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Abstract

Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study
these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct
invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is
the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to
quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that
the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly
resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead,
extravillous cytotrophoblasts—which anchor the placenta in the decidua (uterine lining) and abundantly express E-
cadherin—served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular
compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was
hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple
mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation
why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua
and infect the placenta.
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Introduction

Infection is a major cause for pregnancy complications

including premature labor and resultant maternal and fetal

morbidity and mortality (WHO, 2005). Nevertheless, the under-

lying mechanisms of placental and fetal infection are poorly

understood. The placenta and fetus are vulnerable to infection via

two different routes: (a) pathogens in the lower genital tract may

ascend through the cervix and (b) pathogens in the maternal blood

or uterus can colonize the placenta and breach the maternal-fetal

barrier. The later group includes many viruses, e.g. cytomegalo-

virus; protozoan parasites, e.g. Toxoplasma gondii; and bacterial

pathogens, e.g. Listeria monocytogenes. It is striking that the majority

of pathogens that are able to cross the placenta have either

facultative or obligate intracellular life cycles. The reason for the

predisposition of placental infection toward intracellular pathogens

is unclear. It has been postulated that the unique immunological

environment in the placenta—necessary to assure tolerance of the

fetal allograft—contributes to this phenomenon [1–3], but other

aspects of the placenta may also play a role.

L. monocytogenes is a ubiquitous bacterial pathogen that causes

food-borne disease in humans and many other mammals

[4–6]. In pregnant women L. monocytogenes can spread to the

placenta and fetus, resulting in spontaneous abortion, stillbirth,

or preterm labor, depending on the gestational age [7]. The

incidence of L. monocytogenes-induced spontaneous abortion

during the first trimester is unknown; such early abortions are

often due to chromosomal abnormalities [8] and therefore the

aborted tissues are not routinely cultured. During the second

trimester, L. monocytogenes has been found to cause ,3% of

spontaneous abortions in humans and cattle [9–11]. Clinical

infections of the mother at term are rare, but when they occur,

they can result in neonatal disease with mortality of up to 50%

[12].

Among the intracellular microbes known to cross the maternal-

fetal barrier, L. monocytogenes is particularly amenable to experi-
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mental analysis. L. monocytogenes has been used for decades as a

model system to evaluate intracellular pathogenesis and the host’s

cell mediated and innate immune response to infection (for recent

reviews see [13–15]). L. monocytogenes can infect professional

phagocytic and non-phagocytic cells in many species. A family

of bacterial cell wall surface proteins called internalins (Inl)

promote bacterial adherence and internalization into non-

phagocytic host cells [16]. Of these, internalin A (InlA) and

internalin B (InlB) are the best characterized, binding to E-

cadherin and c-Met-tyrosine kinase, respectively [17,18]. After

internalization, the bacterium escapes from the vacuole into the

host cell cytoplasm where it multiplies rapidly [19,20]. The listerial

virulence determinant ActA facilitates spread from infected host

cells to neighboring cells without bacterial exposure to the

extracellular environment [21–24]. Thus, L. monocytogenes is able

to infect non-phagocytic cells by two different mechanisms: Inl-

mediated direct invasion and cell-to-cell spread. In the work

described herein, we determine the placental tissue barriers

operative against each mechanism and explore how L. monocytogenes

might overcome them.

In order to understand the mechanisms leading to placental

and fetal infection it is essential to understand the structure and

physiology of the placenta. The placenta is made of maternal

and fetal tissues. Placentas of different viviparous vertebrates

exhibit great variability at the maternal-fetal interface, compli-

cating cross-species comparisons [25]. Humans have a hemo-

monochorial villous placenta (Figure 1A). Maternal blood from

spiral arteries in the decidua (uterine lining during pregnancy)

flows into the intervillous space where it surrounds thousands of

fetally derived floating villi. Some villi invade the decidua and

form anchoring villi. The entire villous surface is covered with a

continuous layer of multinucleate syncytiotrophoblast (SYN)

(Figure 1B), which is the major fetal surface in contact with

maternal blood. The apical side of the syncytium consists of

profuse, branched microvilli [26,27] and provides abundant

surface area for gas and nutrient exchange between mother and

fetus. The syncytiotrophoblast is undergirded by cytotropho-

blasts (CTB) [28], which are separated from fetal capillaries in

the villous stroma by a basement membrane. Some cytotro-

phoblasts leave the basement membrane and differentiate along

the invasive pathway to form anchoring villi: columns of

unpolarized cytotrophoblasts attach to and then penetrate the

uterine wall where they give rise to extravillous cytotrophoblasts

[29]. Extravillous cytotrophoblasts commingle with resident

decidual, myometrial and immune cells. A subset of extravillous

cytotrophoblasts breaches maternal spiral arteries in the decidua

and differentiates into endovascular trophoblasts that replace

the resident maternal endothelium to direct more blood into the

intervillous space [29].

The anatomical site and mechanism by which L. monocytogenes

breaches the maternal-fetal barrier are controversial. Of

particular interest is whether InlA-mediated binding to E-

cadherin is essential for transplacental transmission. Infection of

isolated human cytotrophoblasts [30] or the BeWo choriocar-

cinoma cell line [31] with L. monocytogenes deficient in InlA leads

to a 100-fold reduction in invasion. However, in vivo,

cytotrophoblasts are covered with syncytiotrophoblast and

may not be accessible to the bacteria. Lecuit et al. reported

that E-cadherin is expressed at low levels on the apical surface of

syncytiotrophoblast in explants from human term placentas

[31], and postulated that L. monocytogenes breaches the maternal-

fetal barrier by InlA-mediated invasion of the syncytiotropho-

blast from the maternal bloodstream [31]. However, other

groups have not observed E-cadherin expression on the surface

of the syncytium [32–36]. Furthermore, InlA or InlB mutants do

not affect feto-placental infection in guinea pigs [30] (unpub-

lished observations), and show less than a 5-fold decrease in

bacterial numbers in the gerbil placenta and fetus [37]. Wild

type InlA does not interact with murine E-cadherin [38], but

infection of wild type mice with L. monocytogenes expressing

murinized InlA does not influence the course of feto-placental

listeriosis [39], and in transgenic mice expressing human E-

cadherin, InlA and/or InlB have a ,5-fold effect on placental

and fetal infection [37]. The minimal or absent in vivo phenotype

observed with internalin mutants in these four rodent models is

surprising given the strong phenotype in isolated cytotropho-

blasts and suggests that the syncytiotrophoblast may not be the

initial site of infection.

InlA/E-cadherin is not the only mechanism for infection—L.

monocytogenes can spread from cell-to-cell without exposure to the

extracellular environment, and there is evidence that L. monocy-

togenes traffics to the placenta [40] or the brain [41] inside of cells.

Furthermore, we and others have found cell-to-cell spread to be

important for fetal infection [42,43].

In this report, we probe the human maternal-fetal barrier using

first trimester human placental organ cultures, which allow a

detailed examination of the most likely sites of transplacental

infection by direct incubation with extracellular L. monocytogenes as

well as via co-incubation with infected human cells. We found

intact syncytiotrophoblast to be resistant to infection by L.

monocytogenes. The portal of entry for L. monocytogenes was instead

a small subpopulation of E-cadherin-expressing extravillous

cytotrophoblasts in anchoring villi that are not readily accessible

from the maternal bloodstream in vivo, and infection of these cells

occurred via both InlA-mediated invasion and cell-to-cell spread.

Surprisingly, these cells were able to restrict the growth of L.

monocytogenes. If infection progressed, the bacteria spread along

subsyncytial cytotrophoblasts, mostly sparing the syncytiotropho-

blast and villous stroma. Our results clarify the mechanisms of

crossing the maternal-fetal barrier and provide a unifying

explanation for the conflicting in vitro and in vivo results mentioned

above.

Author Summary

Placental infections can lead to severe pregnancy compli-
cations as well as infection of the fetus and newborn with
significant morbidity and mortality. Pathogens that are
able to cross the maternal-fetal barrier typically have life
cycles inside host cells. Among these is the facultative
intracellular bacterial pathogen Listeria monocytogenes,
which is highly amenable to experimental analysis. Our
study is the first to use early gestation primary human
placental organ cultures to identify the mechanisms by
which L. monocytogenes breaches the human maternal-
fetal barrier. We found that the placenta has evolved
multiple mechanisms to resist infection. The main portal of
entry into the placenta was a small subpopulation of
fetally derived trophoblast cells (extravillous cytotropho-
blasts), which anchor the placenta in the decidua, the
lining of the pregnant uterus. These cells could be infected
via two mechanisms: direct invasion of extracellular
bacteria and cell-to-cell spread. The extravillous cytotro-
phoblasts are not readily accessible from the maternal
blood stream. This is a significant finding because it
provides a novel explanation why almost all placental
pathogens have intracellular life cycles: they may need
maternal cells to reach the decidua and infect the
placenta.

Listeria Infection of the Placenta
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Results

Culture of first trimester human placental explants
In order to examine the role of direct invasion and cell-to-cell

spread in breaching the human maternal-fetal barrier we turned to

first trimester human placental organ cultures, a well-studied

model system that allows examination of the trophoblast in a

context that retains the cellular architecture of the tissue in vivo

[44,45]. Placental villous trees are dissected and explanted on

substrates of extracellular matrix (Matrigel), where they form

floating and anchoring villi (Figure 1C-D). All of the tissue is

exposed to the media with the exception of the tips of anchoring

villi that result from extravillous cytotrophoblast outgrowth and

invasion into Matrigel [45,46]. This mimics the conditions in vivo

where extravillous cytotrophoblasts invade the decidua while the

rest of the villous tree is bathed in maternal blood [29]. The

syncytiotrophoblast covers the villi and remains largely intact for

at least 24 h (Susan Fisher, personal communication). First

trimester placental explants therefore adequately represent the

most probable placental sites that are potentially accessible to L.

monocytogenes or infected phagocytes: intact syncytiotrophoblast,

subsyncytial cytotrophoblasts underlying damaged syncytiotropho-

blast, and extravillous cytotrophoblasts (Figure 1).

L. monocytogenes infection of human placental explants
We infected explants with 26106 wild type L. monocytogenes

(Figure 2). In order to measure intracellular growth we added

gentamicin 1 h post-inoculation to eliminate extracellular L.

monocytogenes, and subsequently determined numbers of live bacteria

per explant over 24 h (Figure 2A). No significant differences in

infection were observed between the wild type strains 10403S and

EGDe (p = 0.38 by Student’s T-test). The average bacterial growth

from all placentas was less than 10-fold, which is slow compared to

that found in cell lines [20] (Figure 2A), and infection rates were

highly variable. Despite the relatively high inoculum, 11% of the

explants were not infected and an additional 13% hosted ,10

intracellular bacteria at 2 h post-inoculation. The average

percentage of intracellular bacteria at 2 h post-inoculation was

0.6%62% SD of the inoculum (n = 54 explants), similar to the

bottleneck in the pregnant guinea pig model of listeriosis [40].

Explants vary in size, shape, age, donor and degree of Matrigel

invasion, so variability is expected. However, we were able to

distinguish two possible courses of infection by examining three

explants from the same placenta at each time-point. Roughly half

of the placentas exhibited an increase in bacterial numbers from 2

to 24 h (average = 77-fold, SD = 6.4) while the others showed a

decrease (average = 0.25-fold, SD = 0.19).

Figure 1. Comparison of in vivo placental structure to placenta explant model. (A) Structure and orientation of fetus and placenta in uterus
at ,6 weeks of gestation. Fetal structures are represented in shades of blue and purple while maternal are in shades of red. Maternal structures: MY:
myometrium, SA: spiral arteries, DD: decidua (uterine lining during pregnancy), IVS: intervillous space filled with maternal blood. Fetal structures: VT:
villous tree, CP: chorionic plate, UC: umbilical cord, AF: amniotic fluid. (B) (Enlargement of boxed area in panel A) Maternal blood surrounds the villous
tree composed of anchoring (AV) and floating villi (FV), which are covered by a syncytiotrophoblast (SYN) that is underlaid by subsyncytial
cytotrophoblasts (sCTB) and a basement membrane. The subsyncytial CTB layer grows increasingly discontinuous in later trimesters. Gas and nutrient
exchange with the maternal blood occurs across the syncytiotrophoblast to supply fetal capillaries in the stroma (STR). At the uterine wall, extravillous
cytotrophoblasts (EVT) anchor the villous tree in the decidua. Some invade the decidua and move away from the tip to remodel maternal spiral
arteries, with altered gene expression patterns as they move (not shown). Notably, E-cadherin expression decreases as VE-cadherin expression rises in
distal (relative to fetus) extravillous cytotrophoblasts. (C) A six-week placental explant anchored in Matrigel. Bar = 1 mm. (D) Cartoon representation
of the relevant structures seen in panel C.
doi:10.1371/journal.ppat.1000732.g001

Listeria Infection of the Placenta

PLoS Pathogens | www.plospathogens.org 3 January 2010 | Volume 6 | Issue 1 | e1000732



It has been previously suggested that L. monocytogenes invades

the syncytiotrophoblast [31]. If this is true for explants, then

larger explants should be more highly infected, since .90% of

each explant’s bacterially accessible surface area is covered by

syncytiotrophoblast. But we found no correlation between

colony forming units (CFU) and explant size (r2,0.05) in 30

explants from 11 placentas. Nor did explant age affect CFU

(r2,0.02). However, CFU at 2 h post-inoculation did correlate

with the number of anchoring villi (r2 = 0.49, Figure 2B),

suggesting that extravillous cytotrophoblasts are the preferred

sites of L. monocytogenes infection. Examination by immunoflu-

orescence histology revealed only a few foci of infection,

usually in extravillous cytotrophoblasts of anchoring villi

(Figure 2C).

Syncytiotrophoblast forms a barrier against infection
To better characterize which placental cell types are most

vulnerable to L. monocytogenes infection, we increased both the

inoculum and the time of incubation without gentamicin. These

‘‘permissive infections’’ increase the probability of infection at

vulnerable sites. In addition to wild type bacteria, we also used

bacteria deficient in ActA (DActA) that are incapable of

intercellular spread, thus ensuring that the L. monocytogenes-

containing cells we observe are those initially infected by the

bacteria. After 8 h, we examined explant sections by immunoflu-

orescence (Figure 3).

Under these conditions, L. monocytogenes was detectable in three

cell types (Figure 3A): subsyncytial cytotrophoblasts, extravillous

cytotrophoblasts and syncytiotrophoblast. Infected syncytiotro-

phoblast could be subdivided into: 1) apparently intact syncytio-

trophoblast where only the apical surface is exposed to bacteria;

and 2) basolaterally accessible syncytiotrophoblast (bSYN), where

the syncytiotrophoblast is naturally terminated by an invading

CTB cell column (Figure 3A) or, in rare cases, torn away from the

explant, presumably during dissection.

We enumerated the total number of infected cells in explant

sections (Figure 3B). For syncytiotrophoblast, a ‘‘cell’’ was defined

as a circular region similar in size to a CTB, roughly the area

surrounding a single nucleus. Infection of subsyncytial cytotro-

phoblasts was infrequent, which is unsurprising since unlike

syncytiotrophoblast and extravillous cyotrophoblasts they are

largely inaccessible to bacteria in the media. However, syncytio-

trophoblast infection was also low, even though it covers almost all

of the explant surface. Roughly 75% of the infected cells were

extravillous cytotrophoblasts, which comprise less than 5% of

available surface. Furthermore, these cells were ,5 times more

likely to contain multiple bacteria, possibly indicating multiple

infections.

Transverse sections obscure a full view of the syncytiotropho-

blast. To ensure that our observations were not a histological

artifact, we fixed and mounted whole explants infected with L.

monocytogenes expressing GFP. Confocal microscopy of these

minimally manipulated explants confirmed that the bacteria are

highly localized within the extravillous cytotrophoblasts of

anchoring villi (Figure 3C). Together, these results suggest that

extravillous cytotrophoblasts may serve as the primary site of

infection.

Although in cultured macrophage and epithelial cell lines cell-

to-cell spread begins around 4–5 h post-infection [21,24], we

found no significant difference between locations of DActA and

wild type L. monocytogenes at 8 or even 24 h (Figure 3B, p = 0.99 by

chi-squared test), suggesting that the L. monocytogenes life cycle

(intracellular growth and/or cell-to-cell spread) is delayed in

primary trophoblast cells.

InlA mediates proximal extravillous cytotrophoblast
invasion

E-cadherin is an important host cell receptor for L. monocytogenes

binding and uptake. Lecuit et al. suggested that L. monocytogenes

Figure 2. L. monocytogenes grows variably in placental explants. (A) Intracellular survival of L. monocytogenes in 86 explants from 18
placentas infected with ,26106 10403S (filled circles) or EGDe (open circles) wild type strains for 30 min. Gentamicin was added at 60 min to kill
extracellular bacteria and maintained in media thereafter. Infection is highly variable and growth is slower than in most cell lines. Bars = median
values. (B) Number of internalized bacteria at 2 h post inoculation (p.i.) correlates with the number of anchoring villi in the explant (n = 30 explants,
r2 = 0.49). (C) Histological section of explant frozen and sliced at 8 h p.i., then stained for L. monocytogenes (green), DNA (blue), and EGFR (red), which
stains trophoblast membranes. Bacteria are found in extravillous cytotrophoblasts (EVT) but not syncytiotrophoblast (SYN). Matrigel (MAT) and
stroma (STR) are also indicated. Bar = 100 mm.
doi:10.1371/journal.ppat.1000732.g002

Listeria Infection of the Placenta
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extracellular invasion of the placenta occurs via L. monocytogenes

InlA interactions with host E-cadherin on the apical surface of

syncytiotrophoblast [31]. However, other studies of the placenta

have failed to find E-cadherin here [32–36]. Our results support

this: we never observed E-cadherin staining on the apical surface

of the syncytiotrophoblast, although it was expressed strongly on

the basal surface (Figure 4A). Like others, we found E-cadherin

was most abundant on subsyncytial cytotrophoblasts and proximal

extravillous cytotrophoblasts, decreasing as cells migrate away

from the villus tip.

Since proximal extravillous cytotrophoblasts were the very cells

L. monocytogenes infected, we hypothesized that explant infection is

InlA-dependent. Indeed, DInlA and DInlAB mutants were almost

completely unable to invade explants (Figure 4B; p,10220 by

Student’s T-test). We found no significant difference between

invasion of wild type and DInlB L. monocytogenes in human explants

Figure 3. L. monocytogenes enters the placenta primarily at invasive villus tips. (A) Consecutive histological sections of a permissively
infected explant at 8 h post-inoculation, frozen and stained for L. monocytogenes (green) and DNA (blue). Left panel and inset 1: red = cytokeratin
(CK), expressed by cytotrophoblasts (CTB). In middle panel with insets 2 and 3: red = bHCG (HCG), which primarily stains syncytiotrophoblast (SYN).
Subsyncytial cytotrophoblasts (sCTB) underlie the syncytiotrophoblast. Where cytotrophoblasts invade from the villus into the decidua,
syncytiotrophoblast breaks, exposing basal surfaces (bSYN). Scattered, isolated bacteria are found mainly in proximal extravillous cytotrophoblasts
(EVT). Bar = 100 mm. (B) Distribution of infected cell types in explants infected with DActA (top) or 10403S wild type L. monocytogenes (bottom). Each
graph represents two sections in each of three explants (average of infected cells counted per explant = 135). For SYN and bSYN, a ‘‘cell’’ was
considered to be the area around a single nucleus, roughly the size of a cytotrophoblast. Bars are SEM. (C) Projection of a 3D confocal image showing
a whole explant permissively infected with GFP-expressing L. monocytogenes and fixed at 8 h. Anchoring villi (AV), which include invading extravillous
cytotrophoblasts, and floating villi (FV), which remain covered with syncytiotrophoblast, are indicated. Red = F-actin. Green = L. monocytogenes.
Blue = DNA. Left and top: reconstructed Z series. Because of high F-actin levels in extravillous cytotrophoblasts, bacteria appear yellow. Right and
bottom: sum of total GFP intensity over 70 mm Z stack for each X/Y position after background subtraction shows the majority of bacteria are in
anchoring villi, in extravillous cytotrophoblasts. Bar = 100 mm.
doi:10.1371/journal.ppat.1000732.g003

Listeria Infection of the Placenta
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(Figure 4B; p = 0.68 by Student’s T-test) consistent with previous

observations in isolated CTB and BeWo cells (human choriocar-

cinoma cell line) [30].

Damage of syncytiotrophoblast leads to infection of
subsyncytial cytotrophoblasts

If the syncytiotrophoblast is relatively resistant to infection, as

the preceding data suggest, then removing it should provide L.

monocytogenes new sites of invasion. We enzymatically degraded the

syncytiotrophoblast by soaking the explants briefly in a collage-

nase-containing solution before plating [47]. Although the extent

of the syncytiotrophoblast removal varied, many subsyncytial

cytotrophoblasts were exposed and extravillous cytotrophoblasts

increased (Figure 5A). As expected, permissive infections of

enzymatically-treated explants allowed for new sites of infection

(Figure 5B). The total number of infected cells increased (from an

average of 78 in two sections to 228 with enzymatic degradation),

and nearly half of the infected cells were now subsyncytial

cytotrophoblasts, which express E-cadherin (Figure 5C; p,0.05 by

Chi-square test).

Cell-to-cell spread leads to infection of proximal
extravillous cytotrophoblasts

Infection of the placenta by extracellular pathogens in the

maternal bloodstream must be mediated by the interaction of

pathogen virulence determinants, e.g. InlA with host cell receptors

like E-cadherin. However, L. monocytogenes also traffics in vivo to the

placenta in a gentamicin-resistant manner [40], presumably

traveling inside phagocytic leukocytes [41]. We wanted to test

whether cell-to-cell spread can mediate placental infection, and, if

so, what sites are vulnerable.

We introduced a fluorescent live cell dye to macrophage-like

U937 cells (differentiated to adherent cells with PMA) and then

infected them with 10403S-sGFP L. monocytogenes. The infected

cells were added to explants in the presence of gentamicin to

prevent infection of the explant by extracellular bacteria. After

24 h transmission of L. monocytogenes from U937 cells to explants

had occurred (Figure 6A-B). As with direct invasion, we found

that L. monocytogenes infection by cell-to-cell spread from U937

cells to the placenta was largely confined to extravillous

cytotrophoblasts at villous tips (Figure 6C). In fact, the cell

populations infected were statistically indistinguishable from

InlA-mediated infections after 24 h (p = 0.99 by chi-squared

test). Invasive CTB express chemokines that attract cells of the

monocyte lineage [48–50], and indeed we observed clusters of

U937 cells around the extravillous cytotrophoblasts as early as

4–8 h post-inoculation (data not shown). Placental infection was

not observed upon co-cultivation with U937 cells carrying

DActA mutants, which are defective in cell-to-cell spread (data

not shown).

Bacterial dissemination occurs along subsyncytial
cytotrophoblasts in anchoring villi

Regardless of how L. monocytogenes was introduced, the dominant

site of initial infection was the extravillous cytotrophoblast at the

tip of anchoring villi. Multiple explants from a single placenta

showed strikingly similar progression over the course of infection.

In three out of six placentas studied, L. monocytogenes advanced

Figure 4. Bacteria invade primarily via InlA binding to E-cadherin on cytotrophoblasts not covered by syncytiotrophoblast. (A)
Immunofluorescence of consecutive histological sections. From left to right: red stains bHCG (HCG, a syncytiotrophoblast marker), E-cadherin (Ecad)
and EGFR (stains cytotrophoblasts (CTB) and syncytiotrophoblast (SYN) membrane). E-cadherin does not appear on the apical surface of
syncytiotrophoblast but is abundant in cytotrophoblasts. Green = L. monocytogenes. Blue = DNA. Bar = 100 mm. (B) Intracellular invasion of L.
monocytogenes strains deficient in InlA (DA), InlB (DB), or InlA/InlB (DAB) at 2 h post-inoculation. Each condition represents at least 4 placentas and 3
explants per placenta. Asterisks and crosses denote statistically similar populations.
doi:10.1371/journal.ppat.1000732.g004

Listeria Infection of the Placenta
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significantly beyond the tips of anchoring villi (Figure 7). By 72 h

post-inoculation, subsyncytial cytotrophoblast infection was com-

mon in anchoring villi while syncytiotrophoblast remained largely

uninfected, suggesting that the syncytium not only resists cell-to-

cell spread from macrophage-like cells but also from neighboring

cytotrophoblasts (Figure 7A). While infected anchoring villi were

always colonized at the distal tips, infection of floating villi always

began at proximal junctures shared by anchoring villi. At times

floating villi exhibited infection of cytotrophoblasts on both sides of

the villus without syncytiotrophoblast infection, indicating that L.

monocytogenes trafficked through the subsyncytial cytotrophoblasts

(Figure 7B). Spread into the stroma was rare and presumably

restricted by the basement membrane underlying subsyncytial

cytotrophoblasts. Some stromal cells were infected at later

timepoints (Figure 7C). In explants infected with DActA L.

monocytogenes, bacteria remained in extravillous cytotrophoblasts

(Figure 7D).

Overall, ,75 – 100% of anchoring villi were infected (Figure 7E)

and infection of subsyncytial cytotrophoblasts and stroma

increased over 72 h (Figure 7F). In contrast, only 22% of explants

exhibited any L. monocytogenes in floating villi (Figure 7E). Taken

together, these results describe the cell-to-cell path L. monocytogenes

follows in disseminating throughout placental explants over three

days: from extravillous cytotrophoblasts of anchoring villi along

lateral villous subsyncytial cytotrophoblasts and from there into

floating villi and/or stroma, all while leaving the syncytiotropho-

blast largely uninfected.

Discussion

Pathogens present in the maternal bloodstream may colonize

the placenta, causing infection, inflammation, and ultimately

spontaneous abortion, preterm labor, and neonatal morbidity and

mortality [51]. Many pathogenic microbes are found transiently in

maternal blood. For example, the simple daily act of brushing

teeth is associated with bacteremia [52,53], and L. monocytogenes is

ingested frequently by healthy adults [54]. Yet neither result in

significant maternal-fetal infection the majority of the time. This is

surprising considering that twenty percent of maternal blood can

be found circulating freely in the placenta’s intervillous space,

where it bathes fetal villi that are covered by a syncytiotrophoblast

whose surface area ranges from 3000 cm2 in the late first trimester

to 125,000 cm2 at term [28]. Thus, it seems reasonable to

hypothesize that the syncytium forms an extremely effective

physical barrier against infection. In this study, we have

conclusively shown that the syncytiotrophoblast is resistant to

infection by L. monocytogenes and that extravillous cytotrophoblasts

are the portal of entry.

For internalin-mediated infections the resistance of the

syncytiotrophoblast can be reasonably explained by the tissue’s

lack of E-cadherin on the apical surface. When syncytiotropho-

blast was infected, it was more likely to be basolaterally accessible

syncytiotrophoblast, in which an E-cadherin expressing basolateral

surface was exposed. Even for infections in uninterrupted

syncytiotrophoblast, it remains possible that basolateral access

Figure 5. L. monocytogenes infects villous cytotrophoblasts when syncytiotrophoblast is removed. (A) Placental explant treated with
collagenase-containing solution to degrade the syncytiotrophoblast (SYN). Treatment varies; some areas of syncytiotrophoblast remain (e.g. between
arrowheads). All villi anchor to form extravillous cytotrophoblasts (EVT). Bar = 1 mm. (B) Left: histological section of enzymatically-treated villus arm,
8 h postinoculation (p.i.). No syncytiotrophoblast remains, permitting infection of both villous cytotrophoblasts (CTB) and extravillous
cytotrophoblasts (EVT). Red = E-cadherin (Ecad). Green = L. monocytogenes. Blue = DAPI. Asterisk = Matrigel. Right: Green channel only, color inverted
to show L. monocytogenes (solid black) with background fluorescence (faint grey) to show explant outline. Bar = 100 mm. (C) Distribution of infected
cell types in enzymatically-treated explants compared to that in untreated explants at 8 h p.i. Here, sCTB refers to villous trophoblasts, which are
subsyncytial in untreated explants but exposed after syncytiotrophoblast removal in enzymatically-treated explants. Each condition represents two
sections from each of three explants. For syncytiotrophoblast (SYN) and basally accessible syncytiotrophoblast (bSYN), a ‘‘cell’’ was considered to be
the area around a single nucleus, roughly the size of a cytotrophoblast. Bars = SEM.
doi:10.1371/journal.ppat.1000732.g005
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was not apparent in the examined section but was available in an

adjacent section. It is interesting to note that InlA and E-cadherin

interactions mediating intestinal invasion are confined by

anatomical and cellular barriers as well [55].

Even more surprising was the near absence of syncytiotropho-

blast infection by cell-to-cell spread, either from U937 cells—

which were observed near the syncytiotrophoblast—or from

neighboring cytotrophoblasts at later timepoints. Three possible

explanations exist: 1) the syncytiotrophoblast under-expresses

unknown host molecule(s) required for cell-to-cell spread; 2)

attachment of leukocytes to syncytiotrophoblast is insufficiently

close in time or space for cell-to-cell spread to occur; or 3) the

syncytiotrophoblast membrane is physically inhospitable to L.

monocytogenes’ actin-mediated protrusions. The last two are

especially plausible when considering the profuse covering of

branched microvilli on the apical surface [56–61]. The basal

surface may also be girded against protrusion by the especially

dense cytoskeletal network that is presumably required to resist

cytosolic surface tension in the laterally vast syncytium [56–59].

Interestingly, interaction of the bacterial virulence factor InlC with

human actin regulatory proteins has recently been shown to

promote cell-to-cell spread by decreasing cortical tension, thereby

enhancing the ability of motile bacteria to deform the plasma

membrane into protrusions [62].

The syncytiotrophoblast may act as a general barrier. We have

observed that T. gondii is not able to efficiently colonize the

syncytium either (unpublished observations), and other groups

have reported similar results for herpes simplex virus [63] and

cytomegalovirus [64,65].

Instead, we present evidence that extravillous cytotrophoblasts,

normally not easily accessible from the intervillous space, are the

dominant sites of L. monocytogenes colonization from both

extracellular and intracellular compartments. Our results are in

accord with Lecuit et al. showing that invasion of placental

explants by extracellular L. monocytogenes depends on InlA, but our

findings differ on the initial site of invasion (EVT versus SYN, see

Figure 8). An important difference is our experimental set-up: we

used first trimester placental explants instead of term placentas.

Term placental organ cultures do not form anchoring villi after

removal from the mother and are maintained in floating culture.

Damage of the term explant syncytiotrophoblast has been

reported as early as 4 h under selected culture conditions [66]

and term explants cannot be used to evaluate extravillous

cytotrophoblasts [67]. Thus, first trimester explants better

represent the architecture of the maternal-fetal barrier in vivo.

However, placental organ cultures from all gestational ages omit

the decidua and the maternal vessels. The later are remodeled by

extravillous cytotrophoblasts, which differentiate into endovascular

trophoblasts that replace the endothelium of the maternal spiral

arteries and therefore are in direct contact with maternal blood.

Endovascular trophoblasts do not express E-cadherin [32] but it

may be possible that they are targets of cell-to-cell spread in vivo.

It has recently been postulated that the conjugated action of

InlA and InlB leads to breaching of the maternal-fetal barrier [37].

This is particularly intriguing since InlA and InlB are in the same

operon and expression of these invasion proteins is most likely co-

regulated [16]. Disson et al. show a 10-fold reduction in invasion

of the human intestinal cell line Caco-2 with L. monocytogenes strain

EGDe, deficient in InlA or InlB, and an almost 100-fold reduction

with the InlAB double deletion mutant [37]. Other groups using L.

monocytogenes strains derived from 10403S have observed a 2–3-fold

effect of InlB on intestinal invasion (Amieva, personal communi-

cation). We do not observe a difference between wt and DInlB in

infection of early gestation placental organ cultures. It may be that

Figure 6. L. monocytogenes infects anchoring villi by cell-to-cell
spread. (A) Histological sections of explant infected by L. monocy-
togenes-containing U937 macrophage-like cells loaded with green dye
(arrowheads). L. monocytogenes are also stained green. Photos are 24 h
post-inocculation (p.i.). Both bacteria and U937 cells localize primarily
to the E-cadherin-expressing extravillous cytotrophoblasts (EVT). Red:
= Ecad. Blue = DNA. Bar = 100 mm. (B) Bacteria are excluded from
syncytiotrophoblast (SYN) and subsyncytial cytotrophoblasts (sCTB).
bHCG (red) is primarily expressed by syncytiotrophoblast. Only
anchoring villi (AV) are infected, while floating villi (FV) covered in
syncytiotrophoblast remain uninfected. Bar = 100 mm. (C) Localization
of L. monocytogenes in explants when introduced in extracellular
media (e) or by cell-to-cell spread from the intracellular compartment
(i) of U937 cells (in the presence of gentamicin) at 24 h p.i. Each
condition represents two sections in each of three explants.
Bars = SEM.
doi:10.1371/journal.ppat.1000732.g006
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Figure 7. Infection progresses from extravillous cytotrophoblasts to stroma over 72 hours. (A) Histological section of explant
permissively infected by L. monocytogenes at 72 h post-inoculation (p.i.). Inset numbers correspond with right panels. Anchoring villi (AV) are major
loci of infection, while floating villi (FV), which lack extravillous cytotrophoblasts (EVT), remain relatively uncolonized. Syncytiotrophoblast (SYN),
indicated by bHCG (HCG, red) is still largely uninfected, with spread moving down the subsyncytial cytotrophoblasts (sCTB, insets 1 – 3) and
occasionally crossing into stroma (STR, inset 4). (B) AV infection progresses from EVT toward fetus, while FV infection begins at the villus base. Here, a
permissive infection shows dissemination from an anchoring villus (top center) to an FV, where bacteria circumnavigate the sCTB (arrowheads) while
leaving SYN uninfected. (C) Infection from U-937 cells at 72 h p.i. shows bacteria concentrated in sCTB and bounded by the basement membrane
that underlies them. A few bacteria have spread into STR (arrowheads, inset) where fetal capillaries are found. Red = cytokeratin (CK, stains
cytotrophoblasts). (D) Explant permissively infected with DActA L. monocytogenes, which cannot spread from cell to cell. EVT are filled with bacteria
(inset). Red = bHCG. (A–D) Green = L. monocytogenes, Blue = DAPI. Bar = 100 mm. (E) Percentage of AV and FV infected by L. monocytogenes
introduced by cell-to-cell spread (i) or from extracellular media (e). FV infection was sporadic. (F) Dissemination of bacteria introduced by both means
in AV. All infected AV contained bacteria in EVT. At later timepoints, infection of subsyncytial cytotrophoblasts and stroma rose. Stromal infection was
not observed without sCTB infection. (E–F) Each condition represents two sections separated by at least 30 mm on the Z-axis in each of three
placentas infected by each means. Bars = SEM.
doi:10.1371/journal.ppat.1000732.g007
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the variability of the human placental explants is too high to

resolve a potentially small effect of InlB on invasion of placental

explants.

We did examine the role of cell-to-cell spread from infected

U937 cells to the placenta, which seems highly relevant

considering the importance of Listeria’s intracellular life cycle for

virulence [68] and the published evidence that L. monocytogenes

traffics between organs inside of cells [40,41]. It is striking that

extravillous cytotrophoblasts remain the primary portal of entry,

leading us to hypothesize that access to extravillous cytotropho-

blasts represents the first bottleneck for L. monocytogenes infection of

the placenta (Figure 8). How can L. monocytogenes overcome this

hurdle? Extravillous cytotrophoblasts are present in the decidua

and are known to actively recruit macrophages, monocytes and

natural killer cells [48–50]. Therefore, we postulate that L.

monocytogenes reaches the placenta in maternal phagocytes that are

recruited to the decidua where they infect extravillous cytotro-

phoblasts by cell-to-cell spread or internalin-mediated invasion.

Another striking finding was that extraordinarily high doses of

L. monocytogenes were required to infect placental explants, and that

L. monocytogenes growth rates were relatively slow, on average

increasing only ,10-fold over 24 h. However, we could

distinguish two placental populations: in about half of the

placentas L. monocytogenes did not grow, while in the other half

bacterial numbers increased by ,77-fold. Lecuit et al. used slightly

higher doses and reported an increase of ,100-fold over 24 h. But

they also report having removed gentamicin from the culture

medium at 2 h post-inoculation. Therefore, their 24 h CFU and

histological assays may have included extracellular bacteria that

escaped dying cells. In addition, we found little to no cell-to-cell

spread at 24 h, while in most cell lines cell-to-cell spread begins as

early as 4 h post-inoculation [21,24]. In some placentas we

observed that infection remained confined to the extravillous

cytotrophoblasts for at least 72 h. It is intriguing that the sites of

infection correlated with the host cell’s proliferative capacity

[69,70], which may provide interesting avenues for future studies.

The slow rate of intracellular bacterial growth and cell-to-cell

spread suggest the possibility that extravillous cytotrophoblasts

restrict the intracellular life cycle of L. monocytogenes, thus

representing the second bottleneck in the placenta (Figure 8).

Once the placenta is infected, L. monocytogenes can spread to the

fetus. One probable route of spread to the fetus is via the fetal

capillaries in the villous stroma. Indeed, we observed low numbers

of bacteria that had penetrated the basement membrane and

infected the stroma suggesting that this is the third bottleneck L.

monocytogenes encounters (Figure 8). It is interesting to note that

although some bacteria were observed in syncytiotrophoblast at

early timepoints, only anchoring villi acted as an origin of

colonization.

Our model is consistent with previous findings in vivo that the

guinea pig placenta is colonized by 104 times fewer bacteria than

maternal liver and spleen, and subsequently only 1 out of 104

bacteria are able to spread from placenta to fetus [40]. It is also in

agreement with the epidemiology of human listeriosis, which is a

rare disease during pregnancy despite its ubiquity in the

environment, as well as the observation that pregnant animals

have to be inoculated with high doses of L. monocytogenes to observe

consistent placental and fetal infection [37,39,40]. In addition, our

results provide an explanation for the absent or minor phenotype

the internalin mutants exhibit in multiple different pregnant

animal models [37,39,40].

Although it may be attractive to describe the route taken by a

pathogen as a single mechanism, we do not believe that this

accurately reflects what occurs in vivo. There is mounting evidence

that pathogens have evolved to exploit multiple strategies to

breach the intestinal and blood-brain barriers [71,72], and it is

reasonable to expect the same of the maternal-fetal barrier. The

mechanisms by which the placenta excludes most pathogens to

generate the maternal-fetal barrier are poorly understood, but our

results suggest that the syncytiotrophoblast plays a significant role.

Given its extensive contact with the maternal blood, this important

tissue may have evolved to exclude pathogens, and our model

system offers a powerful way to probe the mechanisms by which

this occurs. Pathogens that can breach the syncytiotrophoblast or

exploit sites of syncytial damage may colonize the placenta via

subsyncytial cytotrophoblasts. Our study of L. monocytogenes, a

model pathogen that colonizes the placenta, strongly suggests that

the placenta’s most vulnerable site is the extravillous cytotropho-

blast, where cells anchor the placenta in the maternal decidua but

have little to no contact with maternal blood. This finding suggests

a reason for the observation that almost all pathogens capable of

crossing the maternal-fetal barrier are either facultative or obligate

intracellular: dissemination in the blood is not enough.

Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Figure 8. Model of L. monocytogenes mechanisms for breaching
the maternal-fetal barrier. L. monocytogenes is subjected to multiple
bottlenecks when infecting the placenta. Our data support extravillous
cytotrophoblasts (EVT) as the primary portal of entry. First (1), relatively
few L. monocytogenes reach the maternal decidua, carried by
phagocytes. These can infect extravillous cytotrophoblasts by cell-to-
cell spread, or by lysing the leukocyte and subsequently infecting
extravillous cytotrophoblasts via InlA-E-cadherin interactions. (2) Extra-
villous cytotrophoblasts further winnow bacterial numbers by delaying
the L. monocytogenes intracellular life cycle. If infection progresses,
bacteria spread through subsyncytial cytotrophoblasts. (3) The base-
ment membrane underlying these cells presents a third barrier, which
few bacteria cross to invade the fetal stroma (STR). On the other hand, L.
monocytogenes in the blood contacts only the syncytiotrophoblast
(SYN), which is highly resistant to both internalin-mediated infection
and intercellular spread. However, it is possible that sites of syncytial
damage provide access to subsyncytial cytotrophoblasts. In vivo, such
sites are rapidly covered by fibrinoid clots [28] that may present yet
another physical barrier to infection.
doi:10.1371/journal.ppat.1000732.g008
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Institutional Review Board at the University of California, San

Francisco, where all experiments were performed (H497-00836-

28). All patients provided written informed consent for the

collection of samples and subsequent analysis.

Human tissue collection and culture
Placentas from elective terminations of pregnancy (gestational

age 4 to 8 weeks) were collected and prepared as previously

described [67]. Briefly, fragments from the surface of the placenta

were dissected into 1–3 mm tree-like villi, placed on Matrigel (BD

Biosciences, San Jose, CA) coated Transwell filters (Millipore,

Bedirica, MA, 30-mm diameter, 0.4 mm pore size) and cultured in

Dulbecco’s modified Eagle’s medium-F12 medium (DMEM-F12;

1:1, vol/vol) supplemented with 20% fetal bovine serum (FBS,

Fisher Scientific), 1% L-glutamine and 1% penicillin/streptomycin

(Invitrogen, Carlsbad, CA). For surface area and perimeter

measurements, cultured explants were photographed pre-infection

on a Leica MZ16F stereomicroscope (Leica Microsystems,

Wetzlar, Germany) using an Axiocam MR monochrome camera

(Carl Zeiss, Munich, Germany). Measurements were made using

ImageJ software (NIH, Bethesda, MD).

Removal of syncytiotrophoblast
Syncytiotrophoblast was removed from villous trees as previ-

ously described [47]. Briefly, placental explants were soaked for 5–

15 min in a solution containing Type IA collagenase (100,000 U),

hyaluronidase (150,000 U), DNAse (120,000 U) and 0.1% BSA in

PBS without divalent cations (UCSF Cell Culture Facility, San

Francisco, CA). Explants were observed continuously via a

dissecting microscope and when syncytiotrophoblast degradation

was apparent they were transferred to Matrigel.

Pathogen strains and growth conditions
The wild type strain of L. monocytogenes used in this study is

10403S [73]. Mutant strains included DInlA (DPL4405), DInlB

(DPL4406), DInlAB (DPL4455) [30], DActA (DPL3078) [74], and

sGFP-expressing 10403S L. monocytogenes (DH-L1039) [75]. EGDe

L. monocytogenes (M. Loessner) was used for some experiments.

Bacteria were cultured using brain heart infusion (BHI) broth or

agar (Becton Dickenson Company, Sparks, MD).

L. monocytogenes infections of placental explants
Intracellular growth assays of L. monocytogenes were performed as

previously described [76] with following modifications: placental

explants were incubated in antibiotic free media for 1 h prior to

infection, 16106 bacteria/ml were added for 30 min and

gentamicin (50 mg/ml) was added at 60 min post-inoculation.

Gentamicin was subsequently maintained in the media, which was

refreshed every 24 h. At specified times after infection, explants

were removed from Matrigel and homogenized in 1 ml dH2O

using a T25 digital Ultra-Turrax (IKA, Staufen, Germany).

Aliquots were plated on BHI agar and grown at 37uC. For

permissive infections explants were incubated with 26107

bacteria/ml for 5 h before adding gentamicin.

Infection of explants by cell-to-cell spread
Human macrophage-like U937 cells (ATCC 1593.2 [77]) were

grown in RPMI-1640 (UCSF Cell Culture Facility) containing

4500 mg/L glucose, 10% FBS and 1% penicillin/streptomycin

(Invitrogen). Forty-eight hours prior to infection, cells were

differentiated by addition of phorbol 12-myristate 13-acetate

(PMA; concentration 18 nM; Sigma) to the medium. On the day

of infection, cells were labeled with CellTracker Green CMFDA

(Invitrogen) and infected with L. monocytogenes for 1 h at an MOI of

1:1. Cells were washed once with PBS and lifted from culture

plates by incubation in ice cold PBS without divalent cations for

5 min. U937 cells were resuspended in explant medium

containing 50 mg/ml gentamicin, and 16106 cells per transwell

were added to the explants. Every 24 h, fresh media containing

gentamicin was added.

Immunofluorescence and histology
Explants were removed at the times indicated and placed into

vinyl cryomolds (Ted Pella, Redding, CA), then covered with

optimal cutting temperature (OCT) media (Ted Pella) and flash-

frozen. Histological slicing was performed using a Hacker-Slee

cryostat. Glass slides with sections were incubated ,5 min in

acetone at 4uC. All antibody staining was conducted at room

temperature. When dry, slides were soaked 60 min in blocking

solution (1% bovine serum albumin (BSA, Sigma) in PBS), then

rinsed and exposed to primary antibodies in 0.5% BSA/PBS.

Slides were rinsed three times for 5 min each in 0.5% BSA/PBS,

then secondary antibodies were added at the indicated

concentrations and incubated for 60 min. After three rinses,

coverslips were affixed over Vectashield mounting medium with

DAPI (Vector Laboratories, Burlingame, CA). Uninfected

explants did not stain with anti-Listeria antibodies. Primary

antibodies: polyclonal rabbit Listeria O antiserum (1:1000

Becton, Dickenson), monoclonal mouse anti-human cytokeratin

7 (1X, Clone OV-TL, Dako, Carpinteria, CA), monoclonal

mouse anti-human E-cadherin (1:200, Clone NCH-38, Dako),

monoclonal mouse anti-human bHCG (1:500, clone SPM105,

Neomarkers, Fremont, CA) and monoclonal mouse anti-human

EGFR (1:250, Clone cocktail R19/48, Biosource, Camarillo,

CA). Secondary antibodies: Alexa Fluor 594 goat anti-mouse

IgG (1:500) and Alexa Fluor 488 goat anti-rabbit IgG (1:1000,

both Invitrogen). All immunofluorescence conditions were

compared to no-primary controls to ensure that non-specific

binding did not occur.

Slides were viewed using an inverted TE2000-E microscope

(Nikon, Tokyo, Japan) equipped with a 12-bit cooled CCD camera

(Q Imaging, Surrey, Canada). Images were collected using Simple

PCI software (Hamamatsu, Sewickley, PA). Counts of L.

monocytogenes localization were made by tallying every infected cell

in each section at 100X magnification.

Confocal microscopy
Whole mount explants were prepared by rinsing explants with

PBS and then soaking in 3% paraformaldehyde in PBS (Ted Pella)

for 12 h at 4uC. Explants were then rinsed three times with PBS

and suspended in 1:100 Alexa Fluor 594 phalloidin and 1:100

DAPI (both Invitrogen) for 24 h at 4uC. Explants were mounted

onto glass slides in Vectashield and sealed under coverslips.

Imaging was performed at the Nikon Imaging Center at UCSF

using an upright Nikon C1 spectral confocal microscope equipped

with 405, 488 and 561 nm lasers.

Image processing for figures
Images were prepared using Photoshop and Illustrator (Adobe,

San Jose, CA). RGB color hues were linearly adjusted for better

CMYK printing but no non-linear alterations were performed.
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