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Can  exascale  computing  and  explainable
artificial  intelligence  applied  to  plant
biology  deliver  on  the  United  Nations
sustainable development goals?
Jared Streich1, Jonathon Romero1,2,
Joa˜ o Gabriel Felipe Machado Gazolla1, David Kainer1, 
Ashley Cliff1,2, Erica Teixeira Prates1, James B Brown3, 
Sacha Khoury4, Gerald A Tuskan1, Michael Garvin1, 
Daniel Jacobson1,2,5 and Antoine L Harfouche6

ABSTRACT

Humanpopulationgrowthandacceleratedclimatechange
necessitateagriculturalimprovementsusingdesignercrop
ideotypes(idealizedplantsthatcangrowinniche
environments).Diverseandhighlyskilledresearchgroups 
mustintegrateeffortstobridgethegapsneededtoachieve
internationalgoalstowardsustainableagriculture.Giventh
e  scaleofglobalagriculturalneedsandthebreadthof
multiple  typesofomicsdataneededtooptimizethese
efforts,
explainableartificialintelligence(AIwitha decipherable 
decisionmakingprocessthatprovidesa meaningful
explanationtohumans)andexascalecomputing (computers 
thatcanperform1018 floating-pointoperations persecond,or 
exaflops)arecrucial.Accuratephenotyping anddaily-
resolutionclimatypeassociationsareequally importantfor 
refiningideotypeproductiontospecific environmentsat
variouslevelsofgranularity.We review advancestoward
tacklingtechnologicalhurdlestosolve multipleUnitedNations 
SustainableDevelopmentGoals anddiscussavisionto
overcomegapsbetweenresearch andpolicy.
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Introduction
In 2015, the international community committed
to the  United  Nations  17  Sustainable
Development  Goals  (SDGs) to end poverty,
protect the planet, ensure global  prosperity, and
eradicate hunger [1]. Agriculture is globally
recognized as critical to achieving the 2030 agenda
[2,3], but it is also the greatest resource consumer
[4,5], which can have substantial negative impacts
on biodiversity,  water,  and global climate [6,7].
The development of novel sus-  tainable crops
with an optimal combination of traits that thrive
in specific environments should be focused on
food  (SDG2) or bioenergy (SDG7) production,
while conserving  water  resources  (SDG6)  and
biodiversity  (SDG15)  like  with  multi-criteria
ideotypes.  Large-scale  production of  optimized
cultivars  will  require  technological advances  in
order  to  implement and integrate  SDGs  [8..];
while  simultaneously  minimizing  environmental
perturbations
[9]and combating climate change (SDG13).

Technological  improvement  of  agricultural
production  from simple subsistence has been
possible through mech-  anized  advances,
genomic  breeding,  and advanced phe-  notyping.
Current  efforts  routinely  integrate  multi-omics
datasets (genome, epigenome, transcriptome,
proteome,  metabolome,  phytobiome,  and
phenome)  of  plant  popu-  lations  to  dissect
biological mechanisms that underlie
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desirable  traits.  Now  we  propose  a  next-
generation agricultural revolution that hinges on
artificial  intelli-  gence  (AI),  which  will  be
essential for designing new crop ideotypes that
are optimized for niche environments in a world
with a rapidly changing climate while adhering to
the SDGs mentioned above (Figure 1).

AI has existed for decades but its popularity has
increased  with  improvements  in  high
performance computing (HPC). Put simply, AI,
including machine learning approaches, utilize a
variety of qualitative and quantita-  tive data
types, iteratively performing a series of calcula-
tions/decisions between vector sets followed by
decision/  action(s). AI is routinely used in
complex, data-heavy

Figure 1

sectors such as banking, business, and power grid
man-  agement [10,11], and it can be a powerful
tool in reducing  greenhouse gas emissions and
helping society adapt to a changing climate [12].
However, it is sometimes seen as a negative that
many algorithms function as ‘black boxes’,  that
is, the decision making process is not known, and
yet  in many cases, the reasoning behind a
solution is more  informative than the solution
itself [13..]. This agricul-  tural  revolution  will
require  a  systems-level  approach  (from
individual plant to global scale) using exascale
computing  (the  performance  of  a  computer
system reaches the exaflops level, that is, 1018

floating point  operations per second), especially
when ultra-fast mass brute force is required [14],
and explainable AI (X-AI, AI

Contribution of explainable artificial intelligence (X-AI) and exascale computing in the design and deployment of new crop ideotypes in 
relation to six environmentally and socially oriented Sustainable Development Goals (SDGs 2,4, 6, 7, 13 and 15). X-AI models bring 
together various omics datasets (including the epigenome, genome, transcriptome, proteome, metabolome, and phenome) of 
populations to understand their underlying biological mechanisms. A 200-petaflop supercomputer, Summit can perform 200 quadrillion 
(peta-) 64-bit floating point operations per second
(-flops) and 3 x 1018 16-bit flops for vastly accelerated exascale data analytic and machine learning applications. Interpretable AI 
predictive models are essential to develop crop ideotypes that will thrive in target environments. These ideotypes can be precisely 
defined based on specific traits or trait combinations, including, but not limited to, water and nutrient use efficiency, high food or 
net energy yield per hectare, carbon sequestration, optimized microbiome usage, disease resistance, and so on. CCC, custom 
correlation coefficient; eQTN, expression quantitative trait nucleotide; GCN, gene co-expression network; GWAS, genome-wide 
association studies; GWES, genome-wide epistasis studies; GWATS, genome-wide association time-series studies; GWETS, genome-
wide epistasis time-series studies; NatKAT, nature’s knockouts association test; PPIs, protein-protein interactions; TF, transcription 
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with  decipherable  decision  making  process)
methods to  integrate and analyze multi-omics
data layers (Figure 1). Educating and training early-
career scientists and farmers  (SDG4) will
ultimately fuel the engines of future X-AI  and
exascale computing applied to plant biology and
lead  to  the  implementation  of  science-driven
policies (Figure 1).

Securing sustainable food and 
bioenergy systems through plant 
population-scale multi- omics 
technologies
Multiple omics technologies such as epigenomics,
geno-  mics,  transcriptomics,  proteomics,
metabolomics,  and  phenomics are aimed
primarily at the detection of meth-  ylation
profiles, genes, mRNA, proteins, metabolites, and
phenotypes, respectively. As compared to single
omics,  multi-omics studies offer the opportunity
to understand  the flow of information that
underlies different types of  environmental
stresses. Crop yield increase has continu-  ously
relied on more detailed and accurate information
for  genotypes, phenotypes, and their local
environments. In recent years the acquisition and
implementation of multi-  omics  data  reached
unprecedented  levels.  Short-read  sequencing
made large populations genome level data easily
accessible and economical for germline structural
variations  (variants),  expression  (RNA-seq),  and
epige-  netics (DNA-methylation) [15], which is
now being inte-  grated  with  microfluidics  to
interrogate these genomic processes at the single
cell level [16.,17].

Proteins are of paramount importance as the
functional  manifestation of genes; they are
directly responsible for  observable phenotypic
traits, and protein variants can be  engineered to
modulate a desirable trait (e.g. disease resis- tance
or growth). Advances in protein structure prediction
methods along the past decade, combined with
increased  HPC,  enable  high-quality  proteome-
wide 3D-modeling [18]. Integrated systems biology
models  can  subsequently  predict protein-protein
interactions, which can improve  protein  docking
simulations to further provide structural information
of protein complexes [19]. We are developing  AI
based docking protocols to screen 28 million
small  molecules against proteins associated with
phenotypes  (e.g.  herbicide  susceptibility).  The
3D-interactome  approach  becomes  the
foundation  for  active  compound  discovery in
other areas as well [20]. Finally, the compo- nents
of the plant’s immediate environment (e.g. micro-
biome and ionome) and interactions among them
greatly  influence desired traits and are rapidly
becoming readily  accessible sources of
informative data [21–23]. Exascale  computing
facilitates multi-omic layer integration to deter-
mine features that underlie traits of interest; a

key to that  goal is the addition of data-rich
phenotypes — phenomics.

Modernization  of  greenhouse  and  field-based  high-
through-  put phenotyping and microphenotyping
across large scales has been essential to capture
the diverse traits needed to
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complement multi-omic AI predictions [24].
Various image  processing modalities can non-
invasively phenotype devel-  opmental  and
physiological  phenotypes  using  broad light
spectra [25,26]. For example, plant health and
stress responses are quantifiable via red-green-blue
(RGB) camera  or true-color camera that can detect
asignal and deliver it into three color bands: red,
green, and blue. A genome-wide  association
study of drought tolerance of 507 rice accessions
found 470 variants associated to 51 image-based
traits cap-  tured through non-destructive  RGB
phenotyping [27]. Hyperspectral cameras detect
hundreds of spectral bands  with nm-level
resolution between 350 and 2500 nm and can
even detail: nitrogen content, physiology, water
content, and  biochemical  traits  from
environmental  stimuli  and stress  factor; for
example, hyperspectral imaging data were used
to detect maize plant response to direct insect
herbivory as  well as plant signaling between
infested and non-infested  individuals [28].
Thermal infrared (TIR) cameras can detect long-
wave infrared radiation that is emitted by plant
leaves based on temperature; for example, TIR
imaging enabled  effective assessment of
genotype variability under drought  stress
conditions  via  leaf  temperature  and  stomatal
conduc-  tance in poplar breeding populations [29].
New phenotyping methods have been developed
for profiling the root phe- nome (i.e. its structure
and function), such as 3D-MRI, X-  ray,
tomography technology, and so on, which have a
great  potential in breeding for root traits [30.].
Additionally, plant photosynthetic performance can
be  estimated  via  kinetic  chlorophyll fluorescence
imaging. Aerial drones can auto- mate phenotype
imaging at individual or single-leaf resolu-  tion,
and they aregreenhouse-amenable and field-
amenable. All these advances can play an important
role in empowering  plant  biologists  with  accurate
high-dimensional  datasets  to  optimize the
operational efficiencies of breeding programs. For
example,  in  soybean,  fusing  machine  learning-
based  analytics and optimization tools with
phenomics data, com- plex relationships between
phenomic traits and seed yield  were mapped
and their performance predicted [31].

Muti-scale  phenomics  provides  enormous
datasets  and  deep  learning/feature  extraction
can  capture  specified  and cryptic traits [32].
Current image analysis approaches  implement
segmentation  (plant/background  separation)  and
agglomerative  whole  plant  summaries  within
images  [33]. Therefore, substantial amounts of
high-resolution,  component-specific (e.g.
leaves versus stalk) data are  often  not
utilized.  Development  of  AI-driven  spatial
feature extraction methods will create an
unprecedented  opportunity  to  integrate  multi-
omics results with  data  collected by automated
phenotyping [34] and will under-  pin efforts to

develop food and bioenergy crop ideotypes  with
improved climate resilience.

Environment genotype 
association and clustering the 
planet’s climatypes
Gene by environment association (G E or GEA)
the  interaction  between  genetic  variation
(heritability) and



x

x

x

LongitudeLongitude

(d)(c)

LongitudeLongitude

(b)(a)

the environment to produce a given phenotype is
impor-  tant  in  crop  breeding  because  the
performance  of  a  genotype can vary widely
across environments, even over small scales [35–
38]. Estimation of G E is often done by simply
rank-ordering  genotypes  in  different environ-
ments or by calculating the spread of the
expression of  a target breeding value across
environments [39]. The  ability  to  rapidly
generate  high-resolution genome-level  and
phenome-level data under diverse
environmental  conditions  will  allow  for  more
accurate and high-resolu-  tion G E estimates to
deploy crops that perform opti-  mally across a
broader set of environments.

Currently, G E estimation methods lack a true
tempo-ral  component, thus, we developed
genome-wide associ-ation  time-
seriesstudies(GWATS)andperiodicGEA  (PGEA)to
includedailyresolutionclimatedatafrom
specificgeographic  locationsforgenomicassociations
(climatypes)(Streichetal.,  unpublished).Historically,
landscapeswereclassifiedbylocal  plantmorphology,
andmorerecentlywithclimateclasses[40].  Thecurrent
goldstandardKoppen-Geigersystemusesannual  mean
temperatureandprecipitationdatawithanthropocentric

Figure 2

thresholds that define 31 climate classes. More
recent efforts to cluster geography have focused
on supervised machine learning algorithms with
low resolution data or  isolated  regions  [41].
However,  an  abundance  of  global  temporal
climate data exist for solar radiation, precipita-
tion, temperature, and numerous other variables
[42] that  could vastly improve climatype
definitions. Toward this  end, we created global
exascale datasets for 12 major  elemental
layers for soil and 48 light spectra (300 nm–
780 nm) across 365 days and calculated similarity
indexes  using the DUO algorithm [22] on the
Summit supercom- puter. This generated climate
clusters globally at 1 km2 resolution (Figure 2).
With  these  data,  the  GWATS  approach  depicts
spatio-temporal  adaptation  of  candidate  alleles,
which  can  identify  genotypes  (cultivars,  varieties)
that  optimally  express  a  target  phenotype  at
environmen-  tal granularities needed for
sustainable, high-yield crop  breeding.
Researchers are currently using AI to find the
most  important  multi-omic  interactions  and
optimize outcomes [43.,44], but the addition of the
complex envi- ronmental data presented here and
new omics layers will  result in an enormous
feature-interaction space that will  require
exascale computing and newer AI approaches.

Global climatype clustering. Examples of corresponding results and significant findings applying Markov clustering (MCL) algorithm to a 
network derived from the DUO similarity metric comparison of the climatype vectors with the use of increasing inflation values to give 
clusters of increasing granularities (a–d). In order to determine what environments are present around the world at very high 
resolution 414 640 element tensors representing the environmental and climate conditions of each of the 157 million square kilometers 
of land on earth were created. By comparing all of these tensors to one another we have created a network that represents the 
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similarity of all points on land to one another.



X-AI=

X-AI=

Explainable  AI-assisted  crop  ideotype
design   for  food  security  and  bioenergy
sustainability  Multi-trait genomic selection is
relatively a recent devel- opment and the use of
Bayesian methods have been the  most
accurate, yet slow; recent AI methods have
proven to be just as accurate with an increased
speed giving  them an edge over Bayesian
models [45]. We draw on  examples  from
machine-learning  algorithms  for  scien-  tific
insights to show that newly developed X-AI
algo-  rithms [46] such as iterative Random
Forest (iRF) can  help identify phenotype-
conveying variants using addi-  tive datasets,
given genotype specific traits (Figure 3). X- AI can
identify epistatic (the phenotypic effect of one
gene can vary depending on the modifier gene)
and pleiotropic (a single gene affects multiple
phenotypic  traits) relationships in dense variant
sets while account-  ing for non-additive effects.
The output accounts for all  possible genome
variants within the scope of targeted
phenotypes such as yield or disease resistance,
as well as climatypes (Figure 3). We believe X-
AI can discover

phenotypically  superior  high-yielding breeding
pair  combinations with other beneficial traits for
consump-  tion, energy production, and geo-
targeted locations even on marginal land that is
of poor quality and likely to be drought-prone,
thus meeting both sustainability and
agricultural needs.

Rethinking science-driven policy to 
enable ideotype deployment at scale
Here we describe a novel three thirds approach
for  effective science-policy engagement to
scale new crop ideotype design and sustainable
deployment (Figure 4). The three third influences
–  entitled  ‘aligning  research  with  policy  and
practice’,  ‘encouraging  evidence-based  policy
making’, and ‘promoting science communication,
public engagement and outreach’ are
interconnected,  thus  it  is  important  to
understand  how  these  factors fit  together,
influence one another, and as such, none can be
viewed in isolation.

Figure 3

An illustration of how explainable artificial intelligence (X-AI)-based genomic selection can help with multi-criteria ideotype design. X-AI 
does not require traditional mathematics to combine datasets and this remains true for genomic selection with multi-criteria ideotype 
design. X-AI analyses can make smart interpretable decisions to link genotype to phenotype and genotype to climatype relationships 
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showing the additive, epistatic, and pleiotropic combinations of specific alleles that lead to optimal crop phenotypes and climatype 
adaptation. SNPs, single nucleotide polymorphisms.



The first third is critical to achieve SDGs and
will  require  the  integrated  efforts  of
researchers,  policy-  makers,  breeders,
landowners,  and  relevant  stake-  holders. This
consortium can facilitate interdisciplinary
research,  co-design  future  projects  and  data
analyses,  encourage  co-production  of
knowledge, evaluate sus- tainability trade-offs,
and assess interactions among  SDGs.
Implementing innovations for agriculture-driven
SDGs requires constructive participation by public
and  private  sectors,  non-governmental
organizations,  and  philanthropic  institutions,
while  meeting  each  organization’s  individual
priorities.

Figure 4

The  desired  goal  of  the  second  third  is  to
integrate  scientific  evidence  in  policy/decision-
making processes  for  SDG success and future
global  food  security.  We  believe enhancing
credibility, responsibility, and trans-  parency
through science-policy engagement is a priority
to  overcome  knowledge  gaps  and  allow
scientific  advances to proceed ethically and
with greater public  confidence. Public trust is a
crucial component in science-  policy  dynamics
that positively impacts future science, policy, and
society. The potential of scientific discoveries will
not be fully realized until ethical, legal and
social  issues  (ELSI)  [47]  are  addressed  by
effective science

Strengthening the interface between science and policy for food and bioenergy sustainable development. A novel ‘three thirds’ 
approach for effective science-policy engagement is needed in order to scale new crop ideotype design and sustainable 
deployment. The three are interconnected and it is therefore important to understand how they fit together and influence one another,
rather than viewing them in isolation.



policy and communication. Scientists,
policymakers and  other stakeholders must
redouble their efforts to extract  more from
ongoing research and innovation in bioenergy
and food sustainability by measuring what
matters (e.g.  key performance indicators [KPIs])
and forecasting their impacts.

The final third is to increase public knowledge
and participation in science-related policymaking
that  will  favorably impact the value of science
to  society.  The  best start for science students
and early-career scientists  wanting  to  increase
their  advocacy  beyond  the  bench is  getting
involved in policy through education and capacity
building. Sharing knowledge is imperative for the
cross-  pollination of ideas and practices that
influence students; science communication is an
integral part of  doing  research. Storytelling and
narratives [48,49], as well as creativity in scientific
writing [50,51.], can help connect science to non-
experts and present engaging discoveries  to the
public. Museums of science and innovation, sci-
ence festivals, games, simulations, and avant-
garde out-  reach [52] can also boost public
understanding that will  ultimately increase
public receptiveness to science.

Conclusions
In the face of a changing climate it will be
necessary to design food and bioenergy crop
ideotypes that thrive in  future environments at
microscale levels.  An AI-driven paradigm shift is
significantly transforming plant omics  and
breeding research. At present, large amounts of
multi-  omics, imaging, ecophysiology, and field-
based data are becoming available for large-scale
population-level stud-  ies, revealing subtle
differences in plants’ genetic-based  adaptation
potential and allowing design interventions.
Advanced AI approaches can be used to model
climatype patterns and clustering across the last 50
years against the  backdrop of carbon dioxide
levels in an effort to predict  future  patterns.
This  will  be  used  to  predict  future  climatype
patterns that can be targets for new ideotypes to
optimize agricultural productivity and
sustainability. Rapid progress in these areas will
be  indispensable  for  future  innovation  in  plant
biotechnology  and AI-driven  crop ideotypes
design. It is critical that researchers and
policymakers  integrate  and  promote  their
efforts  to  deliver SDG solutions [8..] while
efficiently and clearly  communicating  these  to
society.
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