
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Machine learning approach to observability analysis of high-dimensional nonlinear
dynamical systems using Koopman operator theory

Permalink
https://escholarship.org/uc/item/8x20s915

Author
Balakrishnan, Shara Rhagha Wardhan

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8x20s915
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY of CALIFORNIA
Santa Barbara

Machine learning approach to observability analysis of high-dimensional
nonlinear dynamical systems using Koopman operator theory

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Shara Rhagha Wardhan Balakrishnan

Committee in charge:

Professor Enoch Yeung, Co-chair

Professor Joao Hespanha, Co-chair

Professor Andrew Teel

Professor Bassam Bamieh

Professor Francesco Bullo

March 2023

The dissertation of Shara Rhagha Wardhan Balakrishnan is approved:

Professor Andrew Teel

Professor Bassam Bamieh

Professor Francesco Bullo

Professor Joao Hespanha, Co-chair

Professor Enoch Yeung, Co-chair

March 2023

Copyright © 2023
by Shara Rhagha Wardhan Balakrishnan

iii

Dedicated to my family and friends, who have supported and encouraged
me to come this far. I also dedicate this work to my nephews, Mritun Jai

and Arjun Krishna, whom I hope will find their passions in life and
pursue them with high dedication and enthusiasm.

iv

Acknowledgements

The Ph.D. journey was a long and hard one. The journey was like a roller coaster
with many ups and downs. It has offered me the opportunity to work with wonderful
collaborators, colleagues, friends, and mentors. Thank you to everyone who helped me
get here, and be proud of the person I am today!

I thank my research advisor, Enoch Yeung, who encouraged me to explore the fasci-
nating world of biology from a control theory perspective. The decision to embark on the
journey to take on the world of biology was a hard one, but he made it easier. He pushed
me to pursue innovative ideas and ensured there was adequate funding to support my
work. My personal and professional growth over the past few years is largely attributed
to my relationship with him. Thank you for the opportunity to develop as a problem
solver and for instilling the confidence to tackle challenges in any new domain.

I wish to express my greatest gratitude to my committee members, Enoch Yeung,
Joao Hespanha, Andrew Teel, Francesco Bullo, and Bassam Bamieh, for guiding me,
providing valuable feedback, and encouraging me to do good science.

The research work is heavy on Koopman operator theory and biology, and I had no
domain knowledge in either of the spaces when I started out. I thank Aqib Hasnain,
who got me started on Koopman operator theory and constantly provided his time and
support. There were many days I got stuck, and he was always there to discuss, work
as a team, and overcome hurdles. I thank Dennis Joshy, who helped me get familiar
with biology and get started on wet lab experiments. Thinking back to my first biology
experiment and my last, I am thankful to him for helping me grow as an experimental
researcher. I want to thank my other colleagues, Jamiree Harrison, Charles Johnson, and
Alec Taylor. It was fun working in a group with everyone

I am thankful to Vivek Adarsh for encouraging me to pursue a Ph.D. journey in
2018 after experiencing multiple rejections in 2016. He helped me understand that a
Ph.D. is about developing research skills rather than merely publishing papers. This
mindset pushed me to strive for top-quality research and enjoy the scientific journey.
I am also grateful to my friends and colleagues Abed Mufassar, Aditya Raj, Sharad
Shankar, Gaurav Gambhir, Himadhari Sharma, and Kunjesh Agashiwala, who played
significant roles in my journey. I also appreciate the inspiration from my undergraduate
friends and their journeys.

Finally, I would like to express my gratitude to my family for their unwavering sup-
port. My father made sure I had every opportunity to pursue my interests, while my
mother provided care, especially during difficult times. I want to thank my sister and
brother-in-law for their unconditional support when I needed it most.

I could not have done it without all of you. Thank you!

v

Curriculum Vitæ

Shara Rhagha Wardhan Balakrishnan

Education

2023 Ph.D., Electrical and Computer Engineering, University of California,
Santa Barbara

2018 M. S., Electrical and Computer Engineering, University of California,
Santa Barbara

2016 Master of Technology, Mechanical Engineering (Intelligent Manufactur-
ing), Indian Institute of Technology, Madras, India

2016 Bachelor of Technology, Mechanical Engineering, Indian Institute of
Technology, Madras, India

Professional Experience

2022 Machine Learning Research Intern, Cemvita Factory, Houston

First author publications

Balakrishnan, S., Hasnain, A., Boddupalli, N., Joshy, D.M., Egbert, R.G. and Yeung,
E., 2020, July. Prediction of fitness in bacteria with causal jump dynamic mode decom-
position. In 2020 American Control Conference (ACC) (pp. 3749-3756). IEEE.

Balakrishnan, S., Hasnain, A., Egbert, R. and Yeung, E., 2021. The Effect of Sensor Fu-
sion on Data-Driven Learning of Koopman Operators. arXiv preprint arXiv:2106.15091.

Balakrishnan, S., Hasnain, A., Egbert, R. and Yeung, E., 2022. Data-driven observability
decomposition with Koopman operators for optimization of output functions of nonlinear
systems. arXiv preprint arXiv:2210.09343.

vi

Abstract

Machine learning approach to observability analysis of high-dimensional

nonlinear dynamical systems using Koopman operator theory

by

Shara Rhagha Wardhan Balakrishnan

Nonlinear systems can be decomposed into observable and unobservable subsystems

in theory, but achieving this decomposition in a data-driven framework is challenging.

Koopman operators enable us to embed nonlinear dynamical systems in high-dimensional

function spaces. In this thesis, we explore how the observable decomposition of linear

Koopman models relates to the observable decomposition of nonlinear systems and show

how this decomposition can be achieved in a data-driven setting. In a model biological

soil bacterium, Pseudomonas putida, we use a deep neural network approach to learn

Koopman operator representations to model the gene expression-phenotype dynamics.

Using the Koopman observable decomposition, we identified 18 out of 5564 genes in

Pseudomonas putida, which impact the growth phenotype of the bacterium in R2A

media. We use CRISPRi for multiplexed targeted gene regulation and show that 80%

of the gene targets have the predicted impact on the fitness of the bacterium. Our

results provide a novel machine learning tool to detect critical states that generate desired

outcomes in complex, high-dimensional nonlinear dynamical systems.

vii

viii

Contents

1 Introduction 1

2 Mathematical Preliminaries 7
2.1 Koopman Operator Theory 7

2.1.1 Modal decomposition 9
2.1.2 Koopman operators for conjugate dynamical systems 10

2.2 Dynamic Mode Decomposition 11
2.3 Nonlinear Observable Decomposition: Differential geometric approach 15

3 Koopman Operators with outputs 18
3.1 Problem Formulation 21
3.2 Output Constrained Koopman Operators 23
3.3 DMD with output constraints 33

3.3.1 Equivalence of Solution Spaces for Sequential and Direct OC-DMD 37
3.3.2 Coordinate Transformations of Standardization Routines on System

State and Output Data 43
3.4 Simulation Results 46

3.4.1 Example 1: System with finite Koopman closure 49
3.4.2 Example 2: MEMS-actuator with a differential capacitor 53
3.4.3 Example 3: Activator Repressor clock with a reporter 58

3.5 Conclusion 62

4 Observability of Koopman operators 63
4.1 Introduction 63
4.2 Problem Formulation 67

4.2.1 The Mathematical Challenge 69
4.2.2 The Biological Implication 71

4.3 Extension of nonlinear observability to Koopman system with output 72
4.3.1 Minimal Koopman operator that drives the output 72
4.3.2 Learning Koopman operators with output 76
4.3.3 Identifying the minimal Koopman operator 77
4.3.4 State information contained in the outputs 80
4.3.5 Analytical example to illustrate the theoretical results 82

4.4 Simulation Results 85
4.4.1 Example 1 - Finding Critical Genes to Control Bacteria Growth 86
4.4.2 Example 2 - Finding Critical Genes In Composed Genetic Circuit

Networks 92
4.5 Conclusion 97

5 Pseudomonas putida: Fitness prediction using causal jump dynamic mode
decomposition 99
5.1 Experimental Setup 101
5.2 Growth Curve Dynamics Model 103
5.3 Hankel dynamic mode decomposition 105

ix

5.4 Dynamic mode decomposition of nonlinear autoregressive models 108
5.5 Results 118
5.6 Conclusion 119

6 Pseudomonas putida: Koopman observable decomposition identifies fitness
impacting genes 121
6.1 Introduction 121
6.2 Results And Discussion 123

6.2.1 Obtaining diverse growth conditions for P. putida 123
6.2.2 Koopman models with output capture the dynamics 125
6.2.3 Observability analysis of Koopman model ranks the genes by order of

their impact on the host fitness 128
6.2.4 Multiplexed targeted gene regulation validates the predictions of

Koopman observable decomposition 131
6.2.5 Limitations 135
6.2.6 Conclusion 136

7 Conclusion and Future Work 138
7.1 Conclusion 138
7.2 Future Work 139

A Biological Methods and Protocols 141
A.1 Biological Protocols 141

A.1.1 Time series experiment setup 141
A.1.2 RNA sequencing 142
A.1.3 CRISPRi library cloning 143

A.2 Data-driven analysis of the biological datasets 145
A.2.1 Preprocessing RNAseq time-series data 145
A.2.2 Preprocessing OD600 time-series data 147

A.3 Dimensionality reduction of RNAseq data 148
A.4 OC-deepDMD algorithm 150
A.5 Observability analysis 152
A.6 Supplementary Tables 153

A.6.1 CRISPRi sequences 153
A.6.2 Other plasmid parts 156

A.7 Supplementary Figures 156

B Mathematical Implementations 162
B.1 Learning a Koopman operator model for the nonlinear dynamical system with

outputs: output-constrained deep dynamic mode decomposition (OC-deepDMD)
algorithm 162
B.1.1 Data generation 162
B.1.2 Data preprocessing 163
B.1.3 Learning an optimal model for a set of hyperparameters 163
B.1.4 Learning model with optimal hyperparameters 164

x

B.2 Learning the observable decomposition form of a Koopman operator model with
output 165

B.3 Computing the sensitivity of each nonlinear function in ψo(x) with respect to
the base coordinate states x 166

B.4 Learning the diffeomorphic map between the delay embedded output z and the
base coordinate state x 167

Bibliography 168

xi

Chapter 1

Introduction

Biological systems are high-dimensional, nonlinear cellular processes. One such system

is the single-celled bacterium, Escherichia coli, found in the human gut. E. coli is a

well-researched organism and is used extensively in biomanufacturing industries in the

production of enzymes [77], rare chemicals [49, 116, 115], and biofuels [53]. A single E.

coli cell has over 4,400 genes that undergo the transcription process to produce mRNA,

which later undergoes a translation process to produce proteins. The proteins react with

metabolically relevant chemical compounds called metabolites to drive various functions

within the cell, like metabolism, growth, and cell division. From a dynamical systems

perspective, a single-celled E.coli is characterized by concentrations of inputs, products,

and intermediates in transcription, translation, protein-metabolite interaction, and any

other chemical reaction that takes place. The dynamics of the cell can be represented by

chemical reaction kinetics which is typically nonlinear. The vastness in the processes that

1

takes place with a single cell of E. coli makes it a complex (high-dimensional and non-

linear) dynamical system. Despite the complexity, E. coli is one of the simpler biological

systems.

Researchers explore, exploit and optimize specific reaction pathways of E. coli based

on the intended applications [44, 89]. The field of bioengineering is booming by incor-

porating other bacteria that evolve under different environmental conditions and other

organisms like fungi and bacteriophages with fundamentally different cellular architec-

tures. Bacteria extremophiles in the Grand Prismatic Spring at Yellow Stone National

Park have adapted to high temperatures [96]. Marine bacteriophages interact with ma-

rine bacteria to rewire the metabolic processes and optimize certain pathways [41]. The

unique capabilities of each new organism and the synergies resulting from their interac-

tions are vast and offer endless possibilities for advancement. In such a growing space,

traditional biological approaches to characterizing individual genes and pathways associ-

ated with specific traits might become tedious, and unscalable [111]. There is a need to

accelerate this exploration process.

Machine learning and system identification have advanced to a stage where we can

extract valuable insights about the dynamical processes solely from data. Sensor technol-

ogy has likewise progressed rapidly, offering researchers unprecedented access to data on

the dynamics of various systems. Observability is a fundamental concept in control sys-

tems theory that links the sensor data to the internal state of the system. Observability

analysis has been extensively used to monitor the state of the system [90, 13, 83], esti-

2

mate process model parameters [3] and identify optimal locations for sensor placement

[40]. The theory of observability is well established for linear systems [39]. Observability

theory for nonlinear systems is limited to the differential geometric results for analytical

systems [82], and algebraic results for polynomial systems [101]. For nonlinear systems

learned from data, methods are being developed to identify if the system is observable

[113]. The theory to identify the observable subspace decomposition of nonlinear systems

from data-driven models is yet to be established.

Observable subspace decomposition has the potential to facilitate the scalability of

discovering genetic networks in biological systems that drive desired phenotypic behav-

iors. For instance, in the context of breaking down plastic using a single bacterium or a

consortium of organisms, we can measure time-series gene expression and the amount of

plastic breakdown to model the dynamic interaction of genes (states) and their impact

on the plastic breakdown process (output). By asking the observability analysis question

of what internal states of the system can be inferred by the output measurement, we

can identify the most critical genes that significantly influence the plastic breakdown

process. This approach can enable the development of effective strategies for breaking

down plastic and provide a better understanding of how gene interactions result in de-

sired phenotypic behaviors. This approach is applicable to any complex nonlinear system

where we aim to identify the critical states that contribute to the output of the study

from data. These outputs, which we aim to identify the critical states for, are also known

as the performance objectives of the system.

3

For a linear system, the performance objective can be treated as the output, and an

observable subspace decomposition results in the minimal system dynamics that drive

the output [119]. Equivalent results have been developed for nonlinear systems using

differential geometry for analytical systems where the governing equations are known

prior [82]. The approach does not extend to systems that are learned from data.

Koopman operator theory is an increasingly popular approach to learning and analyz-

ing nonlinear system dynamics, specifically due to a growing suite of numerical methods

that can be applied in a data-driven setting [87, 74]. Koopman models are promis-

ing because they construct a set of state functions called Koopman observables that

embed the nonlinear dynamics of a physical system in a high-dimensional space where

the dynamics become linear [20]. Koopman models are typically learned from data us-

ing a dimensionality reduction algorithm called dynamic mode decomposition (DMD),

which was developed by Schmid [92]. Extensive research has enabled Koopman models

to increase their predictive accuracy and decrease computational complexity. Koopman

models serve as a bridge between nonlinear systems and high-dimensional linear models,

making them particularly helpful for extending linear notions to nonlinear systems in ap-

plications such as modal analysis [73, 99, 70], construction of observers [98, 97, 4, 113, 80]

and development of controllers [87, 54, 88, 114, 46].

Koopman operator approaches are commonly used to learn the underlying dynamics

by combining all sensor measurements into a single dataset. This method is observed in

systems such as traffic dynamics [6, 62], human gait [15, 47, 28], and robotics [34]. These

4

approaches do not differentiate between state measurements and output measurements.

Koopman operators have been extended with output equations for various applications,

such as observer synthesis [97, 98, 4], optimal sensor placement [37, 36], and quantifying

observability of nonlinear systems [113]. These methods are theoretical and operate

under the assumption that the outputs lie within the span of Koopman observables, yet

there is no established theory on when this assumption holds. Additionally, there are no

existing algorithms to learn output-inclusive Koopman models from data as Koopman

models are generally obtained by either using direct state measurements [108, 38, 65] or

delay-embedded output measurements [9, 10, 5]. Furthermore, the process of utilizing

Koopman operator models learned from data to estimate the observable decomposition

of the nonlinear system has yet to be established.

This thesis develops the theory and algorithms that enable the extension of Koop-

man operator models to include output equations and establish a connection between

the linear observable decomposition of Koopman operators and the geometric observable

decomposition of nonlinear systems. Chapter 2 introduces the required mathematical

preliminaries and notations. Chapter 3 delves into sensor fusion theory and algorithms

using Koopman operators, where Koopman operator models can incorporate both state

dynamics and output equations by fusing the state and output measurements. Chapter

4 proposes theorems that connect the geometric observable decomposition of nonlinear

systems to the linear observable decomposition of Koopman models and propose methods

on how to infer the internal states that impact the performance objective of the system.

5

Chapter 5 considers the growth of the soil microbe, Pseudomonas putida under various

growth conditions. The dynamics of the population growth measurement are modeled by

considering delay embedded representations of the measurement and learning Koopman

operator models using the novel Causal Jump Dynamic Mode Decomposition (CJ-DMD)

algorithm, which simultaneously minimizes the multistep prediction error. The optimal

growth conditions for P. putida are identified and the gene expression and population

density of P. putida is measured for those conditions. Chapter 6 dwells into the practical

applications of the methods developed in Chapters 3 and 4 on the actual experimental

biological datasets to identify the minimal gene network that impacts the growth phe-

notype. Specifically, the Koopman operator sensor fusion algorithm from chapter 3 is

used on the actual experimental dataset of each growth condition to model the genetic

activity within the cell and map the genetic activity to the growth phenotype outside

the cell. The observable decomposition from chapter 4 on the Koopman model ranks

genes based on their impact on the growth phenotype of Pseudomonas putida. Chapter

7 concludes by summarizing the new developments and achievements of the thesis and

proposes potential avenues for future research.

6

Chapter 2

Mathematical Preliminaries

We now briefly introduce the formal mathematical elements of Koopman operator theory,

its modal decomposition, Koopman operator sensor fusion, and relevant DMD algorithms.

2.1 Koopman Operator Theory

We consider the autonomous dynamical system

xt+1 = f(xt)

where x ∈ M ⊆ Rn is the state, f : M → M represents the state dynamics, k is

the discrete time index indicating the time point kTs with Ts being the sampling time.

The Koopman operator of the system is represented by K and is a linear operator that

is invariant in the functional space F as K : F → F . Any function ϕ̃ ∈ F such that

7

ϕ̃ : M → C is defined as a scalar observable with the property

(Kϕ̃)(x) = (ϕ̃ ◦ f)(x)

where ϕ̃ ◦ f ∈ F due to invariance of K. Let the set of basis functions of the function

space F be denoted by

Φ ≜ {ϕ1, ϕ2, . . . , ϕM} with M → ∞. (2.1)

Then, any function ϕ̃ ∈ F can be written as a linear combination of the basis functions

ϕi ∈ Φ implying ϕ̃ = a⊤Φ with a ∈ RM . Specifically, let φ(x) be any element within the

span of the basis functions:

φ(x) = a⊤Φ(x) =
M∑
i=0

aiϕi(x)

where φ : M → C, ai ∈ R. Then, φ(x) is invariant under K as

Kφ(xt) = φ ◦ f(xt) = (a⊤Φ)(xt+1) = φ(xt+1).

Thus, every linear combination of basis functions in Φ is also a Koopman observable;

specifically the Koopman operator is a linear operator on the function space F spanned

by Φ. The scenario holds for vector-valued observables ϕ̃ and F defines a space of

vector-valued functions. The Koopman operator K, in this setting, acts on vector-valued

functions as opposed to scalar-valued functions.

8

In this thesis, the choice of φ is restricted to be state-inclusive so that the true state

x can be recovered by a simple linear transformation. One such choice of φ is given by

ψ(x) =
[
x⊤ φ⊤(x)

]⊤
(2.2)

where ψ : M → RnL contains the base states x in addition to φ. Such an observable

ψ(x) is called a state-inclusive Koopman observable [45] and the state x can be recovered

by x =

[
I 0

]
ψ(x).

2.1.1 Modal decomposition

The Koopman operator is infinite-dimensional as it acts on the functional space F . As

presented in [108], we take the basis functions Φ in (2.1) to also be the set of eigenfunctions

for K with λi being the eigenvalue of ϕi and Kϕi = λiϕi ∀i ∈ {1, 2, . . . ,M} M →

∞. We assume that Koopman operator representations describe the dynamics of an

analytical system xt+1 = f(xt). Such systems admit Koopman operators with countable

spectra. In this setting, the modal decomposition of the Koopman operator dynamics

becomes

φ(xt+1) = φ ◦ f(xt) = Kφ(xt) =
M∑
i=1

biKϕi(xt) =
M∑
i=1

biλiϕi(xt) (2.3)

where bi ∈ Rnφ are called the Koopman modes, λi are the Koopman eigenvalues and ϕi

are the corresponding Koopman eigenfunctions.

9

2.1.2 Koopman operators for conjugate dynamical systems

The theory of eigenfunction conjugacy for conjugate dynamical systems is taken from

[75]. The theoretical construction of conjugate dynamical systems informs how we view

the sensor fusion of dynamical systems in Chapter 3. Consider two nonlinear systems

z
(i)
t+1 = fi(z

(i)
t), z(i) ∈ Rni , i = 1, 2

with their corresponding Koopman operators Ki. The two dynamical system are said

to be factor conjugate if there is a function map H : Rn1 → Rn2 , n1 ≥ n2 where

z(2) = H(z(1)) such that H ◦ f1(z(1)) = f2 ◦H(z(1)).

Then, if ϕ2 is an eigenfunction of the Koopman operator K2 corresponding to the eigen-

value λ2, K2ϕ2(z
(2)) = λ2ϕ2(z

(2)) = ϕ2 ◦ f2(z(2)). Then, we can see that (ϕ2 ◦ H) is an

eigenfunction of K1:

λ2(ϕ2 ◦H)(z(1))=ϕ2 ◦ f2 ◦H(z(1))=(ϕ2 ◦H) ◦ f1(z(1))

= K1(ϕ2 ◦H)(z(1)) (2.4)

The eigenfunctions of system 2, which dictated the dynamics of system 2 can be mapped

to the eigenfunctions of system 1. If H is a Ck diffeomorphism, i.e., H has an inverse

and is k-times differentiable, then we have a Ck diffeomorphic conjugacy. In that case,

we have that for all the eigenfunctions ϕi such that Kiϕi(z
(1)) = λϕi(z

(i)), i = 1, 2 have a

bijective map:

10

ϕ1(z
(1)) = ϕ2 ◦H(z(1)), ϕ2(z

(2)) = ϕ1 ◦H−1(z(2)). (2.5)

The bijective map of eigenfunctions allows the complete transfer of information between

the two systems. In Chapter 3, we use the conjugacy framework to identify subspaces of

the state and output dynamics that are Ck diffeomorphic conjugate to fuse the informa-

tion between the state and output datasets.

2.2 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a popular class of algorithms adopted to learn

approximate finite dimensional Koopman models. A detailed review of some of the

popular DMD algorithms is given in [93]. A general framework for the DMD algorithm

is given by

min
ψ,K

||ψ(xt+1)−Kψ(xt)||2F (2.6)

where the number of Koopman observables (nL ≥ n) is a typical hyperparameter. The

exact DMD algorithm [92] identifies local linear representations of the dynamical system

xt+1 = f(xt) by setting ψ(x) = x. The extended DMD (E-DMD) algorithm proposed in

[108] identifies Koopman models by using a kernel of user-specified functions to represent

the Koopman observables ψ(x). To automate the Koopman observable learning process,

11

deepDMD algorithms [112, 59] specify ψ(x) as the output layer of a neural network:

ψ(x) =

 x

φ(x)

 =

 x

gn ◦ σ ◦ · · · ◦ σ ◦ g2 ◦ σ ◦ g1(x)



where the ith hidden layer captured by weights Wi, biases bi, linear function gi(x) =

Wix+bi and activation function σ. Activation functions like sigmoidal [23], rectified linear

unit (ReLU) activation functions [35] and radial basis functions (RBFs) [63] parameterize

ψ(x) with universal function approximation properties. There are other algorithms that

identify non state-inclusive Koopman operators by identifying purely nonlinear Koopman

observables that have a diffeomorphic map with the base state x. The diffeomorphic map

is implemented using autoencoders [84, 100].

There is a class of nonlinear systems that have exact finite invariant Koopman oper-

ators [19]. Koopman operators are typically infinite-dimensional and difficult to identify

numerically. The DMD algorithm introduced in [92] finds Koopman operator represen-

tations that are exact solutions for linear systems and local approximators for nonlinear

systems.

Suppose the state measurements of the dynamical system xt+1 = f(xt) is organized

as XP = [x0, · · · , xN−1] and XF = [x1, · · · , xN] where XP ∈ Rn×N is the state data

collected from time points 0, ..., N − 1, and XF ∈ Rn×N is the state data collected from

time points 1, ..., N . The exact DMD algorithm uses the data matrices Xp and Xf to

solveK = minK ||Xf−KXp|| = XfX
†
p where

† denotes the Moore-Penrose pseudoinverse.

12

The extended DMD (E-DMD) algorithm proposed in [108] identifies Koopman oper-

ator representations that capture the nonlinear dynamics with better accuracy. E-DMD

fuses kernel methods in machine learning with DMD to identify a rich set of observables

to solve the optimization problem

K = min
K

||ψ(Xf)−Kψ(Xp)|| = ψ(Xf)ψ(Xp)
†

where ψ is a vector of nonlinear kernel functions of the state x. E-DMD solves the

nonlinear regression problem using linear least squares. [55] shows the relevance of E-

DMD to Koopman operators. E-DMD hinges on the user specifying the lifting functions,

and more often than not, it leads to an explosion of the lifting functions [45, 10].

Recent developments in DMD incorporate deep learning approaches to identify the

observables using deep neural networks. [112, 84, 100, 59]. They can approximate expo-

nentially many distinct observable functions. For the thesis, we primarily consider the

deep DMD formulation from [112]:

min
ψ,K

||ψ(xk+1)−Kψ(xk)||2F (2.7)

ψ(x) =

 x

φ(x)

 =

 x

gn ◦ σ ◦ · · · ◦ σ ◦ g2 ◦ σ ◦ g1(x)



where ψ(x) is represented by neural network representations with the ith hidden layer

captured by weightsWi, biases bi, linear function gi(x) = Wix+bi and activation function

σ. Hence, the estimation of ψ is learning the parameter set (W1, b1,W2, b2, . . . ,Wn, bn).

By selecting appropriate activation functions for the nonlinear transformation σ, in a

13

given layer, e.g., using sigmoidal [23], rectified linear unit (ReLU) activation functions

[35] radial basis functions (RBFs) [63], ψ(x) leverages universal function approximation

properties of each of these function classes [112].

To derive the approximate Koopman eigenfunctions for any of these numerical ap-

proximations of the Koopman operator, suppose KV = V Λ is the eigendecomposition of

K where vi (the i
th column of V) is the right eigenvector corresponding to the eigenvalue

λi (the i
th diagonal entry of the diagonal matrix Λ). Then, ψ(xk+1) = Kψ(xk) has the

modal decomposition

ψ(xt+1) = Kψ(x) = V ΛV −1ψ(x) =
∑
i

viλiϕi(x) (2.8)

where ϕi(x) is the i
th entry of the vector V −1ψ(x). Comparing with (2.3), ϕi(x) and vi

are the eigenfunction and the Koopman mode corresponding to the eigenvalue λi. Thus,

a spectral decomposition on any finite approximation K of the true Koopman operator

K gives an approximation to a subset of the true eigenfunctions of K.

We remark that the true Koopman observables and true Koopman eigenfunctions for

a given system often span an infinite dimensional space. In the case of analytic state

update equations for the system (4.1), the dimension of the Koopman operator is usually

countably infinite. Only in special cases is exactly finite. This means that any finite-

dimensional set of functions may not exactly span or recover the Koopman observable

function space. In the sequel, we will refer to a finite collection of Koopman observable

functions ψ1(x),, ψnL(x) as a dictionary of Koopman observables. However, these are

an approximation of a true spanning set for the Koopman observable function space.

14

2.3 Nonlinear Observable Decomposition: Differen-

tial geometric approach

Consider the autonomous discrete-time nonlinear dynamical system with output

State Equation: xt+1 = f(xt) (2.9a)

Output Equation: yt = h(xt) (2.9b)

where x ∈ M ⊆ Rn is the state and y ∈ R is the output of the system. The observability

of the nonlinear system (2.9) revolves around the properties of a new space obtained by

the transformation of the base coordinates x, called the observation space.

Definition 2.3.1. The observation space Oy(x) for the nonlinear dynamical system (2.9)

is the space of functions that captures the output across infinite time:

Oy(x) = {h(x), h(f(x)), · · · , h(f i(x)), · · · }, i ∈ Z>0.

With a slight abuse of notation, based on the context, we use Oy(x) to represent

either a set or a vector of functions. If the observation space Oy(x) has a diffeomorphic

map (smooth and invertible) with x, then the outputs across infinite time can be used to

estimate the initial state x and this would be true for all x ∈ M. This is the strongest

condition that ensures the system (2.9) is observable, but it is impossible to check for.

So, a more local approach is adopted by computing the dimension of the observation

15

space at a point.

Definition 2.3.2. The dimension of the observation space Oy(x) at a point x̄ ∈ M is

the rank of the Jacobian matrix of the function set {h(x), h(f(x)), · · · , h(fn−1(x))}:

dim
(
Oy(x̄)

)
= rank


∂h(x)
∂x1

· · · ∂h(x)
∂xn

...
. . .

...
∂h(fn−1(x))

∂x1
· · · ∂h(fn−1(x))

∂xn


∣∣∣∣∣∣∣
x=x̄

.

The dimension of the observation space can be computed locally at a point and

hence a local observation result can be obtained. While there are different notions of

observability for nonlinear systems, we only discuss strongly local observability as we

build on top of this definition in Chapter 4.

Definition 2.3.3. The system (2.9) is said be strongly locally observable at x ∈ M if

there exists a neighborhood U of x such that for any x̄ ∈ U , h(fk(x̄)) = h(fk(x)) for

k = 0, 1, · · · , n− 1, implies x̄ = x.

Theorem 2.3.4.
(
Theorem 2.1 from [81]

)
If the system (2.9) is such that dim(Oy(x̄)) =

n, then the system is strongly locally observable at x̄

The results extend to the full system if they are true for all x ∈ M. In that case,

we state that the system is strongly locally observable if dim(Oy(x)) = n ∀x ∈ M. If

the system is not strongly locally observable and only a subspace of the system state is

observable, then a local result is provided in part for continuous time systems: Remark

2 under Theorem 2.9 under [81], Proposition 3.34 from [82] and Theorem 3.51 from [82].

We consider this result for discrete systems in a form that is useful to us.

Theorem 2.3.5. Given a nonlinear system (2.9), for a given point x ∈ M, if there

16

exists a neighborhood U of x such that for any x̄ ∈ U , dim(Oy(x̄)) = r, then we can find

a local coordinate transform from x to x̃ =

x̃1
x̃2

 such that

x̃1t+1 = fo(x̃
1
t) (2.10a)

x̃2t+1 = fu(x̃
1
t , x̃

2
t) (2.10b)

yt = ho(x̃
1
t) (2.10c)

∀ x ∈ U where x̃1 ∈ M′ ⊆ Rr and M′ ⊆ M.

The result tells us that if the output dynamics (given by Oy(x)) lies in a lower

dimensional space than the state dynamics, then we can do a nonlinear observable de-

composition of the original system(2.9) to get a system of the form (2.10) where only a

subset of the states (x̃1) are observable and drive the output dynamics and the subset

of states x̃2 lies in the unobservable subspace of the output y. In Chapter 4, we use the

theorem to connect the observability of Koopman operator representations with output

from Chapter 3 to the observability of nonlinear systems of the form (2.9) when identified

from data.

17

Chapter 3

Koopman Operators with outputs

When multiple data sources are present, the typical approach to learning Koopman

operator representations involves fusing all measurements to create a single dataset and

modeling the underlying state dynamics. Some example systems where this is seen are

traffic dynamics [6, 62], human gait [15, 47, 28], and robotics [34]. In complex systems,

where our objective is to map the output of the system to the underlying states, it is

necessary to treat the evolution of both states and outputs as two separate dynamical

systems and establish a mapping between them. Prior works that fuse two disparate

sources of measurement include the work of Williams et al. [109], and Mezic [75], where

they use properties Koopman operators to fuse information across two different dynamical

systems, provided that there is an invertible functional map between the state spaces

of the two dynamical systems. Williams et al. [109] consider two datasets that are

individually rich enough to reconstruct the system state and develop an algorithm to

18

map the eigenfunctions of the Koopman operators that are learned individually from the

dataset of each system. Mezic [75] proves a relational mapping between eigenfunctions of

the state space of both systems, when exact conjugacy is not possible. For dynamics that

evolve on two different state spaces, they define the factor conjugacy of the dynamics for

the function that maps the two spaces.

This chapter builds on existing Koopman operator fusion theory [109, 75] to exam-

ine a particular case: we consider learning a sensor fusion model for a physical system

represented by direct state data and a series of output measurements. We consider the

scenario where both the Koopman operator, observables, and the relational map between

Koopman observable and output measurements are unknown. In a standard Koopman

operator learning problem, the state measurement data is sufficient to approximate the

Koopman operator. However, we examine the effect of adding output measurements now

as a series of behavioral constraints on the dynamics of the Koopman operator — we aim

to know the effect of incorporating output measurements (sensor fusion) on the solution

of the Koopman operator learning problem. Specifically, we seek to understand how

Koopman eigenfunctions, spectra, and modes change as a consequence of sensor fusion.

The formulation of an output-constrained Koopman operator is not novel. In the

literature, output-constrained Koopman operators are used for various applications like

observability analysis [71, 113], observer synthesis [98, 97, 80], and sensor placement

[66, 67, 37] for nonlinear systems. In this chapter, we prove that output-constrained

Koopman operators satisfy the following properties:

19

1. The output dynamics of the nonlinear system always span a subspace of observable

functions for the output-constrained Koopman operator.

2. The observables of the output-constrained Koopman operators can capture the

dynamics of both states and outputs.

3. State-inclusive output-constrained Koopman operators exist in the region of con-

vergence of the Taylor series expansion of the dynamics and output functions of

any nonlinear system.

We propose the first algorithm to identify output-constrained Koopman operators. To

identify output-constrained Koopman operators (output-constrained Koopman operator)

from data, we pose the output-constrained dynamic mode decomposition (OC-DMD)

problem as a special extension of the DMD problem to incorporate output constraints.

We propose two variants of the problem: the direct OC-DMD solves for the state and out-

put dynamics concurrently, while the sequential OC-DMD solves for them sequentially.

Sequential OC-DMD explicitly reveals the effect of having outputs in the Koopman op-

erator representations learning problem. To implement OC-DMD in practice, we build

on the deepDMD algorithm developed by Yeung et al. [112], where neural networks

represent vector-valued observables of the Koopman operator. We then study the effect

of affine transformations on the output-constrained Koopman operator learning problem

to take into account— how data preprocessing methods like normalization or standard-

ization modify the output-constrained Koopman operator. We use simulation examples

to investigate the performance of OC-DMD algorithms. Our findings include:

20

1. The solution space of the direct OC-DMD and sequential OC-DMD optimization

problems are equivalent.

2. Affine state transformations yield output-constrained Koopman operators with an

eigenvalue on the unit circle

3. output-constrained Koopman operators optimized for multi-step predictions are

required to capture the dynamics with limit cycles.

The Chapter is organized as follows. In section 3.1, we formulate the output-constrained

Koopman operator representation. We discuss the properties of output-constrained

Koopman operators in Section 3.2 and the OC-DMD algorithms in Section 3.3. We

show the simulation results in Section 3.4 and conclude our analysis in Section 3.5.

3.1 Problem Formulation

The goal of this chapter is to consider physical systems represented by sampled time-series

data, even though their underlying governing dynamics are continuous. For methods that

estimate the Koopman generator (the continuous-time extension of the discrete-time

Koopman operator), we refer the reader to [69]. Though the systems are continuous,

we model them as discrete-time systems. Suppose we have an autonomous discrete-time

21

nonlinear dynamical system with output

State Equation: xt+1 = f(xt) (3.1a)

Output Equation: yt = h(xt) (3.1b)

where x ∈ M ⊆ Rn is the state, y ∈ Rp is the output, f : M → M and h : M → Rp are

analytic functions and k is the discrete time index indicating the time point tTs with Ts

being the sampling time. Let

ψ(xt+1) = Kψ(xt)

yt = Whψ(xt)
(3.2)

be the output-constrained Koopman operator representation of (3.1) where ψ : M →

RnL is a vector function of state-dependent scalar observable functions (nL ≤ ∞), K ∈

RnL×nL is the Koopman operator and Wh ∈ Rp×nL is a projection matrix that projects

observables to the space of output functions. We record state and output measurements

(x and y, respectively) from (3.1) as

XP = [x0, · · · , xN−1], XF = [x1, · · · , xN],
YP = [y0, · · · , yN−1],

(3.3)

where XP ∈ Rn×N is the state data collected from time points 0, ..., N − 1, and XF ∈

Rn×N is the state data collected from time points 0, ..., N − 1 and YP ∈ Rp×N is the

output data collected from time points 1, ..., N . Here, we use the lower-case notation

for the state x and output y variables and upper-case notation for variables containing

sampled time-series snapshots involving the state variable x with XP , XF and time-series

with output variable y with YP , respectively.

22

3.2 Output Constrained Koopman Operators

We consider the fusion of state and output measurements from the nonlinear system

(3.1) using the Koopman operator sensor fusion method as delineated in Section 2.1.2.

To do so, we need to establish a factor conjugate map between the state dynamics and

the output dynamics. This problem is straightforward if the Koopman operator and

observable functions for the state dynamics are predetermined or known a priori. We

consider this problem in the context of sensor fusion, where the Koopman operator, its

observables, and the factor conjugate map are all unknown. We ask: how does adding a

measurement function constrain the possible solution space of Koopman operators? We

call such representations output-constrained Koopman operators.

We suppose the state dynamics are captured by the Koopman operator representation

ψ(xt+1) = Kψ(xt). To integrate the state dynamics with the outputs (that are nonlinear

functions of the state), we consider the output-constrained Koopman operator (3.2).

The model structure of the output-constrained Koopman operator is such that its

dictionary of observables ψ(x) span the nonlinear output functions h(x) by augmenting

the Koopman operator with a linear output equation yk = h(xt) = Whψ(xt). To establish

a conjugacy between the state and output dynamics, we first construct the dynamics of

the output. Under the Koopman framework, the output dynamics are given by

yt+1 = Whψ(xt+1) = WhKψ(xt) = WhKWψyt (3.4)

where ψ(xt) = Wψyk. The above equation assumes that the output measurements

are rich enough to reconstruct the information in the Koopman observables, which is not

23

necessarily true, but it is the simplest case to consider. With this formulation, we can ask

how knowledge of an additional measurement function yk = h(xt) informs the discovery

of Koopman observables and the operator. We begin by considering the simplest case of

inverting the Wh matrix in yk = Whψ(xt) to identify the Wψ matrix.

Theorem 3.2.1. Given a nonlinear system (4.1) with a Koopman operator (3.2). Sup-

pose ψ(x) ∈ RnL is the vector of Koopman observable functions for (3.2), not necessarily

state-inclusive. For the number of outputs p ≥ nL, the following statements are true.

(i) If rank(Wh) = nL, then each scalar Koopman observable function ψi(x) lies in

the span of the output functions h(x)

(ii) If rank(Wh) = r < nL, then there exists a similarity transform T that takes the

model (3.2) to the form

ψ̃(xt+1) = K̃ψ̃(xt)

yk = W̃hψ̃(xt)
(3.5)

where K̃ = T⊤KT , ψ̃(x) = T⊤ψ(x), W̃h = WhT such that r components of the

vector Koopman observable ψ̃(x) given by ψh(x) lie in the span of h(x).

PROOF. Case (1): Since Wh has full column rank, an exact left inverse exists such

that

ψ(xt) = (W⊤
h Wh)

−1W⊤
h h(xt) ∀ xt ∈ M

and hence ψi ∈ span{h1, h2, ..., hp} ∀ i ∈ {1, 2, ..., nL}.

24

Case (2): Suppose rank(Wh) = r < nL. The singular value decomposition of Wh yields

Wh =

[
Ur Up−r

]
p×p

Σr 0

0 0


p×nL

 V ⊤
r

V ⊤
nL−r


nL×nL

⇒ h(xt) =

[
Whψ 0

]ψh(xt)
ψ̄h(xt)

 ∀ xt ∈ M (3.6)

s. t. Whψ=UrΣr, ψh(x)=V
⊤
r ψ(x), ψ̄h(x)=V

⊤
nL−rψ(x). (3.7)

Whψ has a full column rank r > p and hence

ψh(xt) = (W⊤
hψWhψ)

−1W⊤
hψh(xt) ∀ xt ∈ M.

Therefore, under a similarity transformation T=

[
Vr VnL−r

]
, the model (3.2) takes the

form of (3.5) with T−1 = T⊤ where the first r lifting functions of ψ̃ given by ψh lie in the

span of h.

Remark 1. The rank(Wh) ≥ p only if h(x) is linearly independent ∀x ∈ M.

We see that if Wh is full column rank, the outputs can be determined completely by

the output-constrained Koopman observables, and the Wψ in (3.4) exists. In the event

that nL < p, the map y = Whψ(x) is a map from a low dimensional space ψ(x) ∈ RnL to a

high dimensional space y ∈ Rp and factor conjugacy is not defined for that case (in Section

2.1.2). Hence, we project the outputs to a lower dimensional space z = W⊤
h y ∈ RnL to

find a conjugate map.

The following two corollaries illustrate how output functions can be used to identify

25

all or a subset of Koopman observables (in Section 2.1.2).

Corollary 1. If the rank(Wh) = nL < p, we can construct a diffeomorphic map between

the states and projected outputs z = Wh. The z dynamics are given by

zk+1 = W hK(Wh)
−1zk.

h
h

For z = H(ψ(x)) = W hψ(x),H:RnL→RnL
h , the dynamics of ψ(x) and z are diffeomorphic

conjugate and the eigenfunctions that capture their dynamics have a bijective map using

(2.5).

Corollary 2. For rank(Wh) = nL = p, Wh becomes an invertible square matrix and the

output dynamics in Corollary 1 simplifies to

yk+1 = g(yk) = WhKW
−1
h yk.

Hence, the dynamics of y and ψ(x) are diffeomorphic conjugate.

The dynamics of the output can be constructed when Wh is full column rank. The

dynamics of the entire output or the projected output has a diffeomorphic conjugacy with

the dynamics of the output constrained Koopman observables ψ(x) depending on whether

p = nL or p > nL respectively under the map y = Whψ(x). The solution to the dictionary

of Koopman observables that capture the state dynamics are generally nonunique; they

have infinite Koopman operator representations for a given system (3.1a). The fusion

of the states and the outputs imposes a constraint on the observables of the Koopman

operator representations. We explore this in the following corollary.

Corollary 3. Given a finite number of nontrivial output equations (3.1b), let Kf and

Kf,h denote the set of all Koopman operator representations consistent with (3.1a) and

26

(4.1) respectively. Any KO that satisfies (4.1) also satisfies (3.1a) ⇒ Kf,h ⊂ Kf . In the

case of Corollary 2, the output space captures the complete eigenfunction space of a KO

that solves (3.1a). But Kf contains more Koopman operator representations whose eigen-

functions can be constructed by taking the repeated product of the current eigenfunctions

which the outputs cannot span ⇒ Kf,h ̸= Kf . Hence Kf,h ⊂ Kf .

We explicitly see that the output equations place a constraint on the output-constrained

Koopman operator observables and that the dynamics of the outputs can be constructed

when rank(Wh) = nL. In the case (ii) of Theorem 3.2.1 where rank(Wh) < nL, using

(3.6) to construct the output dynamics, we see that

yk+1 = UrΣrV
⊤
r KVrψh(xt) + UrΣrV

⊤
r KVnL−rψ̄h(xt) (3.8)

where r = rank(Wh), ψ̄h(xt) is a leakage term that cannot be represented in the output

space because of rank degeneracy of Wh and the presence of a null space.

Is it possible to determine a subset of the Koopman observables when Wh is rank

degenerate? The answer lies in constructing time-delayed embeddings of multiple output

measurements, similar to how multiple time-delayed embeddings of state measurements

can be used to reconstruct a Koopman operator in Hankel-DMD [18, 5, 48]. This ap-

proach is especially practical for working with ergodic, periodic systems or when only a

subset of states are directly measured [18, 5, 48, 14, 28, 6]. In the case of pure output

measurements, the time-delay embedded outputs capture longer time-scale dynamics as

a single embedding, thereby increasing the dimensionality of the data available to recon-

struct the Koopman observable. The principle is analogous to using a series of output

27

measurements and the observability matrix for state estimation [39]. Specifically, we

invoke the observable decomposition theorem from [39] to separate out the dynamics of

the observable lifted states that can be fused with the output dynamics.

Theorem 3.2.2. Given a nonlinear system (3.1) with Koopman operator(3.2). Suppose

ψ(x) is the dictionary of Koopman observables for (3.2), not necessarily state-inclusive.

Then there exists a similarity transformation T and a projection matrix Wψ ∈ Rno×(N+1)p

for some N ∈ Z≥0, no ≤ nL such that the dynamics of

1. a subset of the observables ψo(x) ∈ Rno of the transformed Koopman operator (un-

der T) [
ψo(xt+1)
ψ̄o(xt+1)

]
=

[
Ko 0
Kō K22

] [
ψo(xt)
ψ̄o(xt)

]
yk =

[
Who 0

] [ψo(x)
ψ̄o(x)

] (3.9)

T−1KT=

[
Ko 0
Kō K22

]
,WhT=

[
Who 0

]
, T−1ψ(x)=

[
ψo(x)
ψ̄o(x)

]

2. and the projected time-delay embedded output

zk = Wψ

[
yk yk+1 · · · yk+N

]⊤
(3.10)

are diffeomorphically conjugate.

PROOF. The Koopman operator representation (3.2) is a linear time-invariant model.

Using the observable decomposition theorem (Theorem 16.2 in [39]), there exists a sim-

ilarity transformation T that takes the system (3.2) to the form (3.9) such that the

28

subsystem

ψo(xt+1) = Koψo(xt) ≜ g1(ψo(xt))

yk = Whoψo(xt)

is completely observable; ψo(x) ∈ Rno can be uniquely reconstructed from the outputs.

Note that the system being observable is different from the observable functions in the

context of Koopman. Then, there exists a N ∈ Z≥0 such that Np ≥ no and yk
yk+1
...

yk+N

=
 Who
WhoKo

...
WhoK

N
o

ψo(xt)=Oψo(xt)

where O ∈ RNp×no has full column rank no. Then we can define a projection Wψ = O⊤

to get (3.10) such that

zk = O⊤Oψo(xt) ≜ H(ψo(x))

where O⊤O ∈ Rno×no is square invertible. The dynamics of z is given by

zk+1 = O⊤Oψo(xt+1) = O⊤OKoψo(xt)

= O⊤OKo(O⊤O)−1zk ≜ g2(zk)

For the map H : Rno → Rno , there exists an inverse map H−1 : Rno → Rno , H−1(z) =

29

(O⊤O)−1zk since O⊤O is full rank and invertible. Using the above, we can see that

H ◦ g1(ψo(xt)) = g2 ◦H(ψo(xt)) = O⊤Oψo(xt+1)

g1 ◦H−1(zk) = H−1 ◦ g2(zk) = (O⊤O)−1zk+1.

Hence, the dynamics of z and ψo(x) are diffeomorphically conjugate.

Remark 2. The original time-delay embedded output evolves in a high dimensional space

RNp when compared to ψ(xo) ∈ Rno since we are seeking a sufficiently large set of out-

put measurements N , such that N × p ≥ no. In that case, the factor conjugate map

cannot be established, similar to the case in Corollary 1. This observation motivates the

construction of a time-delayed output embedding.

When outputs partially measure the states, we see that time-delay embedded outputs

have a diffeomorphic map with a subspace of the lifting functions under a similarity

transform and the dynamics evolving in the two spaces are diffeomorphically conjugate.

Corollary 4. When no = nL, zk has a diffeomorphic map with the entire dictionary of

observables ψ(xt). In this case, zk can constitute a Koopman observable basis such that

it captures the dynamics of ψ(xt).

Corollary 5. The scenario where N = 0 results in case (ii) of Theorem 3.2.1 with

ψh(xt) = ψo(xt). This simplifies the output dynamics (3.8) to

yk+1 =

{
WhoK(W⊤

hoWho)
−1W⊤

hoyk , p > no

WhoKW
−1
ho yk , p = no

We see that the output-constrained Koopman operator architecture can fuse the state

30

and output dynamics even if the outputs do not capture the entire state dynamics. The

above analysis shows that the output-constrained Koopman operator structure is such

that the lifting functions capture the dynamics of the time-delay embedded outputs.

This is an implicit constraint in the model structure of the output-constrained Koopman

operator.

State-inclusive observables (2.2) are useful since we can recover the dynamics by sim-

ply dropping the nonlinear observables. We show a sufficient condition for the existence

of state-inclusive output-constrained Koopman operators using a similar argument de-

veloped in [113]. We prove the following lemma which plays a crucial role in showing the

invariance of the basis in the series expansions of analytic functions.

Lemma 1. Given a dictionary of observable functions D = {ψ1(x), ψ2(x), . . .} where

ψr(x) =
n∏
i=1

x
pr,i
i with pr,i ∈ Z≥0, the product of functions from D lies in D.

PROOF. Consider two functions ψα(x), ψβ(x) ∈ D. Their product is given by

ψα(x)ψβ(x)=
n∏
i=1

x
pα,i
i

n∏
i=1

x
pβ,i
i =

n∏
i=1

x
(pα,i+pβ,i)
i ∈ D.

Since the product of two functions lies in D, the product of any number of functions

from D also lies in D as can be seen by taking the repeated product of functions.

If the monomial basis in the Taylor series expansion is propagated by one time step,

we encounter a product of these monomials and Lemma 1 defines a set that captures all

these monomial functions and their products. We use this lemma to build on the result

from [113], which shows the existence of state-inclusive Koopman operatorfor (3.1a), to

find state-inclusive output-constrained Koopman operators for (3.1).

31

Proposition 3.2.3. Given the nonlinear system of the form (3.1), if the functions f and

h are real analytic on the open set M, then there exists an output-constrained Koopman

operator representation of the form (3.2) in the region of convergence of the Taylor series

expansion of f and h.

PROOF. Let us consider a dictionary of polynomial lifting functions

D = {ψ1(x), ψ2(x), . . .}, ψr(x) =
n∏
i=1

x
pr,i
i

where pr,i ∈ Z+. Since f is real analytic in M, for any x0 ∈ M, there exists a Taylor

series expansion centered about x0 that converges to f(x) for any neighborhood of x0.

Suppose f(x) =

[
f1(x) · · · fn(x)

]⊤
, the Taylor series expansion of f about x0 yields

fi(x)=fi(x0) +
∂fi
∂x

∣∣∣∣∣
x0

x+ x⊤
∂2fi
∂x2

∣∣∣∣∣
x0

x+ · · ·=
∞∑
j=1

cijψj(x).

where each term lies in D. Suppose xt =

[
xk,1 · · · xk,n

]⊤
where xk,i indicates the ith

state at discrete time index k. xt propagated by one time step yields a linear combination

of functions in D as

xk+1,i = fi(x) =
∞∑
j=1

cijψj(xt).

To construct a linear system, we propagate each function on the right-hand side ψj(xt)

by one time step

ψj(xt+1) =
n∏
i=1

x
pj,i
k+1,i =

n∏
i=1

(∞∑
j=1

cijψj(xt)
)pj,i

Since Lemma 1 states that the product of any number of functions in D lies in D,

32

ψj(xt+1) =
∑∞

r=1 kirψr(xt). Concatenating the expressions of xk+1,j and ψj(xt+1) for all

j, we get the Koopman representation ψ(xt+1) = Kψ(xt).

Similarly, for the output equation h(x) =

[
h1(x) h2(x) · · · hm(x)

]⊤
, we can ex-

pand each function hi in h(x) using the Taylor series expansion about x = x0 to yield

hi(x)= hi(x0)+
∂hi
∂x

∣∣∣∣∣
x0

x+x⊤
∂2hi
∂x2

∣∣∣∣∣
x0

x+ · · · =
∞∑
j=1

wijψj(x)

⇒ yk = Whψ(xt)

Hence, if f and h of the nonlinear system (3.1) are analytic in the open set M, a state

inclusive output-constrained Koopman operator of the form (3.2) exists for that system.

We see that state-inclusive output-constrained Koopman operators exist for nonlinear

systems whose dynamics (f) and output (h) functions are real analytic. This is a sufficient

condition and not a necessary one. In the next section, we explore using the DMD

formulation to identify output-constrained Koopman operators from data.

3.3 DMD with output constraints

The output-constrained Koopman operator identification involves fusing two datasets

(states and outputs) to simultaneously learn an unknown Koopman operator, its Koop-

man observables, and the output map (3.2). DMD algorithms typically identify Koopman

operators, assuming state observables are drawn from a static dictionary without any al-

gebraically independent output or state constraints. For a sensor fusion problem, we

examine how to algorithmically learn the Koopman operator, the Koopman observables,

33

while simultaneously accounting for state-to-output constraints imposed by an additional

output sensor. The algorithms developed here will allow us to further understand how

fusion of additional output measurements changes the form of Koopman observables

and implicitly, the Koopman eigenfunctions. We state the formal output-constrained

Koopman learning problem:

min
K,Wh,ψ

||ψ(XF)−Kψ(XP)||2F

such that YP = Whψ(XP)

(3.11)

where ||.||F is the Frobenius norm. The equality constraint is very stringent as the

presence of output measurement noise could result in overfit models. Hence, we pose a

relaxation of this problem

min
ψ,K,Wh

∣∣∣∣∣
∣∣∣∣∣
ψ(XF)

YP

−

K
Wh

ψ(XP)

∣∣∣∣∣
∣∣∣∣∣
2

F

(3.12)

which concurrently solves for ψ(x), K and Wh. We refer to this as the direct OC-DMD

problem formulation. Note this problem is like a lifting of the original DMD problem; it

simultaneously aims to solve the Koopman equation but the solution space is strongly

influenced, or coupled, to the ability to recapitulate additional output or sensor measure-

ments. In this way, the solution space identified by an algorithm to a direct OC-DMD

problem may be constrained, when compared to the solution space of an unconstrained

DMD problem. We illustrate this with Example 3.4.2 in next section.

34

Another relaxation approach to address the formal output-constrained Koopman

learning problem (3.11) is to separate the optimization problem into stages. This relax-

ation must take into account that the Koopman observable in the unconstrained Koop-

man equation (DMD) may not be able to predict or reconstitute the output dynamics of

the system. Thus, we propose the following sequential OC-DMD algorithm:

1. Identification of Koopman dynamics (DMD):

min
ψx,K1

||ψx(XF)−K1ψx(XP)||2F (3.13a)

2. Output Parameterization:

min
φy ,Wh1

∣∣∣∣∣∣YP −Wh1

ψx(XP)

φy(XP)

 ∣∣∣∣∣∣2F (3.13b)

3. Approximate Koopman Closure:

min
φxy ,K2

∣∣∣∣∣
∣∣∣∣∣
 φy(XF)

φxy(XF)

−K2


ψx(XP)

φy(XP)

φxy(XP)


∣∣∣∣∣
∣∣∣∣∣
2

F

. (3.13c)

This problem is called sequential OC-DMD, because it obtains a solution for the output-

35

constrained Koopman learining problem as a sequence of optimization problems. The

solution generated by sequential OC-DMD, yields an output-constrained Koopman op-

erator of the form:

ψ(xt+1) = Kψ(xt)

yk = Whψ(xt)

where

ψ(x) =


x

φx(x)
φy(x)
φxy(x)

 , K =


K1 K12 0 0
K21 K22 0 0
K31 K32 K33 K34

K41 K42 K43 K44

 ,
K1 =

[
K11 K12

K21 K22

]
, K2 =

[
K31 K32 K33 K34

K41 K42 K43 K44

]
,

Wh =
[
Wh11 Wh12 Wh13 0

]
(3.14)

where ψ(x) =

[
x⊤ φ⊤(x)

]⊤
, x ∈ M ⊂ Rn, φx : M → Rnx , φy : M → Rny , φxy : M →

Rnxy , n+ nx + ny + nxy = nL and the output matrix Wh1 =

[
Wh11 Wh12 Wh13

]
.

Sequential OC-DMD works to first solve for the Koopman operatorof the state dy-

namics (3.13a), without accounting for any output measurements. This represents the

Koopman operator obtained from standard dynamic mode decomposition (or E-DMD)

algorithms. The next step in sequential OC-DMD (3.13b) solves for the projection equa-

tion to parameterize output functions in terms of the existing Koopman observables

ψx(x), as well as any necessary additional output observables φy(x) required to predict

the output equation. The last step (3.13c) then incorporates additional state-dependent

36

observable dictionary functions φxy(x) to guarantee closure of the new Koopman φy(x)

observables from step 2 (3.13c).

3.3.1 Equivalence of Solution Spaces for Sequential and Direct

OC-DMD

Naturally, the question arises: what is the difference between the two OC-DMD problem

formulations? We explore the equivalency of the two formulations and compare them

in terms of model structure, the insights gained and the complexity of the problem. To

show the equivalency, we make use of the following lemma.

Lemma 2. For the state x ∈ M ⊂ Rn, if there are two vector valued observables ψ1 ∈

Rn1 and ψ2 ∈ Rn2 such that ψ1(x) is linearly independent (a⊤ψ1(x) = 0 ∀x if and only

if a = 0 where a ∈ Rn1), if

ψ2(x) = Tψ1(x)

with rank(T) = r, then there exists a permutation matrix P such that

ψ2(x) =
[
T̃ 0

] [ψ̃1[1...r](x)

ψ̃1[r+1...n1](x)

]
(3.15)

with

TP−1 =
[
T̃ 0

]
, Pψ1(x) = ψ̃1

where T̃ ∈ Rn2×r is of rank r and ψ̃1[1...r](x) ∈ Rr, and ψ̃1[r+1...n1](x) ∈ Rn1−r are the

first r and last n1 − r elements of ψ̃1 respectively.

PROOF. Since ψ2(x) = Tψ1(x) with rank(T) = r, ψ2(x) can be written as a linear

37

combination of r specific elements of ψ1(x). Using a permutation matrix P, we can push

those r elements to be the first r elements of ψ̃1(x) = Pψ1(x) given by ψ̃1[1...r](x) ∈ Rr.

Then the transformation equation becomes

ψ2(x) = Tψ1(x) = TP−1Pψ1(x) = T̃ ψ̃1[1...r](x)

where T̃ ∈ Rn2×r form the first r columns of TP−1. Since ψ1(x) is linearly independent,

ψ̃1(x) is also linearly independent making the last n1−r columns of TP−1 turn be zeroes.

Hence (3.15) holds.

The above lemma enables us to expand on the redundancies in the output-constrained

Koopman operator (3.2) and enable us to show that direct OC-DMD optimization is

equivalent to sequential OC-DMD optimization. For this purpose, we use the definition of

equivalency of optimization problems from [16]: two optimization problems are equivalent

if the solution space of one optimization problem can be mapped to the solution space

of the other optimization problem and vice versa.

Theorem 3.3.1. Given the nonlinear system with output (3.1), the direct OC-DMD

optimization problem (3.12) is equivalent to the sequential OC-DMD optimization problem

(3.13) if the vector-valued observable ψ(x) ∈ RnL that solves each optimization problem

is linearly independent, i.e., a⊤ψ(x) = 0 ∀x ∈ M ⊂ Rn, a ∈ RnL ⇒ a = 0.

PROOF. To prove the equivalency of (3.12) and (3.13), we need to show that for every

solution of (3.12) given by (3.2), there is a solution for (3.13) given by (3.14) and vice

versa. It follows immediately that (3.14) is a special case of the form (3.2). Hence,

we only need to prove the reverse, namely that the form (3.2) can be expanded as a

38

structured output-constrained Koopman operator representation (3.14).

First, without loss of generality, write (3.2) in the following block form:[
xt+1

φy∗(xt+1)

]
=

[
K11 K̃12

K̃21 K̃22

] [
xt

φy∗(xt)

]
yk =

[
Wh1 W̃h2

] [
x⊤t φ⊤

y∗(xt)
]⊤ (3.16)

where φy∗ : M → Rny∗ is the linearly independent vector observable that solves (3.12)

exactly. We define a permutation matrix P1 ∈ Rny∗×ny∗ such that

P1φy∗(x) =

[
φx(x)
φ̃y(x)

]
where φx(x) ∈ Rnx are the minimal number of observables in φy∗(x) ∈ Rny∗ required

to construct a Koopman operator to capture the state dynamics (3.1a) and φ̃y(x) ∈ Rnỹ

are the additional observables in φy∗(x). Then rank(K̃12) = nx and we can use Lemma

2 to expand (3.16) to yield the following:

xt+1 = K11xt + K̃22φy∗(xt)=K11xt +

[
K12 0

]φx(x)
φ̃y(x)

 = K11xt +K12φx(x)

φx(xt+1)

φ̃y(xt+1)

 = P1φy∗(xt+1) = P1K̃21xt + P1K̃22φy∗(xt) :=

K21

K̃31

xt +
K̃22i

K̃32i

φy∗(xt)

where P1K̃21=

[
K⊤

21 K̃⊤
31

]⊤
and P1K̃22=

[
K̃⊤

22i K̃⊤
32i

]⊤
. Since the Koopman operator

that is required to capture the state dynamics constitutes x and φx(x), the observables

φ̃y(x) does not contribute to the dynamics of x and φx(x) and as a consequence rank(K̃22i)

= nx. There is no constraint on the dynamics of φ̃y(xt). Then the above equation

39

simplifies as

φx(xt+1)

φ̃y(xt+1)

 =

K21

K̃31

xt +
K̃22i

K̃32i

P−1
1 P1φy∗(xt) =

K21

K̃31

xt +
K22 0

K̃32 K̃33


φx(xt)
φ̃y(xt)



where K̃22i =

[
K22 0

]
and K̃32i =

[
K̃32 K̃33

]
. Under the action of the permutation

matrix P1, the output equation is modified as

yk = Wh1xt + W̃h2P
−1
1 P1φy∗(xt) := Wh1xt +Wh2φx(xt) + W̃h3φ̃y(xt)

where W̃h2P
−1
1 =

[
Wh2 W̃h3

]
. We define another permutation matrix P2 ∈ Rnỹ×nỹ such

that P2φ̃y(x) =

 φy(x)
φxy(x)

 where φy(x) ∈ Rny are the minimal observables — in addition

to x ∈ Rn and φx(x) ∈ Rnx — required to capture the output equation (3.1b). Then

rank(W̃h3) = ny ≤ nỹ and the output equation is modified using Lemma 2 to yield

yk = Wh1xt +Wh2φx(xt) + W̃h3P
−1
2 P2φ̃y(xt) = Wh1xt +Wh2φx(xt) +

[
Wh3 0

] φy(xt)
φxy(xt)



where W̃h3P
−1
2 =

[
Wh2 Wh3

]
. The dynamics of φ̃y(x) is modified under the action of

40

the permutation matrix P2 as

 φy(xt+1)

φxy(xt+1)

 = P2φ̃y(xt+1) =P2K̃31xt + P2K̃32φx(xt) + P2K̃33P
−1
2 P2φ̃y(xt).

Since no redundancy is established in the above equation, it is expanded in a general

form

[
φy(xt+1)
φxy(xt+1)

]
=

[
K31 K32 K33 K34

K41 K42 K43 K44

]
xt

φx(xt)
φy(xt)
φxy(xt)

 .
Concatenating all the state dynamics (of x, φx(x), φy(x) and φxy(x)) and outputs

equations under the action of the permutation matrices P1 and P2 ensures that for a

solution of the form (3.2), a solution of the form (3.14) exists as well hence proving that

direct OC-DMD optimizaiton is equivalent to sequential OC-DMD optimization.

This theorem shows that if an output-constrained Koopman operator representation

exactly captures state and output dynamics such that the observables are linearly in-

dependent, for every solution in sequential OC-DMD, we can find a solution in direct

OC-DMD and vice versa [16]. We thus see that (3.12) and (3.13) are equivalent op-

timization problems. The equivalency does not imply they are the same optimization

problem because the objective functions that they solve are different [16]. Some of the

useful insights about the theorem are given in the following remarks.

Remark 3. If the permutation matrix P2 = I, then x,φx(x) and φ̃y(x) are the minimal

observables that capture the output equation and the sequential OC-DMD model solu-

41

tion structure (3.14) reduces to a form that does not contain the observables φxy(x). In

terms of the sequential OC-DMD optimization problem, the simplification is in the sub-

optimization problem (3.13c) where the variable φxy(x) is rendered moot making (3.13c)

a linear regression problem.

Remark 4. If the permutation matrix P1 = I, then x and φy∗(x) are the minimal observ-

ables that capture the state dynamics and there is no further reduction. The sequential

OC-DMD model structure (3.14) reduces to a form that does not contain the observables

φy(x) and φxy(x). In terms of the sequential OC-DMD optimization problem, the simpli-

fication is that (3.13c) need not be solved. In that case, all the observables identified in the

regular DMD problem (3.13a) span the output function h(x), and the sub-optimization

problem (3.13b) reduces to a linear regression problem which just solves for Wh1.

The advantages of sequential OC-DMD over direct OC-DMD are: (A) model structure

obtained from sequential OC-DMD (3.14) is more sparse than the one obtained from

direct OC-DMD (3.2) and (B) The sequential OC-DMD model structure (3.14) explicitly

shows the effect of the outputs on the Koopman operator learning problem and the

eigenfunctions that are learned by the addition of the outputs can be separated out. The

advantage of direct OC-DMD problem lies in the algorithmic implementation as it solves

only one optimization problem as opposed to sequential OC-DMD which solves three.

We compare the performances of these algorithms in Section 4.4 with theoretical and

numerical examples.

42

3.3.2 Coordinate Transformations of Standardization Routines

on System State and Output Data

A common practice in model identification problems is to scale the variables using stan-

dardization or normalization techniques to ensure uniform learning of all variables. Stan-

dardization of a scalar variable x̃ yields

x̃standardized =
x̃− µ(x̃)

σ(x̃)
(3.17)

where µ and σ are the mean and standard deviation of x̃. It is important to keep track

of how such affine transformations modify the structure of output-constrained Koopman

operator when comparing theoretical and practical results.

Proposition 3.3.2. Given the nonlinear system with output (3.1) has a Koopman oper-

ator representation with observables given by

 xt+1

φ(xt+1)

 =

K11 K12

K21 K22


 xt

φ(xt)

 (3.18)

yk =

[
Wh1 Wh2

] xt

φ(xt)

 (3.19)

if the states and outputs undergo a bijective affine transformation x̃ = Px + b and ỹ =

43

Qy + c where P,Q are non-singular, then the state dynamics are transformed to

ψ̃(x̃k+1) = K̃ψ̃(x̃k)

ψ̃(x̃k) =

[
x̃k+1 φ̃(x̃k+1) 1

]⊤
(3.20)

K̃ =


PK11P

−1 PK12 (I− PK11P
−1)b

K21P
−1 K22 K21P

−1b

0 0 1


and the output equations become

ỹk = W̃hψ̃(x̃k) (3.21)

W̃h =

[
QWh1P

−1 QWh2 (QWh1P
−1b+ c)

]
.

PROOF. When the state undergoes an affine transformation x̃ = Px + b, since the

transformation is bijective(P−1 exists), the dynamics of the transformed state (x̃) are

given by substituting x = P−1x̃− P−1b in (3.18) to yield

 P−1x̃k+1−P−1b

φ(P−1x̃k+1−P−1b)

=
K11 K12

K21 K22


 P−1x̃k−P−1b

φ(P−1x̃k−P−1b)

 .

We define new observable functions φ̃(x̃) ≜ φ(P−1x̃ − P−1b) and the complete vector

valued observable as ψ̃(x̃) ≜

[
x̃ φ̃(x̃) 1

]⊤
. By algebraic manipulation, we get the

transformed state dynamic as given in (3.20).

44

If the output undergoes an affine transformation ỹ = Qy+c, we derive the transformed

output in terms of the transformed state:

ỹk = Qh(xt) + c = Q

[
Wh1 Wh2

]P−1x̃k − P−1b

φ̃(x̃)

+ c

By simple algebraic manipulation, we end up with the affine transformed output equa-

tion(3.21).

We see that the bias in the affine transformation constrains an eigenvalue of the

transformed output-constrained Koopman operator to be equal to 1. This is very im-

portant to track when using gradient descent based optimization algorithms to solve for

output-constrained Koopman operators because they identify approximate solutions and

this could push the unit eigenvalue outside the unit circle making it unstable. To avoid

numerical error in such algorithms, we should constrain the last row of the Koopman

operator as in (3.20).

In both the OC-DMD problems (3.12) and (3.13), the state-inclusive observables ψ are

considered as free variables. To learn the observables, we use the deepDMD formulation

(2.7) of representing ψ as outputs of neural networks. When we incorporate the deep-

DMD formulation to solve the OC-DMD problems, we refer to them as OC-deepDMD

algorithms and the identified output-constrained Koopman operators as OC-deepDMD

models.

45

3.4 Simulation Results

We consider three numerical examples in increasing order of complexity to evaluate the

performance of the direct and sequential OC-deepDMD algorithms. The first example

has an output-constrained Koopman operator with exact finite closure; there is a finite-

dimensional basis in which the dynamics are linear. We use this as the benchmark for the

comparison of the two algorithms. The other two examples do not possess finite exact

closure. In those cases, we benchmark the proposed algorithms against nonlinear state

space models (with outputs) identified by solving

min
f,h

||XF − f(XP)||2F + ||YP − h(XP)||2F (3.22)

where the functions f and h are jointly represented by a single feed-forward neural net-

work with (n+p) outputs and we refer generally to this model, across multiple examples,

as the nonlinear state space model (see captions in Figures 3.4 and 3.8).

The neural networks in each optimization problem are constrained to have an equal

number of nodes in each hidden layer. The hyperparameters for all the optimization

problems can be jointly given by {nij|i ∈ {x, y, xy}, j ∈ {o, l, n}} where nio, nil and nin

indicate the number of outputs, number of hidden layers and number of nodes in each

hidden layer for the dictionary of observables indicated by i (ψx, φy or φxy). Sequential

OC-deepDMD comprises i ∈ {x, y, xy} j ∈ {o, l, n}, direct OC-deepDMD comprises

i ∈ {x} j ∈ {o, l, n} and nonlinear state space model comprises i ∈ {x} and j ∈ {l, n}.

46

T
ab

le
3.
1:

O
p
ti
m
al

h
y
p
er
-p
ar
am

et
er
s
an

d
p
er
fo
rm

an
ce

of
th
e
o
c-
d
ee
p
D
M
D

m
o
d
el
s
fo
r
al
l
n
u
m
er
ic
al

ex
am

p
le
s

S
y
st
e
m

M
o
d
e
l

H
y
p
e
rp

a
ra

m
e
te
rs

r2 t
es
t(
x
)

r2 t
es
t(
x
)

r2 t
es
t(
y
)

(1
-s
te
p
)

(n
-s
te
p
)

F
in
it
e

C
lo
su
re

D
ee
p
D
M
D

(n
L
=

3
)

n
x
=

1
,n
x
l
=

8
,n
x
n
=

2
1

1
-

D
ir
ec
t
O
C
-d
ee
p
D
M
D

(n
L
=

3
)

n
x
=

1
,n
x
l
=

8
,n
x
n
=

2
0
.8
9
9

0
.9
2
6

−
0
.1
4
7

D
ir
ec
t
O
C
-d
ee
p
D
M
D

(n
L
=

5
)

n
x
=

3
,n
x
l
=

7
,n
x
n
=

5
1

1
1

S
eq

u
en

ti
a
l
O
C
-d
ee
p
D
M
D

(n
L
=

5
)

n
x
=

1
,n
x
l
=

8
,n
x
n
=

2
,n
y
=

1
,n
y
l
=

9
,

n
y
n
=

4
,n
x
y
=

1
,n
x
y
l
=

7
,n
x
y
n
=

2
1

1
1

M
E
M
S

A
ct
u
at
or

N
o
n
li
n
ea

r
st
a
te

sp
a
ce

n
x
l
=

6
,n
x
n
=

6
1

0
.9
9
8

1

D
ir
ec
t
O
C
-d
ee
p
D
M
D

n
x
=

6
,n
x
l
=

3
,n
x
n
=

6
1

0
.8
4

0
.9
9
5

S
eq

u
en

ti
a
l
O
C
-d
ee
p
D
M
D

n
x
=

5
,n
x
l
=

3
,n
x
n
=

1
2
,n
y
=

1
,n
y
l
=

8
,

n
y
n
=

6
,n
x
y
=

3
,n
x
y
l
=

8
,n
x
y
n
=

3
0
.9
9
9

0
.8
8
3

0
.9
9
9

A
ct
iv
at
or
-

R
ep
re
ss
or

cl
o
ck

N
o
n
li
n
ea

r
st
a
te

sp
a
ce

n
x
l
=

5
,n
x
n
=

6
1

0
.8
5
4

0
.9
9
9

D
ir
ec
t
O
C
-d
ee
p
D
M
D

n
x
=

9
,n
x
l
=

6
,n
x
n
=

1
2

0
.9
9
9

0
.5
3

0
.9
8
3

S
eq

u
en

ti
a
l
O
C
-d
ee
p
D
M
D

n
x
=

3
,n
x
l
=

9
,n
x
n
=

8
,n
y
=

1
,n
y
l
=

9
,

n
y
n
=

4
,n
x
y
=

3
,n
x
y
l
=

9
,n
x
y
n
=

3
1

0
.3
4
9

0
.9
9
8

T
im

e-
d
el
a
y
em

b
ed

d
ed

D
ir
ec
t
O
C
-d
ee
p
D
M
D

n
x
=

4
,n
x
l
=

8
,

n
x
n
=

9
,n
d
=

6
0
.9
9
5

0
.9
1
1
6

0
.8
7
9
1

47

In each example, the simulated datasets are split equally between training, validation,

and test data. For each algorithm, we learn models on the training data with various

combinations of hyperparameters. We train the models in Tensorflow using the Adagrad

[26] optimizer with exponential linear unit (ELU) activation functions. We use the val-

idation data to identify the model with optimal hyperparameters for each optimization

problem, which we report in Table 3.1. To quantify the performance of each model, we

use the coefficient of determination (r2) to evaluate the accuracy of the model predictions:

r2 = 1− ||X̃ − ˆ̃X||2F
||X̃||2F

where X̃ is the variable of interest (XF or YP) and
ˆ̃X is the prediction of that variable.

We evaluate r2 for the accuracy of

• the output prediction: yk = h(xt) for the nonlinear state space model and yk =

Whψ(xt) for the OC-deepDMD models

• 1-step state prediction: xt+1 = f(xt) for the nonlinear state space model and

ψ(xt+1) = Kψ(xt) for the OC-deepDMD model.

• n-step state prediction: xi = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
i times

(x0) for the nonlinear state space model

and ψ(xi) = Kiψ(x0) for the OC-deepDMD models where x0 is the initial condition

and i is the prediction step.

The n-step state prediction is a metric to test the invariance of the output-constrained

Koopman operator; if the output-constrained Koopman operator is invariant, the r2 for

48

n-step predictions turns out to be 1. We do not consider the n-step output prediction as

the error provided by that metric will be a combination of the errors in both state and

output models.

3.4.1 Example 1: System with finite Koopman closure

Consider the following discrete time nonlinear system with an analytical finite-dimensional

output-constrained Koopman operator [19]:

xt+1,1

xt+1,2

 =

a11 0

a21 a22


xt,1
xt,2

+

 0

γx2t,1


yk = xt,1xt,2

where xk,i and yk denote the i
th state and the output at discrete time point k respectively.

We obtain the theoretical output-constrained Koopman operator using sequential OC-

DMD (3.13):

• Solving (3.13a) - Adding the observable φ1(x) = x21 makes the dynamics linear:


xt+1,1

xt+1,2

φ1(xt+1)

 =


a11 0 0

a21 a22 γ

0 0 a211




xt,1

xt,2

φ1(xt)

 (3.23)

• Solving (3.13b) - Adding φ2(x) = x1x2 to {x1, x2, φ1(x)} yields a linear output

49

equation

yk =

[
0 0 0 1

] [
xt,1 xt,2 φ1(xt) φ2(xt)

]T
.

• Solving (3.13c) - To identify the dynamics of the added observable φ2(x) and

ensure a closed basis, we add φ3(x) = x31 to get the output-constrained Koopman

operator:

ψ(xt+1) =



a11 0 0 0 0

a21 a22 γ 0 0

0 0 a211 0 0

0 0 a11a21 a11a22 a11γ

0 0 0 0 a311


ψ(xt)

yk =

[
0 0 0 1 0

]
ψ(xt) (3.24)

where ψ(xt)=

[
xt,1 xt,2 φ1(xt) φ2(xt) φ3(xt)

]T
.

We simulate the system to generate 300 trajectories, each with a different initial

condition uniformly distributed in the range 5 ≤ x0,i ≤ 10, i = 1, 2 and system parameters

a11 = 0.9, a21 = −0.4, a22 = −0.8, and γ = −0.9. The performance metrics of the

identified models are given in Table 3.1 and their n−step predictions on a test set initial

condition are shown in Fig. 3.1.

The deepDMD algorithm captures well the dynamics for nL = 3 and it matches with

50

Figure 3.1: Example 1: Comparing the n-step predictions of states (x1, x2) and outputs
(y1) for the models: deepDMD with nL = 3, direct OC-deepDMD with nL = 3, 5, and
sequential OC-deepDMD with nL = 5 where dim(ψ(x)) = nL.

the theoretical solution (3.23). We learn the optimal direct OC-deepDMD model for

nL = 5 Koopman dictionary observables. Fig. 3.1 shows that the direct OC-deepDMD

model with nL = 3 shows poor performance. Hence, we need additional observables to

capture the output dynamics (given by φ2(x) and φ3(x) in (3.24)), thereby validating

Theorem 3.2.2. We increase nL and identify both direct and sequential OC-deepDMD

models. We observe that nL = 5 is the optimal value for both OC-deepDMD algorithms

with r2 ≈ 1 and agreeing with the theoretical solution (3.24).

We evaluate the extent to which the OC-deepDMD algorithms capture the underlying

system dynamics by comparing the eigenfunctions of the corresponding OC-deepDMD

51

Figure 3.2: Example 1: The eigenvalues (λ) and corresponding eigenfunctions (ϕ) com-
puted from the theoretical (first row), direct OC-deepDMD (second row) and sequential
OC-deepDMD (last row) models. The axes constitute the physical states of the system
and the colorbar indicates the value of eigenfunctions normalized by the maximum ab-
solute value attained by the corresponding eigenfunction. The Pearson correlation (ρ) is
computed between ϕ of the OC-deepDMD and the theoretical models for each λ. Eigen-
functions ϕ1, ϕ4, ϕ5 with λ = −0.8, 0.81, 0.9 capture the state dynamics, additional ϕ2, ϕ3

with λ = −0.72, 0.73 capture the output dynamics and λ = 1 is due to the presence of
the constant, unit-valued basis element (Proposition 3).

models with those of the theoretical output-constrained Koopman operator (3.24). Since

the OC-deepDMD models are identified on standardized data, we use Theorem 3.3.2

to reflect the transformation in the theoretical output-constrained Koopman operator.

We compute the eigenfunctions of all the models using modal decomposition (2.8). We

observe that scaling and sign flip are two artifacts that lead to non-uniqueness of eigen-

functions as ψ(xt+1) =
∑

i viλiϕi(x) =
∑

i(−α−1vi)λi(−αϕi(x)) where α is a nonzero

scalar. We compensate for scaling by dividing each eigenfunction with its maximum ab-

solute value to normalize it. When r2 is computed under a sign flip, it leads to negative

values. To account for the sign flip, we use the Pearson correlation (ρ) to compute the

52

closeness between the normalized eigenfunctions.

We show the plot of the normalized eigenfunctions for the OC-deepDMD models and

their correlation with the theoretical eigenfunctions in Fig. 3.2. We see that the sequen-

tial OC-deepDMD model captures both eigenvalues and eigenfunctions with a better ac-

curacy than the direct OC-deepDMD model. This could be attributed to sequential OC-

deepDMDmodel structure (3.14) being sparser among the two. Sequential OC-deepDMD

can explicitly track that the eigenfunctions corresponding to λ = −0.8, 0.81, 0.9 capture

the state dynamics by solving (3.13a) and those corresponding to λ = −0.72, 0.73 are

added to capture the output dynamics by solving (3.13b) and (3.13c). This validates

that the output dynamics do lie in a subspace of the output-constrained Koopman oper-

ator observables as proved in Theorem 3.2.2. The effect of the output on the observable

learning problem is not prominently captured in this case as the observables that capture

the state dynamics are different from the observables that capture the output dynamics.

In the next example we examine the effect of outputs on the observable learning problem

when the observables needed to capture the output dynamics are intertwined with the

observables that capture the state dynamics.

3.4.2 Example 2: MEMS-actuator with a differential capacitor

We consider the free response of a MEMS resonator [85] modeled by a spring mass damper

system with cubic nonlinear stiffness and a differential capacitive sensor to measure the

53

Figure 3.3: MEMS Actuator: Schematic of a spring mass damper system as a MEMS
actuator model. The displacement of the movable plate is measured by a differential
capacitor with a fixed capacitance C2 and variable capacitance C1 by applying an input
voltage Vs and measuring the output voltage Vo.

displacement [94] as shown in Fig. 3.3. It has the dynamics:

ẋ1 = x2

ẋ2 = −k1
m
x1 −

c

m
x2 −

k3
m
x31

y = Vo =
C1 − C2

C1 + C2

Vs = − x1
d+ x1

Vs

where x1, x2 and y are the displacement, velocity and output voltage measurements

respectively. We simulate the system with the parameters m = 1, k1 = 0.5, c = 1.0,

k3 = 1.0, d = 3 and VS = 0.4 to generate 300 trajectories with a simulation time of 15s, a

sampling time of 0.5s and initial condition, x0, uniformly distributed in the range (0, 2).

This system is more complex than Example 1 as it has a single fixed point without a

54

finite analytical output-constrained Koopman operator. Therefore, we benchmark the

performance of the OC-deepDMD algorithms against the nonlinear state space models

identified by solving (3.22).

Figure 3.4: MEMS Actuator: Comparing the n-step predictions of states (x1, x2) and
outputs (y1) for the nonlinear state space, direct OC-deepDMD and sequential OC-
deepDMD models.

We see from Table 3.1 that r2 ≈ 1 for 1-step state and output predictions of the nonlin-

ear state space, sequential, and direct OC-deepDMDmodels. When comparing the n-step

predictions of these models on an initial condition from the test dataset (shown in Fig.

3.4), the nonlinear state space model performs significantly better. Among the output-

constrained Koopman operators, the sequential OC-deepDMD performs marginally bet-

ter (4% higher accuracy). This indicates that all algorithms nearly accurately solve their

55

Figure 3.5: MEMS Actuator: The normalized observables (ψi(x), i = 1, 2, 3, ...) for
deepDMD that is learnt from state data alone is shown in the first row. The normalized
observables and the output function (h(x)) identified by direct OC-deepDMD is shown
in the second row. ψi(x) and h(x) are normalized by dividing each function by their
corresponding maximum value restricting the value of each function to [−1, 1] as given
by the colorbar.

respective objective functions which minimize the 1-step prediction error.

To visibly show that outputs influence and constrain the observable learning problem,

we identify two models: a Koopman operator representation for the state dynamics alone

using the deepDMD algorithm and an output-constrained Koopman operator represen-

tation for the full system with output using direct OC-deepDMD keeping the number

of observables fixed. The observables identified by both algorithms are plotted in Fig-

ure 3.5 and the eigenfunctions for the Koopman operator models identified from each

algorithm are shown in Figure 3.6. It can be seen that the addition of the output influ-

ences the observable ψ5(x) to reflect the functional form (or heatmap) of the output h(x),

while also modifying ψ3(x) and ψ4(x). Likewise, the spectral decomposition in Figure 3.6

shows a significant change in the eigenvalue λ5, from −0.5 to 0.26, and correspondingly

56

Figure 3.6: MEMS Actuator: The eigenvalues (λ) and their corresponding normalized
eigenfunctions (ϕi(x), i = 1, 2, 3, ...) for deepDMD (first row) and direct OC-deepDMD
(second row) are shown. In addition, the normalized output function (h(x)) identified by
direct OC-deepDMD is shown. ϕi(x) and h(x) are normalized by dividing each function
by their corresponding maximum value restricting the value of each function to [−1, 1]
as given by the colorbar.

the eigenfunction ϕ5(x) when an output measurement is incorporated into the learning

problem. This validates Corollary 3 and shows that the sensor fusion problem of the

state measurements and the output measurements yields a Koopman operator learning

problem wherein its observables are altered by the evolution of the output.

Although the OC-deepDMD algorithms identify output-constrained Koopman oper-

ator representations with small 1-step predictions errors, the approximation of infinite-

dimensional output-constrained Koopman operators by finite observables lead to the

OC-deepDMD models not being perfectly invariant. Therefore, when the number of pre-

diction steps increases, the error in the evolution of the observables accumulates and

propagates forward. A potential method to reduce the error in forecasting is to mini-

57

mize multiple step prediction errors. We showcase this method prominently in the next

example.

3.4.3 Example 3: Activator Repressor clock with a reporter

Figure 3.7: Activator-Repressor clock: Schematic of the interaction of enzymes A, B and
C (fluorescent reporter- output): (a) A activates A,B and C (b) B represses A and C.

A more complex system is one with oscillatory dynamics that converge to an attractor.

We consider the two state activator repressor clock [25] with the dynamics:

dA

dt
= −γAA+

κA
δA

αA(A/KA)
n + αA0

1 + (A/KA))n + (B/KB)m

dB

dt
= −γBB +

κB
δB

αB(A/KA)
n + αB0

1 + (A/KA)n

C =
(kc/γc)A

1 + (B/Kd)

where A, B and C are the concentration of enzymes with the network schematic as

shown in Fig. 3.7. A and B constitute the state and C is the output fluorescent reporter

assumed to be at steady-state. We simulate the system using the parameters γA = 0.7,

γB = 0.5, δA = 1.0, δB = 1.0, αA0 = 0.4, αB0 = 0.004, αA = 0.2, αB = 0.2, KA = 0.1,

KB = 0.08, κA = 0.9, κB = 0.5, n = 2, m = 3, k3n = 3.0 and k3d = 1.08 to get an

oscillatory behaviour. We generate 300 curves with a simulation time of 50s, a sampling

58

time of 0.5s and the initial conditions uniformly distributed in the interval (0.1, 1).

Figure 3.8: Activator-Repressor clock: n-step prediction comparisons of states (x1, x2)
and outputs (y1) for the nonlinear state space and direct and sequential OC-deepDMD
models.

We identify direct and sequential OC-deepDMD models and nonlinear state space

models and show the optimal model hyperparameters and r2 values in Table 3.1. We see

that r2 ≈ 1 for the 1-step and output predictions for all the models indicating that the

corresponding algorithms nearly accurately solve their objective functions (which mini-

mize 1-step prediction error) similar to the case in Example 3.4.2. The n-step predictions

of the models in Fig. 3.8 show that the nonlinear state space model outperform both the

OC-deepDMD models. But, here the direct OC-deepDMD model performs marginally

better than the sequential OC-deepDMD model (opposite of Example 3.4.2). Hence, we

59

Figure 3.9: Activator-Repressor clock: The phase portraits of the theoretical, nonlinear
state space, direct OC-deepDMD and sequential OC-deepDMD models is shown in the
first row. The second row shows the phase portraits of the time-delay embedded OC-
deepDMD models with the delay parameter nd = 4, 5, 6 and 7. The phase portraits are
constructed using the same initial conditions highlighted by red dots and r2 is computed
using the theoretical phase portrait as the reference.

infer that both OC-deepDMD algorithms perform similarly.

To evaluate how well the models capture the underlying dynamics, we construct

phase portraits of the various models shown in Fig. 3.9. We do so by considering initial

conditions around the phase space of the limit cycle and plotting the n-step predictions

of the models for each initial condition. We compare the phase portraits of each model

with that of the simulated system using the r2 metric. We see that the nonlinear state

space model captures a limit cycle but with an offset that results in a poor r2 value. The

OC-deepDMD models capture dissipating dynamics rather than that of a limit cycle. We

60

speculate that the objective function is not sufficient to capture the dynamics and extend

the objective function to minimize the error in multiple step predictions. To do so, we

incorporate the idea we implement in [10] to construct observables on the time-delay

embedded states yielding the output-constrained Koopman operator

ψ(xtnd+nd , · · · , xtnd+1) = Kψ(xtnd , · · · , xtnd−nd+1)

ytnd = Whψ(xtnd , · · · , xtnd−nd+1). (3.25)

where t is the discrete time index and nd indicates the number of time-delay embeddings.

Since the two OC-deepDMD algorithms perform similarly, we stick to just using the direct

OC-deepDMD algorithm to identify the time-delay embedded OC-deepDMD models.

The phase portraits of the direct OC-deepDMD models as nd is increased is given in the

second row of Fig. 3.9. We see that as nd increases, the phase portrait takes the structure

of an oscillator with nd = 6 being optimal.

We see from Table 3.1 that the n-step prediction accuracy increases for this model

at the expense of the 1-step and output predictions which reduce. This is because the

formulation (3.25) simultaneously minimizes multiple-step prediction errors [10] which

may not always yield optimal 1-step predictions. Hence, we see that OC-deepDMD algo-

rithm has limitations when it comes to the case of oscillators, and time-delay embedded

OC-deepDMD models can be used to overcome them.

61

3.5 Conclusion

In this chapter, we propose a novel method to fuse state and output measurements of

nonlinear systems using Koopman operator representations that are augmented with a

linear output equation (called output-constrained Koopman operators). Using the con-

cept of diffeomorphic conjugacy, we show that the dynamics of the measured output

variables span a subspace of the output-constrained Koopman operator lifting functions

and that the output-constrained Koopman operators integrate the dynamics of both

states and outputs. We show a sufficient condition for the existence of state-inclusive

output-constrained Koopman operators and propose two DMD algorithms that incorpo-

rate the output constraints to identify them. We use numerical examples to show the

performance of these algorithms.

In chapter 6, we will use this technique to extract genotype-phenotype models of

microbes by fusing their various time-series datasets. The genotype-phenotype models

will enable us to control the persistence of these microbes in new environments. We

expect the sensor fusion method based on the output-constrained Koopman operator

to cater to a large range of dynamical systems where the fusion of nonlinear dynamics

of two measurement sets is desired for applications like observability analysis, observer

synthesis, and state estimation.

62

Chapter 4

Observability of Koopman operators

4.1 Introduction

Sensor technology has advanced at a rapid pace, offering researchers unprecedented access

to data on dynamical systems. Observability is the underlying principle that links the

sensor data to the internal state of the system. Applications of observability include

monitoring the state of the system [90, 13, 83], estimating process model parameters [3]

and identifying optimal locations for sensor placement [40]. The theory of observability

is well established for linear systems [39]. Observability theory for nonlinear systems

is limited to the differential geometric results for analytical systems[82] and algebraic

results for polynomial systems [101]. For nonlinear systems learned from data, methods

are being developed to identify if the system is observable[113]. The theory to identify

the observable subspace decomposition of nonlinear systems from data-driven models is

yet to be established.

63

Data-driven discovery of dynamics is critical for complex systems where the under-

lying mechanics are not fully understood. Such scenarios are common in biological cells

[31], finance [21], cyber-physical systems [117], etc. One of the commonly used complex

systems in biomanufacturing industries is the bacterium, Escherichia coli [52]. In Es-

cherichia coli, gene transcription alone constitutes over a 4, 400−dimensional dynamic

process, and this excludes the protein and metabolic interactions within the cell. Such

complex systems are typically deployed to achieve a specific performance objective. Es-

cherichia coli used in biomanufacturing processes are optimized for performance objec-

tives like maximizing population cell growth [95] or maximizing production of a specified

metabolite [61]. Only a fraction of the genes have a strong influence on the desired per-

formance objective [102, 105, 7]. This raises the question of how to identify a critical set

of genes that have the strongest influence on given performance objective function.

For a linear system, the performance objective can be treated as the output and an

observable subspace decomposition results in the minimal system dynamics that drives

the output [119]. Equivalent results have been developed for nonlinear systems using

differential geometry for analytical systems where the governing equations are known

prior [82]. However, the dynamics of biological systems are not known prior and are

typically learned from data. Hence, observable subspace decomposition methods cannot

be used directly to learn the minimal gene expression dynamics in biological systems that

drive a desired output phenotype.

In biological systems, the typical approach to identify genes that impact a phenotype

64

is to look for genes that exhibit significant differences in their steady-state responses

[104, 107, 60] across varying initial conditions. By considering initial conditions where

the output (performance metric) response is vastly different, the genes with the highest

differential steady-state response are deemed to impact the output. This is a classical

empirical approach that disregards both gene-to-gene interactions as well as gene-to-

phenotype (output) interactions. Our ultimate goal is to model these various nonlinear

dynamical interactions from data and then find genes that drive a desired output which

can later be used to optimize the performance of that output.

Koopman operator theory is an increasingly popular approach to learn and analyze

nonlinear system dynamics, specifically due to a growing suite of numerical methods that

can be applied in a data-driven setting [87, 74]. Koopman models are promising because

they construct a set of state functions called Koopman observables that embed the non-

linear dynamics of a physical system in a high-dimensional space where the dynamics

become linear [20]. Koopman models are typically learned from data using a dimen-

sionality reduction algorithm called dynamic mode decomposition (DMD), which was

developed by Schmid [92]. Extensive research has enabled Koopman models to increase

their predictive accuracy and decrease their computational complexity. Koopman models

serve as a bridge between nonlinear systems and high-dimensional linear models, making

them particularly helpful for extending linear notions to nonlinear systems in applica-

tions such as modal analysis [73, 99, 70], construction of observers [98, 97, 4, 113, 80]

and development of controllers [87, 54, 88, 114, 46].

65

The study of observability of nonlinear systems using Koopman operators is a growing

area of research; Koopman operators have been augmented with output equations for

applications like observer synthesis [97, 98, 4], optimal sensor placement[37, 36] and

quantifying observability of nonlinear systems [113]. They all work under the assumption

that the outputs lie in the span of Koopman observables but there is no theory on when

that assumption holds. There are no algorithms to learn such output-inclusive Koopman

models from data as Koopman models typically constitute a state equation learned either

by using direct state measurements [108, 38, 65] or delay-embedded output measurements

[9, 10, 5]. Moreover, how to use Koopman operator models learnt from data to estimate

the observable decomposition of the nonlinear system is yet to be established.

Here, we extend the theory of Koopman operators to nonlinear systems with a mea-

surable output performance and develop the notion of observable subspaces for such

nonlinear systems using linear Koopman operator theory. Through our investigation,

we:

1. developed a theory that maps the observable subspace of a nonlinear system to a

linear output-inclusive Koopman model defined on that observable subspace (The-

orem 4.3.1 and Theorem 4.3.2),

2. identified the conditions under which the observable subspace of an output-inclusive

Koopman model maps to the observable subspace of the nonlinear system (Theorem

4.3.3)

3. developed a new algorithm that learns such observable, output-inclusive Koopman

66

models using deep learning and dynamic mode decomposition (Corollary 2),

4. showed that the new data-driven Koopman models can estimate the essential genes

that drive the growth phenotype of a biological system in the order of their impor-

tance (Simulation Example 1), and

5. showed that the gene dynamics in the observable subspace of each output of an

interconnected genetic circuit constitute the significant genes that drive that output

performance measure of the circuit (Simulation Example 2).

The chapter is organized as follows. Section 4.2 introduces the problem statement in

detail. Section 4.3 discusses the main theoretical results pertaining to observability of

Koopman operators and the methods to see them in practice. We consider two simulated

gene circuits in Section 4.4 and demonstrate how the theory is used to find genes that

drive each output of the system. Conclusions are drawn in Section 4.5.

4.2 Problem Formulation

We formulate the mathematical problem in more depth and describe how solving it

benefits biological systems.

67

Figure 4.1: Koopman approach to observability decomposition of nonlinear
systems: The nonlinear observable decomposition (upper transition) is a result of the
differential geometric approach to the observability of nonlinear systems which is defined
only for analytical systems. The Koopman lifting (transition on the left) is from the
Koopman operator theory to find high-dimensional linear representations of nonlinear
systems. Our approach is to find the structure of the Koopman operator for the non-
linear decomposed system (transition on the right) and establish a relationship with the
Koopman operator model of the original nonlinear system through a linear transforma-
tion (lower transition).

68

4.2.1 The Mathematical Challenge

Given the autonomous discrete-time nonlinear dynamical system with output

State Equation: xt+1 = f(xt) (4.1a)

Output Equation: yt = h(xt) (4.1b)

where x ∈ M ⊆ Rn is the state and y ∈ R is the output performance measure. The

differential geometric approach to observability provides a nonlinear decomposition that

can be an analytical system of the form (4.1) to

xot+1 = fo(x
o
t)

xut+1 = fu(x
o
t , x

u
t) (4.2)

yt = ho(x
o
t)

via a diffeomorphic (smooth and invertible) nonlinear transformation

xo
xu

 =

ξo(x)
ξu(x)


where xu lies in the unobservable subspace of the system (4.1). The remaining xo is

the minimal state that drives the output dynamics and the manifold that xo lies in

is the maximum subspace that the output y can observe in the system (4.1a). We

refer to that space observed by the output as the observable subspace of the system

(4.1). For data-driven nonlinear models, there are no approaches to identify the nonlinear

transformations ξo and ξu. There are explicit methods to do similar transformations for

69

data-driven linear systems and therefore, we turn to Koopman operator theory that

bridges the notions of linear and nonlinear observable decompositions.

A standard Koopman operator representation used to capture the nonlinear dynam-

ical system with an output equation (4.1) is given by

State Equation: ψ(xt+1) = Kψ(xt) (4.3a)

Output Equation: yt = Whψ(xt) (4.3b)

where M ⊆ Rn and ψ : M → RnL are the Koopman observables (functions of the state),

whose linear evolution across time captures the nonlinear dynamics of the state and the

output. To enable easier recovery of the base state x from the Koopman observables ψ(x),

the Koopman observables are typically constrained to include the base states x as ψ(x) =[
x⊤ φ⊤(x)

]⊤
where φ(x) is a vector of pure nonlinear functions of x. The Koopman

operators corresponding to the observables which contain the state x are referred to as

state-inclusive Koopman operators. For the rest of the chapter, the Koopman model with

observables denoted by ψ is state-inclusive. Since the Koopman model (4.3) is linear,

linear observability concepts can be used in this system. How do we use the Koopman

system (4.3) to infer the observable state xo in (4.2)? Section 4.3 delves more on this

topic and provides algorithms to identify xo from data and determine the observable

subspace of the original nonlinear system (4.1).

70

4.2.2 The Biological Implication

In complex microbial cell systems, techniques like transcriptomics [106] and pro-

teomics [1] inform the dynamics within the cell and instruments like flow cytometers [29],

plate readers [72], and microscopes [58] inform the phenotypic characteristics viewed from

outside the cell. We can represent the intracellular activity by the state equation (4.1a)

and the phenotype of interest by the output equation (4.1b). The phenotypic behavior is

the performance metric that we wish to optimize with a specific objective. In Section 4.4,

we simulate two biological gene networks, for which we learn the observable subspace of

the nonlinear system (4.1) and provide empirical methods to map that observation space

(in which all of xo lies) to the set of genes (a subset of the state variables in x) that drive

the output phenotypic behavior. Upon identifying the genes that influence the pheno-

typic dynamics, we can deploy actuators developed for biological systems to control the

gene expression and optimize the phenotypic performance.

The generic phenotypic performance optimization problem is given by

max
u

N∑
t=0

||yt||22 (4.4)

such that xt+1 = f(xt) +
na∑
i=1

gi(xt, ut,i)

yt = h(xt)

where g is the input function that captures both how an input directly controls the

expression of targeted genes as well as off-target gene expression effects [22] and na is

71

the number of individual genes whose expression dynamics we can target to control.

Two accessible genetic actuators that control gene expression are: A) Transposons [107]

which knockout the complete gene expression with gi(xt, ut,i) = −fi(xt), and B) CRISPR

interference mechanism which suppresses the gene expression [42] with gi(xt, ut,i) < 0.

We anticipate this work will enable the identification of genes that impact growth of soil

bacteria in sparse environmental conditions that can be controlled by biological actuators

to maximize their population growth.

4.3 Extension of nonlinear observability to Koop-

man system with output

In this section, we methodically show how we translate the theory of observable decom-

position of nonlinear systems to the linear observable decomposition of Koopman systems

to discover the critical Koopman observables (functions of the state x) that drive the out-

put dynamics. We use an analytical example to elucidate our theoretical results. Along

the way, we discuss how to extend the theory to practice. The details for implementing

the algorithms are provided in Appendix B.1.

4.3.1 Minimal Koopman operator that drives the output

We begin by showing the nonlinear system (4.1) can be transformed into a minimal

Koopman model that drives the output performance metric.

Theorem 4.3.1. Suppose the dynamical system with the output performance measure

72

(4.1)

xt+1 = f(xt)

yt = h(xt)

where x ∈ M ⊆ Rn and y ∈ R is such that its observation space Oy(x) has a constant

dimension r ≤ n at x in the neighborhood U ⊆ M. Then, for any x ∈ U there are r

functions in Oy(x) which constitute a surjective coordinate transformation to a reduced

space xo = ξ(x) ∈ M′ ⊆ Rr with a Koopman operator representation

ψo(x
o
t+1) = Koψo(x

o
t)

yt = Whoψo(x
o
t).

(4.5)

PROOF. The proof involves three steps:

(i) Convert the system to the nonlinear observable canonical form: It is given that at a

point x in a neighborhood U , we have dim(Oy(x)) = r ≤ n. Using Theorem 2.3.5, we can

transform the base state x to a new local coordinate (x̃1, x̃2) using a diffeomorphic local

coordinate transform

x̃1
x̃2

 =

ξo(x)
ξu(x)

 such that (4.1) can take the nonlinear observable

canonical form (2.10).

(ii) Find an infinite dimensional linear model to represent the nonlinear observable

canonical form: Consider the observation space of (2.10) in the vector form:

Ōy(x̃
1) ≜

[
ho(x̃

1)⊤ ho(fo(x̃
1))⊤ ho(f

2
o (x̃

1))⊤ · · ·
]⊤
.

When we propagate Ōy(x̃
1) from time point t to t + 1, all functions of Ōy(x̃

1
t+1) lie in

73

the span of all functions in Ōy(x̃
1
t) as ho(f

i
o(x̃

1
t+1)) = ho(f

i+1
o (x̃1t)) ∀ i ∈ Z≥0. Hence,

there exists an infinite dimensional matrix Ky that renders an infinite dimensional linear

model:

Ōy(x̃
1
t+1) = KyŌy(x̃

1
t)

yt =

[
Ip 0

]
Ōy(x̃

1
t)

for the nonlinear dynamics of x̃1 given by (2.10a) and (2.10c).

(iii) Convert the infinite-dimensional system to a state-inclusive Koopman operator

representation: For output at a time point t+ k, we have from systems (4.1) and (2.10),

yt+k = h(fk(xt)) = ho(f
k
o (x̃

1
t)) for any xt ∈ M. Hence, we have Oy(x) = Ōy(x̃

1) ⇒

dim(Ōy(x̃
1)) = r. So, using Theorem 2.8 in [81] or the discrete time equivalent of

Proposition 3.34 in [82], we can find a vector of r functions in the observation space

Ōy(x̃
1), say xo ∈ Rr, such that all functions in Ōy(x̃

1) are a nonlinear function of xo.

Then, there exists a permutation matrix P such that P Ōy(x̃
1) =

 xo

φo(x
o)

 = ψo(x
o)

which converts the above infinite-dimensional linear model to a state-inclusive Koopman

operator representation of the form (4.5). Hence the proof.

The nonlinear observable decomposition theorem transforms the full nonlinear system

to a new coordinate space with the minimal number of state variables required to capture

the output performance metric. Theorem 4.3.1 proves the existence of a state-inclusive

Koopman operator for the transformed system such that its Koopman observables lie

74

in the span of the observation space vector and vice versa. The above theorem fuses

the information in the states and outputs. One of the existing results in fusing two

measurements is the theory of factor conjugacy in [109, 75]. In the following remark, we

tie Theorem 1 to the concept of factor conjugacy.

Remark 5. If there are two dynamical systems xt+1 = fx(xt) and zt+1 = fz(zt) such

that z = hzx(x), then the two systems are said to be factor conjugate if hzx(fx(x)) =

fz(hzx(x)). As a consequence, if {(λzi, ϕzi), i = 1, 2, ...} represents the set of all eigenvalue-

eigenfunction pairs of the Koopman operator for the z−dynamics, then {(λzi, ϕzi◦hzx), i =

1, 2, ...} represent a subset of all eigenvalue-eigenfunction pairs of the Koopman operator

for the dynamics in x. The subset of eigenfunctions {ϕzi ◦ hzx, i ∈ N} in the x-dynamics

are a minimal set of observables required to capture the output dynamics and hence con-

stitute a basis for the reduced Koopman operator (4.5).

In certain nonlinear systems, all functions in the observation space Oy(x) lie in the

span of a finite subset of functions in Oy(x). This strong criteria results in finite dimen-

sional exact Koopman operators. This is a useful result for elucidating Theorem 4.3.1

later and is formally stated in the below corollary.

Corollary 6. If there exists a finite dimensional observation space of the form Oy,q(x) =

{h(x), h(f(x)), · · · , h(f q(x))} such that any function h(f i(x)) ∈ Oy(x) where i ∈ Z≥0

lies in the span of Oy,q(x) and dim(Oy,q(x)) = r ≤ n, we can find a finite dimensional

exact Koopman operator representation of the form (4.5).

75

4.3.2 Learning Koopman operators with output

We explored how dynamic mode decomposition (DMD) algorithms are used to learn ap-

proximate Koopman operators in Chapter 2. In prior works where an output equation is

involved with Koopman operators [71, 113, 98, 97, 80], the outputs are typically assumed

to lie in the span of the Koopman observables; there are no DMD algorithms to ensure

that. The following corollary to Theorem 4.3.1 relaxes that assumption and provides the

necessary and sufficient condition for the existence of a Koopman operator representation

of form (4.3).

Corollary 7. Given the dynamical system (4.1), we can find the output-constrained

Koopman operator representation (4.3) if and only if the observation space Oy(x) of

(4.1) lies in the span of the Koopman observables.

We incorporate Corollary 7 into the DMD objective 2.6 to form the more generic

DMD multi-objective optimization problem:

min
ψ,K,Wh

||ψ(xt+1)−Kψ(xt)||2F + ||yt −Whψ(xt)||2F

where the output is forced to lie in the span of the observables. Moreover, if the output

at time t lies in the span of the observables, i.e., yt = Whψ(xt), then for any future time

point t+k, the output at that time point also lies in the span of the observables ψ(xt) as

yt+k = WhK
kψ(xt). This ensures that the full observation space Oy(x) of the nonlinear

system (4.1) lies in the span of the Koopman observables ψ(x), thereby adhering to

76

Corollary 2. Since the above objective function forces the output to lie in the span of

the Koopman observables, we term this problem as Output constrained dynamic mode

decomposition (OC-DMD). The neural network based implementation of OC-DMD is

termed as OC-deepDMD, the details of which are discussed in Appendix B.1.

4.3.3 Identifying the minimal Koopman operator

Theorem 4.3.1 establishes the existence of a minimal Koopman operator model that

drives the output performance metric. How do we learn this model in practice? The

following result establishes a procedure to do so.

Theorem 4.3.2. Suppose the dynamical system with the output performance measure

(4.1)

xt+1 = f(xt)

yt = h(xt)

where x ∈ M ⊆ Rn and y ∈ R is such that its observation space Oy(x) has a constant

dimension r ≤ n at x in the neighborhood U ⊆ M. For x ∈ U , if the nonlinear system

(4.1) has a Koopman operator representation (4.3)

ψ(xt+1) = Kψ(xt)

yt = Whψ(xt),

77

then there exists a linear coordinate transform T that takes the Koopman operator (4.3)

to the minimal Koopman operator (4.5) that drives the output performance.

PROOF. For x ∈ U , it is given that the nonlinear system (4.1) has a Koopman operator

representation of the form (4.3). By corollary 7, it is evident that the observation space

Oy(x) of the nonlinear system (4.1) lies in the span of the Koopman observables, i.e.,

there exists a transformation T1 such that Oy(x) = T1ψ(x). Since dim(Oy(x)) = r, using

4.3.1 we can get the minimal Koopman operator model (4.5) with the property that the

Koopman observables ψo(x
o) lie in the span of the observation space Oy(x) (= Ōy(x̃

1)).

Hence, there exists a linear transformation T2 such that ψo(x
o) = T2Oy(x). Therefore,

there exists a linear coordinate transform T = T2T1 that takes the full Koopman operator

representation (4.3) to the minimal Koopman operator representation (4.5) that drives

the output performance metric. Hence the proof.

Theorem 4.3.2 provides a route to identify the minimal Koopman operator (4.5) that

drives the output performance metric of the nonlinear system (4.1). We can use the

OC-DMD algorithm from Section 4.3.2 to identify a Koopman operator representation

with an output equation (4.3) and then use a linear transformation ψo(x
o) = Tψ(x) to

go from (4.3) to (4.5). The next obvious question is— what is the linear transformation

T? We use the observable decomposition approach in Linear systems [39] to find T for

nonlinear systems with analytical finite dimensional Koopman operator representations.

Corollary 8. Suppose the nonlinear system (4.1) has an exact finite dimensional Koop-

man operator representation (4.3) and a minimal finite dimensional Koopman opera-

78

tor representation of the form (4.5) where xo = ξo(x), xo ∈ M′ ⊆ Rr and ψo(x
o) :

M′ → RnoL. If V represents the matrix of right singular vectors of the observabil-

ity matrix of (4.3) Oψ =

[
W⊤
h K⊤W⊤

h · · · (KnL)⊤W⊤
h

]⊤
, then the transformationψ1(x)

ψ2(x)

 = V ⊤ψ(x) results in the observable decomposition form

ψ1(xt+1)

ψ2(xt+1)

 =

K1 0

K12 K2


ψ1(xt)

ψ2(xt)



yt =

[
Wh1 0

]ψ1(xt)

ψ2(xt)



where

K1 0

K12 K2

 = V ⊤KV ,

[
Wh1 0

]
= WhV and ψ1(x) are the state variables ψo(x

o)

of the minimal Koopman operator (4.5), i.e., ψ1(x) = ψo(x
o).

The above corollary provides a method to identify the minimal Koopman operator

representation that drives the output dynamics. This is the same approach that we can

adopt in practice for the approximate finite dimensional Koopman operators learned from

the OC-DMD algorithm. The details of this approach are discussed in Appendix B.2.

The uniqueness of the solution is discussed in the following remark.

Remark 6. Corollary 2 provides a way to transform (4.3) to (4.5), but it does not

provide the exact expression of xo. The reason is that xo is not unique; any set of

r functions selected from ψ1(x) having a Jacobian of rank r is a valid candidate for

79

xo. Every individual function in ψ1(x) can be written as either a linear or a nonlinear

function of that xo.

4.3.4 State information contained in the outputs

An important practical consideration in complex systems is to gauge if the sensor mea-

surements obtained from the system (4.1) constitute a representation of the system state;

in other words, does the fusion of the sensor measurements have a diffeomorphic relation-

ship with the system state x. We use the established concepts in observability analysis

to answer that question in the following theorem.

Theorem 4.3.3. Given that the n−dimensional nonlinear dynamical system (4.1) with

p output measurements:

xt+1 = f(xt)

yt = h(xt)

has an observation space Oy(x) of constant dimension r for all points x ∈ U where

U ⊆ M. Then, there exists nd ∈ N such that the delay embedded output

zt =
[
y⊤ndt y⊤ndt+1 · · · y⊤nd(t+1)−1

]⊤
has a Koopman operator representation

ψz(zt+1) = Kzψ(zt) (4.6)

80

where ψz(z) =

[
z⊤ φ⊤

z (z)

]⊤
. Moreover, if r = n, then the above Koopman operator

represents the nonlinear system dynamics up to a diffeomorphism.

PROOF. It is given that dim(Oy(x)) = r for x ∈ U ⊆ M. Hence, using Theorem

4.3.1, we can find a Koopman operator of the form (4.5) where all the functions of

the observation space Oy(x) lie in the span of its Koopman observables ψo(x
o). From

Theorem 4.3.1, we also know that xo is formed by a set of r functions in Oy(x) with a

Jacobian of rank r in the neighborhood U . So, we construct the vector

[(
h(x)

)⊤ (
h(f(x))

)⊤ · · ·
(
h(fnd−1(x))

)⊤]⊤

and for some nd ∈ N, this vector will contain r functions which satisfy the Jacobian

criteria for the choice of xo. At time point ndt, this vector becomes the delay embedded

output zt as yndt+i = h(f i(xndt)). Then, all the Koopman observables of (4.5) can be

written as a function of zt thereby converting (4.5) to a Koopman operator representation

of the form ψz(zt+1) = Kzψ(zt). If r = n, then using the discrete-time equivalent

of Proposition 3.34 in [82], we can find a diffeomorphic map between zt and x in the

neighborhood U . Therefore, we can claim that ψz(zt+1) = Kzψ(zt) captures the full

system dynamics up to a diffeomorphism. Hence the proof.

Theorem 4.3.3 provides a framework to check if the fusion of various output measure-

ments across space and time renders a representation of a state for the complex system

dynamics (4.1). The observability angle provides insight into why delay-embedded Koop-

81

man observables are useful in the identification of Koopman operators [5, 9, 10].

Remark 7. The Koopman observables of the delay embedded Koopman operator in The-

orem 4.3.3, ψ(z) is the union of the observation spaces of all the individual output mea-

surements
(
Oy1(x) ∪ Oy2(x) ∪ · · · ∪ Oyp(x)

)
.

In the observable subspace identification problem, one of the concerns to be wary of

is whether or not the outputs have sufficient information about that subspace. Theorem

4.3.3 can be used to learn the delay embedded Koopman operator to capture the dy-

namics of (4.1) and check if there is a diffeomorphism between ψ(z) and x. The detailed

procedure is given in Appendix B.4. The reason why the full ψ(z) is used and not just

z is that xo is not unique (as seen in Remark 6) and any n functions in ψ(z) could form

a diffeomorphic map with x.

4.3.5 Analytical example to illustrate the theoretical results

We consider a nonlinear system with an accurate finite dimensional Koopman operator

representation [19] to illustrate the above theorems. The nonlinear system (4.1)

xt+1,1 = axt,1

xt+1,2 = bxt,2 + γx2t,1

yt = x2t,2

82

has a finite dimensional Koopman operator representation (4.3)



xt+1,1

xt+1,2

φ1(xt+1)

φ2(xt+1)

φ3(xt+1)

φ4(xt+1)



=



a 0 0 0 0 0

0 b γ 0 0 0

0 0 a2 0 0 0

0 0 0 b2 γ2 2bγ

0 0 0 0 a4 0

0 0 0 0 γ b





xt,1

xt,2

φ1(xt)

φ2(xt)

φ3(xt)

φ4(xt)


yt = φ2(xt)

where the nonlinear observables are φ1(x) = x21, φ2(x) = x22, φ3(x) = x41 and φ4(x) =

x21x2. With V =

03×3 I3×3

I3×3 03×3

 and choosing the first three observables, we get the

minimal Koopman operator representation which captures the output (4.5) as


φ2(xt+1)

φ3(xt+1)

φ4(xt+1)

 =


b2 γ2 2bγ

0 a4 0

0 γ b




φ2(xt)

φ3(xt)

φ4(xt)


yt = φ2(xt).

Some of the key inferences from the above example are

83

• Choosing xo =

[
φ2(x) φ3(x)

]⊤
, we get the state of the reduced Koopman operator

representation (4.5) as ψo(x
o) =

[
φ2(x) φ3(x) (φ2(x)φ3(x))

0.5

]⊤
. Moreover, in

the neighborhood U defined by x1, x2 ∈ (0,∞), the Jacobian of xo has a constant

dimension of 2.

• The observation space of the nonlinear system comprises

h(x) = x22

h(f(x)) = b2x22 + 2bγx21x2 + γ2x41

h(f 2(x)) = b4x22 + (2a2b2γ + 2b3γ)x21x2

+ (a4γ2 + 2a2bγ2 + b2γ2)x41

· · ·

It can be seen that all the functions of the observation space given by h(f i(x)) can be

written as a linear combination of {h(x), h(f(x)), h(f 2(x))} which has an invertible

linear transformation with {x22, x41, x21x2} (if system parameters obey a2 ̸= b and

γ ̸= 2b). Hence, Oy(x) lies in the span of ψ(x).

• In the same neighborhood U defined above, we can find another xo =

[
φ3(x) φ4(x)

]⊤
which leads to ψo(x

o) =

[
φ2
4(x)

φ3(x)
φ3(x) φ4(x)

]⊤
showing that xo is not unique.

• The Jacobian of the set {h(x), h(f(x))} has rank 2 in the neighborhood U defined

by x1, x2 ∈ (0,∞). Hence, we can define a delay embedded output coordinate

84

zt =

[
y2t y2t+1

]⊤
which a Koopman operator of the form

ψ(zt+1) = Kzψ(zt)

where ψ(zt) =

[
y2t y2t+1 φz(y2t, y2t+1)

]⊤
.

The computation is straightforward and lengthy. Hence, we state the result in

abstraction. The delay embedded output can capture the state dynamics up to a

diffeomorphism.

This analytical example illustrates all of the above theoretical results.

4.4 Simulation Results

In this section, we demonstrate that the theory in Section 4.3 can be used in complex

nonlinear systems to determine the critical states that drive an output performance

objective. Specifically, in biological systems, we tackle an important problem — what

are the genes (state) that affect a certain phenotype (output performance metric)?

For each system, we start by learning Koopman operator representations with output

equations (4.3) using OC-deepDMD algorithm as mentioned in Appendix B.1 to capture

the nonlinear dynamics of the form (4.1). For each learned model, we compute its 1-

step and n-step prediction accuracy of both states and outputs to ensure that the model

captures the nonlinear dynamics with high accuracy. For the 1-step prediction, given

the state at one time point, we predict the next time point. For the n-step prediction,

85

given only the initial condition of the state, we predict the states for all future time

points within the time period of the simulation run. The 1-step prediction accuracy is

a representation of how well we solve the OC-deepDMD optimization problem (Section

4.3.2) and the n-step prediction accuracy is a representation of how well we capture the

actual nonlinear dynamics of the system. To compute the accuracy of the predictions

with the true data, we use the r2−score, also called the coefficient of determination.

Once we have learned a linear Koopman model (4.3) that adequately captures the

system dynamics, we reduce this model to the minimal Koopman model (4.5) that drives

the output performance measure. This procedure is highlighted in Appendix B.2. The

Koopman observables ψo(x) of the model (4.5) capture the full observation space Oy(x)

but the more important information is how much do each of the state variables in x

contribute to ψo(x). We have developed a sensitivity computation algorithm as a followup

to the OC-deepDMD algorithm to identify the genes in order of their importance to the

given output performance measure.

4.4.1 Example 1 - Finding Critical Genes to Control Bacteria

Growth

One of the prominent performance metrics (phenotype) used in biological systems is the

population growth of cell cultures. Specifically, the challenge is to identify genes that

are responsible for the cells to proliferate when subject to different growth substrates

like sugars, proteins, and other conditions like pH and oxygen levels. We illustrate this

86

Figure 4.2: Example 1 - Finding Critical Genes to Control Bacteria Growth: (a)
The directed graph of the reaction network: : the states x1 to x7 (x1 and x5 indicated in
blue initiate the network and x2, x3, x4, x6, and x7 indicated in green are the intermediates
and products of the reaction network) is the toxin-antitoxin system taken from [2] ,
states x8 and x11 (light red) are two proteins enhanced by the gyrase enzyme that have
a positive and negative effect on growth output (dark red) respectively, and states x9
and x10 (brown) are two proteins enhanced by gyrase enzyme but have no association
with growth (b) The 1-step and n-step predictions of the Koopman operator model
with output (4.3) learned using the OC-deepDMD algorithm in Appendix B.1 (c) The
bottom heat map is the sensitivity of the Koopman observables ψo(x) of the minimal
Koopman operator (4.5) with respect to the system states x. The top bar plot computes
the Euclidean norm for each column in the sensitivity matrix to represent the relative
contributions of each state x to ψo(x).

87

challenge by simulating the ccd antitoxin-toxin system [2], which is known to regulate

growth in bacteria. The dynamics of the system are given by

ẋ1 = −k1fx1x2 + k1rx3 − γ1x1 + u0

ẋ2 = −k1fx1x2 + k1rx3 − k2fx2x3 + k2rx4 − k5fx2x5 + k5rx6 − γ2x2

ẋ3 = k1fx1x2 − k1rx3 − k2fx2x3 + k2rx4 − k4fx3 + k4rx5x7 − γ3x3

ẋ4 = k2fx2x3 − k2rx4 − k3fx4 + k3rx6x7 − γ4x4

ẋ5 = k4fx3 − k4rx5x7 − k5fx2x5 + k5rx6 − γ5x5

ẋ6 = k5fx2x5 − k5rx6 + k3fx4 − k3rx6x7 − γ6x6

ẋ7 = k3fx4 − k3rx6x7 + k4fx3 − k4rx5x7 − γ7x7

ẋ8 =
a1(x7/k1)

n1

1 + (x7/k1)n1
− d1x8

ẋ9 =
a2(x7/k2)

n2

1 + (x7/k2)n2
− d2x9

ẋ10 =
a3(x7/k3)

n3

1 + (x7/k3)n3
− d3x10

ẋ11 =
a4(x7/k4)

n4

1 + (x7/k4)n4
− d4x11

y = yoexp
(µyx8
Ky + x8 + x11

)
.

The simulation parameters of the system are k1f = 1.4M−1s−1, k1r = 0.003s−1, k2f =

1.1M−1s−1, k2r = 0.19s−1, k3f = 0.04s−1, k3r = 2.2M−1s−1, k4f = 0.0035s−1, k4r =

2.2M−1s−1, k5f = 0.14M−1s−1, k5r = 0.13s−1, a1 = 0.8Ms−1, k1 = 0.3M , n1 = 2,

a2 = 1.9Ms−1, k2 = 2M , n2 = 5, a3 = 4Ms−1, k3 = 4M , n3 = 2, a4 = 0.7Ms−1,

88

k4 = 0.5M , n4 = 3, γ1 = 0.3s−1, γ2 = 0.1s−1, γ3 = 0.03s−1, γ4 = 0.02s−1, γ5 =

0.4s−1, γ6 = 0.09s−1, γ7 = 0.01s−1, d1 = 0.2s−1, d2 = 0.03s−1, d3 = 0.3s−1, d4 =

0.1s−1, µy = 10, y0 = 0.02, Ky = 10M . The initial condition of the state is x0 =[
0.4, 0.1, 0.2, 0.4, 0.3, 0.8, 0.5, 0.3, 0.8, 0.1, 1.8

]⊤
+ e where e ∈ R11×1 with each entry in e

uniformly distributed in the range [0, 1]. The simulation time (Ts) is 1s with a simulation

of 100s for each initial condition.

The dynamic interaction of CcdA antitoxin and CcdB toxin regulates the concentra-

tion of DNA gyrase, which plays a crucial role in relieving topological stress while the

RNA-polymerase enzyme transcribes the DNA. DNA gyrase complex enhances the pro-

duction of proteins from cellular DNA which could either up-regulate or down-regulate

the cell proliferation process. We simulate a simplified model of the complex network

using the ccd antitoxin-toxin reaction network in [2] with its output DNA gyrase modu-

lating the expression of four genes, which directly impact (positively or negatively) the

growth output following Monod’s growth kinetics model [64]. The gene network is shown

in Fig. 4.2-A, and the system dynamics are given by:

Given that we have the state and the output data of the above nonlinear system, our

objective is to identify the states (genes) that impact the output (growth performance

metric) dynamics. We begin by learning the Koopman operator with output (4.3) using

the OC-deepDMD algorithm (Appendix B.1), and the model prediction on a random

initial condition is shown in Figure 4.2(b). For a test data set, the identified optimal

model has a state (x) prediction accuracy of 98.6% for 1-step and 98.4% for n-step and

89

an output (y) prediction accuracy of 99% for 1-step and 82% for n-step. On using

the linear observable decomposition procedure from Appendix B.2, we can reduce the

identified 24-dimensional Koopman operator model (4.3) to a 15-dimensional minimal

Koopman model (4.5) with Koopman observables ψo(x) that capture the output. We

evaluate the sensitivities of each of the functions in ψo(x) with respect to the base states

x as described in Appendix B.3; the sensitivity matrix is shown in lower heatmap plot

of Fig. 4.2(c) and the contribution of each state to ψo(x) (the Euclidean norm of the

sensitivity matrix) is shown in the upper bar plot of Fig. 4.2(c).

The following results reveal the success of our algorithm:

1. States x8 and x11 (red), that directly impact the output, have the most contribution

towards ψo(x).

2. States x9 and x10 (brown) which have no impact on the output provide the least

contribution to ψo(x).

3. States x1 through x7 (blue and green) which represent the toxin-antitoxin system

are the secondary states that indirectly contribute to the output. It can be seen that

their contributions to ψo(x) lie between the two extreme cases and their contribution

to ψo(x) reduces as the gene is located farther away in the network from the output

(as we see in transitioning from the genes in green to the genes in blue).

It is evident that the results are not perfect (like x8 and x11 have non-zero contributions

to ψo(x)). The imperfections are a result of various numerical approximations. The state-

inclusive Koopman model is a finite dimensional approximation learned by minimizing

90

the 1-step prediction error and naturally, by its very formulation, it cannot capture the

entirety of the nonlinear dynamics. The linear observable decomposition in Appendix

B.2 is numerically approximated. Despite the various sources of error, to a large extent,

our algorithm can order the genes (states) based on their importance to the output

performance measure.

Figure 4.3: Example 2 - Finding Critical Genes In Composed Genetic Circuit
Networks: (a) A complex genetic circuit formed by interconnecting three well-studied
genetic circuits with an output measured from each of the core circuits (b) The sen-
sitivity heat map (lower) of the Koopman observables ψo(x) of the minimal Koopman
operator (4.5) for each output and the corresponding 2-norm bar plot (upper) showing
the contributions of each gene to the Koopman observables ψo(x) (c) The 1-step and
n-step prediction of the optimal delay embedded Koopman operator (4.6) learned using
only the output data y1, y2, and y3 (d) State reconstruction accuracy from the Koopman
observables of optimal delay embedded Koopman operators for various combinations of
outputs.

91

4.4.2 Example 2 - Finding Critical Genes In Composed Genetic

Circuit Networks

We consider another complex genetic circuit composed of three interconnected sub-

systems (taken from [25]): the activator-repressor, the repressilator, and the toggle switch

with a single output measured from each subsystem as shown in Fig. 4.3(a). The non-

linear system dynamics is modeled by the differential equations:

Activator repressor

ẋ1 =
κ1
δ1
.

α1(x1/K1)
n1 + β1

1 + (x1/K1)n1 + (x2/K2)m1
− γ1x1

ẋ2 =
κ2
δ2
.
α2(x1/K1)

n1 + β2
1 + (x1/K1)n1

− γ2x2 (4.7a)

y1 = V1
(x1/K11)

n11

1 + (x1/K11)n11 + (x2/K12)n12

Repressilator

ẋ3 = c1,3x1 +
α3

1 + (x5/K5)n5
− γ3x3

ẋ4 =
α4

1 + (x3/K3)n3
− γ4x4 (4.7b)

ẋ5 =
α5

1 + (x4/K4)n4
− γ5x5

y2 = V2
(x4/K24)

n24

1 + (x4/K24)n24 + (x5/K25)n25

92

Toggle switch

ẋ6 = c2,6x2 +
α6

1 + (x7/K6)n6
− γ6x6

ẋ7 =
α6

1 + (x6/K6)n6
− γ7x7 (4.7c)

y3 = V3
(x6/K36)

n36

1 + (x6/K36)n36

The parameters of the activator repressor κ1 = 1, δ1 = 1, α1 = 250, K1 = 1, n1 = 2,

β1 = 0.04, K2 = 1.5, m1 = 3, γ1 = 1, κ2 = 1, δ2 = 1, α2 = 30, β2 = 0.004, γ2 = 0.5,

V1 = 2, K11 = 1, n11 = 1, K12 = 0.4 and n12 = 1. The parameters of the repressilator

are c1,3 = 0.1, α3 =, α4 =, α5 =, γ3 = 0.3, γ4 = 0.3, γ5 = 0.3, K5 = 1, n5 = 2,

K3 = 1, n3 = 4, K4 = 1, n4 = 3, K24 = 0.02, n24 = 1, K25 = 1, n25 = 2 and

V2 = 1. The parameters of the toggle switch are c2,6 = 0.001, α6 = 1, K6 = 10, n6 = 1,

γ6 = 0.09, γ7 = 0.09, K36 = 120, n36 = 1 and V3 = 1. The sampling time was 0.5s

and the duration of each simulation was 100s. The initial conditions for the simulation

are x0 = [100.1, 20.1, 10., 10., 10., 100.1, 100.1]⊤ + e where e ∈ R7×1 uniformly distributed

in [0, 4]. Using the example, we show that the observability of Koopman operators can

reveal the genes that impact each individual output.

4.4.2.1 Trade-off in learning state-inclusive Koopman operator models:

We adopt the same methodology as in Example 1. We begin by learning a Koopman

operator model with output (4.3) as mentioned in Appendix B.1. The model has a

state x prediction accuracy of 99.8% for 1-step and 69% for n-step predictions and an

93

output y prediction accuracy of 98% for 1-step and 64% for n-step predictions. The

low n-step prediction accuracy is a consequence of the trade-off between the n-step pre-

diction accuracy and the state-inclusivity of the Koopman operator representation; the

state-inclusive Koopman operator enables easiest reconstruction of the original state x

of the nonlinear system (by simply dropping the nonlinear Koopman observables) but

the state-inclusive Koopman operator model converges to a single equilibrium point (by

construction) which is not suitable for systems that exhibit an oscillatory steady-state

response like the nonlinear system under consideration. Moreover, the OC-deepDMD

objective function is constructed to minimize only the 1-step predictions and hence, does

not guarantee n-step prediction accuracy. We see that the Koopman model learned from

OC-deepDMD algorithm that minimizes only 1-step prediction error is still adequate for

gene identification.

4.4.2.2 Linear observable decomposition of the Koopman model reveals the

critical genes that impact each output:

For each output in the vector of outputs, we consider the row of Wh corresponding to

that output and learn the minimal Koopman operator (4.5) that captures the dynamics

of that output using the method in Appendix B.2 and identify the sensitivity matrices

and the Euclidean norm as in Example 1 using the approach in Appendix B.3. The

sensitivity plots are shown in Fig. 4.3(b).

From the genetic circuit Fig 4.3(a) and the data-based ordering of state contributions

in Fig 4.3(b), we can see that the following key results are captured:

94

1. The output y1 is mainly influenced by x1 which activates y1 followed by x2 which

represses y1.

2. The output y2 is mainly influenced by x4 which activates y2, followed by x1 which

activates the repressilator and x5 which represses y2.

3. The output y3 is mainly impacted by x6 and x1 followed by x7 and x2.

In addition to the main results, there are residual contributions by each state to each out-

put. This can be attributed to three sources of error: the low n-step prediction accuracy,

the numerical approximations and linear correlations between the state variables.

An important observation across Examples 1 and 2 is that both activator (x8) and re-

pressor (x11) genes in Example 1 are recognized as significant genes whereas in Example 2,

the significance of activator genes (x1, x4, x6) is more prominent than the repressor genes

(x2, x5). The explanation for the same lies in how much the activators and repressors

impact the outputs of the system. In Example 1, we can see that that activator x8 and

repressor x11 both directly impact the output and both growth and decaying effects are

captured in the output. In Example 2, the output y3 has no direct repressors impacting

it and though the outputs y1 and y2 are repressed by genes x2 and x5 respectively, the

effect of repression is not prominent as witnessed by the absence of any decaying effects

in the evolution of the outputs y1 and y2. Hence, it is evident that the algorithm captures

the important genes based on how much influence the genes have on the phenotype and

not just the proximity of the genes to the phenotype (in the gene network).

95

4.4.2.3 The fusion of the three outputs contain adequate information to

represent the full state of the system:

We consider the possibility that there might not be adequate information in the output

measurements to inform the genes. To ensure that the outputs are rich enough to cap-

ture the state information, we make use of Theorem 4.3.3; we identify a delay embedded

Koopman operator model using only the output measurements and examine if a diffeo-

morphic map exists between the observables of the delay embedded Koopman operator

model and the state x. The delay embedded output is given by

zt =

[
y⊤ndt y⊤(nd+1)t · · · y⊤(2nd−1)t

]⊤

and the delay embedded Koopman operator is solved by adopting the same method as

in Appendix B.1 except with a different objective function

min
ψ,K

||ψ(Ztrain
F)−Kψ(Ztrain

P)||2F

which has an added hyperparameter, nd. The parameter nd is the number of output delay

embeddings used to construct the observables ψ(z) of the delay embedded Koopman

operator K.

The predictions of the delay-embedded Koopman operator model (with optimal nd =

4) on a random initial condition (from the test data set) are shown in Figure 4.3(c).

The optimal delay embedded Koopman model using all the outputs (y1, y2 and y3) has a

96

99.8% 1-step prediction accuracy and 58.1% n-step prediction accuracy. As an outcome

of Theorem 4.3.3, we know that the Koopman observables ψ(z) capture the entire obser-

vation space. Hence, if the output measurements capture the full system dynamics, we

should be able to find a diffeomorphic map between ψ(z) and x. We learn a numerical

diffeomorphic map using the method in Appendix B.4. Then, we use the numerical dif-

feomorphic map to reconstruct the state and the reconstruction accuracy of each state

is shown as a bar plot in Figure 4.3(d) above y1 − y2 − y3. We see that by using all the

outputs, all the states can be almost accurately reconstructed. When we repeat the same

process using single measurements like y1, y2, and y3, we see that only partial states show

accurate reconstruction. Therefore, we conclude that there is adequate information in

the output measurements to capture each gene, and our sensitivity analysis orders the

genes by how much impact they have on a specified output.

Through the simulation examples, we see that the observability of linear high-dimensional

Koopman operator models with linear output equations can be used as a proxy for the

observability of nonlinear systems. In biological systems, we see that this approach is

very useful to discover genes that drive various phenotypic behaviors.

4.5 Conclusion

In this chapter, we show how linear observability analysis of Koopman operator models

ties to the observability analysis of nonlinear dynamical systems. We provide algorithms

to learn Koopman operators, which constrain the outputs to lie in the span of Koopman

97

observables. We show how the decomposition of these output-inclusive Koopman opera-

tor models discovers a reduced set of Koopman observables that drive output dynamics.

The techniques can be seamlessly applied to other complex systems involving data-driven

learning of governing dynamics.

In biological systems, we show how to find the minimal Koopman operator models

that capture the output dynamics and use sensitivity analysis to discover the genes

(states) that drive a phenotypic behavior (output performance metric). Through this

work, we solve the first step toward our ultimate objective of controlling the expression

of critical genes that regulate phenotypic behavior in biological systems.

98

Chapter 5

Pseudomonas putida : Fitness

prediction using causal jump

dynamic mode decomposition

One of the most fundamental processes in life is the ability to replicate and pass on

hereditary material [56]. From viral particles to bacteria to mammalian cells, cell division

is fundamental to growth, maintenance of physiological health, and intrinsically tied to

the notion of senescence [68].

The mechanisms for controlling growth in organisms are determined by metabolic net-

works [110, 32], namely their topological structure and parametric realization. Known

metabolic networks in well studied model organisms such as E. coli [24] and S. cerevisiae

[91, 120] have given rise to predictive models that translate environmental activity to

99

metabolic network state, and ultimately to predictions of growth rate. For canonical bio-

logical model systems, these models have been highly accurate in predicting growth rate

and found utility in industrial microbiology applications, e.g. in the design of bioreactors

or informing best practices in food safety.

For many biological life forms, relatively little is known about their metabolic network

or structure. This is especially the case when developing bioengineering tools in novel

host microbes [103, 50]. For new organisms, canonical metabolic networks are lacking and

often obtained through a process of sequence alignment and comparative analysis with

existing metabolic network models in relative species. However, many novel strains do not

exhibit significant similarity, and even in the case of sequence similarity, small mutations

can lead to dramatically different growth phenotypes, e.g. growth of non-pathogenic

soil strains [30, 33] versus pathogenic counterparts [57]. The absence of predictive cross-

species models, as well as the inability to predict growth phenotype wholly from sequence

data, motivates the need for data-driven methods to accelerate the discovery of metabolic

models and growth rate prediction models.

In this chapter, we use Koopman operator theory is used to model the growth dy-

namics of the soil microbe Pseudomonas putida. We conduct experiments to measure

the population density of the bacteria under varying concentrations of initial input con-

ditions. The population density is a partial state measurement and Koopman operators

that consider only instantaneous state measurements cannot capture the dynamics. We

take inspiration from system identification and model the dynamics as a nonlinear au-

100

toregressive (NAR) process and construct Koopman operators for the NAR model. In

this chapter, we construct Koopman operators for NAR models in such a way that the

Koopman model minimizes the error across multiple steps.

5.1 Experimental Setup

We describe the procedure adopted to obtain P. putida’s growth curve for varying con-

centrations of glucose and casein substrates in the media.

Incubation: We revived P. putida cryopreserved at −80oC in 30% (vol/vol) glycerol

stock by suspending a small portion into a polypropylene test tube containing 4 mL of

Lysogeny Broth (LB). We cultured it at 30oC, spinning with a speed of 200 revolutions

per minute (rpm) for 12 hours overnight. A visual inspection of the culture tube resulted

in a cloudy culture medium, suggesting subsequent growth with the seed P. putida culture

in a plate reader was feasible.

Solution Preparation: We prepared a 300 g/L glucose solution and a 225 g/L casein

acid hydrolysate solution. Once the bacteria reached a certain optical density (OD), we

shifted the culture from LB media to R2A 2x media obtained from Teknova Inc to 2x

the required initial OD.

Serial dilution setup for P. putida culture: We use a 630 µL 96 well plate to create

media with different substrate concentrations. Each well of this plate contained 500 µL

of modified media - 250 µL of culture in 2x R2A at 0.4 OD and 120 µL containing a

mixture of casein and glucose solutions. To vary casein and glucose across the 96 well

101

plate, we perform 2D serial dilution such that the concentration of glucose was halved

across columns and the concentration of casein is halved across rows as shown in Figure

5.1. Then, the culture was mixed into each well to get a starting OD of 0.2 in 1x R2A

media since equal volumes of culture media, and substrate solutions were added.

Glucose [g/L]

C
as

ei
n

[g
/L

]
O

pt
ic

al
 D

en
si

ty
(O

D
)

Time (0 - 27hrs)

56
.2

5
28

.1
3

14
.0

6
0.

88
1.

75
3.

51
7.

03
0

75 37.5 18.75 0.070.29 0.142.34 1.17 0.584.689.38 0

Figure 5.1: Different initial conditions of substrates obtained by two-dimensional serial
dilution of casein and glucose and the corresponding growth curves are obtained for a
period of 27 hours.

Data Collection: The microplate reader was set to 30oC and the shaker to 807 cy-

cles per minute, with continuous double orbital mixing. The absorbance at 600 nanome-

ters(nm), which is termed the Optical Density at 600 nm (OD600), was measured as a

102

function of time for 27 hours. We assume in this work, as is widely accepted that OD600

measurements were collected in a linear regime, where cell population is proportional to

OD600 measurements. The obtained data and the varying substrate concentrations are

shown in Figure 5.1.

5.2 Growth Curve Dynamics Model

The dynamics of the bacterial cell growth can be represented by


N

(b)
k+1

Ck+1

Gk+1

 = f(N
(b)
k , Ck, Gk) (5.1)

where the bacterial cell count (N (b)), casein substrate concentration (C) and glucose

substrate concentration (G) are the states of the system, f is the nonlinear dynamics

and k is the discrete time index. We measure the OD600 data as mentioned in section

5.1 and the output equation is given by

yk = h(N
(b)
k) (5.2)

as OD600 is a function of only the number of cells. Some of the existing empirical

nonlinear models for growth curve dynamics include Monod’s model [78] which uses a

single substrate to form the foundation of the growth curve dynamics and in [17] and [51]

103

multiple substrates are incorporated. Monod’s model is a two-state nonlinear dynamical

system comprising of the substrate (S) and the number of bacteria (N (b)):

Ṅ (b)(t) = rmax
S(t)N (b)(t)

Ks + S(t)

Ṡ = −γṄ (b) (5.3)

where rmax is the maximum growth rate and Ks is the half velocity constant. As N (b) is

the only variable of measurement in (5.2), we convert the model to a single differential

equation containing only N (b)

N̈ (b)(t) =
1

rmaxKsN (b)
(KsrmaxṄ

(b)2 − γṄ (b)3

+ 2γrmaxN
(b)Ṅ (b)2 − γr2maxN

(b)2Ṅ (b))

(5.4)

The existing models though heuristic, suggest that N (b) at any point in time is a function

of the past

N
(b)
k+1 = f(N

(b)
k , N

(b)
k−1, · · ·)

104

N
(b)
k to be a function of its finite past. This is the general structure of the discrete

nonlinear autoregressive (NAR) model given by

yk = f(yk−1, yk−2, · · · , yk−τ)

yi ∈ Rp ∀i ∈ Z>0

f : Rp × Rp × · · · × Rp︸ ︷︷ ︸
τ times

→ Rp

(5.5)

where the current output is a function of the past τ outputs.

5.3 Hankel dynamic mode decomposition

Given the nonlinear system (5.1) with the state measurement given by (5.2) and modeled

by the discrete time difference equation (5.5), Hankel DMD [5] is a suitable algorithm to

solve the model identification problem with the NAR structure. The promising feature

of using a DMD algorithm is that it identifies a linear state-space representation which

has a theoretical foundation in Koopman operator theory.

Given the autonomous state-space system

x̃k+1 = f̃(x̃k)

yk = h(x̃k)

(5.6)

where xk ∈ Rn is the state, f̃ : Rn → Rn is the dynamics, yk ∈ Rp is the output, and

h : Rn → Rp is a nonlinear function that maps the state directly to itself, i.e., x is

105

identical to the output y, Hankel DMD constructs a Koopman model of the form



ψ(yk+1)

ψ(yk+2)

...

ψ(yk+τ)


= K



ψ(yk)

ψ(yk+1)

...

ψ(yk+τ−1)


(5.7)

such that ψ : Rp → RNp is the dictionary of state inclusive observables of the state x̃k

constructed by a nonlinear transformation of the corresponding output yk and K is the

Koopman operator. Regardless of full-state measurements, we nonetheless cast Hankel

DMD in this form to compare it with our subsequent causal jump DMD algorithm.

Given the output measurements {y1, y2, .., yN}, to identify an approximate Koopman

operator K using Hankel DMD, the time shifted Hankel matrices are constructed as

Ψ(Yp) =



ψ(y1) ψ(y2) . . . ψ(yN−τ)

ψ(y2) ψ(y3) . . . ψ(yN−τ+1)

...
...

. . .
...

ψ(yτ) ψ(yτ+1) . . . ψ(yN−1)



Ψ(Yf) =



ψ(y2) ψ(y3) . . . ψ(yN−τ+1)

ψ(y3) ψ(y4) . . . ψ(yN−τ+2)

...
...

. . .
...

ψ(yτ+1) ψ(yτ+2) . . . ψ(yN)



(5.8)

106

and the optimization problem

min
K

||Ψ(Zf)−KΨ(Zp)|| (5.9)

is solved using the Moore-Penrose pseudoinverse method mentioned in Chapter 2. This

yields a solution of the form



ψ(yk+1)

ψ(yk+2)

...

ψ(yk+τ)


=



0 INp · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 INp

k1 k2 · · · kτ−1 kτ





ψ(yk)

ψ(yk+1)

...

ψ(yk+τ−1)


.

Other than the last Np equations, the others are trivial. To construct an output predictor,

we take the component yk+τ of ψ(yk+τ) to get

yk+τ = k̃1ψ(yk) + k̃2ψ(yk+1) + · · ·+ k̃τψ(yk+τ+1) (5.10)

where k̃i are the components of ki that map ψ(yk+τ−1) to yk+τ . More generally, this

yields a nonlinear equation of the form

yk = f̃1(yk−1) + f̃2(yk−2) + · · ·+ f̃τ (yk−τ) (5.11)

107

where the functions f̃1, f̃2, · · · , f̃τ have the same basis functions with different coefficients.

This identifies a constrained NAR model as it imposes an additive structure on the basis

of nonlinear models across time.

5.4 Dynamic mode decomposition of nonlinear au-

toregressive models

To identify a Koopman operator for the unconstrained NAR model (5.5), we formulate a

state-space representation for the NAR model with full state observation and identify an

approximate Koopman operator for that model using the general class of DMD algorithms

like extended DMD and deep DMD.

In this methodology, the problem is broken into two pieces —— the system identifica-

tion aspect, where we select the model structure, and the dynamic mode decomposition

aspect, where we have to construct the dictionary of observables. We define a window

parameter τ ∈ Z>0 indicating how many past output snapshots are used to define a new

extended dictionary of monomial observable functions, up to order no ∈ Z>0. The new

τ -dictionary defines a general extended dynamic mode decomposition problem, which we

then solve using classical methods.

We proceed as follows: given the NAR model (5.5) with the system identification

108

parameter τ , we construct a state defined by

zk :=

[
yk+1 yk+2 · · · yk+τ

]T
(5.12)

with zk ∈ Rpτ .This yields the state-space representation

zk+1 =



yk+2

yk+3

...

yk+τ

yk+τ+1


:=



f1(yk+1, yk+2, · · · , yk+τ)

f2(yk+1, yk+2, · · · , yk+τ)

...

fτ−1(yk+1, yk+2, · · · , yk+τ)

fτ (yk+1, yk+2, · · · , yk+τ)


:=



yk+2

yk+3

...

yk+τ

f(yk+1, yk+2, · · · , yk+τ)


= F (zk)

⇒ zk+1 = F̃ (zk) (5.13)

where F̃ : Rpτ → Rpτ represents the dynamics of the lifted “state” model. The approxi-

mate EDMD model for the full output observable model is given by

ψ(zk+1) = Kψ(zk) (5.14)

where ψ(zk) is the state-inclusive dictionary of observables defined as

ψ(zk) =

 zk

φ(zk)

 (5.15)

109

with φ : Rpτ → RNp being a nonlinear transformation that constructs the nonlinear

observables. Since the only additional information in the state zk+1 when compared to

the state zk is yk+τ+1, the output predictor form for the Koopman model can be identified

considering the complete Koopman model and extracting the align that corresponds to

yk+τ+1 given by

ψ(zk+1) = Kψ(zk)

⇒



yk+2

...

yk+τ

yk+τ+1

φ(zk+1)


=



• · · · • • •

...
. . .

...
...

...

• · · · • • •

k1 · · · kτ−1 kτ k11

• · · · • • •





yk+1

...

yk+τ−1

yk+τ

φ(zk)


⇒ yk+τ+1 = k1yk+1 + · · ·+ kτyk+τ

+ kT11φ(yk+1, · · · , yk+τ) (5.16)

The output predictor form keeps the general structure of the NAR model intact as op-

posed to the predictor identified by Hankel DMD, which identified a constrained model.

But, the issue with this model is the causality. It can be seen from (5.16) that the

Koopman model is noncausal due to the overlap of outputs yk between the states zk+1

and zk. This identifies models that use future outputs to predict past outputs, which are

inadmissible as our system is causal. To identify a causal model, the property of (5.13)

110

proved in the following Proposition is very important.

Proposition 5.4.1. Given the state-space model (5.13) for the nonlinear autoregressive

(NAR) model (5.5), if the state is propagated i time steps where i ∈ {1, 2, ..., τ}

zk+i = F̃ i(zk) = F̃ ◦ F̃ ◦ · · · ◦ F̃︸ ︷︷ ︸
i times

(zk),

then the last i functions of F̃ i
H(zk) are such that

(F̃ i)(τ−i+j)(zk) = f (j)(zk) j ∈ {1, 2, . . . , i}

yy+τ+j = f (j)(zk) = f (j)(yk+1, yk+2, . . . , yk+τ)

(5.17)

where (F̃ i)(b)(zk) corresponds to the bth function of F̃ i(zk) and f
(j)(zk) is the j-step pre-

dictor of the NAR model (5.5).

Proof. Given the state zk defined in (5.12), the state propagated i time steps ∀i ∈ Z≥0

is given by

zk+i =

[
yk+i+1 yk+i+2 · · · yk+i+τ

]T

and the mth component of zk+i is given by z
(m)
k+i = yk+i+m where m ∈ {1, 2, ..., τ}.

A function f (j) : Rp × Rp × · · · × Rp︸ ︷︷ ︸
τ times

→ Rp is a j-step predictor of the NAR model

111

(5.5) if it has the following form

yk+τ+j = f (j)(xk) = f (j)(yk+1, yk+2, · · · , yk+τ).

Now that we have the state definitions and the predictor function definitions in place,

we prove (5.17) by induction. For i = 1,

zk+1 = F̃ (1)(zk)

(F̃ 1)(τ−i+j)(zk) = (F̃ 1)(τ)(zk) = f (1)(xk) j ∈ {1}

⇒ z
(τ)
k+1 = yk+τ+1 = f (1)(zk)

Hence (5.17) is satisfied for i = 1. We assume the result is true for i = p. This yields

(F̃ p(zk))
(τ−p+j)(zk) = f (j)(zk) j ∈ {1, 2, ..., p}

⇒ zk+p =



yk+p+1

...

yk+τ

yk+τ+1

...

yk+τ+p



= F̃ p(zk) =



yk+p+1

...

yk+τ

f (1)(zk)

...

f (p)(zk)



.

112

For i = p+ 1, the state zk+p+1 becomes

zk+p+1 = F̃ p+1(zk) = F̃ ◦ F̃ p(zk)

⇒



yk+p+2

...

yk+τ

yk+τ+1

...

yk+τ+p

yk+τ+p+1



= F̃





yk+p+1

...

yk+τ

f (1)(zk)

...

f (p−1)(zk)

f (p)(zk)





=



yk+p+2

...

yk+τ

f (1)(zk)

...

f (p)(zk)

g


where

g = f(yk+p+1, ..., yk+τ , f
(1)(zk), ..., f

(p)(zk)) = f(z
(p+1)
k , ..., z

(τ)
k , f (1)(zk), ..., f

(p)(zk))

:= g(zk).

Since g is a function of only zk and since yk+τ+p+1 = g, g(zk) satisfies the definition of a

predictor function and hence is a (p+ 1)-step predictor of (5.5)

yk+τ+p+1 = z
(τ)
k+p+1 = (F̃ p+1(zk))

(τ) = f (p+1)(zk).

Therefore, for i = p + 1, (F̃ i(zk))
(τ−p−1+j) = f (j)(zk) j ∈ {1, 2, ..., (p + 1)} stating that

the last (p+ 1) entries of zk+p+1 are f (1)(x), f (2)(x), ..., f (p+1)(x). Hence the proof.

113

To identify a causal Koopman model for the NAR system (5.5), we propagate the

model (5.13) by τ time steps to ensure no intersection of outputs between the states zk+1

and zk. We define a new state xk = zkτ which yields

xk = zkτ

⇒ xk+1 = zkτ+τ = F̃ τ (zkτ) = F (xk) (5.18)

where F = F̃ τ = F̃ ◦ F̃ ◦ · · · F̃︸ ︷︷ ︸
τ times

Using Proposition 5.4.1, we can say that the nonlinear state-space model contains func-

tions that are 1-step, 2-step, ..., τ -step predictors in the following form

xk+1 =



ykτ+τ+1

ykτ+τ+2

...

ykτ+2τ−1

ykτ+2τ


:=



f1(ykτ+1, ykτ+2, · · · , ykτ+τ)

f2(ykτ+1, ykτ+2, · · · , ykτ+τ)

...

fτ−1(ykτ+1, ykτ+2, · · · , ykτ+τ)

fτ (ykτ+1, ykτ+2, · · · , ykτ+τ)


:=



f (1)(ykτ+1, ykτ+2, · · · , ykτ+τ)

f (2)(ykτ+1, ykτ+2, · · · , ykτ+τ)

...

f (τ−1)(ykτ+1, ykτ+2, · · · , ykτ+τ)

f (τ)(ykτ+1, ykτ+2, · · · , ykτ+τ)


= F (xk) (5.19)

where f (i) is the i-step predictor of the NAR model. We prove the existence of a Koopman

operator for this model in Proposition 2.

Proposition 5.4.2. If the function f in the NAR model (5.5) is analytic, then a Koop-

114

man operator exists for (5.13) and (5.19).

Proof. Since f in (5.5) is analytic, F̃ in (5.13) is analytic since all the entries of F̃ are

either linear functions or are equal to f . Since F is obtained by the composition of F̃ τ

times, F is also analytic.

F (x) admits a countable-dimension Koopman operator Kx, with an invariant sub-

space isomorphic to either a finite or an infinite Taylor polynomial basis [113]. Moreover,

isomorphism with a Taylor polynomial basis ensures that the Koopman observable space

contains the full state observable, i.e. it is state-inclusive.

There are two easy arguments to conclude the proof. First, note that since f is

analytic, f τ is analytic and thus by the same reasoning as in [113], f τ thus must admit a

Koopman operator. The second argument is a constructive one, noting that the equation

ψ(x[(k)τ]) = Kτψ(x[(k − 1)(τ)) (5.20)

must hold due to τ applications of the 1-step Koopman align. This means therefore that

the following matrix align must hold

ψ





x[(k)τ]

x[kτ + 1]

...

x[(k + 1)τ − 1]




= KJψ





(x[(k − 1)(τ))]

(x[(k − 1)]τ + 1])

...

(x[(k)τ − 1)]




(5.21)

115

where KJ = diag (Kτ , Kτ , . . . Kτ) . This concludes the proof.

Since the existence of a Koopman operator has been proved for the model (5.19) in

Proposition 5.4.2, we construct a state-inclusive dictionary of observables

ψ(xk) =

 xk

φ(xk)

 (5.22)

with φ : Rpτ → RNp to define a Koopman model

ψ(xk+1) = Kψ(xk) (5.23)

This Koopman model is causal since there is no intersection of outputs between xk+1

and xk. The added feature of this model is that the DMD algorithm while identifying a

Koopman operator, also simultaneously minimizes the 1-step, 2-step, ..., τ -step prediction

error of the NAR model.

Now that we have a theoretical state-space representation of a NAR model and estab-

lished the conditions under which a Koopman operator exists, we turn our attention to

the algorithm for identification of the Koopman operator. Given the data with M data

sets and N data points in each data set {y(i)1 , y
(i)
2 , ..., y

(i)
N } where i ∈ {1, 2, ...M} is the

index of the data set, we construct the Hankel states zk and the dictionary of observables

allowing the intermixing of states. We compile the observables into snapshot matrices

116

Ψ̃f (z) and Ψ̃p(z) with a τ time step jump and solve the Koopman learning problem

||Ψ̃f (z)−KΨ̃p(z)||F

using the methodology in Algorithm 1.

Algorithm 1 Extended DMD for NAR models

1: Get NAR model parameter τ
2: Get extended DMD parameter no for monomial observables
3: for dataset i = 1, 2, . . . ,M do
4: for time index j = 1, 2, . . . , N − τ do
5: Construct the Hankel state

z
(i)
j =

[
y
(i)
j+1 y

(i)
j+2 · · · y(i)j+τ

]
6: Construct the dictionary of observables ψ(z

(i)
j)

7: end for
8: Construct the snapshot matrices for each data set with the τ -jump

Ψ(i)
p (x) =

[
ψ(z

(i)
1) ψ(z

(i)
2) ... ψ(z

(i)
N−2τ)

]
Ψ

(i)
f (x) =

[
ψ(z

(i)
1+τ) ψ(z

(i)
2+τ) ... ψ(z

(i)
N−τ)

]
9: end for
10: Compile the snapshot matrices across data sets

Ψ̃p(x) =
[
Ψ

(1)
p (x) Ψ

(2)
p (x) ... Ψ

(M)
p (x)

]
Ψ̃f (x) =

[
Ψ

(1)
f (x) Ψ

(2)
f (x) ... Ψ

(M)
f (x)

]
11: Compute the SVD of Ψ̃p(x) = USV ∗

12: Truncate to the required number of singular values and identify the Koopman oper-
ator

K̂ = Ψ̃f (x)Ṽ S̃
−1Ũ∗

117

5.5 Results

From the data sets obtained in the plate reader experiments shown in Fig. 5.1, we

used Algorithm 1 to implement extended DMD using monomials as the dictionary of

observables

ψ(zk) =

[
yk+1 · · · yk+τ y2k+1 yk+1yk+2 · · · y2k+τ y3k+1 y2k+1yk+2 · · ·

]⊤
(5.24)

to identify an approximate Koopman operator for the state-space model (5.19) as a

solution to the identification of the NAR model (5.5).

We use all the datasets in Figure 5.1 to find a Koopman operator invariant to the

substrate concentrations. They are broken equally into training, validation, and test set.

Given the two parameters τ (NAR model parameter) and no (extended DMD parame-

ter), we can find the optimal approximate Koopman operator by cumulatively iterating

through the principal components and evaluating the summation of the mean squared

error(MSE) of training and validation data. The number of principal components cor-

responding to the minimum MSE yields the optimal Koopman operator for a given τ

and no. We then iterate through the two parameters to find the optimal model that

minimizes the

By choosing τ = 9 and keeping the maximum order of monomials to 3, the Koopman

operator has been identified, and the prediction on the training data is shown in Figure

5.2 and it has an MSE of 3.4%. The identified Koopman operator has an MSE of 9%,

118

and the fit is shown in Figure 5.3.

Time (0 - 27hrs)

O
pt

ic
al

 D
en

si
ty

(O
D

)

Figure 5.2: The identified Koopman operator is tested on the training sets with 9-point
initial condition and up to 3rd order monomials to get an MSE of 3.4%

The results of the experimental data suggest that Causal Jump DMD is a suitable

candidate algorithm for identifying the Koopman operator of the population growth

dynamics of bacteria and can also be extended in general to identify Koopman operators

for NAR models.

5.6 Conclusion

In this chapter, we introduced the microbial growth curve dynamics to motivate the us-

age of DMD algorithms to identify Koopman operators for NAR models. We formulated

Hankel DMD as a state-space representation of the NAR model and showed that it is

119

Time (0 - 27hrs)

O
pt

ic
al

 D
en

si
ty

(O
D

)

Figure 5.3: The identified Koopman operator is tested on the test sets by using the initial
observables ψ(x0), and the mean squared error remains the same as that of the training
set.

restrictive in its structure. We construct a causal state-space model for the NAR model

and identify a Koopman operator for it using extended dynamic mode decomposition

with a monomial dictionary of observables. We showed that it does a good job in pre-

dicting the population growth dynamics of Pseudomonas putida invariant to substrate

concentrations.

One of the most important insights is that to quantify the dynamics of the output,

a finite amount of data on the evolution of population density is essential to represent

the dynamics represented by the population density measurements. We make use of this

information in the next chapter.

120

Chapter 6

Pseudomonas putida : Koopman

observable decomposition identifies

fitness impacting genes

6.1 Introduction

Microbial persistence, the ability of microorganisms to survive under unfavorable con-

ditions, is essential for various applications, including bioremediation, biocontrol, and

bioproduction. Persistence control involves identifying and manipulating genes and path-

ways involved in the growth of the microbe under different conditions.

Understanding the complex relationships between genes and their effects on pheno-

typic traits is a fundamental challenge in modern molecular biology. While a growing

121

body of research has identified individual genes and pathways that are associated with

specific traits, we still lack a comprehensive understanding of how these genetic factors

interact to give rise to complex phenotypes. This is particularly challenging in organ-

isms with large and complex genomes, where the number of possible interactions between

genes can be prohibitively large.

Currently, the most widely used methods for analyzing genetic networks rely on dif-

ferential gene expression analysis. These methods compare the expression levels of indi-

vidual genes across different conditions or time points, and use statistical techniques to

identify genes that are differentially expressed. While these methods have been successful

in identifying individual genes that are associated with specific traits, they are limited

in their ability to capture the complex dynamics of gene-gene interactions that give rise

to phenotypic traits.

The limitations of current methods for genetic network analysis have led to a growing

interest in data-driven approaches that use machine learning and other computational

techniques to model the underlying dynamics of gene expression and phenotype. How-

ever, many of these approaches are limited in their ability to identify the specific genetic

factors that contribute to particular phenotypic traits. This is a critical limitation, as

it makes it difficult to develop targeted interventions or therapies that can modify the

underlying genetic network to achieve desired outcomes.

In this chapter, we propose a novel approach to genetic network analysis that uses

observability analysis of dynamical systems to identify the impact of each gene on the

122

phenotype of interest. Our approach combines data-driven methods like deep dynamic

mode decomposition (DMD) and Koopman operators with observability analysis to learn

the underlying dynamical interactions between gene expression and phenotype, and to

infer the extent to which each gene contributes to the phenotype. By applying this

approach to a range of phenotypic traits, including microbial growth, metabolite pro-

duction, and fluorescence, we aim to demonstrate the utility of observability analysis for

identifying gene-phenotype relationships and informing targeted interventions to modify

genetic networks.

6.2 Results And Discussion

6.2.1 Obtaining diverse growth conditions for P. putida

We culture the soil microbe, Pseudomonas putida KT2440 in R2A media, a soil sim-

ulant medium commonly used for studying microbial communities in the environment,

substituted with glucose and casein hydrolysate. Glucose serves as a sugar source, while

casein hydrolysate is a water-soluble substitute for casein, a protein source. To explore

a range of growth conditions, we conduct a plate-reader experiment in which the growth

conditions are obtained by a two-dimensional serial dilution of the two media inputs.

The growth curve profiles obtained are presented in Figure 5.1 in Chapter 5. We refer

to the growth conditions with the highest and lowest growth rates as the Max growth

condition and Min growth condition, respectively, which represent the two extremes of

123

Figure 6.1: Experimental workflow and data analysis pipeline to identify the
influential genes that impact the growth phenotye (a) describes the time series
experiment initiated with specific concentrations of Glucose and Casein hydrolysate in
R2A media with RNA expression levels and optical density measured at regular intervals.
(b) shows the RNA expression profiles obtained for three different growth conditions:
the negative control (NC) growth condition with zero nutrient input and maximal (Max)
and minimal (Min) growth conditions where the maximum and minimum growth rates
of bacteria were observed. (c) shows the optical density measured in each of the growth
conditions. (d) shows the data analysis pipeline to model the gene expression-growth
dynamics for each growth condition and order genes based on an observability score,
a metric that indicates the significance of the gene expression on the growth output
dynamics.

the P. putida growth curves. Max condition has a glucose concentration of 0.073 g/L

and a casein hydrolysate concentration of 1.75 g/L, and the Min condition has a glucose

concentration of 56.25 g/L and a casein hydrolysate concentration of 75 g/L, respectively.

In addition to the extremities, we consider the Negative Control (NC) growth condition

with no inputs.

We conduct time-series RNA sequencing experiments for the MAX, MIN, and NC

124

growth conditions. For each condition, we grow P. putida in multiple 96-well plates,

with one plate incubating in the plate reader to obtain the growth curves and others

growing in plate shakers to obtain RNA expression data. Samples are pooled and har-

vested with a sampling time of 1 hour, from which the RNA is extracted and sequenced.

From a dynamic systems perspective, we consider the genotypic activity within the cell

measured by the RNA expression levels to represent the state (x) of the system and the

observed growth curve phenotype to represent the output (y) of the system. A generic

representation of such a dynamical system is represented by

xt+1 = f(xt)

yt = h(xt)
(6.1)

where t represents the time, f represents the state dynamics and h represents the output

equation. The state equation captures how the genotypic activity at the current time

impacts the genotypic activity at the next time point. The output equation captures

how the genotypic activity manifests as the output phenotype.

6.2.2 Koopman models with output capture the dynamics

Koopman operator theory is a mathematical tool that captures the dynamics of nonlinear

systems as high-dimensional linear systems. A linear systems method called observabil-

ity analysis is used to determine the extent to which the internal states of a system can

be inferred from its measured outputs; the goal is to identify the internal states that

contribute to the output dynamics. Koopman operators are powerful because they en-

able us to extend well-established linear methods like observability analysis to nonlinear

125

dynamical systems.

In [11], we proposed a sensor fusion algorithm called output-constrained deep dynamic

mode decomposition (OC-deepDMD) to fuse state and output measurements of nonlinear

dynamical systems of the form as shown in Equation 6.1. OC-deepDMD algorithm learns

Koopman operator models with output equations of the form

ψ(xt+1) = Kψ(xt)

yt = Whψ(xt)
(6.2)

where ψ(x) is the high-dimensional embedding of the state x called observables, K is

the state transition matrix and Wh is the output matrix. In [12], we established the

connection between theoretical nonlinear observability analysis and data-driven observ-

ability analysis of the Koopman system with output in Equation 6.2. In this subsection,

we demonstrate how to use the OC-deepDMD algorithm to learn the system dynamics,

and in the next subsection, we dive deeper into the observability analysis. We model and

perform observability analysis on each growth condition individually to identify genes,

the expression of which manifests in the corresponding growth profiles.

Microbial systems are stable; when the microbe reaches the stationary growth phase,

its population density and RNA expression reach a steady-state condition. The Koopman

model (6.2) assumes zero steady-state value for both RNA expression and output. We

adapt the data to the modeling framework by considering the log2 fold change of RNA

expression and log2 fold change of population density as described in Appendix A.2.1 and

Appendix A.2.2, respectively. The model assumes that gene expression and population

density reach a constant steady-state value, resulting in a zero steady-state log2 fold

126

change.

The RNA expression data of P. putida is 5564-dimensional, and we collected data for

a maximum of seven time points for each condition. The data are insufficient to estimate

the full system dynamics and would result in the underfitting of the model, resulting

in nonunique solutions. We use Principal Component Analysis (PCA) to reduce the

dimension of the state. PCA transformation does not affect the observability analysis

of Koopman models because the observability analysis depends on learning nonlinear

transformations of the state, which can encapsulate a linear transformation like PCA.

By individually implementing PCA on the Max, Min, and NC RNA expression datasets

to capture 90% of the variance, the 5564-dimensional state reduces to a 17-dimensional,

16-dimensional, and 11-dimensional, respectively, as seen in Supplementary Figure A.1.

We denote the PCA-transformed state as z.

On the PCA-transformed dataset, we use the OC-deepDMD algorithm to learn mul-

tiple Koopman models as in Equation 6.2 with various combinations of training hyperpa-

rameters (the number of nodes, layers, and outputs in the neural network that constitutes

the observables ψ(x)) and 16-fold cross-validation. The OC-deepDMD algorithm learns

a Koopman model that minimizes the one-timestep prediction error. We evaluate the

goodness of the model by feeding the initial condition and predicting the states and

outputs up to a particular horizon (n steps). We then compute the coefficient of determi-

nation (r2) to assess its accuracy. To ensure that the observability analysis is robust to

the choice of the model parameters, the model hyperparameters, and the data fed to the

127

learning algorithm, we compile all the models which have n-step predictions of r2 ≥ 0.8 on

training data and r2 ≥ 0.7 on the validation data and perform the observability analysis

to identify genes that impact the growth phenotype.

6.2.3 Observability analysis of Koopman model ranks the genes

by order of their impact on the host fitness

The observable Decomposition of a linear system transforms the system state into a set of

observable and unobservable states such that any change in the unobservable state has no

impact on the output response. The theoretical observable decomposition of the Koop-

man system in Equation 6.2 transforms the nonlinear state ψ(x) into

[
ψ⊤
o (x) ψ⊤

u (x)

]⊤
where ψu(x) is the unobservable state and ψ⊤

o (x) is the set of functions that have an

impact on the output y. We showed in [12] that by computing the sensitivities of the set

of functions ψ⊤
o (x) with respect to x and taking the Euclidean norm of all the sensitiv-

ities of a single gene, we can compute a score that indicates how much each entity in x

impacts y. In this chapter, we term this score the observability score, and the procedure

to compute it is given in Appendix A.5. In the previous section, we saw that PCA is

used to reduce the dimensionality of x as z = Tx. The observability analysis workflow

remains unaffected by the PCA dimensionality reduction, as the linear PCA transfor-

mation can be incorporated into the computation of the nonlinear function ψ⊤
o (z) as

ψ⊤
o (z) = ψ⊤

o (Tx). We implemented the observability analysis, as described in Appendix

A.5, on all the Koopman models learned for the Max, Min, and NC conditions indi-

128

vidually. The distribution of the resulting observability scores is displayed in Figure

6.2.

The first inference in the observability analysis is that only a small fraction of the

genes have high observability scores. The histogram of the observability scores in Figure

6.2 shows that most of the genes have low observability scores between 0 and 0.1 in all the

growth conditions. Only 2.95% of the genes (164 genes) in the Max growth condition,

3.13% of the genes (174 genes) in the Min growth condition, and 1.82% of the genes

(101 genes) in the NC growth condition have an observability score of greater than 0.1,

the histogram of which is plotted in the lower row of Figure 6.2. Observability analysis

identifies genes that impact the output of the system, which in this case is population

growth. The result is in accordance with studies that highlight that a limited number of

genes are critical for bacterial survival and maintenance under particular environmental

conditions. In [8], the authors demonstrated that single-gene knockout mutants could be

procured for 93% of the total genes in E. coli K-12 genome and the remaining 7% (303

genes) were found to be essential for the growth of the bacterium in the selected media.

Similar results have been for other organisms in [107], which constructs a pool of single

gene knockout mutants to identify essential genes for select growth conditions.

The second inference in the observability analysis is that many of the genes that

have a high observability score of greater than 0.18 are affiliated with the growth of the

microbe, which is the phenotype under consideration. The genes with observability scores

greater than 0.18 are shown in the top row of Figure 6.2. The topA enzyme releases the

129

topological stress in the DNA due to supercoiling. The rpoD gene encodes a sigma factor

that promotes the attachment of RNA polymerase to specific initiation sites and is the

primary sigma factor during exponential growth. The algP gene encodes transcriptional

regulators. The enzymes nuoG and sad-I are affiliated with NADH molecules, which are

involved in generating energy for the cells. The chaperone protein, clpB, hydrolyzes ATP

molecules and regulates the rate of cellular DNA-templated transcription. The proteins

encoded by the genes metH, pheT, algP and azurin have metal ion binding sites and

act as cofactors for cellular proteins, and metal ions are essential micronutrients required

for the growth and survival of microorganisms [86]. The genes flgL, flgB, flgC, and flgE

encode flagellar proteins, which have both positive and negative effects on growth based

on the availability of nutrients [79]. The spuB, spuI and glnA enzymes are essential for

the biosynthesis of polyamines which have been affiliated with the growth of archaea and

bacteria [76].

The approach of utilizing Koopman operator representations to model genotypic-

phenotypic dynamics and then applying observable decomposition of Koopman models

is a reliable and effective method for identifying genes that drive the output dynamics

of interest over time. Our analysis shows that the observability approach successfully

ranks genes based on their impact on growth output. Specifically, only a small fraction

of genes were found to significantly impact growth output, and the genes with high

observability scores have been previously associated with bacterial growth. This indicates

that the observability approach is a promising method for confidently identifying genes

130

that substantially impact growth output.

Figure 6.2: The bottom row shows the histogram of the observability scores of all the
genes, with each column corresponding to a different growth condition (given by the top
header). The top row shows the genes with observability scores greater than 0.18 in all
growth conditions.

6.2.4 Multiplexed targeted gene regulation validates the pre-

dictions of Koopman observable decomposition

The CRISPRi mechanism that uses the ddCpf1/dCas12a protein has the capability to

knock down the expression of multiple gene targets simultaneously [118]. To validate

the gene target predictions of the Koopman observability analysis, we design plasmids

with the ddCpf1 protein targeting multiple genes exhibiting a significant difference in

observability scores across growth conditions. The Min condition results were excluded

131

Figure 6.3: CRISPRi experiments to validate the impact of targeted genes:
(a) The construction of the plasmid from identified gene targets and the gene repression
mechanism of the CRISPRi molecule ddCpf1 (b) The targeted genes for each mutant
strain (c) Computation of CRISPRi fitness across all time points and all arabinose con-
ditions.

from this subsection since the mutant strains failed to grow in this growth condition.

Figure 6.3 shows the construction of the CRISPRi plasmid where the gene fragment

containing the CRISPRi repeat sequence (crRNA) and 20 base pairs from each of the

targeted gene is constitutively expressed, and the induction of arabinose produces the

ddCpf1 protein. With the addition of the plasmid and the Kanamycin antibiotic selection

pressure, the base strain for comparison of growth changes. This chapter considers the

base strain PPSB00K, which has the same plasmid as in Figure 6.3(a) but without any

targeting genes. The strain PPSB00K accounts for the burden of the Kanamycin selection

pressure as well as the burden of producing the ddCpf1 molecules. In Appendix Figure

132

Figure 6.4: Comparison of Koopman observability analysis with CRISPRi gene
knockdown analysis: Observability scores of targeted genes (left) and CRISPRi fitness
scores of the corresponding strains (right) in Max and NC growth conditions.

A.6, we show the raw population growth curves of all the CRISPRi strains obtained for

the arabinose concentrations of 0%, 0.4%, and 0.8%. We consider the 0% to also be a

viable candidate for differential fitness between the base PPSB00K and other mutant

strains as we expect leaky expression of the ddCpf1 molecule to exist. Figure 6.3(b)

shows the nine mutant strains that we constructed along with the genes targeted by each

strain. Figure 6.3(c) shows how we compute the CRISPRi fitness score, wherein we take

the difference of OD600 measurements across time and across arabinose concentrations.

The CRISPRi fitness score accounts for any leaky expression in ddCpf1 as well as the

transient and steady-state effects. The observability scores, as well as the CRISPRi

fitness scores for the selected strains from Figure 6.3(b) are shown in Figure 6.4.

133

Among all the unique genes targeted in 6.3(b), we saw that 14 of the 18 strains exhib-

ited the fitness impact as dictated by the observability scores. The strain PPSB01K has

a low observability score and a nearly zero CRISPRi fitness score in the Max condition,

while both scores are significant in the NC condition. The PPSB09K strain targets the

sigma factors and transcriptional regulators, and PPSB10K targets genes encoding metal

ion binding proteins. Both PPSB09K and PPSB10K have high observability scores in

Max and NC conditions with a higher inclination to the Max condition. The exact same

behavior is exhibited in the CRISPRi fitness scores. The strain PPSB07K targets flagel-

lar genes and has a high fitness score in the Max condition while a considerable variation

in fitness score (from low to high) in the NC condition. The CRISPRi fitness score val-

idates the Max condition and has nearly zero impact on the NC condition. We believe

that by reducing the effort put in by bacteria to make the flagellar proteins, we can in-

crease the growth of bacteria in the nutrient-rich Max growth condition. PPSB03K has

a high observability score in the NC condition and a low observability score in the Max

condition, and the CRISPRi fitness scores exhibit the same trend. PPSB08K targets the

topA enzyme and has a significant observability score in both Max and NC conditions.

While the CRISPRi fitness scores are significant in both conditions, the fitness score is

negative in the NC condition and positive in the Max condition showing that they have

the opposite fitness impact in both conditions. The mean of the observability scores

are all greater than 0.1 for the NC conditions, and it is seen that the CRISPRi fitness

score is high in the NC growth condition except for PPSB00K. The strains PPSB04...6K,

134

which target a combination of four genes (PP 2875, vacJ, PP 1498, cbcV), have high

NC observability scores and low Max observability scores. The CRISPRi fitness score of

PPSB06K is equal in both conditions, and the CRISPRi fitness score of PPSB04K and

PPSB05K have huge variability, and they disagree with the observability analysis. We

speculate a potential reason for the high variability in CRISPRi fitness scores is that the

genes vacJ and PP 1498 have opposite impacts on growth but require further analysis.

Except for PPSB04...6K, which targets 14 out of 18 genes, all CRISPRi strains exhibited

gene behavior consistent with their corresponding observability scores.

6.2.5 Limitations

Some of the limitations and how we can address them are presented in this section

6.2.5.1 Modeling limitation

One of the limitations of the modeling framework is that it assumes the steady-state RNA

expression at the stationary phase of microbial growth is constant. If genes have cyclic

trends of RNA expression in the stationary phase, the current setup of the OC-deepDMD

algorithm does not capture that. To overcome the limitation, a delay embedding of the

state may need to be incorporated, as highlighted in the Activator-Repressor example in

[11].

135

6.2.5.2 Observability analysis limitation

The principle of observability analysis is to estimate the underlying state of the system

from the output measured from the system. In this chapter, we exploit the property

that if a state is highly observable by the output, then the state has a high impact on

the dynamics of the output. So, while we can infer that a state (gene) has an impact

on the desired output (growth), we cannot infer if the impact is positive or negative,

which is clearly seen by the PPSB08K strain targeting the topA enzyme (knockdown has

a positive impact in Max condition and a negative impact in NC condition).

6.2.6 Conclusion

For high-dimensional nonlinear dynamical systems like microbial cells, where we can mea-

sure the genotypic activity and a manifested phenotype as a function of time, we propose

a Koopman operator-based method to fuse the data and learn dynamical models. Fur-

ther, we show how observability analysis can be used on the Koopman dynamical models

to order the genes based on their impact on the manifested phenotype. In this chapter,

we consider the growth of Pseudomonas putida in the soil simulant R2A media with

two variable inputs of glucose and casein hydrolysate. In the growth conditions where

the bacterium exhibited maximal and minimal growth as well as the negative control

growth condition, we measured RNA expression to represent the genotypic activity and

the population density as the phenotype of interest for each condition. We use the OC-

deepDMD algorithm proposed in our previous work to learn Koopman operator models

136

that capture the dynamical interaction between the gene expression and how the gene

expression maps to the population density. Then, we perform observability analysis on

the Koopman model to identify a set of nonlinear gene expression functions that impact

the phenotype. Using sensitivity analysis, we identify how much each gene contributes

to this set of nonlinear functions and derive an observability score for each gene, repre-

senting the impact of the genetic activity on the phenotype. We validate the predictions

of the observability analysis framework by building nine synthetic P. putida strains with

ddCpf1 CRISPRi mechanism targeting multiple genes and showed that 14 of the 18 tar-

geted genes have a fitness impact as dictated by the observability analysis. We believe

that observability analysis can serve as a powerful tool in any complex system where we

want to decipher the minimal network that drives a desired output.

137

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we draw inspiration from biology and tackle the challenge of mapping

genotypic activity to phenotype in single-celled microbial systems. To achieve this, we

combined dynamic measurements of state and output data obtained from transcriptomics

and population growth, respectively. These two datasets have nonlinear dynamics, and we

employed the Koopman operator theory to learn high-dimensional linear representations

of the dynamics. Although Koopman operators typically learn only state dynamics, we

extended this approach to learn the output equation in addition to the state equation.

By exploiting the linearity of the state output model, we demonstrated theoretically that

computing the linear observable decomposition of the Koopman operator representation

with the output equation is equivalent to the theoretical route of taking the geometric

observable decomposition of the nonlinear system with output equation and computing

138

the Koopman operator representation of the nonlinearly transformed system.

Through two simulation examples, we demonstrated that the Koopman observable

decomposition analysis can identify genes based on their influence on the output. We

applied this approach to an actual RNAseq-OD600 time-series dataset obtained from

the soil bacterium Pseudomonas putida KT2440 under various growth conditions, pin-

pointing genes that significantly impact the bacterium’s fitness in those conditions. Our

observability analysis identified only a small fraction of genes associated with the out-

put phenotype. We employed sensitivity analysis to calculate scores that rank genes

according to their effect on the output phenotype. Using CRISPRi, we implemented

multiplexed targeted gene expression and found that 14 out of the 18 targeted genes had

fitness impacts consistent with the observability scores predicted from the time-series

RNAseq and OD600 datasets.

7.2 Future Work

There are many ways in which we can expand on the work in an impactful way. When we

think about bioprocesses, the output of the bioprocess is maximized either by optimizing

external inputs outside the cells or manipulating the expression of optimal genes within

the cells. Typically, these problems are addressed separately. There is a need to simulta-

neously tackle these two optimization problems in order to expedite the discovery process

of optimal cellular pathways and inputs, ensuring that the cells perform optimally for a

desired output.

139

While we know that CRISPRi serves as an actuator in regulating gene expression,

its dynamics remain unclear. In this study, we linked the expression of the CRISPRi

molecule to arabinose. In such a setting, it is crucial to verify that the system consumes

arabinose, ensuring that the CRISPRi actuator has finite, rather than infinite, support

in gene expression. By quantifying these dynamics, we can formulate optimal control

problems for the precise manipulation of microbial growth under conditions of interest.

The core of this thesis revolves around observability analysis using state and output

measurements. Expanding these results to incorporate control inputs and integrating the

controllability of the system could significantly impact the identification of optimal genes

to manipulate for controlling gene expression. Controllability analysis can accelerate the

discovery process by determining the minimum number of genes whose expression needs

to be controlled to optimize the output of the bioprocess. This approach would streamline

the search for genetic targets and enhance the efficiency of bioprocessing operations.

140

Appendix A

Biological Methods and Protocols

In this appendix, we discuss the biological protocols used in various steps of collecting

the transcriptomic data, population density measurement, and constructing CRISPRi

strains for verifying the fitness impact of genes identified using the data-driven observ-

ability analysis in Chapter 4. We also discuss the implementation of the mathematical

algorithms proposed in Chapters 3 and 4 for the biological datasets in Chapter 6.

A.1 Biological Protocols

A.1.1 Time series experiment setup

Two biological replicates of Pseudomonas putida KT2440 were inoculated by scraping

cells from its glycerol stock stored in −80◦C and suspending in 5mL of fresh LB media

(Teknova Catalog no.L8022) overnight. Each biological replicate was passaged by mea-

141

suring their OD600 and resuspending them in fresh LB media to get a starting of 0.1.

When the OD600 approximately reaches 0.4, the cells are spun down and washed three

times in 1xPBS buffer (Catalog no.100219-264). Then, the cells are suspended in 2x R2A

media until an OD600 of 0.4 is reached. We make 2x input media solutions by making

112.5 g/L casein hydrolysate, and 150 g/L glucose solution in milliQ for the Max growth

condition, 112.5 g/L casein hydrolysate, and 150 g/L glucose solution in milliQ for the

Min growth condition, and just using milliQ for the NC growth condition. For each

biological replicate and each growth condition, mix equals parts of the 2x culture and 2x

media inputs solutions across multiple 96 well plates and start incubating them in plate

shakers at 30◦C. At the same time, prepare a single 96-well plate with eight replicates

for each combination of the two biological replicates and three growth conditions and

insert it into the plate reader and measure OD600 of each well with a sampling time of

5 mins. After each hour, for each bio-replicate growth condition combination by pooling

culture across multiple wells and measure OD600 using a nanodrop. Collect 2 ODmLs of

the culture and proceed to extract the RNA.

A.1.2 RNA sequencing

To each sample collected for RNA extraction, add 2x the volume of RNApotect bacte-

ria reagent (Qiagen Catalog No. 172037562). The RNA extraction is done using the

RNeasy Mini Kit (Qiagen Catalog No. 172033065). The samples are DNase treated and

concentrated using Zymo RNA Clean and Concentrator (Catalog no. R1019). Bacte-

142

rial rRNA was depleted using the NEBNext Bacterial rRNA Depletion Kit (Catalog no.

E7850X). The indexed cDNA library was generated using NEBNext Ultra II Directional

RNA Library Prep (Catalog no. E7765L) and NEBNext Multiplex Oligos for Illumina

(Catalog no. E6609S). For the two biological replicates, the time points at 3hrs and 5hrs

for the Max, Min, and NC growth conditions are prepped and sequenced in the first

batch. The time points 1hr, 2hr, 4hr, 6hr, and 7hr of the Max condition and the time

points 4hr, 6hr, and 7hr of the Min and NC condition for the two biological replicates

are prepped and sequenced in the second batch. The RNA extraction at 1hr and 2hr

time points of Min and NC conditions failed; hence, the data is unavailable. The library

was sequenced at the Genetics Core in the Biological Nanostructures Laboratory at the

University of California, Santa Barbara, on an Illumina NextSeq with High Output, 150

Cycle, paired-end settings.

A.1.3 CRISPRi library cloning

For the identified gene targets, the CRISPRi sites are found on each gene by locating

the AsCpf1 promoter adjacent motif (PAM) sequence given by TTTN using Geneious.

The optimal PAM sequence location for each gene is chosen by considering the first PAM

sequence that runs in the direction of the gene transcription; the first PAM sequence on

the sense strand if the direction of gene transcription is from 5’ to 3’ on the sense strand

and the first PAM sequence on the antisense strand in the 5’ to 3’ direction if the direction

of transcription of the gene is from 3’ to 5’ on the sense strand. The CRISPRi array is

143

formed by alternating the CRISPR repeat sequence AATTTCTACTCTTGTAGAT and

the 20 base pairs following the optimal PAM sequence of each gene target. The plasmid

is constructed with a pBBR1 backbone, the Kanamycin antibiotic resistance marker,

the ddCpf1 protein induced by arabinose (taken from Addgene Plasmid # 153038) [43],

and a constitutively expressed CRISPRi array (see Figure 6.3a). The CRISPRi arrays

for each strain is assembled onto the plasmid backbone with the ddCpf1 gene (induced

by arabinose) via Golden Gate Assembly [27] using NEB Golden Gate Assembly Kit

(Catalog no. E1601S). Because of the potential of arcing during electrotransformation of

Pseudomonas putida KT2440 with Golden Gate reaction buffers, the plasmids are first

subcloned into E. coli Mach1 (Thermo Fisher Scientific Catalog no. C862003) following

the manufacturer’s protocol for chemical transformation. A single colony is selected

for each strain and sent for sequencing at Eurofins Genomics. Then the plasmid DNA

is prepared from cultures of transformed Mach1 cells using Qiagen Spin Miniprep Kit

(Catalog no. 27106), followed by chemical transformation into KT2440. KT2440 was

made chemically competent by washing a culture at OD600 of 0.4 with a solution of 10%

glycerol two times, then resuspending in 500 µL of 10% glycerol. The plasmid DNA is

added to 80 µL of the cell suspension and kept at 4◦C for 30 minutes, and then the

cells were electroporated with 1600 V, 200 Ω, and 25 µF. The cells were immediately

resuspended in 300 µL of SOC Broth (Fischer Scientific Catalog No. MT46003CR),

recovered for 2 hours at 30◦C in a shaking incubator, and plated onto 1.5% LB Agar

plates with 50 µg/mL Kanamycin. A single colony of each strain is grown overnight, and

144

the glycerol stock of each colony is prepared for long-term storage. The strain PPSB02K

did not get transformed into KT2440.

A.2 Data-driven analysis of the biological datasets

A.2.1 Preprocessing RNAseq time-series data

The raw reads were aligned to the Pseudomonas putida KT2440 transcriptome using

Geneious, and the RNA count data was converted to transcripts per million(TPM),

which accounts for sequencing depth and gene length. For each biological replicate, eight

technical replicates are obtained by treating the RNA count data from each sequencing

lane and direction as a separate measurement yielding a total of 16 time-series curves

for each growth condition (MX,MN,NC). Pooling technical replicates to form a single

measurement is typically done to reduce measurement noise, but by not pooling, we

enhance the efficiency of machine learning algorithms. The presence of measurement

noise across technical replicates drives the machine learning algorithms to learn models

that are robust to the measurement noise and reduce model overfitting. Therefore, for

each growth condition (MX, MN, NC), 16 unique time-series curves of the RNA count

data are available, each starting from the same initial condition but with measurement

noise.

145

Each RNAseq time-series curve is represented as

S[c, i] =

[
st0 [c, i] st1 [c, i] · · · stN [c, i]

]

where s ∈ R5564 is a 5564-dimensional vector with each entity corresponding to the

TPM of an individual gene, c ∈ {NC,MX,MN} represents the growth condition, i ∈

{1, 2, ..., 16} represents the index of the time-series curve and t0, t1, ..., tN represent the

time points with a sampling time Ts = 1hr with tj+1 = tj + Ts. For the MX condition,

t0 = 1 and tN = 7 while for the MN and NC conditions, t0 = 3 and tN = 7. The

element-wise operation

xtj [c, i] = log2

(stj [c, i] + 1

stj−1
[c, i] + 1

)

obtains the log2 transformation of each time-series curve, where the addition of 1 is a

pseudo count added for the mathematical operation to hold. In each condition, we then

standardize the data across time-series curves as

x̄tj [c, i] =

[
xtj ,1[c,i]

σc,1

xtj ,2[c,i]

σc,2
· · · xtj ,5564[c,i]

σc,5564

]⊤

where σc,p represents the standard deviation of the gene p in condition c computed across

all the time-series curves.

146

A.2.2 Preprocessing OD600 time-series data

The plate reader dataset contains eight technical replicates of OD600 growth data for each

of the two biological replicates, which are procured with a sampling time of Ts = 3mins.

We associate each RNA expression time-series curve with a growth curve and designate

the latter as the output, which is defined as

V [c, i] =

[
vt̄0 vt̄1 · · · vt̄N

]

where vt̄i represents the OD600 at time t̄i. We use the savgol filter() routine from the

scipy.signal package in python to smooth the data with a window length of 31 and

polynomial order of 2. To ensure that the equilibrium reaches zero, we compute the log2

transformation of the data as

ṽt̄j [c, i] = log2

(
vt̄j [c, i]

vt̄j−1
[c, i]

)
.

Next, the data is standardized for each condition as v̄t̄j [c, i] = ṽt̄j [c, i]/σc where σc is the

standard deviation of the data across all time traces in that condition. Since the time

scales of the output(OD600) and the state (RNA expression) are different, we perform a

delay embedding on the output data. This involves concatenating all the outputs between

two points on the state time scale into a single vector as

yti =

[
v̄t̄j v̄t̄j+1

· · · v̄t̄j+K

]⊤
147

where (ti − 1) ≤ t̄j+k ≤ ti, k ∈ {0, 1, 2, ...}, ti represents the time of state measurement,

and t̄j represents the time of the output measurement. With the delay embedded trans-

formation, for every time series curve i in condition c, we have state and output matrices

given by

X̄[c, i] =

[
x̄t0 [c, i] x̄t1 [c, i] · · · x̄tN [c, i]

]
Ȳ [c, i] =

[
ȳt0 [c, i] ȳt1 [c, i] · · · ȳtN [c, i]

]

where t0, t1, . . . , tN represent uniformly spaced time points separated by sampling time

of 1hr.

A.3 Dimensionality reduction of RNAseq data

The state vector x̄ has 5564 dimensions. If we attempt to fit the simplest linear model

of the form x̄t+1 = Axt, the matrix A would have 30958096 parameters, but with only

16 time-series curves, it is not possible to uniquely estimate all of these parameters.

This results in underfitting, thereby resulting in diverse solutions. The Koopman ob-

servability approach (yet to define) aims to determine the minimum number of

nonlinearly transformed states that impact the output dynamics. Using a linear trans-

formation of the data does not affect the results and can help reduce the dimensionality

of the state through a technique like Principal Component Analysis while still preserving

the majority of the information.

148

For each condition c, we collect the time series matrix X̄[c] and perform singular value

decomposition on X̄⊤[c].

X̄[c] =

[
X̄[c, 1] X̄[c, 2] · · · X̄[c, 16]

]
X̄⊤[c] = U [c]Σ[c]V ⊤[c]

We find the minimum number of principal components that capture 90% of the variance

in data by solving the optimization problem

n∗
PC = argmin

nPC

(∑nPC
i=1 σ

2
i [c]∑nσ

i=1 σ
2
i [c]

≥ 0.9

)

where σii[c] is the i
th singular value and the ith diagonal element of the matrix Σ[c] and

nσ is the total number of singular values. The reduced state vector is then given by

zTtj [c, i] = x̄Ttj [c, i]V∗[c]

where c is the condition, i is the time-series index, tj is the time point and V∗ = V [:, 0 :

n∗
PC]. The transformation is constructed as a TensorFlow graph in python to enable us

to take gradients of the transformed state with respect to the base state x̄.

149

A.4 OC-deepDMD algorithm

The objective is to learn a high-dimensional linear model called the Koopman model

given by

ψ(zt+1) = Kψ(zt)

ȳt = Whψ(zt)

which captures the dynamics of the reduced state z and captures the output y as a

function of z. The nonlinear function ψ(z) is also constructed as a TensorFlow graph:

ψ(z) =

 z

φ(z)


φ(z) = gn ◦ReLU ◦ · · · ◦ReLU ◦ g1(z)

where φ(z) is a neural network with each hidden layer i comprising weights Wi, biases bi,

linear function gi(x) = Wix+ bi and ReLU , the recitified linear unit activation function

given by ReLU(x) = x, x ≥ 0. We created two matrices for each growth condition c:

XP and XF . The entries of XF were obtained by propagating the entries of XP by one

timestep. We also created two matrices, X and Y , by combining the state and output

150

data from all the time-series curves. The matrices for the condition c are

X̄P =

[
x̄t0 [1] · · · x̄tN−1

[1] · · · x̄t0 [16] · · · x̄tN−1
[16]

]
X̄F =

[
x̄t1 [1] · · · x̄tN [1] · · · x̄t1 [16] · · · x̄tN [16]

]
X̄ =

[
X̄[1] X̄[2] · · · X̄[16]

]
Ȳ =

[
Ȳ [1] Ȳ [2] · · · Ȳ [16]

]

where the index c is dropped. Next, we learned the Koopman model by solving the

optimization problem:

min
K,Wh,ψ

||ψ(ZF)−Kψ(ZP)||2F + ||Ȳ − ψ(Z)||2F

such that Z⊤
P = X⊤

P V∗, Z⊤ = X⊤V∗

Z⊤
F = X⊤

F V∗.

The hyperparameters of the model are the number of hidden layers (nL), the number of

nodes (nn), and the number of nonlinear observable functions in the vector φ(z) (nφ).

We fixed nn = ⌈1.5nφ⌉ where ⌈.⌉ represents the ceiling function. For each condition c,

we learned multiple Koopman models by varying the hyperparameters nL = {3, 4, 5} and

nφ = {0, 1, 2, 3, 4, 5} and also implementing 16-fold cross-validation on the 16 time-series

traces. For the next step, we considered all the models with a training accuracy ≥ 80%

and a validation accuracy ≥ 70% evaluated by the r2 metric, called the coefficient of

151

determination.

A.5 Observability analysis

For each growth condition c, we consider all the admissible models learned by the OC-

deepDMD algorithm. For each model, we construct the observability matrix

O =

[
(Wh)

⊤ (WhK)⊤ · · · (WhK
nψ−1)⊤

]⊤

where nψ is the dimension of ψ(z). The singular value decomposition of the observability

is computed as O = UOΣOV
⊤
O and a transformation matrix T is defined as T := V ⊤

O .

Using T , we transform the model as:

ψou(z) = Tψ(z)

Kou = TKT−1

Whou = WhT
−1

to obtain the observable decomposition form of the model. We then simulate the model

using the initial condition x̄t0 [c, i] of each time trace and concatenate all the output

predictions as Ŷ =

[
Ŷ [1] Ŷ [2] · · · Ŷ [16]

]
. We then estimate the minimal value of no

152

for which the model comprised by

ψo(zt+1) = Koψo(zt)

ȳt = Whoψo(zt)

where ψo(z) = ψou(z)[0 : no]

Ko = Kou[0 : no, 0 : no]

Who = Whou[:, 0 : no]

has an output prediction accuracy of ≥ 99% when compared to Ŷ using the r2 metric.

Now that the minimal set of nonlinear states (ψo(z)) that impact the output has been

identified, we need to evaluate the cumulative contribution of the genes x to the observ-

able state ψo(z). To do so, we compute the sensitivity of ψo(z) with respect to x using

the gradients() function in the Tensorflow package. The sensitivity is computed at all

points the model is trained on, and only the maximum sensitivity value is stored for each

function. An observability score is obtained for each gene by taking the euclidean norm

of the sensitivities of all the functions corresponding to the gene.

A.6 Supplementary Tables

A.6.1 CRISPRi sequences

CRISPRi Strain CRISPRi array

153

GG PPSB01K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATC

ACGGACACCAAAGGCATTCAAATTTCTACTCT

TGTAGATACGGTGCCTGGATACCGTCAAATTT

CTACTCTTGTAGATCGTAGAAAGTTTCCGTTG

CTGAATGAGAGACCG

GG PPSB03K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATG

TCGTAAGTCGTCGCACCCTTAATGAGAGACCG

GG PPSB04K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATC

GCAACCTGGGGGACGTGACCAATTTCTACTCT

TGTAGATCGCCGTGATCATCGCCATCATAATG

AGAGACCG

GG PPSB05K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATC

GCAACCTGGGGGACGTGACCAATTTCTACTCT

TGTAGATCGCCGTGATCATCGCCATCATAATT

TCTACTCTTGTAGATATGATGAACTTGAACAA

CAATAATTTCTACTCTTGTAGATCGAAGACGT

CGACGTCATCTTAATGAGAGACCG

GG PPSB06K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATA

TGATGAACTTGAACAACAATAATTTCTACTCT

TGTAGATCGAAGACGTCGACGTCATCTTAATG

AGAGACCG

154

GG PPSB07K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATC

CCTGACATGAGCATCAGCTTAATTTCTACTCT

TGTAGATCCAGTGTCTTCAACATTGCCGAATT

TCTACTCTTGTAGATCAACTGCTCAGTTCTAT

GAGAAATGAGAGACCG

GG PPSB08K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATA

TCTTCAGATTCAGGAATACTAATGAGAGACCG

GG PPSB09K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATC

TCATGGCTAAAATCGGTTTCAATTTCTACTCT

TGTAGATCAGATCCGGAACAGGTGGAAGAATT

TCTACTCTTGTAGATCGGGCAGCTTGCTCGAA

CACTAATGAGAGACCG

GG PPSB10K crRNA CGGTCTCAGCATAATTTCTACTCTTGTAGATC

CGGTCGCCGTGGCCCTGGGCAATTTCTACTCT

TGTAGATCCAACGATATCCTGCTGGAAGAATT

TCTACTCTTGTAGATGCTGACTGCATCCGGGA

AATCAATGAGAGACCG

The CRISPRi arrays for each strain comprise the BsaI cut sites with overhangs on

each side, the array of alternating CRISPRi repeat sequences, and 21 base pairs of target

gene sequences in between.

155

A.6.2 Other plasmid parts

CRISPRi Strain CRISPRi array

J23119 (SpeI) promoter TTGACAGCTAGCTCAGTCCTAGGTATAATACT

AGT

rrnB T1 CAAATAAAACGAAAGGCTCAGTCGAAAGACTG

GGCCTTTCGTTTTATCTGTTGTTTGTCGGTGA

ACGCTCTC

B0012 Terminator CGCAAAAAACCCCGCTTCGGCGGGGTTTTTTC

GC

A.7 Supplementary Figures

Figure A.1: The Scree plot of the Principal Components of log fold change of the time
series RNAseq datasets procured for the Maximal, Minimal, and Negative control growth
condition. The orange line indicates the number of principal components for which 90%
of the variance in data is captured.

156

Figure A.2: For the maximum growth condition, the Koopman operator matrices are
given on the left, and the linear observable decompositions are given on the right. The
computation is for a given combination of hyperparameters in the output-constrained
deep dynamic mode decomposition algorithm. The model is such that it has a training
accuracy of 80% and a validation accuracy of 70%.

157

Figure A.3: For the minimum growth condition, the Koopman operator matrices are
given on the left, and the linear observable decompositions are given on the right. The
computation is for a given combination of hyperparameters in the output-constrained
deep dynamic mode decomposition algorithm. The model is such that it has a training
accuracy of 80% and a validation accuracy of 70%.

158

Figure A.4: For the negative control growth condition, the Koopman operator
matrices are given on the left, and the linear observable decompositions are given on the
right. The computation is for a given combination of hyperparameters in the output-
constrained deep dynamic mode decomposition algorithm. The model is such that it has
a training accuracy of 80% and a validation accuracy of 70%.

159

Figure A.5: The construction of the CRISPRi plasmid consists of the pBBR1 backbone,
the Kanamycin resistance, the CRISPRi protein ddCpf1 expressed in the presence of
arabinose and the constitutively expressed CRISPRi array. The CRISPRi array has the
J23119 promoter and the rrnB T1 terminator, and a vector with alternating crRNA
hairpin sequence(ddCpf1 repeat) AATTTCTACTCTTGTAGAT and 21 base pairs from
the target gene sequence.

160

Figure A.6: Growth curves of each CRISPRi strain in the Max and NC growth condition
compared to the PPSB00K, the base CRISPRi strain which accounts for the Kanamycin
antibiotic selection pressure burden and the burden of producing the ddCpf1 molecule.

161

Appendix B

Mathematical Implementations

B.1 Learning a Koopman operator model for the

nonlinear dynamical system with outputs: output-

constrained deep dynamic mode decomposition

(OC-deepDMD) algorithm

B.1.1 Data generation

For a given nonlinear system, we simulate the nonlinear model for multiple initial con-

ditions and record both the states x and the outputs y. The data is equally split among

training, validation, and test sets. To ensure an equal representation of data across

the three sets, the initial conditions are randomly sampled from a uniformly distributed

162

bounded phase space.

B.1.2 Data preprocessing

For each initial condition (i) in the training, validation, and test datasets, the generated

data is organized as

X(i)
p =

[
x
(i)
0 x

(i)
1 · · · x

(i)
Nsim−1

]
X

(i)
f =

[
x
(i)
1 x

(i)
2 · · · x

(i)
Nsim

]
and Y (i)

p =

[
y
(i)
0 y

(i)
1 · · · y

(i)
Nsim−1

]

where x|y(i)t indicates either the state x or the output y at time point t generated from

the ith initial condition. The data across the snapshots are concatenated together as

S =

[
S(1) S(2) · · ·

]
where S = Xp, Xf or Yp. The training data X train

p and Y train
p are

used to identify the mean and standard deviation of each variable and all the data are

standardized (subtracted by the computed mean and divided by the computed standard

deviation).

B.1.3 Learning an optimal model for a set of hyperparameters

We use tensorflow in Python to set up neural networks, the outputs of which represent

the observables of the Koopman operator that we want to learn. The hyperparameters of

the model include the number of nodes in each layer of the neural network, the number

163

of layers in the neural network, the activation function in each node, and the number of

output nonlinear observables (φ(x)). We append the nonlinear observables φ(x) to the

states x and the bias term 1 to avoid trivial solutions and the full observable vector at

a single time point is given by ψ(x) =

[
x⊤ φ⊤(x) 1

]⊤
. We also initialize the matrices

K and Wh from (4.3) in the tensorflow environment, set up the objective function

min
ψ,K,Wh

||ψ(X train
F)−Kψ(X train

P)||2F

+ ||Y train
P −Whψ(X

train
P)||2F

and use Adagrad optimizer in Python to implement stochastic gradient descent with

various step sizes to identify an optimal model for a given set of hyperparameters.

B.1.4 Learning model with optimal hyperparameters

For various combinations of the hyperparameters, we learn an optimal Koopman operator

model. We evaluate 1-step and n-step state and output prediction accuracy for each

model across the training and validation datasets:

r2s,(1|n)−step = 1−
∑

i

∑
j(s

(i)
j − ŝ

(i)
j)⊤(s

(i)
j − ŝ

(i)
j)∑

i

∑
j(s

(i)
j − s̄

(i)
j)⊤(s

(i)
j − s̄

(i)
j)

where s is either the state x or the output y, j indicates the time point and i indicates

the initial condition the data is generated from. s̄ is the mean of X train
p for state x and

mean of Y train
p for output y and ŝ

(i)
j is the inverse standardization of

164

•
[
In 0

]
Kψ(x

(i)
j−1) for 1-step x prediction,

• WhKψ(x
(i)
j−1) for 1-step y prediction,

•
[
In 0

]
Kjψ(x

(i)
0) for n-step x prediction, and

• WhK
jψ(x

(i)
0) for n-step y prediction.

We use these metrics to settle on a model that is optimized in both parameters and

hyperparameters.

B.2 Learning the observable decomposition form of

a Koopman operator model with output

Given that we have a state-inclusive Koopman operator model of the form (4.3) iden-

tified using the method in Appendix B.1, we want to find a dimensionality-reduced

model of the form (4.5)— a model with minimal Koopman observable functions to cap-

ture the output dynamics. In practice, (4.3) is typically a finite-dimensional approxi-

mation. We find the observability matrix of the identified Koopman system Oy(x) =[
W⊤
h (WhK)⊤ · · · (WhK

nL)⊤

]⊤
and its right singular vectors (V). Then we can

transform (4.3) as ψou(x) = V ⊤ψ(x), K̃ = V ⊤KV and W̃h = WhV . In theory, the upper

right block of K̃ and the right block of W̃h should be 0 (as seen in Corollary 8). Due to

numerical approximation, a perfect zero cannot be obtained. The challenge is to estimate

the dimension of ψo(x) (noL) in (4.5) where ψo(x) is the first noL elements of ψou(x). We

165

use the property that ψo(x) can accurately capture the output; we increase noL from 1

to nL and examine at what value of noL can ψo(x) capture 99% (r2 score) of the output

predicted by (4.3). This yields the required reduced model of the form (4.5) with the

required properties intact.

B.3 Computing the sensitivity of each nonlinear func-

tion in ψo(x) with respect to the base coordinate

states x

Neural networks are typically used to approximate functions. In the minimal Koopman

operator that captures the output dynamics, the set of nonlinear observable functions

ψo(x) is captured by a neural network that we implement using tensorflow in python.

To compute the sensitivity of a single function in the set ψo(x) with respect to a single

state variable in x, we simply use the gradients function in the tensorflow package of

python. We evaluate the gradient at all training data points and store the maximum.

We evaluate this maximum sensitivity for each function in ψo(x) with respect to each

state variable in x. To rank the genes based on their contribution to the dynamics of y

given by ψo(x), we compute the Euclidean norm of the sensitivity matrix for each state

variable in x across the maximum sensitivities of all functions in ψo(x) with respect to

that state variable in x.

166

B.4 Learning the diffeomorphic map between the de-

lay embedded output z and the base coordinate

state x

Given the delay embedded output ψ(z) and the state x, we represent the diffeomorphic

map
(
the forward transform g : ψ(x) → x and the inverse transform g−1 : x → ψ(x)

)
using the autoencoder-decoder neural network. Specifically, we formulate the multi-

objective optimization problem

min
g,g−1

||ψ(z)− g−1(g(ψ(z)))||2F + ||x− g(ψ(z))||2F

in Python using Tensorflow and solve it by using the Adagrad optimizer to implement

stochastic gradient descent. The two objectives that the above optimization targets are

(i) to transform ψ(z) to a reduced coordinate space and (ii) to get the reduced coordinates

close to the state x as much as possible.

167

Bibliography

[1] Ruedi Aebersold and Matthias Mann. Mass spectrometry-based proteomics. Na-
ture, 422(6928):198–207, 2003.

[2] Nilesh K Aghera, Jyothi Prabha, Himani Tandon, Gopinath Chattopadhyay, Sneha
Vishwanath, Narayanaswamy Srinivasan, and Raghavan Varadarajan. Mechanism
of ccda-mediated rejuvenation of dna gyrase. Structure, 28(5):562–572, 2020.

[3] Luis A Aguirre, Leonardo L Portes, and Christophe Letellier. Structural, dynamical
and symbolic observability: From dynamical systems to networks. PLoS One,
13(10):e0206180, 2018.

[4] Ramachandran Anantharaman and Virendra Sule. Koopman operator approach for
computing structure of solutions and observability of nonlinear dynamical systems
over finite fields. Mathematics of Control, Signals, and Systems, 33(2):331–358,
2021.

[5] Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and
computation of spectral properties of the koopman operator. SIAM Journal on
Applied Dynamical Systems, 16(4):2096–2126, 2017.

[6] AM Avila and I Mezić. Data-driven analysis and forecasting of highway traffic
dynamics. Nature communications, 11(1):1–16, 2020.

[7] Oghenetega J Avwioroko, Akpovwehwee A Anigboro, Nnanna N Unachukwu, and
Nyerhovwo J Tonukari. Isolation, identification and in silico analysis of alpha-
amylase gene of aspergillus niger strain csa35 obtained from cassava undergoing
spoilage. Biochemistry and biophysics reports, 14:35–42, 2018.

[8] Tomoya Baba, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki
Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner, and Hirotada Mori.
Construction of escherichia coli k-12 in-frame, single-gene knockout mutants: the
keio collection. Molecular systems biology, 2(1):2006–0008, 2006.

168

[9] Joseph Bakarji, Kathleen Champion, J Nathan Kutz, and Steven L Brunton. Dis-
covering governing equations from partial measurements with deep delay autoen-
coders. arXiv preprint arXiv:2201.05136, 2022.

[10] Shara Balakrishnan, Aqib Hasnain, Nibodh Boddupalli, Dennis M Joshy, Robert G
Egbert, and Enoch Yeung. Prediction of fitness in bacteria with causal jump dy-
namic mode decomposition. In 2020 American Control Conference (ACC), pages
3749–3756. IEEE, 2020.

[11] Shara Balakrishnan, Aqib Hasnain, Rob Egbert, and Enoch Yeung. The effect
of sensor fusion on data-driven learning of koopman operators. arXiv preprint
arXiv:2106.15091, 2021.

[12] Shara Balakrishnan, Aqib Hasnain, Robert Egbert, and Enoch Yeung. Data-driven
observability decomposition with koopman operators for optimization of output
functions of nonlinear systems. arXiv preprint arXiv:2210.09343, 2022.

[13] Gildas Besançon. Nonlinear observers and applications, volume 363. Springer,
2007.

[14] Ljuboslav Boskic, Cory N Brown, and Igor Mezić. Koopman mode analysis on ther-
mal data for building energy assessment. Advances in Building Energy Research,
pages 1–15, 2020.

[15] A Mounir Boudali, Peter J Sinclair, Richard Smith, and Ian R Manchester. Human
locomotion analysis: Identifying a dynamic mapping between upper and lower limb
joints using the koopman operator. In 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1889–
1892. IEEE, 2017.

[16] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[17] Bernd W Brandt, Ingeborg MM van Leeuwen, and Sebastiaan ALM Kooijman. A
general model for multiple substrate biodegradation. application to co-metabolism
of structurally non-analogous compounds. Water research, 37(20):4843–4854, 2003.

[18] Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and
J Nathan Kutz. Chaos as an intermittently forced linear system. Nature com-
munications, 8(1):1–9, 2017.

[19] Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz.
Koopman invariant subspaces and finite linear representations of nonlinear dy-
namical systems for control. PloS one, 11(2):e0150171, 2016.

[20] Marko Budǐsić, Ryan Mohr, and Igor Mezić. Applied koopmanism. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 22(4):047510, 2012.

169

[21] H Chen and P Dyke. Modelling and prediction of stock price dynamics using system
identification methodology based on a popularly used technique analysis data. In
2015 SAI Intelligent Systems Conference (IntelliSys), pages 889–893. IEEE, 2015.

[22] Pin-Yi Chen, Yili Qian, and Domitilla Del Vecchio. A model for resource compe-
tition in crispr-mediated gene repression. In 2018 IEEE Conference on Decision
and Control (CDC), pages 4333–4338. IEEE, 2018.

[23] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

[24] Daniele De Martino, Fabrizio Capuani, and Andrea De Martino. Growth against
entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth
rate distributions in e. coli. Physical biology, 13(3):036005, 2016.

[25] Domitilla Del Vecchio and Richard M Murray. Biomolecular feedback systems.
Princeton University Press Princeton, NJ, 2015.

[26] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(7), 2011.

[27] Carola Engler, Romy Kandzia, and Sylvestre Marillonnet. A one pot, one step,
precision cloning method with high throughput capability. PloS one, 3(11):e3647,
2008.

[28] Keisuke Fujii, Naoya Takeishi, Benio Kibushi, Motoki Kouzaki, and Yoshinobu
Kawahara. Data-driven spectral analysis for coordinative structures in periodic
human locomotion. Scientific reports, 9(1):1–14, 2019.

[29] VA Gant, G Warnes, I Phillips, and GF Savidge. The application of flow cytometry
to the study of bacterial responses to antibiotics. Journal of Medical Microbiology,
39(2):147–154, 1993.

[30] CO Gill and KH Tan. Effect of carbon dioxide on growth of pseudomonas fluo-
rescens. Appl. Environ. Microbiol., 38(2):237–240, 1979.

[31] William Gilpin, Yitong Huang, and Daniel B Forger. Learning dynamics from large
biological data sets: Machine learning meets systems biology. Current Opinion in
Systems Biology, 22:1–7, 2020.

[32] Douglas S Glazier. Is metabolic rate a universal ‘pacemaker’for biological processes?
Biological Reviews, 90(2):377–407, 2015.

[33] Djuna M Gulliver, Gregory V Lowry, and Kelvin B Gregory. Comparative study of
effects of co2 concentration and ph on microbial communities from a saline aquifer, a

170

depleted oil reservoir, and a freshwater aquifer. Environmental Engineering Science,
33(10):806–816, 2016.

[34] David A Haggerty, Michael J Banks, Patrick C Curtis, Igor Mezić, and Elliot W
Hawkes. Modeling, reduction, and control of a helically actuated inertial soft
robotic arm via the koopman operator. arXiv preprint arXiv:2011.07939, 2020.

[35] Boris Hanin. Universal function approximation by deep neural nets with bounded
width and relu activations. Mathematics, 7(10):992, 2019.

[36] Aqib Hasnain, Shara Balakrishnan, Dennis M Joshy, Steven B Haase, Jen Smith,
and Enoch Yeung. Learning transcriptome dynamics for discovery of optimal ge-
netic reporters of novel compounds. bioRxiv, 2022.

[37] Aqib Hasnain, Nibodh Boddupalli, and Enoch Yeung. Optimal reporter placement
in sparsely measured genetic networks using the koopman operator. In 2019 IEEE
58th Conference on Decision and Control (CDC), pages 19–24. IEEE, 2019.

[38] Aqib Hasnain, Subhrajit Sinha, Yuval Dorfan, Amin Espah Borujeni, Yongjin Park,
Paul Maschhoff, Uma Saxena, Joshua Urrutia, Niall Gaffney, Diveena Becker, et al.
A data-driven method for quantifying the impact of a genetic circuit on its host.
arXiv preprint arXiv:1909.06455, 2019.

[39] Joao P Hespanha. Linear systems theory. Princeton university press, 2018.

[40] Brian T Hinson and Kristi A Morgansen. Observability-based optimal sensor place-
ment for flapping airfoil wake estimation. Journal of Guidance, Control, and Dy-
namics, 37(5):1477–1486, 2014.

[41] Cristina Howard-Varona, Morgan M Lindback, G Eric Bastien, Natalie Solonenko,
Ahmed A Zayed, HoBin Jang, Bill Andreopoulos, Heather M Brewer, Tijana Glav-
ina del Rio, Joshua N Adkins, et al. Phage-specific metabolic reprogramming of
virocells. The ISME journal, 14(4):881–895, 2020.

[42] Hsin-Ho Huang, Massimo Bellato, Yili Qian, Pablo Cárdenas, Lorenzo Pasotti,
Paolo Magni, and Domitilla Del Vecchio. dcas9 regulator to neutralize competition
in crispri circuits. Nature communications, 12(1):1–7, 2021.

[43] Adrian J Jervis, Erik KR Hanko, Mark S Dunstan, Christopher J Robinson, Eriko
Takano, and Nigel S Scrutton. A plasmid toolset for crispr-mediated genome editing
and crispri gene regulation in escherichia coli. Microbial Biotechnology, 14(3):1120–
1129, 2021.

[44] Yong Jiang, Joe Pogliano, Donald R Helinski, and Igor Konieczny. Pare toxin
encoded by the broad-host-range plasmid rk2 is an inhibitor of escherichia coli
gyrase. Molecular microbiology, 44(4):971–979, 2002.

171

[45] Charles A Johnson and Enoch Yeung. A class of logistic functions for approximating
state-inclusive koopman operators. In 2018 Annual American Control Conference
(ACC), pages 4803–4810. IEEE, 2018.

[46] Eurika Kaiser, J Nathan Kutz, and Steven Brunton. Data-driven discovery of
koopman eigenfunctions for control. Machine Learning: Science and Technology,
2021.

[47] Aleksandra Kalinowska, Thomas A Berrueta, Adam Zoss, and Todd Murphey.
Data-driven gait segmentation for walking assistance in a lower-limb assistive de-
vice. In 2019 International Conference on Robotics and Automation (ICRA), pages
1390–1396. IEEE, 2019.

[48] Mason Kamb, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz. Time-delay
observables for koopman: Theory and applications. SIAM Journal on Applied
Dynamical Systems, 19(2):886–917, 2020.

[49] Akinori Katabami, Ling Li, Miki Iwasaki, Maiko Furubayashi, Kyoichi Saito, and
Daisuke Umeno. Production of squalene by squalene synthases and their truncated
mutants in escherichia coli. Journal of bioscience and bioengineering, 119(2):165–
171, 2015.

[50] Nymul Khan, Enoch Yeung, Yuliya Farris, Sarah J Fansler, and Hans C Bernstein.
A broad-host-range event detector: expanding and quantifying performance across
bacterial species. bioRxiv, page 369967, 2018.

[51] Dhinakar S Kompala, Doraiswami Ramkrishna, Norman B Jansen, and George T
Tsao. Investigation of bacterial growth on mixed substrates: experimental eval-
uation of cybernetic models. Biotechnology and Bioengineering, 28(7):1044–1055,
1986.

[52] Julian Kopp, Stefan Kittler, Christoph Slouka, Christoph Herwig, Oliver Spadiut,
and David J Wurm. Repetitive fed-batch: a promising process mode for biomanu-
facturing with e. coli. Frontiers in bioengineering and biotechnology, 8:1312, 2020.

[53] Veerendra Koppolu and Veneela KR Vasigala. Role of escherichia coli in biofuel
production. Microbiology insights, 9:MBI–S10878, 2016.

[54] Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149–160, 2018.

[55] Milan Korda and Igor Mezić. On convergence of extended dynamic mode decom-
position to the koopman operator. Journal of Nonlinear Science, 28(2):687–710,
2018.

[56] DNA Kornberg and DNA TA. Replication. San Francisco: W H. Freeman, 1980.

172

[57] Annette E LaBauve and Matthew J Wargo. Growth and laboratory maintenance
of pseudomonas aeruginosa. Current protocols in microbiology, 25(1):6E–1, 2012.

[58] Jonathan Lefman, Peijun Zhang, Teruhisa Hirai, Robert M Weis, Jemma Juliani,
Donald Bliss, Martin Kessel, Erik Bos, Peter J Peters, and Sriram Subramaniam.
Three-dimensional electron microscopic imaging of membrane invaginations in es-
cherichia coli overproducing the chemotaxis receptor tsr. Journal of bacteriology,
186(15):5052–5061, 2004.

[59] Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended
dynamic mode decomposition with dictionary learning: A data-driven adaptive
spectral decomposition of the koopman operator. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 27(10):103111, 2017.

[60] Thais Bergamin Lima, Michelle Flaviane Soares Pinto, Suzana Meira Ribeiro,
Loiane Alves de Lima, Juliana Cançado Viana, Nelson Gomes Júnior, Elizabete
de Souza Cândido, Simoni Campos Dias, and Octávio Luiz Franco. Bacterial resis-
tance mechanism: what proteomics can elucidate. The FASEB Journal, 27(4):1291–
1303, 2013.

[61] Yan Lin and Shuzo Tanaka. Ethanol fermentation from biomass resources: current
state and prospects. Applied microbiology and biotechnology, 69(6):627–642, 2006.

[62] Esther Ling, Liyuan Zheng, Lillian J Ratliff, and Samuel Coogan. Koopman op-
erator applications in signalized traffic systems. IEEE Transactions on Intelligent
Transportation Systems, 2020.

[63] JT-H Lo. Multilayer perceptrons and radial basis functions are universal robust
approximators. In 1998 IEEE International Joint Conference on Neural Net-
works Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.
98CH36227), volume 2, pages 1311–1314. IEEE, 1998.

[64] JHT Luong. Generalization of monod kinetics for analysis of growth data with
substrate inhibition. Biotechnology and Bioengineering, 29(2):242–248, 1987.

[65] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal
linear embeddings of nonlinear dynamics. Nature communications, 9(1):1–10, 2018.

[66] Krithika Manohar, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz. Op-
timized sampling for multiscale dynamics. Multiscale Modeling & Simulation,
17(1):117–136, 2019.

[67] Krithika Manohar, J Nathan Kutz, and Steven L Brunton. Optimal sen-
sor and actuator placement using balanced model reduction. arXiv preprint
arXiv:1812.01574, 2018.

173

[68] Nicole F Mathon and Alison C Lloyd. Cell senescence and cancer. Nature Reviews
Cancer, 1(3):203, 2001.

[69] Alexandre Mauroy, Y Susuki, and I Mezić. The Koopman Operator in Systems and
Control. Springer, 2020.

[70] Jayse Clifton McLean. Modal Analysis of the Human Brain Using Dynamic Mode
Decomposition. PhD thesis, North Dakota State University, 2020.

[71] Afshin Mesbahi, Jingjing Bu, and Mehran Mesbahi. Nonlinear observability via
koopman analysis: Characterizing the role of symmetry. Automatica, 124:109353,
2021.

[72] Annika Meyers, Christoph Furtmann, and Joachim Jose. Direct optical density
determination of bacterial cultures in microplates for high-throughput screening
applications. Enzyme and microbial technology, 118:1–5, 2018.

[73] Igor Mezić. Analysis of fluid flows via spectral properties of the koopman operator.
Annual Review of Fluid Mechanics, 45:357–378, 2013.

[74] Igor Mezić. On applications of the spectral theory of the koopman operator in
dynamical systems and control theory. In 2015 54th IEEE Conference on Decision
and Control (CDC), pages 7034–7041. IEEE, 2015.

[75] Igor Mezić. Spectrum of the koopman operator, spectral expansions in functional
spaces, and state-space geometry. Journal of Nonlinear Science, pages 1–55, 2019.

[76] Anthony J Michael. Polyamine function in archaea and bacteria. Journal of Bio-
logical Chemistry, 293(48):18693–18701, 2018.

[77] Suraj Mital, Graham Christie, and Duygu Dikicioglu. Recombinant expression of
insoluble enzymes in escherichia coli: a systematic review of experimental design
and its manufacturing implications. Microbial Cell Factories, 20:1–20, 2021.

[78] Jacques Monod. The growth of bacterial cultures. Annual review of microbiology,
3(1):371–394, 1949.

[79] Chakib Mouslim and Kelly T Hughes. The effect of cell growth phase on the
regulatory cross-talk between flagellar and spi1 virulence gene expression. PLoS
pathogens, 10(3):e1003987, 2014.

[80] Marcos Netto and Lamine Mili. A robust data-driven koopman kalman filter for
power systems dynamic state estimation. IEEE Transactions on Power Systems,
33(6):7228–7237, 2018.

[81] Hendrik Nijmeijer. Observability of autonomous discrete time non-linear systems:
a geometric approach. International journal of control, 36(5):867–874, 1982.

174

[82] Henk Nijmeijer and Arjan J Van der Schaft. Nonlinear dynamical control systems,
volume 175. Springer, 1990.

[83] Romeo Ortega, Alexey Bobtsov, Nikolay Nikolaev, Johannes Schiffer, and Denis
Dochain. Generalized parameter estimation-based observers: Application to power
systems and chemical–biological reactors. Automatica, 129:109635, 2021.

[84] Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks
for learning dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–
593, 2019.

[85] Pavel M Polunin, Yushi Yang, Mark I Dykman, Thomas W Kenny, and Steven W
Shaw. Characterization of mems resonator nonlinearities using the ringdown re-
sponse. Journal of Microelectromechanical Systems, 25(2):297–303, 2016.

[86] Gaëlle Porcheron, Amélie Garénaux, Julie Proulx, Mourad Sabri, and Charles M
Dozois. Iron, copper, zinc, and manganese transport and regulation in pathogenic
enterobacteria: correlations between strains, site of infection and the relative im-
portance of the different metal transport systems for virulence. Frontiers in cellular
and infection microbiology, 3:90, 2013.

[87] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decompo-
sition with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161,
2016.

[88] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Generalizing koop-
man theory to allow for inputs and control. SIAM Journal on Applied Dynamical
Systems, 17(1):909–930, 2018.

[89] Monica Riley. Functions of the gene products of escherichia coli. Microbiological
reviews, 57(4):862–952, 1993.

[90] Robert H Rogne, Torleiv H Bryne, Thor I Fossen, and Tor A Johansen. Redundant
mems-based inertial navigation using nonlinear observers. Journal of Dynamic
Systems, Measurement, and Control, 140(7):071001, 2018.

[91] Benjamin J Sanchez, Cheng Zhang, Avlant Nilsson, Petri-Jaan Lahtvee, Eduard J
Kerkhoven, and Jens Nielsen. Improving the phenotype predictions of a yeast
genome-scale metabolic model by incorporating enzymatic constraints. Molecular
systems biology, 13(8), 2017.

[92] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of fluid mechanics, 656:5–28, 2010.

[93] Peter J Schmid. Dynamic mode decomposition and its variants. Annual Review of
Fluid Mechanics, 54, 2021.

175

[94] Stephen D Senturia. Microsystem design. Springer Science & Business Media, 2007.

[95] Joseph Shiloach and Rephael Fass. Growing e. coli to high cell density—a historical
perspective on method development. Biotechnology advances, 23(5):345–357, 2005.

[96] Helga Stan-Lotter. Extremophiles, the physicochemical limits of life (growth and
survival). Complete Course in Astrobiology, pages 121–150, 2007.

[97] Amit Surana. Koopman operator based observer synthesis for control-affine non-
linear systems. In 2016 IEEE 55th Conference on Decision and Control (CDC),
pages 6492–6499. IEEE, 2016.

[98] Amit Surana and Andrzej Banaszuk. Linear observer synthesis for nonlinear sys-
tems using koopman operator framework. IFAC-PapersOnLine, 49(18):716–723,
2016.

[99] Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim
Colonius, Beverley J McKeon, Oliver T Schmidt, Stanislav Gordeyev, Vassilios
Theofilis, and Lawrence S Ukeiley. Modal analysis of fluid flows: An overview.
Aiaa Journal, 55(12):4013–4041, 2017.

[100] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman
invariant subspaces for dynamic mode decomposition. In Advances in Neural In-
formation Processing Systems, pages 1130–1140, 2017.

[101] Bernd Tibken. Observability of nonlinear systems-an algebraic approach. In
2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No.
04CH37601), volume 5, pages 4824–4825. IEEE, 2004.

[102] Madeline Tong, Shawn French, Sara S El Zahed, Wai kit Ong, Peter D Karp, and
Eric D Brown. Gene dispensability in escherichia coli grown in thirty different
carbon environments. Mbio, 11(5):e02259–20, 2020.

[103] Tanya Tschirhart, Vrinda Shukla, Erin E Kelly, Zachary Schultzhaus, Erin
NewRingeisen, Jeffrey S Erickson, Zheng Wang, Whitney garcia, Emaleigh Curl,
Robert G Egbert, et al. Synthetic biology tools for the fast-growing marine bac-
terium vibrio natriegens. ACS synthetic biology, 2019.

[104] Hugo Varet, Loraine Brillet-Guéguen, Jean-Yves Coppée, and Marie-Agnès Dillies.
Sartools: a deseq2-and edger-based r pipeline for comprehensive differential analysis
of rna-seq data. PloS one, 11(6):e0157022, 2016.

[105] Li Wang, Bo Li, Ran-Ran Su, Shi-Peng Wang, Zi-Yuan Xia, Cai-Yun Xie, and Yue-
Qin Tang. Screening novel genes by a comprehensive strategy to construct multiple
stress-tolerant industrial saccharomyces cerevisiae with prominent bioethanol pro-
duction. Biotechnology for Biofuels and Bioproducts, 15(1):1–19, 2022.

176

[106] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool
for transcriptomics. Nature reviews genetics, 10(1):57–63, 2009.

[107] Kelly M Wetmore, Morgan N Price, Robert J Waters, Jacob S Lamson, Jennifer
He, Cindi A Hoover, Matthew J Blow, James Bristow, Gareth Butland, Adam P
Arkin, et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing
randomly bar-coded transposons. MBio, 6(3):e00306–15, 2015.

[108] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–
driven approximation of the koopman operator: Extending dynamic mode decom-
position. Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[109] Matthew O Williams, Clarence W Rowley, Igor Mezić, and Ioannis G Kevrekidis.
Data fusion via intrinsic dynamic variables: An application of data-driven koopman
spectral analysis. EPL (Europhysics Letters), 109(4):40007, 2015.

[110] Gang Wu, Qiang Yan, J Andrew Jones, Yinjie J Tang, Stephen S Fong, and
Mattheos AG Koffas. Metabolic burden: cornerstones in synthetic biology and
metabolic engineering applications. Trends in biotechnology, 34(8):652–664, 2016.

[111] Chunming Xu and Scott A Jackson. Machine learning and complex biological data,
2019.

[112] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network
representations for koopman operators of nonlinear dynamical systems. In 2019
American Control Conference (ACC), pages 4832–4839. IEEE, 2019.

[113] Enoch Yeung, Zhiyuan Liu, and Nathan O Hodas. A koopman operator approach
for computing and balancing gramians for discrete time nonlinear systems. In 2018
Annual American Control Conference (ACC), pages 337–344. IEEE, 2018.

[114] Pengcheng You, John Pang, and Enoch Yeung. Deep koopman controller syn-
thesis for cyber-resilient market-based frequency regulation. IFAC-PapersOnLine,
51(28):720–725, 2018.

[115] Chao Yu, Yujin Cao, Huibin Zou, and Mo Xian. Metabolic engineering of es-
cherichia coli for biotechnological production of high-value organic acids and alco-
hols. Applied microbiology and biotechnology, 89:573–583, 2011.

[116] Huimin Yu and Gregory Stephanopoulos. Metabolic engineering of escherichia coli
for biosynthesis of hyaluronic acid. Metabolic engineering, 10(1):24–32, 2008.

[117] Ye Yuan, Xiuchuan Tang, Wei Zhou, Wei Pan, Xiuting Li, Hai-Tao Zhang, Han
Ding, and Jorge Goncalves. Data driven discovery of cyber physical systems. Nature
communications, 10(1):1–9, 2019.

177

[118] Xiaochun Zhang, Jingman Wang, Qiuxiang Cheng, Xuan Zheng, Guoping Zhao,
and Jin Wang. Multiplex gene regulation by crispr-ddcpf1. Cell discovery, 3(1):1–9,
2017.

[119] Lei Zou, Zidong Wang, Jun Hu, and Donghua Zhou. Moving horizon estimation
with unknown inputs under dynamic quantization effects. IEEE Transactions on
Automatic Control, 65(12):5368–5375, 2020.

[120] MH Zwietering, Il Jongenburger, FM Rombouts, and K Van’t Riet. Modeling of
the bacterial growth curve. Appl. Environ. Microbiol., 56(6):1875–1881, 1990.

178

	Contents
	Introduction
	Mathematical Preliminaries
	Koopman Operator Theory
	Modal decomposition
	Koopman operators for conjugate dynamical systems

	Dynamic Mode Decomposition
	Nonlinear Observable Decomposition: Differential geometric approach

	Koopman Operators with outputs
	Problem Formulation
	Output Constrained Koopman Operators
	DMD with output constraints
	Equivalence of Solution Spaces for Sequential and Direct OC-DMD
	Coordinate Transformations of Standardization Routines on System State and Output Data

	Simulation Results
	Example 1: System with finite Koopman closure
	Example 2: MEMS-actuator with a differential capacitor
	Example 3: Activator Repressor clock with a reporter

	Conclusion

	Observability of Koopman operators
	Introduction
	Problem Formulation
	The Mathematical Challenge
	The Biological Implication

	Extension of nonlinear observability to Koopman system with output
	Minimal Koopman operator that drives the output
	Learning Koopman operators with output
	Identifying the minimal Koopman operator
	State information contained in the outputs
	Analytical example to illustrate the theoretical results

	Simulation Results
	Example 1 - Finding Critical Genes to Control Bacteria Growth
	Example 2 - Finding Critical Genes In Composed Genetic Circuit Networks

	Conclusion

	Pseudomonas putida: Fitness prediction using causal jump dynamic mode decomposition
	Experimental Setup
	Growth Curve Dynamics Model
	Hankel dynamic mode decomposition
	Dynamic mode decomposition of nonlinear autoregressive models
	Results
	Conclusion

	Pseudomonas putida: Koopman observable decomposition identifies fitness impacting genes
	Introduction
	Results And Discussion
	Obtaining diverse growth conditions for P. putida
	Koopman models with output capture the dynamics
	Observability analysis of Koopman model ranks the genes by order of their impact on the host fitness
	Multiplexed targeted gene regulation validates the predictions of Koopman observable decomposition
	Limitations
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Biological Methods and Protocols
	Biological Protocols
	Time series experiment setup
	RNA sequencing
	CRISPRi library cloning

	Data-driven analysis of the biological datasets
	Preprocessing RNAseq time-series data
	Preprocessing OD600 time-series data

	Dimensionality reduction of RNAseq data
	OC-deepDMD algorithm
	Observability analysis
	Supplementary Tables
	CRISPRi sequences
	Other plasmid parts

	Supplementary Figures

	Mathematical Implementations
	Learning a Koopman operator model for the nonlinear dynamical system with outputs: output-constrained deep dynamic mode decomposition (OC-deepDMD) algorithm
	Data generation
	Data preprocessing
	Learning an optimal model for a set of hyperparameters
	Learning model with optimal hyperparameters

	Learning the observable decomposition form of a Koopman operator model with output
	Computing the sensitivity of each nonlinear function in o(x) with respect to the base coordinate states x
	Learning the diffeomorphic map between the delay embedded output z and the base coordinate state x

	Bibliography

