a spherical source is

at the second edge after diffracting from the first. The angular

range of those incidence and observation aspects where ?ﬁed as the incident field at the second wedge. Next, the near-
9 P tafd response of the second edge to any spherical spectral

above condition may occur broadens as the distance between . . . ;
ource is used to obtain a double integral representation for

the two edges and their distances from the source and Fne

. . . ; € doubly diffracted field [5]. In Section Ill, this integral is
observation points decrease. The problem of diffraction b ; : .
o ; . symptotically evaluated to determine the desired closed-form
two parallel edges was first investigated in [2]-[4]. In [5]%l

. X > ; ! ray-optical) expression. This asymptotic evaluation leads to
diffraction coefficients were obtained, by using a spectr y-optical) exp ymp

: L . fransition functions involving generalized Fresnel integrals.
extension of the UTD, for plane wave incidence and far-fie . 9 gel ©g
. . n Section IV, the scalar result is used for constructing the
observation. A more general solution for the same problem

. ] . . solution of the more general electromagnetic case.
was developed in [6]; there, again, a spectral formulation was . o .
. ) . The behavior of the present solution is thoroughly examined
used. A different formulation based on the physical theory of . ) : .
Section V. Furthermore, there, the practically interesting

; . ) o n
diffraction (PTD) was presented in [7] and [8]. A Slgnlflcan{case of two edges sharing common faces is explicitly consid-

ered also to provide a neat physical insight.
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it is illuminated by the diffracted field from edge 1 (12)source atP(¢,). This procedure leads to

and that from edge 1 when it is illuminated by edge 2 (21). 4 1

In the following, contribution 12 is explicitly considered:; it Po(ar) = %/ PP (a1 £ ), Plag £ 1)}

is then a straightforward matter to obtain the corresponding Coz

expression for contribution 21. It is useful to define an edge- X Ga(¢n, 0z) dory ()

fixed spherical coordinate systefm;, 3;, ¢;) [1] at each edge in which P{ay £ 7) = (re,m — 2, a0 £ ), and the contour

(i = 1,2) with their origins at the two diffraction point§); Ca, has the same definition &, . The spectral response of

that are dictated by the generalized Fermat principle for th¢ige 2 is then described by the integrand of (2) after replacing

double diffraction mechanism, as depicted in Fig. 1. Also, |gerein ¢{ P’ (. £7), P(¢1)} by 95(cu). By spectral syn-

us denote byP'(¢/) = (v, 7— /3|, ¢, ) the source point and by thesis, the desired double spectral integral representation for

¢ the distance betwee®; and Q». A ¢/t time dependence the doubly diffracted field/{$ is obtained. To this end, the

is assumed and suppressed. convenient notation is mtroduced in (5), shown at the bottom

For the sake of simplicity, the scalar case is treated flrﬁf, the page, in which

either hard or soft BC may be imposed on the planar faces at g; (1) = sin? 3} (cosm — 1)

the edges. It will be shown that 'the high-frequency solutions ¢, (), ) = sin? By(cos 2 — 1)

for the two scalar cases are directly used to construct th . PV
?(7717 m2) = g1(m) + g2(m2) — €12sin 3] sin By

solution for the electromagnetic case. The field at any poin , (6)
P(¢1) = (r1, 51, ¢1) from the point source af’(¢)) is x [cos(By + e122)(cosm — 1)(cosmz — 1)
expressed as + sinny sin o]
" o=k P(p1) =P ($))] €12 = —sgn(21 - 22).
PP, P (1)} = 4r|P(p1) — P'(¢))| (1) This indeed is used to provide an explicit expression for

The diffracted field at any poinP(¢;) from the edge 1 (when within the mtegral representation g#(c:;) in (4) so that

it is illuminated by the spherical wave) may be conveniently i / / emikR(a1=d12,00—615)
represented as [11], [12] V12 = T 4r? o, ATR(a1 = d12, 00 = #5)
v =5 / BP0, P'lon £)}Ga(#, an)dan (2) Gl )Gl 0z) d o )

where ¢, has been defined earlier agd, is the azimuthal
where the+ sign applies to¢; = « and the contour of coordinate of; measured in the system at edge 2 (Fig. 1). It
integration C,, is defined along(—jcc,m + joo). The ge- is rather apparent that (7) explicitly satisfies reciprocity. Also,
ometrical optics (GO) poles are excluded from this treatmeriitis worth pointing out that the pole singularities of the spectra
They indeed provide singly diffracted field contributions tha#'1(¢}, 1) and Ga(az, #2) independently occur in the two
are accounted for by a standard UTD formulation. In the ca¥griables of integration. Finally, it is useful to introduce the
of the half plane change of variables froffty; —¢12) to o and from(a — ¢)5)

to ay so that

/ _ 1 2 m d)/ — (_1)nl¢ joo jkR(ay,a2)
Guleh ) == Y Fmsee (CEGN) @ L

m=1 joo 4T R(aut, 4 R(ay, )
where — (+) refers to the soft (hard) BC. X G1(dy, a1 + ¢12)Ga(da, az + ¢5) dag daz  (8)

The integrand in (2) is interpreted as the field of spec
, _ which the original contours of integration have been de-
tral spherical sources localized &'(oy +7) = (v, w
3 4 7). Next, these spectral spherical sources are usfo(gmed onto their imaginary axis, without capturing any of
P, on ffe poles that occur on the real axis. This latter expression is

to illuminate the second edge. To this eng, is evaluated ¢, 4 g jitable for asymptotic evaluation, which is presented
at ¢12, which is the azimuthal coordinate @§, measured ;. e next section

in the system at edge 1 (Fig. 1). A pictorial representation

of this mechanism is shown in Fig. 2, in which only the Ill. HIGH-FREQUENCY SOLUTION

spectral sources with real valuescof are depicted. Thus, each  the double spectral-integral representation+fgg is now
spherical source provides a diffracted field contribution frosymptotically evaluated to find a high-frequency expression
edge 2 at any poinP(¢2) = (r2, 82, ¢2). Such a contribution for this DD mechanism. To this end, it is seen that the integral
is obtained by analytically continuing into complex spacg (8) exhibits a two-dimensional, stationary phase point at
the formulation (2). For the sake of convenience, this san&;, as) = (0,0). Its asymptotically dominant contribution
contribution is calculated by invoking reciprocity, i.e., therovides the doubly diffracted ray-field contribution, which is
diffracted field from edge 2 aF’(«; £ w) due to a point the purpose of this paper. It should be noted, however, that a

R(n,m2) = \/(73 + 0+ 72)% + 2 Lg1(m) + 2r2bga(me) + 2riraf (1, m2) %)
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@)@\@)\@\Spectral spherical expressed as :
j@) 7 T \\ sourees Dyl = Dot + D3 (14)
in which
s,k 1

127 8rjksin 3] sin Bo
2

’ Z (:Fl)p—i—q sin ((I)—}lj)lsin (cpq) 'T(apquvw)

2

P,g=1 2

Fig. 2. Pictorial representation of the field diffracted from the first edge in (15)
terms of spectral spherical sources radiating in free space; the marked so@@g
denotes the stationary direction in the diffraction integral. s €12

12 32rk2sin? 3] sin® B,
further stationary point may occur that is associated with a field 5 cos (qﬂ;) cos (cpg)
contribution emanating from the intersection between the two . Z (£1)P+e 2 2 _f(a by, w)
coplanar edges if it exists in the actual structure. The treatment ) cin? (%’f) cin? (%%) P

of this vertex contribution is beyond the scope of this paper
and will not be considered here; thus, we will assume that both (16)

the DD points are far from any vertex point. A high-frequencyere ¢12 is the same defined in (6) and the upper (lower)

description of diffraction mechanisms at a vertex may be fouréqjgn applies to the soft (hard) case. Equations (15) and (16)
in [13]-[15]. As mentioned earlier, the integrand in (8) exhibitg,olve the transition functions

pole singularities that independently occur in the two spectral,
variables. These poles may occur close to and at the stationaT)kC% b, w)
point. Thus, they have to be appropriately accounted for. It is 2rjab {g< b+ wa ) g<b a+ wb )

now convenient to express the spectral functiéhisas the TVl w2 “ V1= w2 V1 — w2
sum of their even and odd parts [5], i.e., b — wa a — wh
o . ol ) oo )

1 (£1)™sin —- cos G + (F1)™ cos —-sin 1-—w 1-—w
GZ::F§Z 9 oy 9 BT (17)

m=1 CcOs 77 — COS 27 (9) and
where Gy = G1(¢}, o + ¢12), Ga = Galaz + By, ¢2), @ L0 byw)
is either _ —4mw(ab)? {g <a b+ wa ) N g<b a+wb )

O = ¢\ + (Do +n (i=1, m=p) (10) wvl—w LA VI —w? Vi-w?
or —g<a b—wa _g(v a—wb

. "V1—w? "VI-w?
D5 =g+ (=)o +7 (i=2, m=gq) (11) (18)

and the er (lower) sign applies to the hard (soft) case.
it wil ug): se(enwth)at I?hesgpéven and odd (parté provici spectively, that are the same as those introduced in [16] for

two different asymptotic contributions that have their ow e problem of double diffraction at a thick screen; in (17) and

specific physical meaning and render the final solution direct@s)' g is the Generalized Fresnel Integral (GFI)

applicable to any double knife-edge configuration, including e [ =it

the case when the two edges share common faces. G(w,y) = gej / 2442
The details of the asymptotic approximation of expression ) ) ‘

(8) are presented in the Appendix, where it is shown th¥fhich is defined for negative arguments &¢z,—y) =

the desired high-frequency solution for the double diffractiof(—%; ) = —G(x, y). A very simple algorithm for computing
mechanism 12 is the GFI in (19) is suggested in [14]. The arguments of the

transition functions in (15) and (16) are defined as

dr (19)

Vs ~ ${P QAW L) DYy (12) T )
in which ap = V2ksin F [~ sin <&>
o L 2
P00 eIk : o (20)
P s = —F .
4 ' dmry b, = V2ksin 2" in <—2>
/o (13) T2 + g 2
A(ri, €,ra) = & ¢ Ik(tA2) and
VAraJri + L+ o
— 1
denote the incident field at edge 1 and the spreading factor, YN T T () (21)

s,h

respectively. Furthermore, in (12));;° are the diffraction
coefficients for the hard?) and soft (s) cases that are in which ! and ®% are defined in (10) and (11).
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It is rather apparent that the same overall process leadiplgase approximation of the spectral integral representation of
to the high-frequency expression (12), is applicable to fink’d. Such a nonuniform solution would provide an appropriate
the corresponding expression for mechanism 21. After havidgscription of this DD mechanism when neither the second
determined the relevant ray-path, it is a straightforward mattedige nor the observation point falls into its relevant transition
to obtain the explicit expression farg{. region, i.e., that associated with either the first or the second

Before discussing the behavior of the high-frequency S@dge, respectively. In this ca&é‘fg is of orderk—1 andzZ‘fg

lution presented so far, it is useful to explicitly consider thgs order -2 with respect to the direct incident field. This

igtsins,lon of the present scalar solution to the electromagnes'[bcggests that the contributidt‘ifg essentially describes a slope

diffraction effect. Indeed, the same nonuniform expressions
would result from a straightforward application of GTD double

i i 7dd i i 7dd i
As was done in [5], [6], and [9], the solution of the scalaglﬁracnon (v1%) and slope dlffract|or(z/;12). When either the
) . second edge or the observation point approaches the relevant
problem can be directly used to construct a solution fQr ~d . L
: ) ! hadow boundary (SB)/{$ provides a contribution of the
the corresponding electromagnetic problem of an arbitrarily P

: : . S ~1/2 i i i b |
polarized spherical wave; its representation in the stand&@Me ordek—*/*as asingly diffracted field ang} is of order
format of the UTD is given next. k~L. When the two transition regions overlap, i.e., when both

A simple, compact dyadic expression for the doubly dithe source and the observation point approach grazing, both
fracted field is obtained by conveniently choosing the referengés andi)¢¢ are of the same ordéf’ as the direct illuminating
systems. To this end, let us consider the two edge fixéidld. Such an effective description of the expected ray field
coordinate systems [1] at the two diffraction poirs and behavior is neatly provided by the transition functidfisand
Q2, with unit vectors(#, 31, ¢, ) from the source ta@y, and 7', as shown hereafter.

(P2, B2, ¢2) from Q) to the observation point. Accordingly, let et us consider first the case when the observation point
us denote byE"(Q1) = (Ej, £y, ) the arbitrarily polarized, crosses the plane containing edges 1 and 2. There, the singly
incident electric field at; and by E%(r{, ;) = (B4, E4?)  diffracted field from edge 1 is discontinuous, due to the
the doubly diffracted electric field from mechanism 12. It ishadowing by edge 2. At this same aspest, = ¢}, + 7

then found that so that®} = 27 and consequently; = 0. When approaching

this aspect, botly = 1 terms in (15) are in their transition

IV. ELECTROMAGNETIC DIFFRACTION COEFFICIENT

dds 0 .y _ . .
BTy m2) = B (QU)D12A(r1, £,72) (22) regions, so that (as shown in the Appendix)
in which the dyadic double diffracted coefficient is represented w1 WP, Q) \/r_’le—j’“(”’?)
as M1z = 5sgn(b) i 7
T 54 27 2vangksin B\ 7o) + )
D1y = e12(f1 2Dy + 1 daD1y) (23) 2 9 41
’ | Sor( ) vouy e
where D73 are the same as those obtained so far for the — \1-w? gy (‘1’_1{)
corresponding scalar problems. = 2
where I is the UTD transition function [1]. The leading term
V. ANALYSIS of (24) is easily recognized assgn(b,) times the standard

It is now interesting to investigate the properties of the/TD expression for the singly diffracted field from edge 1, so
DD contribution described by (12) at various incidence arlgat its discontinuity |$,; precisely compensated. Higher order
observation aspects. In particular, the following issues wikrms in (24) as well ags'd, are continuous and well behaved.
be addressed: 1) the asymptotic order of magnitude of thelLet us consider next the case when the source approaches
terms provided by the DD contribution is analyzed and igrazing illumination aspects of the two edges. Thete— 0;
limit at the shadow boundaries are explicitly calculated tmdeed, when the source lies on the plane of the two edges,
show that our solution exhibits the appropriate discontinuitigd = = + ¢12 so that®! = 2. The behavior ofyyd¢ is
to compensate for the GO shadowing of the singly diffractegimilar to that described by (24), where now the role of the
fields; furthermore it is seen that this formulation nicelparameters relevant to the observation is interchanged with
recovers the known solution in the plane wave, far-field limthat of the illumination. This allows'% to provide the
[5] and 2) the case of the plane angular sector is presented agppropriate compensation of the discontinuity of the singly
a limit of the general solution. diffracted field from edge 2, due to the shadowing by edge 1.

When the observation point also lies on this same plane
A. Asymptotic Behavior and Shadow Boundary Limits (¢2 = ¢1p + 7), the pg = 11 term provides the leading

The DD ray fieldy{g consists of the sum of two termscontribution
associated wittD:3" and[)i’gh. For the sake of convenience, let 44 1

e—Jk(r1Hl+rz) 1
- 3 . . iy = —sgnlaib) +O(k~?),  (25)
us denote them by{s andiy$s, respectively. As can be easily

4 dr(ri + £+ r2)
inferred from the asymptotic analysis discussed in the AppeRquations (24) and (25) guarantee the continuity of the total

dix, the same expressions, but with b@trand 7" equal unity, field under any conditions, acrogg = ¢1» + 7 and ¢ =
would have been obtained by a simple nonuniform stationagy, + .
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In the Appendix, it is shown thapéd provides a significant 20 — 1+
slope diffraction contribution; in particular, when bogfj — —— 0=0°, half-plane

P12 =mandga — Py = 7 B
) - =30+ -
Tdd -1 ™2
12 278 < Lrl +4€+ 7‘2)) —35 b

oIk L)

' dr(ri + £+ 72)

—40

Amplitude (dB)

+O(k™) (26)

—45

which is of the same order a?ifg in (25). Equations (25) and  _.,
(26) demonstrate that the present solution recovers the leading
term of the rigorous asymptotic series expansion of the exact -55 I
solution for two staggered parallel half-planes [4], [17]. 0 S0 60 80 120 150 180 210 240 270 500 330 360

The appropriate behavior of our formulation is summarized Scan angle ¢, (degrees)
in the example presented in Fig. 3. There, calculations of thg. 3. Total field of a source point placed at a finite distance from the edges
total field are plotted for a scalar point source placed at finigétwo skewed half-planes with hard BC for various angle.
distance from the from two skewed half-planes with hard BC.

The relevant geometry and the scan plane are depicted in {igiq the two edges. Thus, dealing with either soft or hard

inset. The source is placed on the plane containing the g has 5 significant impact on the behavior of the field as
edges, so that the trailing edge is certainly illuminated by 8. as on its ray-field representation.

transition region field from the leading edge. Calculations haveOwing to the occurrence ob! = &2 = &, + 7 and
been performed for varioug angles between the two edgeg;1 _ 2 = ¢y + 7, ONe hassy :1a2 _ ; and bll e

to show_that smooth, contlnuqus, and well behf';\ved _Curvﬁmg(ZO) and the summation of the four terms in (15) and (16)
are obtained even it d|stancé$)en/yeen Q'ﬁraCt'qn_reduces to a single compact term. To obtain the appropriate
points. Also, it is found that our calculations (in _the IImItformulation, it should be noted that the total doubly diffracted
for £ — 0) smoothly blend into the corresponding UTDra field from edge 2 arises from two simultaneous incident

solution for a single half-pla_ne. This somewhat_emphasizes Mds that propagate along the upper and lower faces, after
robugtness of the present_h|gh-f_requency solution and sugg acting at edge 1. Each one of these two fields which
that in general this sqlutlor_] fails _gracefu!ly as the Q'Stanceq'fectively impinges on the second edge, is described by one
between the double diffraction points vanishes. We just n &I of the field diffracted by the first edge [5], [9]. Also, it is

that analogously well-behaved results have been obtained 8En that both contributions arising from the above propagation

soft BC Of. the half-plan'es'. Qechanisms have the same resulting expressions. Finally, after
So far, it is worth pointing out that when the source and hatDs. — dD% — 0. itis found that the diff
the observation points move to infinity the present closed-forﬂ?t'ng thatDy, = 0 andDy, = 0, its found that the diffrac-

solution for the doubly diffracted field recovers the plane waon coefficients. for despribing the t.otal doub!y diffracted field
far-field solution obtained in [5]. Indeed, when both and relevant to the interaction mechanism 12, nicely reduce to

T2 — 00, w — 1; as a consequence, the transition functidhs N - 1
andZ” may be expressed in terms of Fresnel integrals to give Diy = Dyp = 27 jk sin (3 sin Ba
1 .
. b2F(a2) — a2F(b2) . - -T(a,b,w) (29)
T(ap, by, 1) = - 2(21 _ ag s (27) cos (%) cos (“5—22)
- F b2 - F 2 and
ﬂ%ﬁmn:%@@—L%—ﬁgi (28) D — s — €12
1~ % 12 12 8rk? sin? 3] sin? 3o
where I is the standgrd UTD transition functgon [1] and sin (%,1) sin (%) ~
ap = V2kLsin 3] Sin(%), by = V2k{sin By sin(%). Using ‘ 9y p T(a,b,w) (30)
(27) and (28) yields the same formulation as that defined in cos? (71) cos? (72)
[5] for parallel edges.
where
B. Plane-Angular Sector P Y 4 &
_ . o . _ _ a=V2ksinf,/ cos | =
A configuration that is interesting for its practical relevance ri+4 2
is the plane angular sector; this can be seen as a particular case . ol bo
of the general solution when the two edges share common b= V2ksin A <§> (31)

faces. This configuration deserves specific attention because
the doubly diffracted contribution arises from a field that, aftéfrhe above results provide a neat physical insight into the
diffracting from the first edge, propagates along the surfacay-field picture adopted in this paper. Indeed, there is a
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correspondence between both the contributigf$ andydd & field (@B)
of the general solution and the DD contribution of the plane®
angular sector for hard and soft BC, respectively. 20 N\
It is rather apparent that in the hard case, the field
propagating along the surface after diffracting from thels |-
first edge experiences a discontinuity at grazing aspects
of observation, which is expected to be compensate
by the DD contribution. Indeed,D?, exhibits a dis- s
continuity, which is just the opposite of that of the
singly diffracted field. This not only provides a precise 0
discontinuity compensation but also causes the scattere

2 urdu UTD 1

— = — 1" order UTD
= === MoM

flglq to vanlsh, as expected fror_n ph_ysmgl mspectlon. Ay 60 120 180 240 300 160
similar behavior occurs at grazing illumination aspects, Scan angle (deg)

S

P = . (@)

In the soft case the field propagating along the surface
vanishes but exhibits a rapid spatial variation; thus, &€ field(dB)
strong dominant slope diffraction effect occurs. Also, at®
grazing observation aspects, the singly diffracted field,,
vanishes so that only a continuous slope contribution is
appropriate. 15 4.

To illustrate the effectiveness of (29) and (30), Fig. 4
shows the total field of an elementary electric dipole place
at a finite distance from a perfectly conducting strip of s
0.5\ width. As shown in the inset of the same figure, the
dipole is placed at 5 from the plane containing the strip ©-
and at 1.78 from the strip axis, so that the second edge
is illuminated by the transition region field from the first 0

2" order UTD
— == 1" order UTD -
= === MoM

| ¥
-' N
I ‘L ofs
A
MWW

_ _ _ _ 120 180 240 300 360
edge. Fig. 4(a) and (b) is relevant to the cases in which Scan angle (deg)
the dipole is either orthogonal (hard case) or parallel (soft ®)

case) to the edges. Results from this formulation (continuous

-ig. 4. Electric field of an elementary electric dipole placed at a finite
Ime) are compared wiih those from first-order UTD (daSH; tance from a perfectly conducting Q-8vide strip; UTD (dash-dotted
thted line) and from the met_hOd of moment§ (MOMa_d?Sh% e), MoM (dashed line), this formulation (continuous line). (a) Dipole
line). In the hard case, the first-order UTD field exhibits aperpendicular to the edges (hard case). (b) Dipole parallel to the edges (soft
expected noticeable jump discontinuity at grazing aspect. THRS®)-

discontinuity is precisely compensated by the second-order

diffraction mechanism introduced here; the results are in veg¢cur in the two variables. This property has been found
good agreement with those from MoM, except maybe &t 6Qery convenient to obtain the desired asymptotic form for
and 303, where our solution provides deeper minima; high&joth hard and soft boundary conditions on the two half-
order diffraction mechanisms may provide the appropriaifanes. In particular, appropriate transition functions have
improvements. In the soft case, the first-order UTD predictshgen introduced that involve generalized Fresnel integrals.
null at grazing as expected and introducing doubly diffractethese transition functions properly account for the slope
contribution provides excellent agreement with the MoMontribution of the primary diffraction; thus, they also provide
prediction. a suitable description of the double diffraction mechanism
when the two edges are joined by a common face. Numerical
results have shown the effectiveness of the present solution
for calculating the field at any illumination and observation
A closed-form high-frequency solution has been presentggpects, including overlapping transition regions. It has been
for the scattering in the near zone by a pair of coplangsund that this solution fails so gracefully that is applica-
skew edges when they are illuminated by a source at a finge even for vanishing distance between the two diffraction
distance. For the sake of simplicity in the explanation, thsoints.
formulation has been carried out for two half-planes, however,
this same technique can easily be extended to treat the case APPENDIX

of two wedges. A spectral spherical-wave representation of ) ) ) _
the first-order scattered field from the trailing edge has begn!© derive a high- frequency expression for the doubly dif-

employed here. An appropriate use of the spectral responséraf:ted field contributions$s (8), the variable transformation

. . PP
the second edge to each spherical source provides a spherf¢al= sin ‘3, v = sin 5, and the notation:, = sin 3,
wave/near-field, double integral representation of the doubly = sin % are introduced; as a consequence, retaining the
diffracted field. Its integrand exhibits poles that independentiwen part of the integrand, namely the nonvanishing part of

VI. CONCLUDING REMARKS
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the integral, leads to and
= 2a%b*
2. b4 T(a,byw) = ————7
Pld = Z Ly +1,, (32) ( ) mw(l — w?)l/2
p,g=1 hd hd Snej(52+2wf77+772)
| ey dedn
where oo J—oo (67 = 1252) (0 — 1252)
N joo joo Un e—jkr(u,'v) (40)
I, = By (u,v)—2 du dv . ; Al thai 3
Pq i joo Y (u? —u2) (v — v2) are the relevant transition functions, respectively; their argu
—Joo v —jo0 P q

(33) ments are

and 1 1
ap = Jupr/ =ruu(l —w?) by = jugy/ =ru(1 —w?)  (41)
f /JOO Jooé ( ) uve—jkr(u,'v) dud (34) 2 2
= U,V U Y where
I e N S L Gk )

|7us

in which = T (42)
B (u,v) = _ﬂ (35)
pgNTy Es 16727 (u,v) By means of proper manipulations, similar to those in [18],
(39) and (40) can be expressed in terms of GFI's (19) leading

and to (17) and (18), respectively, while (41) and (42) yield (20)

. (F1)P+ /11— u2 /11— v2 and (21). To calqulat@(a,b,_u_;), the algorithm suggested in

Bpg(u,v) = =25 5 = (36) [14] has to be slightly modified by using the more accurate

16m2r(u,v) V1 —u?v1-w approximation

respectively. In (35) and (36), the upper (lower) sign applies 1 y 3z2 +y* F(x?)

to the hard (soft) case, andu,v) = R(ay,a2). In each Ga(z,y) = or 2ja(@ +2) | 2z +y?) 2z (43)

term of (32), the relevant stationary phase point occurs iﬁtplace of [14, Eq. (11)], wherd'(z) is the UTD transition

(u,v) = (0,0); also, t_he integrands exhibit a symmetric paif, . tion [1].

of poles for each variable = u,,v = uv,. __ The following relationships are useful for investigating the
A'Ithough. b.Oth terms have the Siame.phase and pqle SINGdhavior of our solution in the various transition regions

larities, their mtegrands have a qwtg dlfferent beha\{lor C|0% dressed in Section V-A. When the observation point ap-

to gnd at the stationary phase point; in particular, the mtegraB aches the aspect angle = ¢, -+, b1 — 0, consequently

in I, vanishes afu,v) = (0,0). [14]
It is wforthtpotin_g that por':g’&z;,,r(il :g((jiBm are r%gglar_;qzl(;);/\éjly 2

varying functions in a nei v) = pi , - -

thei): g?adients vanish at t%e stationaslkpr?ase(pbi%t. Introducing Tlap, by — 0,w) = ﬁ|b1|F<1 _pw2> (44)

the Taylor quadratic expansion for the phase functiom v)

at the stationary phase poird,, andl,,, may asymptotically which leads to (24) and

be represented as x N —8a2b? wa,

B (0,000 Ty~ 0= 0 0 722 )

Ipg ~ PRV Lap,bg;w)  (37)  when (45) is introduced into (16), the following expression

~ i) for /¢4 is obtained ford} = 27

jkupvq (TuuT'U'U

and =i k(f+rg) 2 P
7 —eqory e IR )
S 2mruBByg(0,0)e TR 00) Pl = P, O —rm e ) () eos <71>
IP(I ~ S 3/2T(a1)7 b(lvw) (38) ! p=1
k2u]2,v§ (7’uu7’w — 7’51;)

x g<ap, —&”2) +O(k™2) (46)
respectively, where,,, (.. Or .. ) denotes the second deriva- . 1-w . .

tive of r with respect tou and v(u? or +?) evaluated at the Wh'c_h shows th"’_‘t the two terms_lwnlj_j = 1 provide a
stationary phase point. The first factors in (37) and (38) are tﬁgntlnuous contribution of ordek™" with respect to the

. . = z . incident field. Higher order contributiong:~2) are given b
nonuniform evaluation of,,, andl,,, at the stationary phase,, .. remainir?g terms with = 2 ng—) g y
point, respectively, while '

Let us next consider the plane containing the two edges
. a2b? where¢) =7 + ¢12 and¢» = ¢7, + 7 and assume that both
T(a,b,w) = m the source and the observation points approach those aspects
o oo oI (€ +20gn+7) from the lit region of the incident and the singly diffracted
x / / . ——dédn  fields. Itis rather apparent that the leading terms of the UTD
oo (52 - ) ( 2 : ) description of the two singly diffracted fields tend to cancel the
(39) incident field. At these same aspects, using the small argument

—o0 /= [—w? T it
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expansion of thel” transition function
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- __ Jmla||bs]

T(ag — 0,b — 0,w) ~ Nin (47)
—w

leads to expression (25), which providest of the incident

field. In this case, the termpg = 21 in (15), as well as its
corresponding termpg = 12, are of orderk—'/2 and provide
the continuity for the GO shadowing of the nonleading tern
of the UTD singly diffracted fields from edges 1 and 2
respectively. B

Finally, let us consider the field contributigif¢. Equation
(26), for its leading ternpg = 11, is obtained by using the
small arguments approximation for the transition function
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