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ABSTRACT OF THE DISSERTATION

Comparison of Species Assemblages Using Date Depth and Mixture Model

by

Jifei Ban

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2012

Dr. Jun Li, Chairperson

Comparing species assemblages at different times and locations provides useful infor-

mation regarding ecosystems. Due to the unique structure of abundance data often

collected in species assemblages, appropriate statistical tests are needed. In this thesis,

we propose two types of tests, one is data depth based nonparametric test, the other is

zero-inflated Poisson mixture model based test. These two types of tests are developed

for different testing objectives and under different assumptions. We use simulation to

demonstrate that their performance is better than that of some existing tests. We also

discuss the differences between these two tests.
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Chapter 1

Introduction

A species assemblage refers to the species that exist in a particular habitat,

e.g., tree species in a tropical forest in Panama. Recently there have been many studies

on comparison of species assemblages. Comparing species assemblages will not only

provide scientists information about how ecosystems vary in both temporal and spatial

manners, but also give them insights into how ecosystems are responding to environ-

mental factors (e.g., Chao et al., 2006; Wells et al., 2007). For example, Warwick et

al. (1990) analyzed the Indonesian coral assemblages in 1981-1988 to study the effect of

the El Niño event occurred in 1982-1983. Based on their findings, Warwick and Clarke

(1993) concluded that increased variability in coral species assemblages may be a sign of

increased environmental stress. By comparing dung beetle species assemblages between

protected areas and adjacent pasturelands in a mediterranean savanna landscape, Numa

et al. (2012) concluded that management activities such as plowing and the use of vet-

erinary substances affect soil structure and dung quality and could be important factors

that alter dung beetle assemblages on traditional farms, which play an important role

in decomposition, seed dispersal, and control of vertebrate parasites.
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The data we study in this thesis is called abundance data. It consists of counts

of individual species in each sampling unit. The sampling unit we often encounter

is called quadrat. A quadrat is a square used in ecology to isolate sample, which is

suitable for sampling species. Here is an example of abundance data. As part of the

Barro Colorado Island (BCI) forest dynamics research project, a study was carried out

to investigate spatial differences between two highly diverse tropical forest census plots

from Barro Colorado Island, Panama. Each of the two plots, which were 1 hectare

in size, was divided into 25 20m × 20m quadrats. Counts of each individual species

were then recorded in all of the 25 quadrats. A total of 159 tree species were observed

in the two plots. Furthermore, we can present the collected data as a matrix. With

the columns representing different species observed and the rows representing different

quadrats, the element at the j-th row and the k-th column of the matrix will just stand

for the counts of the j-th species observed in the k-th quadrat. In the above example,

the abundance data was collected from multiple quadrats, therefore we refer to this type

of data as abundance data from multiple quadrats. In this thesis, we focus on the study

of abundance data from multiple quadrats.

Based on those species abundance data, one fundamental ecological question

is whether the two joint distributions of the counts of all the observed species from two

species assemblages differ significantly. That is essentially a problem of testing homo-

geneity of two multivariate distributions. Typically for abundance data, dimensionality,

which is equal to the number of species, is often high (e.g., for the BCI data mentioned

previously it is 159), and zeros are common due to the rarity of some species, making

it difficult to find a satisfactory parametric model for such data. Thus, a nonparamet-

ric testing procedure is more desirable. Gower and Krzanowski (1999), McArdle and

Anderson (2001), and Reiss et al. (2010) proposed nonparametric distance-based tests
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for detection of location difference of the distributions of abundance data from species

assemblages. In practice, the distributions of abundance data from different species as-

semblages may differ in other characteristics. Therefore we propose more general tests

to test whether the underlying distributions of two species assemblages are anyhow dif-

ferent. To solve this problem, we take advantage of data depth, transform the high

dimensional data into one dimensional depth values, and then develop two tests: one

is an analogue of the Kolmogorov-Smirnov test, and the other is an analogue of the

Cramér von-Mises test. We use permutation to decide the rejection regions. Power

comparison is conducted between our proposed tests and some existing tests. We also

discuss how to employ the DD-plot (Liu, Parelius, and Singh, 1999) to visualize the

difference between species assemblages. Additionally, we mention that this data depth

based method is not limited to the application to discrete count data.

To demonstrate the real application of our data depth based tests, we asked for

empirical data from our collaborator, Professor Louis S. Santiago from the Department

of Botany and Plant Sciences at University of California-Riverside. At the beginning,

Professor Santiago provided us with abundance data from two geographically distant

tree species assemblages, which have few species in common and are not good for the

purpose of demonstration of the data depth based tests. However, from Professor San-

tiago, we know that, instead of tracking changes of abundance of individual species,

sometimes ecologists are more interested in comparing species diversity of those species

assemblages in order to understand how species organize themselves into local communi-

ties. For example, conventionally people compare species assemblages to study the vari-

ations in temporal or spatial patterns of species diversity by visually looking at species

accumulation curves (e.g., Pipan and Culver, 2007), i.e., plots of expected number of

observed species versus sampling effort, and dominance-diversity curves (e.g., McGill
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et al., 2007), i.e., plots of abundance of species versus species rank in abundance. But

the results are inevitably subjective. Therefore a rigorous statistical test for comparing

species diversity across species assemblages is needed. This leads to the second part of

our research, the mixture model based test.

In the literature, mixture models are popular choices to model the above eco-

logical data due to their capabilities to account for heterogeneity among species (e.g.,

Ord and Whitmore, 1986; Bunge and Fitzpatrick, 1993; Chao and Bunge, 2002; Böhning

and Schön, 2005; Mao and Colwell, 2005; Mao, 2006). Additionally, using mixture model

does not require the information of species identity, which makes it a great choice for

the testing objective of comparison of species diversity across species assemblages with

few species in common. In this thesis, we propose a zero-inflated Poisson mixture model

to compare species diversity across species assemblages. We assume whether a species

appears or not in a sampling quadrat follows a Bernoulli distribution, and if a species

does appear in a sampling quadrat, the count of the individual species in that sam-

pling quadrat follows a zero-truncated Poisson distribution, and the parameters of the

two distributions are also random variables following unknown distributions. It can be

seen later that this model is able to handle zero-inflated data, which is very common

in the study of species assemblages since most species are rarely observed. We develop

a test statistic from the model and prove it asymptotically follows a χ2 distribution.

We also propose an adjustment using eigenvalue decomposition of a covariance matrix

to overcome the difficulty of numerically calculating the inverse matrix. Furthermore,

a bootstrap testing procedure is proposed to best approximate the distribution of our

test statistic.

The rest of this thesis is organized as follows. In Chapter 2, we first briefly

introduce the concept of data depth. Then we introduce two data depth based nonpara-
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metric tests for comparison of species assemblages, and compare the power of the two

tests to that of other existing tests. Finally we look at the real data application. In

Chapter 3, we first introduce the zero-inflated Poisson mixture model, and then develop

statistical tests from it for comparison of species assemblages. We perform simulation

studies to evaluate our tests, and finally we will also see some real examples. In Chapter

4, we will discuss the differences between the two types of tests we proposed. We will

discuss some possible future research work in Chapter 5.
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Chapter 2

Data depth based tests

2.1 Introduction

In this chapter, we will develop two data depth based statistical tests for testing

homogeneity of multivariate distributions and apply them on the problem of comparison

of species assemblages.

Testing whether the two joint distributions of the counts of all the observed

species from two species assemblages differ significantly is essentially the problem of

testing homogeneity of two multivariate distributions. Let us take the BCI data men-

tioned in Chapter 1 as an example. If we treat the vector of the counts of all 159 tree

species in each of the quadrats as an observation in the sample, the data we have consists

of two 159-dimensional samples with both sample sizes being 25. The 159 species are

uniquely labeled so that there is one to one correspondence of species between the two

species assemblages. The testing problem is actually to compare the multivariate dis-

tribution represented by the first group of 25 vectors with the multivariate distribution

represented by the second group of 25 vectors.

As we mentioned in Chapter 1, since dimensionality is high and zeroes are
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common for abundance data, a nonparametric testing procedure is often adopted for

such problem. Furthermore, for abundance data, measures such as Bray-Curtis distance

(Bray and Curtis, 1957) are usually preferred to Euclidean distance for describing the

dissimilarity between observations (Faith, Minchin, and Belbin, 1987; Clarke, 1993).

Therefore, a nonparametric testing procedure which can incorporate such measures

would be the most appropriate to carry out the comparison between species assem-

blages.

In the literature there have been some approaches which can incorporate dis-

tance measures into the comparison procedure for multivariate outcomes (e.g., Gower

and Krzanowski, 1999; McArdle and Anderson, 2001; Reiss et al., 2010). Most of them

are based on so-called “analysis of distance”, which partitions the variation inherent in

distance matrices, analogous to the well-known multivariate analysis of variance. Similar

to multivariate analysis of variance, those approaches were motivated by testing equal

means among distributions, and therefore are only sensitive to the location differences

among distributions. In practice, the distributions of abundance data from different

species assemblages may differ in other characteristics. In this chapter, we propose two

novel nonparametric tests, both of which have the flexibility to incorporate any desired

distance measure and are also capable of detecting any distributional differences between

species assemblages. More specifically, the two tests are derived based on the concept

of data depth. Because the data depth we use is based on any distance measure be-

tween observations, it can be directly applied to abundance data and at the same time

is capable of incorporating any desired distance measure for abundance data. Based

on this distance-based depth, we also employ the so-called two-dimensional DD-plot

to visualize the difference between species assemblages. This graphical tool serves as

further motivation for our two proposed tests for species assemblage comparisons. The
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two tests can be considered as the analogues of the classical Kolmogorov-Smirnov and

Cramér-von Mises tests in a species assemblage comparison context. The analogue of the

Cramér-von Mises test is shown to have more power than other existing nonparametric

tests for a variety of alternative hypotheses.

The rest of this chapter is organized as follows. In Section 2.2, we briefly review

the general concept of data depth, and then introduce the special notion of data depth we

use in this thesis, distance-based depth, in Section 2.3. In Section 2.4, we demonstrate

the use of DD-plot for graphical comparison of two species assemblages. In Section 2.5,

we describe the two proposed nonparametric testing procedures. Simulation studies are

carried out to evaluate the performance of the proposed tests in Section 2.6. In Section

2.7, we demonstrate the application of the proposed procedures by revisiting the species

abundance data from the two tropical forest census plots in Barro Colorado Island,

Panama. Finally, we provide concluding remarks in Section 2.8 and briefly mention the

multiple sample versions of the proposed tests. Part of this chapter is based on our

published article, Li, Ban and Santiago (2011).

2.2 Background: data depth

The tests we will propose are based on data depth. Therefore, to begin with,

we briefly introduce the concept of data depth in this section.

Roughly speaking, the data depth of a point measures how “deep” or how

“central” that a point lies within a data cloud or w.r.t. its underlying distribution. The

smaller the data depth value is, the more outlying the point is w.r.t. the data cloud or

its underlying distribution. In the last two decades, different notions of data depth have

been proposed. Next we briefly introduce several existing notions of data depth.
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Mahalanobis (1936) introduced a distance between two points x and y in Rd,

w.r.t. a positive definite d× d matrix M , as

d2
M (x, y) = (x− y)′M−1(x− y).

Based on this Mahalanobis distance, one can define a Mahalanobis depth (MHD),

MHDF (x) = (1 + d2
Σ(F )(x, µ(F )))−1,

where F is a given distribution and µ(F ) and Σ(F ) are any corresponding location and

covariance measures, respectively. The sample version of Mahalanobis depth is

MHDFn(x) = (1 + (x− X̄)′S−1(x− X̄))−1,

where X̄ is the sample mean and S is the sample covariance matrix.

Turkey (1975) proposed a halfspace depth. The halfspace depth (HD) of a point

x in Rd w.r.t. a probability distribution F in Rd is defined as the minimum probability

mass carried by any closed halfspace containing x, that is,

HDF (x) = inf{P (H : H is a closed halfspace, x ∈ H)}, x ∈ Rd.

The sample version of halfspace depth is

HDFn(x) = min(#{i : Xi ∈ H and x ∈ H})/n.

Liu (1990) introduced a notion of simplicial depth. Namely, the simplicial depth

(SD) of a point x in Rd w.r.t. a probability distribution F on Rd is defined to be the

probability that x belongs to a random simplex in Rd, that is,

SDF (x) = P (x ∈ S[X1, . . . , Xd+1]), x ∈ Rd,

where X1, . . . , Xd+1 is a random sample from F and S[X1, . . . , Xd+1] denotes the d-

dimensional simplex with vertices X1, . . . , Xd+1, that is, the set of all points in Rd that

9



are convex combinations of X1, . . . , Xd+1. If F is unknown and we have observations

X1, . . . , Xn, then the sample version of the simplicial depth is

SDFn(x) =

Ç
n

d+ 1

å−1∑
(∗)

I(x ∈ S[Xi1 , . . . , Xid+1
]),

which measures how deep x is within the data cloud {X1, . . . , Xn}. The function Fn(·)

denotes the empirical distribution of {X1, . . . , Xn} and (∗) runs over all possible subsets

of {X1, . . . , Xn} of size (d+ 1).

Zuo and Serfling (2000) also mentioned Lp depth (p > 0). It is defined as

LpDF (x) = (1 + E ‖ x−X ‖p)−1,

where ‖ · ‖ denotes the Lp norm. The sample version of it is

LpDFn(x) = (1 +
n∑
i=1

‖ x−Xi ‖p /n)−1

See Liu et al. (1999) and Zuo and Serfling (2000) for more notions of data depth.

All these data depths we mentioned here characterize different aspects of the

geometric structure of the underlying distribution or sample of data. For Mahalanobis

depth, the depth value of each sample point is determined only by its quadratic distance

to the sample mean, so the depth contour expands only when the distance of the points

on it to the sample mean increases. So this depth will not reflect the structure of the

asymmetric distribution. However, for Simplicial depth, it measures the probability

that each sample point is covered by the simplex in the data cloud. So it will reflect the

relative position of each point.

Now we use the same notation DFn(x) to denote whatever data depth that is

a bounded and nonnegative mapping from Rd×F to R unless indicated otherwise. For

a given sample {X1, . . . , Xn}, we calculate all the depth values DFn(Xi) and then order

the Xi’s according to their descending depth values. The sample point with jth largest
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depth value is denoted by X[j] . Then we obtain the sequence {X[1], X[2], . . . , X[n]}

which is the depth order statistics of Xi’s, with X[1] being the deepest point, and X[n]

the most outlying point. Here, a larger rank is associated with a more outlying position

w.r.t. the underlying distribution F . At last, we will have a center-outward ordering of

the sample points by using the data depth.

Based on data depth and its induced center-outward ordering, many useful sta-

tistical tools were developed. People developed data depth based descriptive statistics

such as location “center”, scale curve, skewness, depth contours, and quantiles to char-

acterize multivariate distributions (e.g., Liu, Parelius and Singh, 1999). Data depth was

also used to develop tools for statistical inference such as confidence region construction

and hypothesis testing (e.g., Liu and Singh, 1997; Li and Liu, 2004). It has been shown

that data depth can be applied in the following areas such as multivariate control chart

construction, tolerance region construction, and classification (e.g., Liu, 1995; Gkosh

and Chaudhuri, 2005; Li and Liu, 2008; Li et al., 2012).

2.3 A distance-based data depth

Due to the discrete nature of the abundance data and the special distance

measure required between the observations, most existing depths in the literature cannot

be directly applied to abundance data. This motivates us to explore a distance-based

depth, the idea of which was briefly mentioned in Bartoszynski et al. (1997). The

definition of the distance-based depth is given below.

Definition (Distance-based depth) Let X = {X1, ..., Xn} be a random sample from

F , where F is a distribution of any type. The distance-based depth at x w.r.t. F is
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defined as

DF (x) = Pr {d(X1, X2) > max [d(X1, x), d(X2, x)]}

+1
2Pr {d(X1, X2) = d(X1, x) > d(X2, x)}

+1
2Pr {d(X1, X2) = d(X2, x) > d(X1, x)}

+1
3Pr {d(X1, X2) = d(X1, x) = d(X2, x)} ,

and the sample version is

DFn(x) =
1(n
2

)
Ñ∑
i<j

I {d(Xi, Xj) > max [d(Xi, x), d(Xj , x)]}

+
1

2

∑
i<j

I {d(Xi, Xj) = d(Xi, x) > d(Xj , x)}

+
1

2

∑
i<j

I {d(Xi, Xj) = d(Xj , x) > d(Xi, x)}

+
1

3

∑
i<j

I {d(Xi, Xj) = d(Xi, x) = d(Xj , x)}

é
,

where d(x, y) is any suitably chosen distance measure between x and y, and I{A} is the

indicator function which takes 1 if A is true and 0 otherwise.

To demonstrate that the above definition can be used to quantify the centrality

of multivariate data points w.r.t. any multivariate data cloud, we first consider X as

a random sample in R2, and Euclidean distance as the distance measure. Given any

two data points Xi and Xj , we can form two circles, each having one of the points as

the center and the other on the circle, as shown in Figure 2.1. The radiuses of both

circles are equal to the Euclidean distance between Xi and Xj , d(Xi, Xj). We denote

the shaded area in Figure 2.1 by B(Xi, Xj). Then the event A = {x | d(Xi, Xj) >

max [d(Xi, x), d(Xj , x)]} is equivalent to E = {x |x ∈ B(Xi, Xj)}. Therefore, the above

DFn(x) calculates the proportion of the intersections B(Xi, Xj) containing x. For any

point x in R2, if x is deep inside or near the center of the data cloud, x should be

12



Figure 2.1: B(Xi, Xj) in two dimensional case

contained in many of the intersections B(Xi, Xj) generated from the sample. On the

other hand, if x is relatively near the outskirts, we would expect that x is contained by

only a few of the intersections B(Xi, Xj). In higher dimensions or with other distance

measures being used, the value of the above depth has similar interpretations. Therefore,

the above notion of depth provides a reasonable measure of “depth” of x w.r.t. the data

cloud {X1, · · · , Xn}.

Since any distance measure can be used in the above definition of distance-

based depth, it can be directly applied to our species abundance data using any desired

distance measures between observations. Based on this distance-based depth, for any

given abundance data sample {X1, · · · , Xn}, we can calculate the depth values DFn(Xi),

and then order the Xi’s according to their descending depth values. This gives rise to

a natural center-outward ordering of the sample points. As an example and for demon-
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stration purpose, we assume that there are only two species in the species assemblage.

The counts of the two species from 100 sampling units are generated from a bivariate

Poisson-lognormal distribution (Aitchison and Ho, 1989), where the sample is drawn

from a bivariate Poisson with mean (λ1, λ2) being random draws from bivariate log-

normal distribution. To facilitate the exposition, we denote the general multivariate

Poisson-lognormal distribution as PL(µ,Σ), where µ and Σ are the parameters of the

multivariate lognormal distribution. In ecology, for this type of data, Euclidean dis-

tance is not generally considered appropriate. Instead, measures such as Bray-Curtis

distance (Bray and Curtis, 1957) are preferred. The Bray-Curtis distance for sample

points Xl = (Xl1, Xl2, ..., Xlp)
′ and Xl′ = (Xl′1, Xl′2, ..., Xl′p)

′ is defined as,

dll′ =

∑p
k=1 |Xlk −Xl′k|∑p
k=1(Xlk +Xl′k)

,

and dll′ = 0 if both Xl and Xl′ equal 0p, where 0p is the vector of p zeros. Figure 2.2

shows the simulated data ordering based on the distance-based depth when Bray-Curtis

distance is used. In the plot, ”+” marks the deepest 20% of the observations.

2.4 DD-plot: a graphical comparison of species assem-

blages

In this section, we demonstrate how the so-called DD-plot (depth vs depth

plot) can be used to provide a graphical tool for comparisons of species assemblages.

The DD-plot was first introduced by Liu et al. (1999) for graphical comparisons of

two continuous multivariate distributions. Based on our newly adopted distance-based

depth in Section 2.3, the DD-plot can now be directly applied to our species abundance

data. Let {X1, ..., Xm}(≡ X ⊂ Rc ) and {Y1, ..., Yn}(≡ Y ⊂ Rc) be the abundance

14



Figure 2.2: A bivariate Poisson-lognormal sample with the 20% deepest points
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Figure 2.3: DD-plot: F = G = PL(110, I10).

data from two species assemblages respectively, where c is the total number of observed

species in the two species assemblages. The DD-plot is constructed by

DD(Fm, Gn) = {(DFm(z), DGn(z)), z ∈ X ∪Y} , (2.1)

where DFm(z) and DGn(z) are the sample distance-based depths w.r.t. samples X and

Y, respectively.

From the construction of the above DD-plot, we can see that if the distributions
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Figure 2.4: DD-plot: F = PL(110, I10) and G = PL(2110, I10).
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Figure 2.5: DD-plot: F = PL(110, I10) and G = PL(110, 2I10).
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Figure 2.6: DD-plot: F = PL(110, I10) and G = PL(110, 0.81101
′
10 + 0.2I10).
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of the abundance data from the two species assemblages are the same, all the data points

in the DD-plot should be concentrated along the 1:1 correspondence line as shown in

Figure 2.3. Here the abundance data X and Y from the two species assemblages are

generated from the same distribution PL(110, I10), where 1d is a vector of d ones, and

Id is the d-dimensional identity matrix. If the two species assemblages are different,

the DD-plot would exhibit a noticeable departure from the 1:1 correspondence line as

shown in Figures 2.4, 2.5, and 2.6. Here the abundance data X and Y from the two

species assemblages are generated from two different distributions. More specifically, X

is generated from PL(110, I10) in all the plots, while Y is generated from PL(2110, I10),

PL(110, 2I10), and PL(110, 0.81101
′
10 + 0.2I10), respectively. To make the difference

between the two samples more visible, unlike the DD-plot originally used in Liu et al.

(1999) where the observations from different samples were not distinguished, we use

different symbols to indicate different memberships of the observations in the DD-plot.

For example, in Figures 2.3-2.6, the circles represent the observations from X, and the

pluses represent the observations from Y. In Figures 2.3-2.6, Bray-Curtis distance is

used in calculating the distance-based depths, and m and n are set as 100.

In general, if the distributions of abundance data from the two species assem-

blages mainly differ in location, the DD-plot would have a leaf-shaped figure as the

one in Figure 2.4, because the deepest point with respect to one sample will not be

the deepest point with respect to the other sample and therefore will have relatively

smaller depth value with respect to that sample. If the two distributions mainly have

different scales, for example, G is more spread out than F , then the depth of any point

with respect to G would be no less than its depth with respect to F . In such a case,

the DD-plot would have an early-half-moon-shaped figure arching above the diagonal

line as the one in Figure 2.5. How other distributional differences are associated with
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particular patterns of deviation from the 1:1 correspondence line in the DD-plot can be

interpreted in a similar way.

As we can see from the above plots, the DD-plot based on the distance-based

depth provides a simple diagnostic tool for visual comparison of two species assemblages.

2.5 Tests of homogeneity of species assemblages

In univariate case, suppose X1, X2, . . . , Xm and Y1, Y2, . . . , Yn are independent

random samples drawn from continuous distributions F and G, respectively. We would

like to test

H0 : F = G v.s. Ha : F 6= G (2.2)

Let Z = {X1, X2, . . . , Xm, Y1, Y2, . . . , Yn}. The Kolmogrov-Smirnov statistic is

Dm,n = sup
z∈Z
|Fm(z)−Gn(z)|,

where Fm and Gn are the empirical distribution functions of the first and the second

sample respectively. The null hypothesis is rejected at level α if
»

mn
m+nDm,n > Kα,

where Kα is found from Pr(K ≤ Kα) = 1 − α and K follows the Kolmogorove

distribution. The Cramér von-Mises statistic is

ω2
m,n =

∑
z∈Z

(Fm(z)−Gn(z))2.

The null hypothesis is rejected when ω2
m,n is too large. Next, we will discuss how similar

tests are developed based on data depth given multivariate data.

In this chapter, from here on, we denote the abundance data from two species

assemblages by {X1, ..., Xm} and {Y1, ..., Yn}. We assume that they are random samples

from the underlying distributions F and G, respectively. The comparison of the two
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species assemblages can be formulated as the following hypothesis testing problem,

H0 : F = G v.s. Ha : F 6= G (2.3)

As noted in the previous section, when the two species assemblages are iden-

tical, i.e., F = G, we would expect all the points in the DD-plot clustered along the

1:1 correspondence line. In other words, DFm(z) and DGn(z) should be approximately

the same for all the observations from the pooled sample X∪Y. If there is a difference

between the two species assemblages, DFm(z) and DGn(z) would be different from each

other. Therefore, the difference between DFm(z) and DGn(z) from all of the observations

can be used as an indicator of heterogeneity of the two species assemblages. Motivated by

this observation, we propose the following two test statistics for hypothesis testing prob-

lem (2.3), which can be considered as a natural generalization of Kolmogorov-Smirnov

test and Cramér von-Mises test in this species assemblage comparison context:

• Kolmogorov-Smirnov (KS) type test statistic:

TKS = sup
z∈X∪Y

|DFm(z)−DGn(z)| (2.4)

• Cramér-von Mises (CM) type test statistic:

TCM =
∑

z∈X∪Y
[DFm(z)−DGn(z)]2 (2.5)

Define

pKS = PH0(TKS > T obsKS), and pCM = PH0(TCM > T obsCM ),

where T obsKS and T obsCM are the observed value of TKS and TCM , respectively, based on

the given sample X ∪ Y. Then pKS and pCM are the p-values of the proposed two

tests. To determine their values directly from the null distributions of TKS and TCM is

not trivial. Instead, we proceed and use the permutation method to approximate pKS
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and pCM . More specifically, we randomly permute the pooled sample X ∪Y B times.

Here B is sufficiently large. For each permutation, we treat the first m elements as the

X-sample and the remaining elements as the Y -sample. We denote the outcome of the

i-th permutation by X∗i = {X∗i1, · · · , X∗in}, and Y∗i = {Y ∗i1, · · · , Y ∗in}, for i = 1, . . . , B.

For each X∗i ∪Y∗i , we evaluate the corresponding TKS and TCM values (following (2.4)

and (2.5)), denoted, respectively, by T ∗i,KS and T ∗i,CM , i = 1, . . . , B. Then pKS and pCM

can be approximated, respectively, by

p̂KS =
1 +

∑B
i=1 I

¶
T ∗i,KS > T obsKS

©
1 +B

,

and

p̂CM =
1 +

∑B
i=1 I

¶
T ∗i,CM > T obsCM

©
1 +B

.

In the following, we refer to our permutation tests based on TKS and TCM as a depth-

based KS test and a depth-based CM test, respectively.

2.6 Simulation study

In this section we conduct several simulation studies to evaluate the perfor-

mance of our proposed two tests. In particular, we compare our tests with two tests

available in the literature, which can also be applied to the species assemblage compar-

ison context.

The first one is the test proposed by Dan Nettleton and T. Banerjee (2001) (NB

thereafter), which can be used to test the equality of distributions of random vectors

with categorical components. It is a specialization of the testing procedure proposed by

Friedman and Rafsky (1979). We find their tests are not limited to categorical data,

since the test allow one to define his own distance function. They define that each

data point or random vector is linked to its nearest neighbor(s). The test statistics is
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the number of linkages that connects observations or random vectors from two different

distributions. Let Z = {Z1, ..., Zm+n} denote the pooled sample X ∪Y. The NB’s test

statistic is defined as

TNB =
m+n∑
i=1

I{the nearest neighbor of Zi belongs to different sample},

where the nearest neighbor of Zi is the one which minimizes d(Zi, Zk), k = 1, ..., i−1, i+

1, ...,m+n, and d(·, ·) is any distance measure which is appropriate for the application.

The test rejects H0 : F = G if TNB is too small, since if H0 is false, the two groups

of observations are more likely to form two clusters in space, increasing the probability

that observations from the same group are linked and decreasing the probability that

observations from different groups are linked. The rejection region can be determined

by permutation.

The second test we will consider was proposed by Hall and Tajvidi (2002) (HT

thereafter). Again consider the pooled sample Z. They define Mi(j) as the number of

observations being from sample Y in the neighborhood of Xi, where the neighborhood

is bounded by a circle with center at Xi and radius as the distance between Xi and

its j-th nearest neighbor. Similarly, they define Ni(j) as the number of observations

being from sample X in the neighborhood of Yi, where the neighborhood is bounded

by a circle with center at Yi and radius as the distance between Yi and its j-th nearest

neighbor. Under H0, it can be shown that

E0(Mi(j)) =
nj

m+ n− 1
and E0(Ni(j)) =

mj

m+ n− 1
.

Define the deviations of M and N from their expected values under H0 as

DMi(j) =

∣∣∣∣Mi(j)−
nj

m+ n− 1

∣∣∣∣ and DNi(j) =

∣∣∣∣Ni(j)−
mj

m+ n− 1

∣∣∣∣
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The HT’s test statistic is then defined as

THT =
1

m

m∑
i=1

n∑
j=1

DMi(j)
γw1(j) +

1

n

n∑
i=1

m∑
j=1

DNi(j)
γw2(j),

where w1(j) and w2(j) denote non-negative weights and γ is some positive value. Like

the NB’s test, the HT’s test can be based on any distance measure. The test rejects

H0 : F = G if THT is too large. The rejection region can be determined by permutation.

Based on the simulation studies reported in HT (2002), several different choices of weight

functions and γ values do not have significant effects on the power of the test. Therefore,

in our simulation study, we set γ = 1 and w1(j) = w2(j) = 1.

To compare our proposed tests with the NB and HT’s tests in various settings,

we first generated m = n = 30 random observations from F = PL(µF ,ΣF ) and G =

PL(µG,ΣG), where µF = 110, ΣF = 0.51101
′
10 + 0.5I10, µG = µµF and ΣG = σΣF

with µ and σ being manipulated according to different settings. All of the tests were

then carried out through permutation. The number of permutations was set to be 1000.

The significance level was set at 0.05. Again, we chose Bray-Curtis distance as the

distance measure in all the tests. Table 2.1 shows the simulated power for the four tests

under different choices of µ with σ being fixed at 1, i.e., ΣF = ΣG. Table 2.2 shows the

simulated power for different choices of σ with µ being fixed at 1, i.e., µF = µG. The

results were based on 1000 simulations. As we can see from the tables, our depth-based

CM test outperforms the other three tests in both settings. When ΣF = ΣG, our depth-

based KS test is ranked as the second, outperforming both NB and HT’s tests. When

µF = µG, the KS test is slightly worse than the HT’s test. In both settings, the NB’s

test has the lowest power.

Our second simulation study is to investigate the powers of the four tests for
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Table 2.1: Simulated power for different tests using the samples from F = PL(µF ,ΣF )
and G = PL(µG,ΣG) where µF = 110, µG = µµF , and ΣF = ΣG = 0.51101

′
10 + 0.5I10.

TNB THT TKS TCM
µ = 1 .066 .046 .052 .053

µ = 1.1 .072 .062 .082 .071

µ = 1.2 .082 .110 .121 .122

µ = 1.3 .091 .211 .242 .264

µ = 1.4 .118 .307 .361 .418

µ = 1.5 .178 .447 .573 .618

µ = 1.6 .219 .592 .722 .766

µ = 1.7 .308 .740 .839 .876

µ = 1.8 .410 .853 .922 .938

µ = 1.9 .510 .931 .974 .984

µ = 2 .620 .965 .987 .995

Table 2.2: Simulated power for different tests using the samples from F = PL(µF ,ΣF )
and G = PL(µG,ΣG) where µF = µG = 110, ΣF = 0.51101

′
10 + 0.5I10 and ΣG = σΣF .

TNB THT TKS TCM
σ = 1.1 .066 .065 .051 .046

σ = 1.2 .071 .076 .092 .092

σ = 1.3 .076 .129 .117 .132

σ = 1.4 .093 .193 .169 .201

σ = 1.5 .103 .254 .224 .288

σ = 1.6 .107 .339 .289 .365

σ = 1.7 .120 .446 .398 .497

σ = 1.8 .128 .527 .480 .578

σ = 1.9 .168 .613 .547 .667

σ = 2 .188 .692 .618 .755
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Table 2.3: Simulated powers for comparing samples from different distribution families.

TNB THT TKS TCM
G = PG(0.582110, 7.701110) .13 .611 .475 .74

G = PW (0.772110, 3.851110) .121 .487 .371 .588

comparing samples from different distribution families. Recall the Poisson-Lognormal

distribution is essentially a Poisson-Lognormal mixture. Similarly, we can also consider

Poisson-Gamma mixture and Poisson-Weibull mixture. We refer to those mixtures

as Poisson-Gamma distribution and Poisson-Weibull distribution. For simplicity, we

choose the mixing distribution in the Poisson-Gamma (Poisson-Weibull) as a multivari-

ate distribution with independent Gamma (Weibull) distributed marginals. Therefore,

we can denote the Poisson-Gamma and Poisson-Weibull distributions by PG(a,θ) and

PW (b,λ), respectively, where (a,θ) and (b,λ) are the shape and scale parameter vec-

tors for the Gamma and Weibull marginals, respectively. In the simulation, we chose

F as PL(110, I10), and G as PG(0.582110, 7.701110) or PW (0.772110, 3.851110). The

shape and scale parameters in the Poisson-Gamma and Poisson-Weibull distribution

were chosen to make them have the same componentwise mean and variance as those in

PL(110, I10). Table 2.3 shows the power of the four tests when comparing the samples

from different distribution families. Again, our depth-based CM test is the best among

the four.

To investigate the sensitivity of the tests to different types of differences be-

tween the two distributions, we also simulated data from F = MN(µF ,ΣF ) and

G = MN(µG,ΣG), where MN(µ,Σ) is the multivariate normal distribution with mean

µ and covariance Σ. Here we chose µF = 05, ΣF = I5, µG = µ15 and ΣG = σI5 with µ

and σ being manipulated according to different settings. For this type of distribution,

we choose Euclidean distance as the distance measure. Table 2.4 shows that the sim-
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Table 2.4: Simulated power for different tests using the samples from F = MN(µF ,ΣF )
and G = MN(µG,ΣG) where µF = 05, µG = µ15, and ΣF = ΣG = I5.

TNB THT TKS TCM
µ = 0 .059 .047 .058 .051

µ = .1 .072 .062 .082 .071

µ = .2 .093 .120 .163 .161

µ = .3 .154 .276 .324 .319

µ = .4 .258 .493 .557 .574

µ = .5 .403 .726 .770 .794

µ = .6 .570 .906 .935 .949

µ = .7 .752 .979 .983 .993

µ = .8 .878 .997 .999 .999

µ = .9 .946 .999 .999 1

µ = 1 .980 1 1 1

Table 2.5: Simulated power for different tests using the samples from F = MN(µF ,ΣF )
and G = MN(µG,ΣG) where µF = µG = 05, ΣF = I5 and ΣG = σI5.

TNB THT TKS TCM
σ = 1.1 .068 .068 .074 .073

σ = 1.2 .071 .117 .095 .120

σ = 1.3 .077 .244 .172 .259

σ = 1.4 .085 .327 .249 .374

σ = 1.5 .098 .462 .365 .523

σ = 1.6 .133 .574 .438 .630

σ = 1.7 .175 .695 .529 .755

σ = 1.8 .168 .797 .653 .845

σ = 1.9 .186 .838 .706 .886

σ = 2 .217 .896 .774 .934

ulated power of the four tests under different choices of µ with σ being fixed at 1, i.e.

the two distributions have the same scale. Table 2.5 shows that the simulated power

under different choices of σ with µ being fixed at 0, i.e., the two distributions have the

same location. From the tables, we can see that our depth-based KS test and CM test

perform similarly in detecting location difference, while the CM test is more sensitive to

the scale difference than the KS test. In both settings, again, the depth-based CM test

performs best among all the tests.
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2.7 Real application

In this section, we revisit the species abundance data from the two tropical

forest census plots from Barro Colorado Island, Panama, briefly described in Chapter 1.

The two highly diverse plots were located within 1 km of each other and represent 100

to 400 year old lowland tropical forest. In both plots, species identity was determined

and location within the plot was recorded for all woody stems ≥ 10 mm diameter at 1.5

m height (Condit 1998; Hubbell et al., 1999; Hubbell, Condit, and Foster, 2005).

First, let us take a look at the raw data. We select 5 species which have the

highest combined counts in the two plots. They are Alseis blackiana (Ab), Coussarea

curvigemmia (Cc), Faramea occidentalis (Fo), Hybanthus prunifolius (Hp), and Tetra-

gastris panamensis (Tp). We would like to compare the two assemblages to see if there

is any difference between them by visually looking at the raw data of the 5 species.

Since there is no one-to-one correspondence between the quadrats of the two plots, in

order to make the comparison easy, respectively for each species from each assemblage,

we rank the quadrats by the counts of that species in the quadrats (from low to high),

and denote the ranking by q1, q2,..., q25. Then we can present the counts of the 5

most frequently observed species in 25 quadrats in Table 2.6. Based on the counts of

the first 4 species, we suspect there is a location difference between the distributions of

the abundance data from the two plots. Furthermore, Table 2.7 shows the comparison

of average counts per quadrat of each species from the two plots. To save space, species

names are replaced by their alphabetical order. We can see that species 111-159 were

not observed in plot 1 but were observed in plot 2, which increases our suspect on the

location difference between the distributions of the abundance data from the two plots.
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Table 2.6: Counts of the 5 most frequently observed species in 25 quadrats from the two
plots in the BCI data.

Ab Cc Fo Hp Tp

plot 1 2 1 2 1 2 1 2 1 2

q1 0 0 0 0 0 0 0 0 0 0
q2 0 0 0 0 0 0 0 0 0 0
q3 1 0 0 0 0 0 0 0 0 0
q4 1 0 0 0 0 0 0 0 0 0
q5 1 0 0 0 0 0 0 0 0 0
q6 1 0 0 0 0 0 0 0 0 0
q7 1 0 0 0 0 0 0 0 0 0
q8 2 0 0 0 0 0 0 0 0 0
q9 2 0 0 0 0 0 0 0 0 0
q10 2 1 0 0 0 0 0 0 1 0
q11 2 1 0 0 0 0 0 0 1 1
q12 2 1 0 0 0 0 0 0 1 1
q13 2 1 0 0 0 0 0 0 1 1
q14 2 1 0 0 0 0 0 0 1 1
q15 2 1 1 0 0 0 0 0 1 1
q16 3 1 1 0 0 0 0 0 2 2
q17 3 1 1 0 1 0 0 0 2 2
q18 3 2 1 0 1 1 0 0 2 2
q19 3 2 2 1 1 1 0 0 2 2
q20 4 2 2 1 1 1 0 0 2 3
q21 5 3 2 2 2 2 0 0 3 3
q22 5 3 14 2 32 4 6 4 4 5
q23 6 4 23 4 38 4 7 5 4 7
q24 7 4 25 4 43 8 8 15 7 9
q25 7 10 56 7 50 10 19 41 16 10

Total 67 38 128 21 169 31 40 65 50 50
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Table 2.7: Average counts per quadrat of each observed species from the two plots in
the BCI data.

species 1 2 3 4 5 6 7 8 9 10 11 12
plot 1 0.24 0.24 0.08 0.04 2.68 0.08 0.12 1.04 0.16 0.32 1.12 0.04
plot 2 0.04 0 0.04 0 1.52 0 0.08 0.04 0 0.16 0.16 0

species 13 14 15 16 17 18 19 20 21 22 23 24
plot 1 0.04 0.08 0.56 0.04 0.12 0.4 0.04 0.08 0.08 0.04 0.04 0.04
plot 2 0 0 0.16 0 0 0 0.12 0 0.16 0.16 0 0.04

species 25 26 27 28 29 30 31 32 33 34 35 36
plot 1 0.08 0.08 5.12 0.04 0.12 0.28 0.08 0.12 0.04 0.12 0.04 0.76
plot 2 0.12 0.44 0.84 0.28 0.04 0.4 0 0.44 0.08 0.28 0.08 0.2

species 37 38 39 40 41 42 43 44 45 46 47 48
plot 1 0.12 0.04 0.36 6.76 0.08 0.2 0.12 0.04 0.12 0.32 0.04 0.8
plot 2 0.32 0 0.08 1.24 0 0 0.2 0 0.04 0.08 0.04 0.8

species 49 50 51 52 53 54 55 56 57 58 59 60
plot 1 0.04 1.6 0.04 0.08 0.24 0.04 0.12 0.2 0.2 0.08 0.08 0.92
plot 2 0 2.6 0 0.48 0 0.08 0 0 0 0.52 0.08 0.12

species 61 62 63 64 65 66 67 68 69 70 71 72
plot 1 0.12 0.16 0.28 0.04 0.88 0.4 0.24 0.04 0.16 0.08 0.08 0.04
plot 2 0.04 0.12 0.04 0.04 0.28 0.08 0.72 0 0.04 0 0.08 0

species 73 74 75 76 77 78 79 80 81 82 83 84
plot 1 0.08 0.12 0.2 0.16 0.04 0.28 0.16 0.24 0.04 2.88 0.32 0.12
plot 2 0 0.04 0.08 0.12 0.24 0.24 0.88 0.04 0 0.04 0.12 0.04

species 85 86 87 88 89 90 91 92 93 94 95 96
plot 1 0.4 0.16 0.12 0.84 0.04 0.12 0.08 0.16 0.16 0.16 0.08 0.04
plot 2 0.04 0.16 0.04 0.88 0 0 0 0.08 0.28 0.04 0.04 0.04

species 97 98 99 100 101 102 103 104 105 106 107 108
plot 1 2.28 0.24 0.04 0.04 0.04 2 0.04 0.04 0.04 1.6 0.44 0.36
plot 2 0.8 0.08 0 0.16 0 2 0 0.08 0 0.44 0 0.04

species 109 110 111 112 113 114 115 116 117 118 119 120
plot 1 0.04 0.12 0 0 0 0 0 0 0 0 0 0
plot 2 0 0.04 0.08 0.08 0.04 0.08 0.04 0.08 0.08 0.16 0.2 0.04

species 121 122 123 124 125 126 127 128 129 130 131 132
plot 1 0 0 0 0 0 0 0 0 0 0 0 0
plot 2 0.44 0.08 0.04 0.08 0.04 0.2 0.12 0.04 0.08 0.36 0.04 0.08

species 133 134 135 136 137 138 139 140 141 142 143 144
plot 1 0 0 0 0 0 0 0 0 0 0 0 0
plot 2 0.12 0.04 0.6 0.08 0.04 0.04 0.08 0.12 1.8 0.04 0.08 0.08

species 145 146 147 148 149 150 151 152 153 154 155 156
plot 1 0 0 0 0 0 0 0 0 0 0 0 0
plot 2 0.04 0.08 1.64 0.08 0.04 0.12 0.72 0.04 0.04 0.44 0.92 0.12

species 157 158 159
plot 1 0 0 0
plot 2 0.16 0.2 0.16
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Figure 2.7: DD-plot for the samples from the two tropical forest census plots

Before we apply our tests to the data, we first use the DD-plot described in

Section 2.4 to visualize the difference of these two species assemblages. Figure 2.7 shows

the corresponding DD-plot based on the distance-based depth by using Bray-Curtis

distance. In the plot, the circles represent the observations from one census plot and

the pluses represent those from the other. From the plot, it clearly suggests that there

is a location difference between the distributions of the species abundance data in these

two census plots. Both of our depth-based KS and CM tests yield p-values 0.001, which

further confirms that the distributions of these two plots are indeed different.

32



2.8 Summary

In this chapter, we present a data depth approach to the problem of comparing

species assemblages given abundance data. It is completely nonparametric and does not

require any knowledge of the underlying distribution. Results from simulation studies

have shown that our depth-based CM test performs very well and has better power than

other alternatives under different settings. Furthermore, the use of the DD-plot that

motivated our tests also provides an easy graphical tool for visualizing the difference of

species assemblages.

Although the proposed tests were motivated by the species assemblages com-

parison problem in ecology and were demonstrated mostly by examples of count data,

they are very flexible and can be easily applied to other applications with different data

types. For example, this approach could be applied to comparing samples of functional

data, or samples of image data, because properly defined distance measures are usually

available for these types of data and distance-based depth, which is capable of incorpo-

rating any desired distance measure, makes our approach applicable for a wide range

of applications. It is worth pointing out that our proposed depth based KS and CM

tests can be also paired with any other data depths which are suitable for the particular

application. For example, to compare samples of functional data, we may base our KS

or CM tests on the depth proposed by Lopez-Pintado and Romo (2009) for functional

data.

The tests we proposed earlier are for comparing two species assemblages. Now

we introduce a few tests, which can be used for comparing multiple species assemblages.

Kiefer (1959) proposed several multiple sample analogues of the Kolmogorov-Smirnov

and the Cramér-von Mises tests. The following multiple sample tests we propose are
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inspired by Kiefer (1959). Suppose there are K (K ≥ 2) samples of species assemblages ,

denoted by SAk, k = 1, . . . ,K, and let DSAk(z) denote the sample distance-based depth

of observation z w.r.t sample k. Denote the pooled sample by SApool =
⋃K
k=1 SAk. We

propose the following test statistics,

• Kolmogorov-Smirnov type test statistics:

MTKS1 =
∑

1≤i≤j≤K
sup

z∈SApool
|DSAi(z)−DSAj (z)|

MTKS2 = sup
1≤i≤j≤K,z∈SApool

|DSAi(z)−DSAj (z)|

• Cramér-von Mises type test statistics:

MTCM1 =
∑

1≤i≤j≤K

∑
z∈SApool

î
DSAi(z)−DSAj (z)

ó2
MTCM2 = sup

1≤i≤j≤K

∑
z∈SApool

î
DSAi(z)−DSAj (z)

ó2
.
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Chapter 3

Zero-inflated Poisson mixture

model based tests

3.1 Introduction

The nonparametric data depth based tests mentioned in Chapter 2 are good

for tracking changes of abundance of individual species. However, sometimes, ecologists

are particularly interested in comparison of species diversity across species assemblages.

In this chapter, we propose the zero-inflated Poisson mixture model based tests for that

purpose.

To facilitate our later on discussion, we first briefly introduce two other eco-

logical data types: incidence data and abundance data from a single quadrat. Incidence

data is similar to abundance data from multiple quadrats, but, instead of the count of

each individual species, only presence and absence in a sampling quadrat are recorded.

If we still use a matrix to represent incidence data as we did to abundance data in

Chapter 1, the matrix only has elements 0 and 1, with 1 meaning presence and 0 mean-

ing absence. We refer to abundance data from a sampling procedure where the whole
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sampling area is treated as one single quadrat as abundance data from a single quadrat.

The mixture models were first used to develop estimators for number of species

of a species assemblage due to their capabilities to account for heterogeneity among

species (e.g., Ord and Whitmore, 1986; Bunge and Fitzpatrick, 1993; Chao and Bunge,

2002; Böhning and Schön, 2005; Mao and Colwell, 2005; Mao, 2006). More specially,

for incidence data, binomial mixture is usually used, and for abundance data from

a single quadrat, Poisson mixture is usually used. In Mao and Li (2009), a testing

procedure was proposed to compare species assemblages under the binomial mixture

model when incidence data is available. Recently Li, Mao, and Wang (2011) developed

a testing procedure under the Poisson mixture model when abundance data from a single

quadrat is available. The two mixture model based testing procedures can be used for

comparing the variations in the temporal or regional patterns of species diversity across

species assemblages. But neither of the two mixture models can be directly applied to

abundance data from multiple quadrats. Since more and more abundance data from

multiple quadrats are collected in practice, there is a need for a unique model which can

handle this type of data. In this chapter, we choose to work on the problem of comparison

of species diversity across species assemblages under the mixture model framework when

the abundance data from multiple quadrats is available. For this purpose, we first

introduce the zero-inflated Poisson mixture model for abundance data from multiple

quadrats. Based on this mixture model, the comparison of species assemblages amounts

to comparing the total number of species and the mixing distributions in the zero-inflated

Poisson mixture model. However, neither of them can be estimated well in practice. To

circumvent those difficulties, we develop a procedure for comparing some functions of

the total number of species and the mixing distributions instead of comparing them

directly. Those functions can be readily estimated and at the same time we show that
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the comparison of those functions is equivalent to the comparison of the total number of

species and the mixing distributions, which is ultimately equivalent to the comparison

of the species assemblages under our zero-inflated Poisson mixture model.

The rest of the chapter is organized as follows. In Section 3.2, we briefly

introduce the binomial mixture model and the incidence based tests, which inspired our

research. In Section 3.3, we describe our zero-inflated Poisson mixture model for the

abundance data from multiple quadrats. In Section 3.4, we introduce the hypothesis

testing problem associated with the species assemblage comparison problem under the

zero-inflated Poisson mixture model. In Section 3.5, we describe our testing procedure

for comparing species assemblages. In Section 3.6, we demonstrate the procedure of

estimating one of the latent distributions in our model. In Section 3.7, we discuss

the impact of h0. In Section 3.8, we discuss the multiple sample version of our testing

procedure. In Section 3.9, we report some simulation studies to evaluate the performance

of our proposed tests. In Section 3.10, we demonstrate the application of our test to

a real ecological data set. Some concluding remarks are given in Section 3.11. All the

proofs are collected in Appendix.

3.2 Background: the binomial mixture model based test

In Mao and Li (2009), a testing procedure was proposed to compare species

assemblages under the binomial mixture model when incidence data is available. The

model we will propose in this thesis is inspired by their model. So first let us take a

brief review of their test.

To introduce some necessary notation for the species assemblage comparison

problem, we consider two species assemblages. Each assemblage is divided into numerous
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quadrats. A sample of Ki (i = 1, 2) quadrats is taken from assemblage i. A species is

either present or absent in a quadrat, and that is recorded. Define

(i) ci: the unknown total number of species in assemblage i,

(ii) Zijk: if species j is observed in quadrat k in assemblage i, then Zijk = 1, otherwise

Zijk = 0,

(iii) ni,k: the number of species in assemblage i present in exactly k quadrats.

Based on its definition, Zijk can be modeled by a Bernoulli distribution with rate pa-

rameter πij . Since the πij ’s within the same sample are usually believed to vary across

different species, a common practice is to assume that the πij ’s in sample i are drawn

from a common latent distribution Gi. We call it the species incidence rate distribution.

Therefore the number of quadrats in which a species is present in sample i follows a

Binomial mixture f(·;Gi), where

f(k;Gi) =

∫ Ç
Ki

k

å
πk(1− π)Ki−kdGi(π), k = 0, 1, . . . , Ki. (3.1)

If different species are assumed to be independent of each other, then it is clear that

(ni,0, ni,1, . . . , ni,Ki)
′ follows a multinomial distribution with index ci and probabilities

f(j;Gi). This fact is very helpful in the later on test development. Based on the binomial

mixture model described earlier, species assemblage i can be characterized by the total

number of species, ci and the species incidence rate distribution, Gi, i = 1, 2 (they

together describe patterns of species diversity of assemblage i). Therefore, comparing

the two species assemblages can be formulated as a hypothesis testing problem as follows,

H0 : c1 = c2 and G1 = G2

versus

Ha : c1 6= c2 or G1 6= G2.
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However, neither ci nor Gi can be estimated well (e.g., Bunge and Fitzpatrick, 1993;

Huggins, 2001; Link, 2003; Mao, 2007 ). Alternative ways need to be considered. Define

τi(h) = ci

∫
{1− (1− π)h}dGi(π), h = 1, 2, . . . .

τi(h) is a species accumulation function widely used in the ecology literature for the

study of species diversity. It calculates the expected number of observed species when h

quadrats are randomly chosen from assemblage i. Mao and Li (2009) showed the above

hypothesis testing problem is equivalent to

H0 : τ1(h) = τ2(h) for h = 1, 2, . . . ,

versus

Ha : τ1(h) 6= τ2(h) for some h. (3.2)

Since τi(h) only admits a closed-form nonparametric estimator for h = 1, 2, ...,Ki, they

considered the following hypothesis testing problem implied by that in equation (3.2),

H0 : τ1(h) = τ2(h) for h = 1, 2, . . . ,K

versus

Ha : τ1(h) 6= τ2(h) for some h, (3.3)

where K = min(K1,K2). If we define

τττ i = (τi(1), τi(2), . . . , τi(K))′,

Ai = (ai,h,k)
K,Ki
h=1,k=1 with ai,h,k = 1−

Ç
Ki − h
k

å
/

Ç
Ki

k

å
, and

ñi = (ni,1, . . . , ni,Ki)
′,

an estimator of the vector τττ can be expressed as τ̂ττ i = Aiñi. It is very easy to find

out τ̂ττ i’s asymptotic normality with the fact (ni,0, ni,1, . . . , ni,Ki)
′ follows a multinomial
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distribution. Further, asymptotically, τ̂ττ1 − τ̂ττ2 follows N (τττ1 − τττ2,Σ), where Σ is the

covariance matrix of τ̂ττ1 − τ̂ττ2 and depends on ci. Therefore a natural test statistics for

the hypothesis testing problem (3.3) is (τ̂ττ1 − τ̂ττ2)′Σ̂−1(τ̂ττ1 − τ̂ττ2), where Σ̂ is the sample

version of Σ. The test statistics asymptotically follows χ2 distribution. An adjustment

using an eigenvalue decomposition is proposed to overcome computational difficulties

of inverting Σ̂. A bootstrap method is also proposed to approximate the distribution

of the test statistics since ci can not be estimated well. This test procedure performs

well, however, given abundance data, the abundance information will not be taken into

account, which will lessen its statistical power. So in the next section, we will propose

another mixture model which is able to handle abundance data.

3.3 Zero-inflated Poisson mixture model

We continue to use the notation introduced in the previous section. For abun-

dance data, if the species is present, the count of the species is recorded. Therefore

define

Xijk: the number of individuals from species j observed in quadrat k in as-

semblage i.

If the species j is absent in quadrat k in assemblage i, then Xijk = 0. Typically,

to model the count data Xijk, Poisson distribution can be used. However, in many

ecological data sets, a large frequency of zeros for Xijk are common due to the rarity of

some species. To account for this zero-inflation, we use the zero-inflated Poisson model.

More specifically, the distribution of Xijk is given by

Pr(Xijk = xijk|πij , λij) =


1− πij , if xijk = 0

πij
exp(−λij)

1−exp(−λij)
λ
xijk
ij

xijk! , if xijk > 0

(3.4)
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where πij is the probability of species j in assemblage i present in a generic quadrat

and λij is the rate parameter of Poisson distribution for species j. It is clear that

Zijk = I{Xijk 6= 0}, where I{A} is the indicator function and takes 1 if event A is true

and 0 otherwise. The above zero-inflated Poisson model can be written as

Pr(Xijk = xijk, Zijk = zijk|πij , λij) = π
zijk
ij (1− πij)1−zijk

{
exp(−λij)

1− exp(−λij)
λ
xijk
ij

xijk!

}zijk
.

Usually πij and λij may vary among species in one assemblage. To account for this het-

erogeneity among species, we assume that the πij ’s are drawn from a latent distribution

Gi, the λij ’s are drawn from a latent distribution Hi, and the πij ’s and the λij ’s are

independent. We call Hi the species abundance rate distribution. We further assume

that, conditional on πij and λij , the Xijk from each species are independent across all

the Ki quadrats.

Therefore, the likelihood function for assemblage i can be written as

L(ci, Gi, Hi) =
ci∏
j=1

∫ Ki∏
k=1

πzijk(1− π)1−zijkdGi(π)

∫ Ki∏
k=1

®
exp(−λ)

1− exp(−λ)

λxijk

xijk!

´zijk
dHi(λ).

We referred to the above mixture model as zero-inflated Poisson mixture. By incor-

porating in the species abundance rate distribution Hi, our model is able to handle

abundance data from multiple quadrats.

Remark 1 The mixture model we proposed here is a very general model in the sense

that one can control the density of zero’s in the distribution. For example, let πij =

1− exp(−λij), then

Pr(Xijk = xijk|πij , λij) =


exp(−λij), if xijk = 0

exp(−λij)
λ
xijk
ij

xijk! , if xijk > 0

. (3.5)

We see that, given λij, Xijk follows exactly Poisson distribution. The mixture model

becomes purely a Poisson mixture. Therefore our model is a very flexible model.
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3.4 Hypothesis testing problem

Following the above zero-inflated Poisson mixture model in Section 3.3, species

assemblage i is characterized by the number of species ci, the species incidence rate

distribution Gi, and the species abundance rate distribution Hi. They together describe

the species diversity of species assemblage i. Under this mixture model framework,

comparing two species assemblages can be formulated as the following hypothesis testing

problem,

H0 : c1 = c2, G1 = G2, H1 = H2

versus

Ha : c1 6= c2 or G1 6= G2, or H1 6= H2. (3.6)

To develop a testing procedure, one may first estimate {c1, c2, G1, G2, H1, H2}. However,

the ci and Gi can not be estimated well nonparametrically. Therefore, the above testing

problem is challenging. To circumvent the difficulties, we search for another hypothesis

which is equivalent to the hypothesis in (3.6) and the parameters in this new hypothesis

admit closed-form estimators. For this purpose, we define

gi(h, x) = ci

∫
(1− (1− π))hdGi(π)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ),

for i = 1, 2, h = 1, 2, ... and x = 1, 2, .... From the above definitions, it is not difficult to

see that τi(h) =
∑∞
x=1 gi(h, x). Based on τi(h) and gi(h, x), we have the following result.

Theorem 2 Given a positive integer h0, if Hi’s have bounded support, c1 = c2, G1 = G2

and H1 = H2 if and only if g1(h0, x) = g2(h0, x) for x = 1, 2, . . . , and τ1(h) = τ2(h) for

h = 1, 2, . . . , h0 − 1, h0 + 1, . . ..
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Theorem 2 immediately implies that the problem in (3.6) is equivalent to

H0 : g1(h0, x) = g2(h0, x) for x = 1, 2, ..., and τ1(h) = τ2(h) for h = 1, 2, . . . , h0 − 1, h0 + 1, ...,

versus

Ha : g1(h0, x) 6= g2(h0, x) for some x or τ1(h) 6= τ2(h) for some h 6= h0, (3.7)

where h0 can be any chosen positive integer. For simplicity, through the whole thesis,

we choose h0 = 1, and define gi(x) = gi(1, x), but in Section 3.7, we will discuss tests

developed under different h0’s and how different h0’s affect the power of those tests.

Therefore, when h0 = 1, we consider the following hypothesis testing problem,

H0 : g1(x) = g2(x) for x = 1, 2, ..., and τ1(h) = τ2(h) for h = 2, 3, ...,

versus

Ha : g1(x) 6= g2(x) for some x or τ1(h) 6= τ2(h) for some h > 1. (3.8)

To develop a procedure for the above hypothesis testing problem, we first need

to find estimates for gi(x) and τi(h). Define ni,k as the number of species in assemblage

i that appear in exactly k quadrats. According to Mao et al (2005), a nonparametric

estimator of τi(h) is given by

τ̂i(h) =
Ki∑
k=1

{
1−

(Ki−h
k

)(Ki
k

) }ni,k, h = 1, 2, ...,Ki.

To estimate gi(x), we further define nvi,k,x as the number of species that appear

in exactly k quadrats and appear x times in the v-th (v = 1, . . . , k) quadrat among

those k quadrats. Denote the event Bij,t1,...,tk(xt1 , ..., xtv−1 , x, xtv+1 , ..., xtk) = {Xijt1 =

xt1 , . . . , Xijtv−1 = xtv−1 , Xijtv = x,Xijtv+1 = xtv+1 . . . , Xijtk = xtk , and all other Xijk =
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0}. Based on the definition,

nvi,k,x =
ci∑
j=1

∑
1≤t1<...<tk≤Ki

∞∑
xt1=1

· · ·
∞∑

xtv−1=1

∞∑
xtv+1=1

· · ·
∞∑

xtk=1

I{Bij,t1,...,tk(xt1 , ..., xtv−1 , x, xtv+1 , ..., xtk)}.

Since

E[I{Bij,t1,...,tk(xt1 , ..., xtv−1 , x, xtv+1 , ..., xtk)}]

=

∫
πk(1− π)Ki−kdGi(π)

∫ ®
exp(−λ)

1− exp(−λ)

´k
λxt1+···+xtv−1+x+xtv+1+···+xtk

xt1 ! · · ·xtv−1 !x!xtv+1 ! · · ·xtk !
dHi(λ),

we have, for any v = 1, ..., k,

E(nvi,k,x) = ci

∫ Ç
Ki

k

å
πk(1− π)Ki−kdGi(π)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ). (3.9)

Using the result in Mao et al. (2005), gi(x) can be written as

gi(x) = τi(1)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ)

=
Ki∑
k=1

{
1−

(Ki−1
k

)(Ki
k

) } ci ∫ ÇKi

k

å
πk(1− π)Ki−kdGi(π)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ).

(3.10)

Therefore, based on (3.9) and (3.10), we can obtain an unbiased estimate for gi(x),

ĝi(x) =
Ki∑
k=1

{
1−

(Ki−1
k

)(Ki
k

) }ni,k,x,
where ni,k,x =

∑k
v=1 n

v
i,k,x/k. Using the simple fact that

∑∞
x=1 n

v
i,k,x = ni,k for any

v = 1, . . . , k, we have ni,k =
∑∞
x=1 ni,k,x. Therefore, τ̂i(h) can also be written as the

function of ni,k,x, i.e.,

τ̂i(h) =
Ki∑
k=1

{
1−

(Ki−h
k

)(Ki
k

) } ∞∑
x=1

ni,k,x, h = 1, 2, ...,Ki.

Since τi(h) only admits a closed-form nonparametric estimator for h = 1, 2, ...,Ki

and ĝi(x) is always zero for x > m, where m is some arbitrarily large integer, henceforth
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we consider testing the following hypothesis, which is implied by that in (3.8):

H0 : g1(x) = g2(x) for x = 1, ...,m, and τ1(h) = τ2(h) for h = 2, ...,K,

versus

Ha : g1(x) 6= g2(x) for some x or τ1(h) 6= τ2(h) for some h, (3.11)

where K = min(K1,K2), and m is some arbitrarily large integer. The choice of m will

be discussed further in the next section.

Remark 3 Since H0 in (3.8) implies H0 in (3.11), the testing procedures proposed for

testing H0 in (3.8) in the following sections can be also used for testing H0 in (3.11).

When used for testing H0 in (3.8), the proposed testing procedures can still control the

type I error at the nominal level, however, may admit a larger type II error than when

used for testing H0 in (3.11).

3.5 The proposed test

Denote ηηηi,K,m = (gi(1), . . . , gi(m), τi(2), . . . , τi(K))′. Then the hypothesis test-

ing problem in (3.7) can be written as

H0 : ηηη1,K,m = ηηη2,K,m versus Ha : ηηη1,K,m 6= ηηη2,K,m, (3.12)

Let

ni = (ni,1,1, . . . , ni,1,m, . . . , ni,Ki,1, . . . , ni,Ki,m)′,

A1i = (ai,1,1, . . . , ai,1,k, . . . , ai,1,Ki) with ai,1,k = 1−
Ç
Ki − 1

k

å
/

Ç
Ki

k

å
,

A2i = (ai,h,k)
K,Ki
h=2,k=1 with ai,h,k = 1−

Ç
Ki − h
k

å
/

Ç
Ki

k

å
,

B1i = A1i
⊗

Im, and B2i = A2i
⊗

1′m,
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where Im is an m-dimensional identity matrix, 1m is a vector of m ones, and
⊗

is the

Kronecker product. Define Ti =

á
B1i

B2i

ë
and η̂ηηi,K,m = Tini. It is not difficult to see

that η̂ηηi,K,m is the estimator of ηηηi,K,m developed in the previous section. The following

result establishes the asymptotic distribution of η̂ηηi,K,m.

Theorem 4 As ci → ∞, c
−1/2
i (η̂ηηi,K,m − ηηηi,K,m) → N (0,Wi) in distribution, where

Wi = TiViTi
′/ci, Vi is the covariance matrix of ni, and Wi is positive definite.

Therefore, under the assumption of the independence of the two species as-

semblages, η̂ηη1,K,m − η̂ηη2,K,m asymptotically follows N (ηηη1,K,m − ηηη2,K,m,ΣK,m), where

ΣK,m = T1V1T1
′ + T2V2T2

′.

Based on the above result, a natural test statistic for the hypothesis testing

problem in (3.12) is,

RK,m = (η̂ηη1,K,m − η̂ηη2,K,m)′Σ−1
K,m(η̂ηη1,K,m − η̂ηη2,K,m).

It is easy to see that RK,m → χ2
m+K−1 in distribution under H0 in (3.12) as ci →∞.

In the above test statistic RK,m, ΣK,m is unknown, and hence should be esti-

mated. Since ΣK,m = T1V1T1
′+T2V2T2

′, in the following we further study the structure

of Vi in order to develop an appropriate estimator for ΣK,m. We first introduce the

following notation:

ri,k =

∫ Ç
Ki

k

å
πk(1− π)Ki−kdGi(π),

si,x =

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ),

si,x,y =

∫ ®
exp(−λ)

1− exp(−λ)

´2
λx+y

x!y!
dHi(λ).

Recall that Vi is the covariance matrix of ni = (ni,1,1, . . . , ni,1,m, . . . , ni,Ki,1, . . . , ni,Ki,m)′.

The elements of Vi can be specified as follows:
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Proposition 5 (a) var(ni,k,x) = {ciri,ksi,x + (k − 1)ciri,ksi,x,x − kcir2
i,ks

2
i,x}/k.

(b) For x 6= y, cov(ni,k,x, ni,k,y) = {(k − 1)ciri,ksi,x,y − kcir2
i,ksi,xsi,y}/k.

(c) For k 6= l, cov(ni,k,x, ni,l,y) = −ciri,ksi,xri,lsi,y.

Based on (3.9), ri,ksi,x can be estimated by ni,k,x/ĉi, where ĉi is some estimator

of ci. Similar to the derivations leading to (3.9), we define nv1,v2i,k,x,y as the number of species

that appear in exactly k quadrats and appear x times in the v1-th quadrat and y times

in the v2-th quadrate among those k quadrats. Then, for any v1, v2 = 1, 2, ..., k, and

v1 6= v2,

E(nv1,v2i,k,x,y) = ci

∫ Ç
Ki

k

å
πk(1− π)Ki−kdGi(π)

∫ ®
exp(−λ)

1− exp(−λ)

´2
λx+y

x!y!
dHi(λ).

Therefore, ri,ksi,x,y can be estimated by ni,k,x,y/ĉi, where ni,k,x,y =
∑

1≤v1<v2≤Ki n
v1,v2
i,k,x,y/

(k
2

)
.

Plugging the above estimates in Vi, we can obtain an estimator for ΣK,m. We

denote this estimator by Σ̂K,m.

Proposition 6 Σ̂K,m is positive semi-definite.

Therefore, our proposed testing procedure is to reject H0 in (3.12) at a nominal

level α if

R̂K,m = (η̂ηη1,K,m − η̂ηη2,K,m)′Σ̂−1
K,m(η̂ηη1,K,m − η̂ηη2,K,m) > χ2

1−α,m+K−1, (3.13)

where χ2
1−α,m+K−1 is the (1− α) percentile of χ2

m+K−1.

When implementing the above testing procedure, we often encounter the situ-

ation that Σ̂K,m is singular, and therefore it is impossible to invert Σ̂K,m. To circumvent

this difficulty, we notice that the correlations between the components of η̂ηη1,K,m−η̂ηη2,K,m

are often very large, and the first few principal components of Σ̂K,m usually account for

the most variability due to its highly correlated components. Therefore, we follow the
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method proposed in Mao and Li (2009) and only focus on these principal components to

test (3.12). To be more specific, consider the eigenvalue decomposition Σ̂K,m = P̂ Λ̂P̂ ′,

where Λ̂ = diag{λ̂1, λ̂2, . . . , λ̂m+K−1}, λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m+K−1 are the eigenvalues of

Σ̂K,m, and P̂ is the orthogonal matrix corresponding to the eigenvectors of Σ̂K,m. Given

a constant t in (0, 1), say t = 0.9999, choose

ν̂ = min

j : 1 ≤ j ≤ m+K − 1,
j∑
i=1

λ̂i ≥ t
m+K−1∑
i=1

λ̂i

 .
Let Λ̂ν̂ = diag{λ̂1, λ̂2, . . . , λ̂ν̂}, and P̂ν̂ be the matrix consisting of the first ν̂ columns of

P̂ . Our testing procedure is to reject H0 in (3.12) at the nominal level α if

R̂ν̂ = (η̂ηη1,K,m − η̂ηη2,K,m)′P̂ν̂Λ̂−1
ν̂ P̂ ′ν̂(η̂ηη1,K,m − η̂ηη2,K,m) > χ2

1−α,ν̂ . (3.14)

3.5.1 Choice of m

As mentioned earlier, the ni,k,x are always zeros for x > m and so are the ĝi(x),

if we choose m as some arbitrarily large integer. Therefore, they do not contribute to

the test statistic R̂K,m. In other words, if we choose m = m1 and m2, and the ni,k,x are

all zeros for x > mi (i = 1, 2), then we always have R̂K,m1 = R̂K,m2 . This implies that

R̂K,m does not depend on the choice of m as long as it is large enough. However, when

implementing the testing procedure (3.13), the threshold χ2
1−α,m+K−1 does depend on

the choice of m. Therefore, different choices of m may yield different conclusions. This

will not be an issue if we implement the testing procedure (3.14).

Proposition 7 Testing procedure (3.14) does not depend on the choice of m.

Due to this invariant property, we choose the testing procedure in (3.14) as our recom-

mended testing procedure, and call it as eigenvalue adjusted (Eva) χ2 test, similar to

the term used in Mao and Li (2009).
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3.5.2 Impact of using different ĉi

In the above testing procedure, we need an estimator for ci. Mao (2007) found

that there is no unbiased nonparametric estimate for ci. However, quite a few lower

bound estimators are available in the literature. A popular choice is Chao’s lower bound

estimator (Chao 1989),

ĉi,Chao = ni,+ +
(Ki − 1)n2

i,1

2Kini,2
,

where ni,+ =
∑Ki
k=1 ni,k is the number of species observed in assemblage i. One can

also use the trivial upper bound estimator ĉi =∞ in the calculation of the test statistic

in (3.14). Based on our simulation studies, the testing procedure in (3.14) tends to be

conservative when the upper bound ĉi = ∞ are used. On the other hand, the testing

procedure tends to be liberal if the lower bound estimators are used. The impact of

using different ĉi will be demonstrated further in our simulation studies.

To avoid problems caused by the biased estimates of ci, alternatively, we can use

the bootstrap method to approximate the null distribution of R̂ν̂ . More specifically, we

first generate the bootstrap resample of ni,+, denoted by n∗i,+, from Binomial(ĉi,Chao,

ni,+/ĉi,Chao). It implies that, in this bootstrap resample, we observe n∗i,+ species in

assemblage i. Then for species j (j = 1, ..., n∗i,+) in assemblage i, randomly choose k∗i,j

quadrats out of the Ki quadrats as the quadrats in which species j appears. Here k∗i,j is

a random number drawn from a zero-truncated binomial distribution with size Ki and

probability π∗i,j , and π∗i,j is drawn from Q̂i, where Q̂i is the nonparametric maximum

likelihood estimator of Qi with dQi(π) = (1−(1−π)Ki )dGi(π)∫
(1−(1−$)Ki )dGi($)

(Mao et al, 2005). Next,

for species j (j = 1, ..., n∗i,+) in assemblage i, in each one of the k∗i,j quadrats where

species j appears, generate the count of species j, i.e., X∗ijk, from a zero-truncated

Poisson distribution with the rate parameter λ∗i,j , where λ∗i,j is drawn from Ĥi, the
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nonparametric maximum likelihood estimator of Hi. For the quadrats where species

j does not appear, X∗ijk is simply zero. Based on those X∗ijk (i = 1, 2, j = 1, ..., n∗i,+,

k = 1, ...,Ki), we can calculate

R̂∗ν̂ = (η̂ηη∗1,K,m−η̂ηη∗2,K,m−(η̂ηη1,K,m−η̂ηη2,K,m))′P̂ ∗ν̂ (Λ̂∗ν̂)
−1

(P̂ ∗ν̂ )
′
(η̂ηη∗1,K,m−η̂ηη∗2,K,m−(η̂ηη1,K,m−η̂ηη2,K,m)),

(3.15)

where η̂ηη∗1,K,m − η̂ηη∗2,K,m, P̂ ∗ν̂ and Λ̂∗ν̂ are the counter part of η̂ηη1,K,m − η̂ηη2,K,m, P̂ν̂ and Λ̂ν̂ ,

respectively, based on the X∗ijk. We repeat this bootstrap resampling procedure B times

and let κ1−α be the (1−α) empirical quantile of R̂∗1ν̂ , . . ., R̂∗Bν̂ , where R̂∗jν̂ is R̂∗ν̂ in (3.15)

calculated from the j-th bootstrap resample. Then our Eva-bootstrap testing procedure

is to reject H0 at the level α if R̂ν̂ > κ1−α.

3.6 The mixture NPMLE of Hi

As we mentioned in the previous section, to use the bootstrap procedure, we

need to obtain Ĥi, the nonparametric maximum likelihood estimator (NPMLE) of Hi.

Therefore in this section, we will discuss how to estimate Hi.

3.6.1 Introduction of the mixture NPMLE

The introduction of the mixture NPMLE is based on Lindsay (1983). First, let

us provide some background information about this problem of nonparametric maximum

likelihood estimation of the mixing distribution. Suppose fθ(x) is a probability density

function with parameter θ (θ ∈ Ω) and θ is also a random variable with some unknown

density function Q(θ). Then the density function fQ(x) =
∫
fθ(x)dQ(θ) is called a

mixture density with respect to the mixing distribution Q. If one has observations X1,

X2, . . . , Xn from the mixture density fQ (here Xi is not necessarily univariate), the
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likelihood function of Q will be

L(Q) =
n∏
i=1

fQ(Xi). (3.16)

The problem we want to solve is to find a Q̂ which will maximize the likelihood function

L(Q). In that sense, Q̂ is a good estimation of Q. Let Q be a finite discrete mixing

distribution, which takes on values of θj with corresponding probability πj , where j =

1, . . . , J , πj > 0, and
∑J
j=1 πj = 1. Therefore we can express Q as

∑J
j=1 πjδ(θj).

Suppose Xi’s takes on K distinct data values y1, y2, . . . , yK . Given observa-

tions x1, . . . , xn, let nk be the number of x’s which take on value yk. Lindsay (1983)

defined fθ = (fθ(y1), . . . , fθ(yK)) and fQ = (fQ(y1), . . . , fQ(yK)). Then the log likelihood

function becomes

φ(fQ) = logL(Q) =
K∑
k=1

nklogfQ(yk) =
K∑
k=1

nklog(
J∑
j=1

πjfθj (yk)). (3.17)

Let Γ = {fθ : θ ∈ Ω}. Maximizing L(Q) over Q is equivalent to maximizing φ(fQ) over

fQ in the K-dimensional set conv(Γ), since any convex combination of elements of Γ

can be written as
∑
πjfθj (, and therefore conv(Γ)= {fQ : Q ∈ M}, where M is the

class of all probability measures on Ω). Lindsay (1983) showed that the above problem

is equivalent to a convex optimization problem and there are many similarities between

general mixture theory and the theory of optimal design. Furthermore, Lindsay (1983)

showed that Q̂ maximizes L(Q) if and only if supθD(θ, Q̂) = 0, and the support of

Q̂ is contained in the set of θ for which D(θ, Q̂) = 0, where D(θ,Q) = Φ(fθ; fQ) =

∑
nk{ fθ(yk)

fQ(yk) − 1}.

Remark 8 Instead of continuous distribution, a finite, discrete distribution is often used

as the estimate of the mixing or latent distribution. Lindsay (1995, p.143) mentioned,

in most cases, the level of information about the mixing distribution is too small for
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discrimination about the form of the distribution. Further, our goal in this thesis is

generating bootstrap samples from an estimate of H instead of obtaining an accurate

estimation of H. Therefore, in the next, we will discuss the computing of the finite,

discrete MLE of H. But for the information, there are ways to obtain smooth estimators

of a mixing distribution (Lindsay, 1995).

3.6.2 The computing of the Nonparametric MLE of H

To use bootstrap sampling, we need to estimate Hi, the species abundance

rate distribution. We want to find the nonparametric maximum likelihood estimator

Ĥi. The computing of mixture NPMLE is usually based on iterating algorithms such as

EM algorithm. The following procedure is developed according to Lindsey (1995). The

likelihood function involving Hi is

ci∏
j=1

∫
(

exp(−λ)

1− exp(−λ)
)ki,jλ

xi,j,s1+...+xi,j,st+...+xi,j,ski,j dHi(λ) ∗ C0 (3.18)

,where C0 is some constant, ki,j is the exact number of quadrats in which the j-th

species from i-th assemblage appears and xi,j,st(t = 1, . . . , ki,j) is the number of times

that the j-th species appears in t-th quadrat while it appears in exactly ki,j quadrats.

st is used to represent the t-th quadrat among the ki,j quadrats and 1 ≤ st ≤ Ki. (3.18)

is equivalent to

Ki∏
k=1

∞∏
x=1

(

∫
(

exp(−λ)

1− exp(−λ)
)kλxdHi(λ))Nk,x ∗ C0

where Nk,x is the number of species which appear in exactly k quadrats with a total

count of x. Further, the log-likelihood is

Ki∑
k=1

∞∑
x=1

Nk,xlog{
∫

(
exp(−λ)

1− exp(−λ)
)kλxdHi(λ)}+ logC0.
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3.6.2.1 EM algorithm

SupposeHi(λ) has S support points {λs}Ss=1 with corresponding weights {ws}Ss=1.

Define a latent variable Nk,s,x, which is the number of species that appear in exactly

k quadrats with a total count of x with λs as the parameter of the truncated poisson

distribution. Now we consider the latent variable Nk,s,x, then the log-likelihood will be

LH =
Ki∑
k=1

S∑
s=1

∞∑
x=1

Nk,s,xlog{(
exp(−λs)

1− exp(−λs)
)kλxsws}+ logC0 (3.19)

When Hi has fixed support points, S. According to Dempster et al. (1977), EM

algorithm can be used to find the parameters maximizing the log-likelihood function.

Since truncated Poisson distribution belongs to exponential family, the EM algorithm

can be implemented easily. In the E-step, given the current estimate of {λ̂s}Ss=1 and

{ŵs}Ss=1, one can estimate N̂k,s,x by

E(Nk,s,x|Nk,x) = Nk,x

ws(
exp(−λs)

1−exp(−λs))jλxs∑S
s=1ws(

exp(−λs)
1−exp(−λs))jλxs

. (3.20)

In the M-step, let

∂LH
∂ws

= 0 (3.21)

∂LH
∂λs

= 0 (3.22)

S∑
s=1

ws = 1 (3.23)

Solve for ws and λs from the above equations, we have

ŵs =

∑Ki
k=1

∑∞
x=1 N̂k,s,x∑S

s=1
∑Ki
k=1

∑∞
x=1 N̂k,s,x

, (3.24)

λ̂s is the solution of the following equation

λs
1− exp(−λs)

=

∑Ki
k=1

∑∞
x=1 xN̂k,s,x∑Ki

k=1

∑∞
x=1 kN̂k,s,x

. (3.25)
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It can be verified that ∂2LH/∂ws
2 < 0 and ∂2LH/∂λs

2 < 0, therefore ws and λs

maximize (3.19). (3.25) can be solved using Newtonian algorithm. One should iterate

between the E step and M step until the absolute difference of LH from two iterations

next to each other is smaller than some predefined constant. In our simulation and real

application, that constant is chosen to be 10−8.

The above procedure is estimating the distribution of λ given a fixed number

of support points, S. However, when one is estimating the distribution of λ from the

abundance data, he does not have any prior information on λ, therefore S should also

be estimated from data. In this case, one can use a integrated procedure of the vertex

exchange method and the em algorithm. The details are described in Mao (2008).

3.7 Impact of using different h0

So far we have discussed how to develop the test for comparing species assem-

blages when h0 is chosen to be 1. Now let h0 be any positive integer from 1 to K, denote

ηηηi,h0,K,m = (gi(h0, 1), . . . , gi(h0,m), τi(1), τi(2), . . . , τ(h0− 1), τ(h0 + 1), . . . , τi(K))′. For

any chosen h0, through a series of similar arguments, we will reach the conclusion that,

to solve the original hypothesis testing problem (3.7) we can consider the following

testing problem,

H0 : ηηη1,h0,K,m = ηηη2,h0,K,m versus H1 : ηηη1,h0,K,m 6= ηηη2,h0,K,m. (3.26)

Let

A1i,h0 = (ai,h0,1, . . . , ai,h0,k, . . . , ai,h0,Ki) with ai,h0,k = 1−
Ç
Ki − h0

k

å
/

Ç
Ki

k

å
,

A2i,h0 = (ai,h,k)
K,Ki
h=1&h6=h0,k=1 with ai,h,k = 1−

Ç
Ki − h
k

å
/

Ç
Ki

k

å
,

B1i,h0 = A1i,h0
⊗

Im, and B2i,h0 = A2i,h0
⊗

1′m.
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Define Ti,h0 =

á
B1i,h0

B2i,h0

ë
and η̂ηηi,h0,K,m = Ti,h0nnni, it is easy to see that η̂ηηi,h0,K,m is

an unbiased estimator of ηηηi,h0,K,m. A natural test statistic for the hypothesis testing

problem (3.26) is

Rh0,K,m = (η̂ηη1,h0,K,m − η̂ηη2,h0,K,m)′Σ−1
h0,K,m

(η̂ηη1,h0,K,m − η̂ηη2,h0,K,m).

It is easy to prove that as ci goes to ∞, Rh0,K,m follows χ2 distribution with degree of

freedom m+K−1 and noncentral parameter (ηηη1,h0,K,m−ηηη2,h0,K,m)′Σ−1
h0,K,m

(ηηη1,h0,K,m−

ηηη2,h0,K,m), where Σh0,K,m = T1,h0V1T
′
1,h0

+ T2,h0V2T
′
2,h0

. So now for the original hy-

pothesis testing problem we have a series of test statistics which are functions of h0.

The natural question to ask is whether the choice of h0 will have effect on the power of

the test. Given H0 is false, asymptotically, the power of the test is determined by the

noncentral parameter of the test statistic. In the following, we will present numerical

results to demonstrate the relationship between h0 and the power of the test.

Let c = 500 and c∗ = 400; G is a Beta distribution with shape parameters 1

and 20, and G∗ is a Beta distribution with shape parameters 1 and 15; H is a discrete

distribution with support points 1 and 3, and corresponding weights 0.7 and 0.3, and H∗

is the same as H but with the second support point taking the value of 2. We consider

the comparison of two species assemblages with number of quadrats K1 = K2 = 5, and

m = 10. Given the values of ci, Gi, and Hi (i = 1 and 2), the noncentral parameter

(ηηη1,h0,K,m−ηηη2,h0,K,m)′Σ−1
h0,K,m

(ηηη1,h0,K,m−ηηη2,h0,K,m) can be numerically computed. The

results are listed in table 3.1 and table 3.2.

From table 3.1, we can see the noncentral parameters are the same for h0 =

1, 2, . . . , 5, which means h0 has no effect on the power of the test when H1 = H2. From
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Table 3.1: The value of the noncentral parameter of χ2 distribution the test statistic
asymptotically follows under different h0 given H0 is false and H1 = H2 = H. One case
is represented by (c1, G1, H1) vs (c2, G2, H2).

(c1, G1, H1) vs (c2, G2, H2) h0 = 1 h0 = 2 h0 = 3 h0 = 4 h0 = 5

(c,G,H) vs (c∗, G,H) 2.777 2.777 2.777 2.777 2.777

(c,G,H) vs (c,G∗, H) 0.733 0.733 0.733 0.733 0.733

(c,G,H) vs (c∗, G∗, H) 4.394 4.394 4.394 4.394 4.394

Table 3.2: The value of the noncentral parameter of χ2 distribution the test statistic
asymptotically follows under different h0 given H0 is false and H1 6= H2. One case
is represented by (c1, G1, H1) vs (c2, G2, H2). The number in the parenthesis is the
corresponding power of the test.

(c1, G1, H1) vs (c2, G2, H2) h0 = 1 h0 = 2 h0 = 3 h0 = 4 h0 = 5

(c,G,H) vs (c,G,H∗) 3.095 3.127 3.117 3.071 2.996
(0.1476) (0.1489) (0.1485) (0.1467) (0.1438)

(c,G,H) vs (c∗, G,H∗) 5.364 5.393 5.386 5.349 5.287
(0.2456) (0.2470) (0.2466) (0.2449) (0.2420)

(c,G,H) vs (c,G∗, H∗) 8.052 8.082 8.058 7.991 7.889
(0.3767) (0.37822) (0.37702) (0.37368) (0.3686)

(c,G,H) vs (c∗, G∗, H∗) 3.893 3.914 3.888 3.826 3.734
(0.1801) (0.1809) (0.1798) (0.1772) (0.1734)

table 3.2, we see different h0 yields different noncentral parameter. When H1 6= H2,

h0 does have effect on the power of the test. However, the largest power difference for

each case is within 0.01. Based on the above simulation results, we tend to believe that

if Hi’s are the same, asymptotically, the power of the test does not depend on h0, and

even if Hi’s are different, the choice of h0 has very limited effect on the power of the

test. Currently, we are not able to provide further evidence for our claim, but in the

future we will try to provide theoretical proof or simulation results using the bootstrap

procedure.

3.8 Multiple sample versions of the tests

The testing procedure we proposed here is not limited to comparison of two

species assemblages. It can be extended to the comparison of L (L ≥ 2) species assem-
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blages by following the scheme proposed by Mao and Li (2009). Following the notation

used in the previous sections, we define, for i = 1, . . . , L,

ηηηi,K,m = (gi(1), . . . , gi(m), τi(2), . . . , τi(K))′, (3.27)

where m is some arbitrarily large integer and K = min(K1, . . . ,KL). Then comparing

L species assemblages can be formulated as the following hypothesis testing problem:

H0 : ηηη1,K,m = ηηη2,K,m = · · · = ηηηL,K,m

versus

Ha : ηηηi,K,m 6= ηηηj,K,m for some i 6= j.

Define ddd = (ηηη′1,K,m − ηηη′L,K,m, ηηη′2,K,m − ηηη′L,K,m, . . . , ηηη′L−1,K,m − ηηη′L,K,m)′. The

above hypothesis testing problem is equivalent to

H0 : ddd = 000(L−1)(m−1+K) versus H1 : ddd 6= 000(L−1)(m−1+K),

where 000p is a vector of p zeros. Denote the estimate of ηηηi,K,m by η̂ηηi,K,m, i = 1, . . . , L. A

natural estimate for ddd can be obtained by d̂dd = (η̂ηη′1,K,m−η̂ηη′L,K,m, η̂ηη′2,K,m−η̂ηη′L,K,m, . . . , η̂ηη′L−1,K,m−

η̂ηη′L,K,m)′. One can easily prove that: asymptotically, d̂dd follows N (ddd,ΣL), where

ΣL =
⊕

l=1,2,...,L−1

Wl + (111L−1111
′
L−1)

⊗
WL, (3.28)

Wl is the covariance matrix of ηηηl,K,m,
⊕

is the direct sum. We can obtain Σ̂L, the

estimate of ΣL, by plugging in (3.28) the estimates of Wi’s. Under H0, as ci goes to

infinity, d̂dd
′
Σ̂−1
L d̂dd converges to χ2

(L−1)(m+K−1), a χ2 distribution with degree of freedom

(L − 1)(m + K − 1). One should reject H0 if d̂dd
′
Σ̂−1
L d̂dd > χ2

1−α,(L−1)(m+K−1) at the

significance level of α, where χ2
1−α,(L−1)(m+K−1) is the 1−α percentile of χ2

(L−1)(m+K−1).

Based on this χ2 test, we can also develop its Eva-χ2 test and Eva-bootstrap test for

the L species assemblage comparison problem. Similar to the two species assemblage
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case, the Eva-χ2 test does not depend on the choice of m, and the Eva-bootstrap test is

not affected by the choice of ĉi and is able to achieve the desired nominal type I error.

3.9 Simulation study

3.9.1 Type I error study of the two sample tests

In this section, we report a simulation study to assess the type I error of

our two sample Eva-χ2 test. The study consists of 36 simulation settings, which are

determined by the following four factors: the total number of species ci(c1 = c2 = 500

or 2000), the number of quadrats Ki (K1 = K2 = 50 or 150), the mixing distribution

Gi for πij (G1 = G2 = B, logitN or DG), and the mixing distribution Hi for λij

(H1 = H2 = G , logN or DH), where B is the beta distribution with shape parameters

1 and 20, logitN is obtained by letting log(π/(1−π)) follow a normal distribution with

mean −4 and variance 2, DG is discrete with support points 0.01, 0.05, 0.10, and 0.15

and corresponding weights 0.65, 0.20, 0.10, and 0.05, G is the gamma distribution with

shape parameter 1 and scale parameter 2 right truncated at 20, logN is the lognormal

distribution with mean 0 and variance 1 right truncated at 20, and DH is discrete with

support points 1, 2, 5, and 10 and corresponding weights 0.65, 0.20, 0.10, and 0.05.

To investigate the effect of different estimators for ci on the type I error of our

test, we consider ĉi = ĉi,Chao, and ∞ in the calculation of R̂ν̂ in (3.14). To benchmark

the performance, we also include the type I errors of our proposed test when ĉi = ci is

used in the test. In all the tests, we use t = 0.9999 in the eigenvalue decomposition to

choose ν̂ and the nominal size of the test α is set at 0.05. Table 3.3-3.4 summarizes the

simulated type I errors of the Eva-χ2 test based on 500 samples. From Table 1, we can

see that the estimator of ci has an important impact on the type I errors of the Eva-χ2
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Table 3.3: The type I error of the proposed tests given different ĉi being used. One
case is represented by (ci,Ki, Gi, Hi) such that c1 = c2 = 500 or 2000, K1 = K2 = 50,
G1 = G2 = B, logitN or DG, and H1 = H2 = G , logN or DH .

Eva-χ2 Eva-bootstrap
(ci,Ki,Gi,Hi) ĉi = ci ĉi = ĉChao ĉi =∞ ĉi =∞
(500,50,B,G ) 0.052 0.090 0.018 0.044

(500,50,B,logN ) 0.056 0.100 0.022 0.054

(500,50,B,DH) 0.046 0.072 0.022 0.046

(500,50,logitN ,G ) 0.052 0.088 0.032 0.048

(500,50,logitN ,logN ) 0.050 0.086 0.028 0.048

(500,50,logitN ,DH) 0.066 0.098 0.044 0.070

(500,50,DG,G ) 0.040 0.050 0.014 0.040

(500,50,DG,logN ) 0.066 0.076 0.044 0.062

(500,50,DG,DH) 0.058 0.072 0.028 0.050

(500,150,B,G ) 0.036 0.094 0.024 0.050

(500,150,B,logN ) 0.050 0.110 0.034 0.058

(500,150,B,DH) 0.064 0.086 0.014 0.048

(500,150,logitN ,G ) 0.042 0.068 0.026 0.044

(500,150,logitN ,logN ) 0.068 0.100 0.038 0.064

(500,150,logitN ,DH) 0.038 0.080 0.006 0.048

(500,150,DG,G ) 0.048 0.052 0.020 0.040

(500,150,DG,logN ) 0.050 0.052 0.032 0.048

(500,150,DG,DH) 0.056 0.062 0.034 0.052

test. If we could have high-quality estimators for the ci, the type I errors of the Eva-χ2

test would approach its nominal level. If the ci are underestimated, the Eva-χ2 test

would be liberal. Our Eva-χ2 test would be conservative if ĉi =∞ is used. Table 3.3-3.4

also include the type I errors of the Eva-bootstrap test. For computation simplicity, we

only consider the Eva-bootstrap test with ĉi = ∞ being used in the calculation of R̂ν̂ .

The number of bootstrap resamples is set B = 500. As we can see from Table 3.3-3.4,

the Eva-bootstrap test corrects the conservativeness of its corresponding Eva-χ2 test

and approximately achieves its nominal type I error.

Remark 9 We have presented the simulation results of the type I error of Eva-bootstrap

when using ∞ as ĉi. Alternatively, we can use ĉi,Chao estimated from the observed data

(instead of bootstrap sampled data) as ĉi. In the following, we list some simulation
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Table 3.4: The type I error of the proposed tests given different ĉi being used. One
case is represented by (ci,Ki, Gi, Hi) such that c1 = c2 = 500 or 2000, K1 = K2 = 150,
G1 = G2 = B, logitN or DG, and H1 = H2 = G , logN or DH .

Eva-χ2 Eva-bootstrap
(ci,Ki,Gi,Hi) ĉi = ci ĉi = ĉChao ĉi =∞ ĉi =∞
(2000,50,B,G ) 0.056 0.090 0.020 0.054

(2000,50,B,logN ) 0.056 0.092 0.012 0.044

(2000,50,B,DH) 0.048 0.086 0.026 0.050

(2000,50,logitN ,G ) 0.058 0.076 0.046 0.042

(2000,50,logitN ,logN ) 0.036 0.062 0.036 0.058

(2000,50,logitN ,DH) 0.046 0.068 0.026 0.048

(2000,50,DG,G ) 0.07 0.082 0.032 0.072

(2000,50,DG,logN ) 0.042 0.050 0.016 0.046

(2000,50,DG,DH) 0.050 0.068 0.026 0.046

(2000,150,B,G ) 0.038 0.088 0.012 0.038

(2000,150,B,logN ) 0.058 0.100 0.046 0.068

(2000,150,B,DH) 0.040 0.112 0.016 0.038

(2000,150,logitN ,G ) 0.042 0.062 0.030 0.058

(2000,150,logitN ,logN ) 0.044 0.080 0.034 0.050

(2000,150,logitN ,DH) 0.070 0.100 0.032 0.058

(2000,150,DG,G ) 0.058 0.056 0.034 0.052

(2000,150,DG,logN ) 0.048 0.052 0.016 0.040

(2000,150,DG,DH) 0.042 0.048 0.022 0.040
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Table 3.5: The type I error of the proposed tests given different ĉi being used. One
case is represented by (ci,Ki, Gi, Hi) such that c1 = c2 = 500 or 2000, K1 = K2 = 50,
G1 = G2 = B, logitN or DG, and H1 = H2 = G , logN or DH .

Eva-χ2 Eva-bootstrap
(ci,Ki,Gi,Hi) ĉi = ci ĉi = ĉi,Chao
(500,50,B,G ) 0.060 0.048

(500,50,B,logN ) 0.050 0.040

(500,50,B,DH) 0.046 0.046

(500,50,logitN ,G ) 0.034 0.052

(500,50,logitN ,logN ) 0.048 0.064

(500,50,logitN ,DH) 0.046 0.050

(500,50,DG,G ) 0.046 0.048

(500,50,DG,logN ) 0.062 0.060

(500,50,DG,DH) 0.064 0.060

(500,150,B,G ) 0.026 0.042

(500,150,B,logN ) 0.054 0.066

(500,150,B,DH) 0.050 0.084

(500,150,logitN ,G ) 0.052 0.048

(500,150,logitN ,logN ) 0.062 0.064

(500,150,logitN ,DH) 0.050 0.068

(500,150,DG,G ) 0.040 0.038

(500,150,DG,logN ) 0.048 0.038

(500,150,DG,DH) 0.044 0.042

results. For convenience, here we only list the results from Eva-χ2 when ĉi = ci and

Eva-bootstrap when ĉi = ĉi,Chao under the condition when c1 = c2 = 500 for comparison.

From table 3.5, we can see that the type I error of Eva-bootstrap when ĉi =

ĉi,Chao is also at nominal level. Therefore Eva-bootstrap with ĉi = ĉi,Chao is another test

one can rely on in real practice besides Eva-bootstrap with ĉi = ∞. Next, the question

one would naturally ask is that which of the two tests is more powerful. We are not

able to answer this question. But we will show some simulation results in the following

power comparison study.
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Table 3.6: The type I error of the proposed tests when there are 4 species assemblages
to compare. One case is represented by (ci,Ki, Gi, Hi) such that ci = 500, Ki = 150,
Gi = B, logitN or DG, and Hi = G , logN or DH .

Eva-χ2 Eva-bootstrap
(ci,Ki,Gi,Hi) ĉi = ci ĉi = ĉi,Chao ĉi =∞ ĉi =∞
(500,150,B,G ) 0.064 0.182 0.012 0.060

(500,150,B,logN ) 0.066 0.176 0.018 0.050

(500,150,B,DH) 0.044 0.152 0.010 0.046

(500,150,logitN ,G ) 0.056 0.138 0.026 0.052

(500,150,logitN ,logN ) 0.058 0.120 0.012 0.046

(500,150,logitN ,DH) 0.056 0.126 0.024 0.048

(500,150,DG,G ) 0.044 0.050 0.006 0.032

(500,150,DG,logN ) 0.068 0.076 0.012 0.056

(500,150,DG,DH) 0.050 0.058 0.014 0.040

3.9.2 Type I error study of the multiple sample tests

In this section, we report a simulation study to assess the type I error of our

multiple sample Eva-χ2 test. We present the case when L = 4, which means there are 4

groups of species assemblages. For simplicity, we only present the case when ci’s are 500

and Ki’s are 150. The mixing distribution Gi’s and Hi’s take on distributions we list in

the earlier section. We consider the Eva-χ2 tests with ĉi = ci, ĉi,Chao, and ∞, and the

Eva-bootstrap test with ĉi = ∞. In all the tests, we use t = 0.9999 in the eigenvalue

decomposition to choose ν̂ and the nominal size of the test α is set at 0.05. Table 3.6

summarizes the simulated type I error based on 500 samples. Similar as the two sample

test, we can see that the Eva-χ2 test with ĉi = ĉi yields a liberal result, while Eva-χ2

test with ĉi =∞ yields a conservative result. The Eva-bootstrap test with ĉi =∞ yields

a type I error at nominal level.
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3.9.3 Power comparison between abundance based test and incidence

based test

In this section, we refer to the zero-inflated Poisson mixture model based boot-

strap test as abundance based test and refer to the binomial mixture model based boot-

strap test as incidence based test. From the construction of the two tests, intuitively, one

will think that incidence based test will not be able to detect difference on Hi’s. Also, it

is important to examine how abundance based test performs in detecting difference on

ci’s and Gi’s. Therefore we perform the following simulation study of power comparison

of abundance based test and incidence based test.

In the following study, the number of quadrats for the two samples are K1 =

K2 = 50. When it comes to power simulation, we know that, for two samples, ci’s, Gi’s,

and Hi’s can take on various values or distributions, respectively. There are too many

scenarios, and it is impossible to perform an exhaustive comparison . For simplicity, we

restrict the values of ci’s, Gi’s, and Hi’s to be the ones we list in the following. c = 500

and c∗ = 450, and they stand for total number of species; G is a discrete distribution

with support points 0.02, 0.1, 0.2, and 0.3 and corresponding weights 0.65, 0.20, 0.10,

and 0.05, G∗ is similar to G but with first support point equal to 0.025 instead of 0.02; H

is a discrete distribution with support points 1, 2, 5, and 10 and corresponding weights

0.65, 0.20, 0.10, and 0.05, H∗ is similar to H but with the first support point equal

to 4 instead of 1. Therefore there are a total of 13 scenarios. In all the tests, we use

t = 0.9999 in the eigenvalue decomposition to choose ν̂ and the nominal size of the test

α is set at 0.05. The simulation results based on 500 samples are listed in table 3.7.

From table 3.7, we can see that, when only Hi’s are different, the incidence

based test has a power of 0.054, however, the abundance based test has a power of

63



Table 3.7: The power comparison of abundance based and incidence based tests under
different scenarios. One case is represented by (c1, G1, H1) vs (c2, G2, H2).

Eva-bootstrap

(c1, G1, H1) vs (c2, G2, H2) abundance incidence

(c,G,H) vs (c∗, G,H) 0.144 0.138

(c,G,H) vs (c,G∗, H) 0.256 0.260

(c,G,H) vs (c,G,H∗) 0.480 0.054

(c,G,H) vs (c∗, G∗, H) 0.202 0.204

(c,G∗, H) vs (c∗, G,H) 0.716 0.706

(c,G,H) vs (c∗, G,H∗) 0.546 0.138

(c,G,H∗) vs (c∗, G,H) 0.524 0.132

(c,G,H) vs (c,G∗, H∗) 0.456 0.234

(c,G,H∗) vs (c,G∗, H) 0.546 0.284

(c,G,H) vs (c∗, G∗, H∗) 0.406 0.200

(c,G,H∗) vs (c∗, G∗, H) 0.496 0.182

(c,G∗, H) vs (c∗, G,H∗) 0.824 0.696

(c,G∗, H∗) vs (c∗, G,H) 0.764 0.702

0.48. The poor performance of incidence based test in detecting difference of Hi’s is a

result of ignoring the information of Hi’s in the construction of the test. For other cases

when Hi’s are the same but ci’s and Gi’s are different, we can see there is no obvious

difference between the powers of the abundance based test and incidence based test. In

general, we can see that abundance based test performs better than incidence based test

by considering the information contained in Hi’s.

3.9.4 Power comparison of using different ci

Previously, we discussed that when one implements the two sample Eva-boostrap

test, one can use either ĉi = ∞ or ĉi = ĉi,Chao. Both of the two tests are valid with

type I errors at nominal level. In this section, we report a simulation study to assess the

power of the two tests. When it comes to power simulation study, we know that, for two

samples, ci’s, Gi’s, and Hi’s can take on various values or distributions, respectively.

There are too many scenarios, and it is impossible to perform an exhaustive comparison
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Table 3.8: The power comparison of two sample Eva-bootstrap tests with ĉi = ∞ and
ĉi = ĉi,Chao. One case is represented by (c1, G1, H1) vs (c2, G2, H2).

Eva-bootstrap

(c1, G1, H1) vs (c2, G2, H2) ĉi =∞ ĉi = ĉi,Chao
(c,G,H) vs (c∗, G,H) 0.138 0.364

(c,G,H) vs (c,G∗, H) 0.292 0.436

(c,G,H) vs (c,G,H∗) 0.068 0.246

(c,G,H) vs (c∗, G∗, H) 0.250 0.180

(c,G∗, H) vs (c∗, G,H) 0.712 0.934

(c,G,H) vs (c∗, G,H∗) 0.158 0.396

(c,G,H∗) vs (c∗, G,H) 0.170 0.408

(c,G,H) vs (c,G∗, H∗) 0.312 0.474

(c,G,H∗) vs (c,G∗, H) 0.268 0.472

(c,G,H) vs (c∗, G∗, H∗) 0.184 0.166

(c,G,H∗) vs (c∗, G∗, H) 0.240 0.226

(c,G∗, H) vs (c∗, G,H∗) 0.712 0.946

(c,G∗, H∗) vs (c∗, G,H) 0.734 0.932

. For simplicity, we restrict the values of ci’s, Gi’s, and Hi’s to be the ones we list in the

following. The numbers of quadrats for the two samples we consider are K1 = K2 = 50.

c = 500 and c∗ = 450, and they stand for total numbers of species; G is a discrete dis-

tribution with support points 0.01, 0.05, 0.1, and 0.15 and corresponding weights 0.65,

0.20, 0.10, and 0.05, G∗ is similar to G but with first support point 0.01 taking the den-

sity of 0.55, and the second support point 0.05 taking the density of 0.3; H is a discrete

distribution with support points 1, 2, 5, and 10 and corresponding weights 0.65, 0.20,

0.10, and 0.05, H∗ is similar to H but with the first support point 1 taking the density

of 0.55, and the second support point 2 taking the density of 0.3. Therefore there are a

total of 13 scenarios. In all the tests, we use t = 0.9999 in the eigenvalue decomposition

to choose ν̂ and the nominal size of the test α is set at 0.05. The simulation results

based on 500 samples are listed in table 3.8.

From table 3.8, we can see that the Eva-bootstrap test with ĉi = ĉi,Chao is

more powerful than the one with ĉi =∞. The reason for that is most likely that ĉi,Chao
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is a better approximation to ci than ∞.

3.10 Real application

The Bosques Project, located in La Selva Biological Station and surrounding

areas in the Atlantic lowlands of northeastern Costa Rica, was established in 1997 to

study the vegetation dynamics in tropical second-growth rain forests (Chazdon et al.

2005). One of the goals for this project is to provide information about spatial and

temporal differences in population of seedlings in tropical second-growth rain forests.

Such information can be obtained by comparing the seedling assemblages across different

sites and over different years. To demonstrate how our proposed test can be applied to

help carry out those comparisons, we are going to study the seedling assemblage data

collected from four study sites, Lindero Sur (LSUR), Tirimbina (TIR), Lindero El Peje

(LEP), and Cuatro Rios (CR). In all of the four sites, all seedlings were sampled in

144 1m×5m quadrats in 12 strips through the 50m×200m plot. Two groups of data

were collected for each site, one in year 1998, and the other in year 2004. The species

identity was determined for all seedlings (>20cm in height, but <1cm in diameter at

breast height).

First, let us compare species assemblages at LSUR and TIR based on the data

collected in year 1998. In LSUR, 132 species with 2287 individuals were observed, and

in TIR, 153 species with 3443 individuals were observed.

The lower bound estimates for total numbers of species at LSUR and TIR

are 169 and 196, respectively. Furthermore, for each species j in assemblage i, we can

estimate the incidence rate πij by ki,j/Ki, number of quadrats species j appears in

divided by the total number of quadrats. Given all the estimates of πij ’s, we can form
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Figure 3.1: Empirical distribution functions of π at LSUR and TIR. The black curve
stands for LSUR, and the red one stands for TIR.

the empirical distribution of π, G̃i(π). We can also estimate the abundance rate λij for

each species by solving the equation
λij

1−exp(−λij) =
∑Ki

k=1
Xijk

ki,j
. Therefore an empirical

distribution of λ, H̃i(λ), can be constructed as well. Figure 3.1 is a plot of the two

empirical distributions of π at LSUR and TIR. Figure 3.2 is a plot of the two empirical

distributions of λ at LSUR and TIR. Based on these estimates of ci’s, Gi’s, and Hi’s,

we suspect ci’s and Hi’s may be different between these two assemblages. Thus our

first impression is that there might be a significant difference between these two species

assemblages.
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Figure 3.2: Empirical distribution functions of λ at LSUR and TIR. The black curve
stands for LSUR, and the red one stands for TIR.
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To determine whether there is a significant difference between the two seedling

assemblages, we apply our proposed tests. The p-values of the Eva-χ2 test are 0.0015

and 0.035 given ĉi = ĉi,Chao and ĉi = ∞, used in R̂ν̂ in (3.14), respectively. Both p-

values are smaller than 0.05. Based on our simulation studies, using ĉi =∞ often leads

to a conservation procedure. The null hypothesis is rejected even when using ĉi = ∞.

This implied that there is enough evidence to reject the null hypothesis that there is

no difference between these two seedling assemblages. Our Eva-bootstap test yields a

p-value 0.004, which further confirms that there is a significant difference between these

two seedling assemblages.

Second, let us compare species assemblages across all of the four sites in year

1998 and year 2004 respectively. For year 1998, in LEP, 166 species with 1590 individuals

were observed, and in CR, 155 species with 1907 individuals were observed. For year

2004, In LSUR, 147 species with 1659 individuals were observed, in TIR, 145 species

with 2030 individuals were observed, in LEP, 166 species with 1357 individuals were

observed, and in CR, 158 species with 1810 individuals were observed. To determine

whether there is a difference between the four seedling assemblages, we can apply the

multiple sample versions of our proposed tests. The testing results are shown in table

3.9. For year 1998, the p-values of the Eva-χ2 test are 0.004 and 0.070 given ĉi = ĉi,Chao

and ĉi = ∞ respectively. One is smaller than 0.05, and the other is larger than 0.05.

Based on our simulation studies, using ĉi,Chao often leads to an aggressive procedure, and

using ĉi =∞ often leads to a conservation procedure. Therefor, only based on those two

tests, it is not clear whether we should reject the null hypothesis or not. However, our

Eva-bootstap test yields a p-value 0.033, which leads to a rejection of the null hypothesis

and implies that there is a significant difference between the four seedling assemblages

during year 1998, which is also consistent with hypothesis testing result given in the
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Table 3.9: P-values of the tests for comparing species assemblages across all of the four
sites of the Bosques Project in year 1998 and year 2004 respectively.

Eva-χ2 Eva-bootstrap
Year ĉi = ĉChao ĉi =∞ ĉi =∞
1998 0.004 0.070 0.033

2004 0.390 0.718 0.564

previous paragraph.

For year 2004, the p-values of the Eva-χ2 test are 0.390 and 0.718 given

ĉi = ĉi,Chao and ĉi = ∞ respectively. Both p-values are larger than 0.05. Based on

our simulation studies, using ĉi,Chao often leads to an aggressive procedure. The null

hypothesis is not rejected even when using ĉi = ĉi,Chao. This implied that there is not

enough evidence to reject the null hypothesis that there is no difference between these

four seedling assemblages during year 2004. Our Eva-bootstap test yields a p-value

0.564, which further confirms that there is no significant difference between these four

seedling assemblages during year 2004.

3.11 Summary

In this chapter, we propose tests for comparison of species diversity across

species assemblages given abundance data from multiple quadrats. We employ a zero-

inflated Poisson mixture model. We have developed a two sample test and showed the

test statistics asymptotically follows a χ2 distribution. Since the covariance matrix is

always singular, we adopt the eigenvalue adjusted procedure proposed by Mao and Li

(2009). Because there is no unbiased nonparametric estimation of ci, using a lower

bound estimate of ci or an upper bound estimate (∞) of ci will cause our test to be

either too liberal or too conservative. Therefore we adopted a bootstrap procedure to

approximate the distribution of the test statistic under null hypothesis. The type I
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error study showed the bootstrap test is a valid test. A generalization of the two sample

test to the multiple sample test is presented. In real application, we recommend first

using the eigenvalue adjusted test with lower bound and upper bound estimates of ci.

If they yield the same result, then one should take it; otherwise, one should resort to

the bootstrap procedure. Two power comparison studies are presented. One is the

comparison between the abundance based test we proposed and the incidence based

test proposed by Mao and Li (2009). The other comparison is between the bootstrap

procedure with ĉi = ∞ and the same procedure with ĉi = ĉi,Chao. The result shows

that the bootstrap procedure with ĉi = ĉi,Chao is more powerful. We think it is because

ĉi,Chao is a better estimate of ci than ∞ is. The result shows the incidence based test

is incapable of detecting difference of Hi’s, however, abundance based test is as good as

incidence based test in detecting difference between ci’s and Gi’s. Therefore, in practice,

if abundance data is available, we suggest one take advantage of the abundance based

test; if only incidence data is available, then one should use incidence based test. In

the next chapter, we will summarize the differences between the two types of tests we

propose in Chapter 2 and Chapter 3.
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Chapter 4

Comparison of the two types of

tests

So far we have developed the data depth based tests and the zero-inflated Pois-

son mixture model based tests separately, and applied them to problems of comparing

species assemblages. Now we will discuss the differences between these two types of

tests.

First, obviously, the testing objectives are different between the data depth

based tests and the mixture model based tests. The data depth based tests are testing

whether the two joint distributions of the counts of all the observed species from two

species assemblages differ significantly. They are good for tracking changes in abundance

of individual species. The mixture model based tests are testing whether numbers of

species, species incidence rate distributions, and species abundance rate distributions are

the same for two species assemblages. They can be used to compared species diversity

across species assemblages.

Second, the data depth based tests are generally used when two species as-
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semblages have many species in common. Because a species identity is attached to the

abundance of each species, if too few species are in common between two species assem-

blages, there is no need to perform the tests, since the data depth based tests will always

yield rejection of the null hypothesis. However, for the mixture model based tests, the

testing objective of comparing species diversity across species assemblages determines

that species need not to be labeled by having a species identity attached to the abun-

dance. This loss of the label allows the mixture model based tests for comparison of

species assemblages that have no species in common.

Third, the data depth based tests and the mixture model based tests work

under different assumptions. The former requires quadrats are independent, while the

latter requires species are independent. More precisely, if we present a species assem-

blage by an abundance data matrix as we did in Chapter 1, then the data depth based

tests require that each row of the matrix is a random sample from certain multivariate

distribution, while the mixture model based tests require each column is a random sam-

ple from certain multivariate distribution. Actually, these two types of tests are very

sensitive to these independence assumptions, as we can see from the following simula-

tion studies. Similarly to how we simulated data in Section 3.9 for the mixture model

based tests, we generate abundance data by letting c1 = c2 = 10, K1 = K2 = 150,

G1 = G2 = DG, and H1 = H2 = DH . We know the generated abundance data are in-

dependent across different species but correlated across quadrats. Treating abundance

data from each quadrat as an observation, and applying the data depth based tests, we

get huge type I errors, 0.730 and 0.576, for our KS and CM tests respectively. Again,

similarly to how we simulated data in Section 2.6 for the data depth based tests, we gen-

erate m = n = 30 random observations from F = PL(µF ,ΣF ) and G = PL(µG,ΣG),

where µF = µG = 1500, ΣF = ΣG = 0.515001
′
500 + 0.5I500. We know the generated
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abundance data are independent across different quadrats but correlated across species.

Treating the abundance data for each species across all the quadrats as an observation,

and applying the zero-inflated Poisson mixture model, we get a type I error of 0.230 for

the Eva-bootstrap test. Therefore, the data depth based tests are more suitable for the

situations when sampling quadrats are geographically far away from each other (thus

more likely to be independent of each other), while the mixture model based tests are

more suitable for species assemblages in which species rarely interact with each other.

Additionally, applying the two types of tests to the same real data will render

different conclusions. Take the BCI data mentioned in Chapter 1 and Chapter 2 as

an example. At the significance level of α = 0.05, both of our depth-based KS and

CM tests yield p-values 0.001, meaning there is significant difference between the two

species assemblages. However, the p-values of the Eva-χ2 test are 0.088 and 0.167 given

ĉi = ĉi,Chao and ĉi = ∞, and the p-value of the Eva-bootstrap test is 0.171, meaning

there is no significant difference between the two species assemblages. The different

conclusions of the two types of tests are not surprising. First, that may be because the

independence assumption for one type of the tests is not met. Second, since the testing

objectives of the two types of tests are different, it is possible that the counts of certain

species are distributed differently in these two species assemblages, however, in terms of

species diversity there is no obvious difference between the two species assemblages.

In all, given these differences between the two types of tests, readers should

choose their test accordingly.
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Chapter 5

Concluding Remarks

This thesis presents two types of statistical tests for comparison of species

assemblages given abundance data from multiple quadrats. They are the data depth

based nonparametric tests and the zero-inflated Poisson mixture model based tests.

As we mentioned earlier, the data depth based tests and the mixture model

based tests work under different assumptions. The former requires quadrats are indepen-

dent, while the latter requires species are independent. Therefore given abundance data,

the first question one should ask is whether the quadrats or the species are independent.

The underlying statistical problem is how to test whether a group of multivariate vectors

are i.i.d samples from certain underlying multivariate distribution. There are solutions

under some special constraints, for example, Paindaveine (2009) proposed multivariate

runs tests for the elliptical distribution family. But so far we have not seen in the liter-

ature a general solution which can be applied to any distribution. Thus we think more

research can be done in this area.

The new distance-based data depth we proposed in this thesis is compatible

with any distance measure, which gives our tests great flexibility. Although the proposed
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data depth based tests were motivated by the species assemblages comparison problem

and were demonstrated by examples of count data, they can be applied with other

data types as well. Future research may be conducted on applying this new notion of

data depth to other data types or areas such as comparing samples of functional data, or

samples of image data, because properly defined distance measures are already available.

Also some of the properties of this new data depth are not clear at this moment, such

as affine invariance and maximality at center (Zuo and Serfling, 2000); the asymptotical

properties of the two depth based tests are also interesting to study. Theoretical research

might be conducted in those areas.

When it comes to the study of species assemblages, there are two general cate-

gories of methods : static sampling based methods and dynamic theory based methods.

The former focuses on analysis of species assemblages observed at certain time points,

while the latter focuses on fundamental birth, death, migration processes, etc. Both

of the species assemblage comparison methods we proposed in this thesis fall into the

category of static sampling analysis, which is based on data collected at one time point.

They ignore the internal birth, death, immigration processes of the species assemblages.

We think a very interesting research problem would be how to incorporate the dynamic

theory into the statistical testing procedure or how to combine the static sampling anal-

ysis and the dynamic theory when performing statistical tests. There are researchers

trying to achieve that, for example, Alonso et al. (2008) presented an alternative formu-

lation of statistical sampling theory that incorporates species asymmetries in sampling

and dynamics, and illustrated the theory on a stochastic community model. That will

be the direction of our future research on comparison of species assemblages.
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Appendix A

Proof in Chapter 3

Proof of Theorem 2. It is straightforward that, if c1 = c2, G1 = G2

and H1 = H2, then g1(h0, x) = g2(h0, x) for x = 1, 2, ... and τ1(h) = τ2(h) for h =

1, 2, . . . , h0 − 1, h0 + 1, . . .. When g1(h0, x) = g2(h0, x) for x = 1, 2, . . ., τ1(h0) = τ2(h0)

since τi(h0) =
∑∞
x=1 gi(h0, x). Together with τ1(h) = τ2(h) for h = 1, 2, . . . , h0 − 1, h0 +

1, . . ., we can have c1 = c2 and G1 = G2, following Theorem 2 of Mao and Li (2009).

Therefore, g1(h0, x) = g2(h0, x) implies that

∫
exp(−λ)

1− exp(−λ)

λx

x!
dH1(λ) =

∫
exp(−λ)

1− exp(−λ)

λx

x!
dH2(λ), x = 1, 2, . . . , (A.1)

thus ∫
exp(−λ)

1− exp(−λ)

λx+y

(x+ y)!
dH1(λ) =

∫
exp(−λ)

1− exp(−λ)

λx+y

(x+ y)!
dH2(λ), (A.2)

for x = 1, 2, . . . and y = 1, 2, . . .. Multiplying both sides of (A.2) with (x + y)!/x!, we

will have ∫
exp(−λ)λ(x+y)/x!

1− exp(−λ)
dH1(λ) =

∫
exp(−λ)λ(x+y)/x!

1− exp(−λ)
dH2(λ), (A.3)

for x = 1, 2, . . . and y = 1, 2, . . .. Because

∞∑
x=1

∫
exp(−λ)λ(x+y)/x!

1− exp(−λ)
dHi(λ) =

∫ ∞∑
x=1

exp(−λ)λ(x+y)/x!

1− exp(−λ)
dHi(λ) =

∫
λydHi(λ),
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for any positive integer y,

∫
λydH1(λ) =

∫
λydH2(λ).

Given that both H1(λ) and H2(λ) have bounded support, the moment generation func-

tions of H1 and H2 are identical, therefore, H1 = H2.

Proof of Theorem 4. We define Ivi,j,k,x = I{In assemblage i, species j

appears exactly in k quadrats and appears x times in the v-th quadrat among those

k quadrats}. It is easy to see that nvi,k,x =
∑ci
j=1 I

v
i,j,k,x. Since ni,k,x =

∑k
v=1 n

v
i,k,x/k,

ni,k,x =
∑ci
j=1

∑k
v=1 I

v
i,j,k,x/k. Therefore, ni =

∑ci
j=1 Ii,j , where

Ii,j = (
1∑
v=1

Ivi,j,1,1/1, ...,
1∑
v=1

Ivi,j,1,m/1, ....,
Ki∑
v=1

Ivi,j,Ki,1/Ki, ...,
Ki∑
v=1

Ivi,j,Ki,m/Ki)
′.

Based on our assumptions, the Ii,j are i.i.d., therefore, c
−1/2
i {ni − E(ni)} converges to

N (0, Vi/ci) in distribution as ci goes to ∞.

Since Wi = TiViT
′
i and Vi is positive definite, to prove that Wi is positive

definite, we need to prove that for any nonzero vector aaa ∈ Rm+K−1, aaa′Ti 6= 0, which is

equivalent to that the linear equations aaa′Ti = 0 does not have nonzero solution. Using

the knowledge of linear algebra, that is equivalent to that Rank(Ti) = m+K − 1, since

Ti is (m+K − 1)×mKi and m+K − 1 ≤ mKi.

Let us look at a sub-matrix of Ti, Ri, which is made of all the rows of Ti, column

m(Ki −K) + 1, m(Ki −K) + 2, . . . , m(Ki −K) +m, and column m(Ki + 1−K) + 1,

m(Ki + 2−K) + 1, . . . , mKi + 1. Thus Ri is a (m+K − 1)× (m+K − 1) matrix like
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this,

Ri =



Ç
1−

( Ki−1
Ki+1−K)

( Ki
Ki+1−K)

å⊗
Im×m

1−
( Ki−1
Ki+2−K)

( Ki
Ki+2−K)

0

...

0

1−
( Ki−1
Ki+3−K)

( Ki
Ki+3−K)

0

...

0

· · ·

· · ·

· · ·

· · ·

1−
(Ki−1
Ki

)

(KiKi)

0

...

0Ç
1−

( Ki−2
Ki+1−K)

( Ki
Ki+1−K)

å⊗
111′m 1−

( Ki−2
Ki+2−K)

( Ki
Ki+2−K)

1−
( Ki−2
Ki+3−K)

( Ki
Ki+3−K)

· · · 1−
(Ki−2
Ki

)

(KiKi)Ç
1−

( Ki−3
Ki+1−K)

( Ki
Ki+1−K)

å⊗
111′m 1−

( Ki−3
Ki+2−K)

( Ki
Ki+2−K)

1−
( Ki−3
Ki+3−K)

( Ki
Ki+3−K)

· · · 1−
(Ki−3
Ki

)

(KiKi)

...
...

... · · ·
...Ç

1−
( Ki−K
Ki+1−K)

( Ki
Ki+1−K)

å⊗
111′m 1−

( Ki−K
Ki+2−K)

( Ki
Ki+2−K)

1−
( Ki−K
Ki+3−K)

( Ki
Ki+3−K)

· · · 1−
(Ki−KKi

)

(KiKi)



.

It is easy to see that for the element of row x and column y of Ri, Rixy , where

x > m and y > m, if Ki < x+ y− 2m, then Rixy = 1. Also Rixy = 1 for x = m+K − 1

and y = 1, . . . ,m, and x = 1 and y = m+K − 1. Therefore

Ri =



Ç
1−

( Ki−1
Ki+1−K)

( Ki
Ki+1−K)

å⊗
Im×m

1−
( Ki−1
Ki+2−K)

( Ki
Ki+2−K)

0

...

0

· · ·

· · ·

· · ·

· · ·

1−
(Ki−1
Ki−1)

( Ki
Ki−1)

0

...

0

1

0

...

0Ç
1−

( Ki−2
Ki+1−K)

( Ki
Ki+1−K)

å⊗
111′m 1−

( Ki−2
Ki+2−K)

( Ki
Ki+2−K)

· · · 1 1

...
... . .

. ...
...Ç

1−
(Ki+1−K
Ki+1−K)

( Ki
Ki+1−K)

å⊗
111′m 1 · · · 1 1

111′m 1 · · · 1 1



.

For x1 > m, x2 > m, and y > m, where Ki ≥ x1+y−2m and Ki ≥ x2+y−2m,

one can easily prove that if x1 > x2 > m ≥ x, then 1 > Rix1y > Rix2y > Rixy > 0;

for m + K − 1 > x1 > m, m + K − 1 > x2 > m, and y ≤ m, if x1 > x2 > m ≥ x,

then 1 > Rix1y > Rix2y > Rixy > 0. Similarly, for y1 > m, y2 > m and x > m, where
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Ki ≥ x + y1 − 2m and Ki ≥ x + y2 − 2m, if y1 > y2 > m ≥ y, then 1 > Rixy1 >

Rixy2 > Rixy > 0. Based on the above results, one can perform a series of elementary

row transformations, and Ri can be transformed into

R∗i =



Ç
1−

( Ki−1
Ki+1−K)

( Ki
Ki+1−K)

å⊗
Im×m

1−
( Ki−1
Ki+2−K)

( Ki
Ki+2−K)

0

...

0

· · ·

· · ·

· · ·

· · ·

1−
(Ki−1
Ki−1)

( Ki
Ki−1)

0

...

0

1

0

...

0

000′m 0 · · · 1 1

...
... . .

.
0 0

000′m 1 · · · 0 0

111′m 0 · · · 0 0



,

where 000′m is a m dimension vector with all its elements equal to zero.

By far, one can easily prove by definition that the column vectors of R∗i are

linearly independent. Thus Rank(Ri) = Rank(R∗i ) = m + K − 1. Since Ri is a sub-

matrix of Ti, Rank(Ti) ≥ Rank(Ri) = m+K− 1. Considering Ti is (m+K− 1)×mKi

and m+K−1 ≤ mKi, we have Rank(Ti) ≤ m+K−1. Therefore Rank(Ti) = m+K−1

and Wi is positive definite. Since η̂ηηi,K,m = Tini, Theorem 4 follows by using the delta

method.

Proof of Proposition 5. (a) Since ni,k,x =
∑k
v=1 n

v
i,k,x/k,

var(ni,k,x) = {var(n1
i,k,x) + (k − 1) cov(n1

i,k,x, n
2
i,k,x)}/k.

Based on the definitions of ni,k and n1
i,k,x, {ni,0, and n1

i,k,x, k = 1, ...,Ki, x = 1, 2, ..., }

follows a multinomial distribution with size ci and probabilities ri,0 and ri,ksi,x. There-

fore, based on the properties of multinomial distribution, var(n1
i,k,x) = ciri,ksi,x(1 −
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ri,ksi,x). We also have cov(n1
i,k,x, n

1
i,k,y) = −ciri,k2si,xsi,y, and cov(n1

i,k,x, n
1
i,l,y) = −ciri,kri,lsi,xsi,y,

which will be used in the proof for (b) and (c).

To find cov(n1
i,k,x, n

2
i,k,x), recall nvi,k,x =

∑ci
j=1 I

v
i,j,k,x, where Ivi,j,k,x = I{In as-

semblage i, species j appears exactly in k quadrats and appears x times in the v-th

quadrat among those k quadrats}. Since the species are independent of each other,

cov(n1
i,k,x, n

2
i,k,x) =

ci∑
j=1

cov(I1
i,j,k,x, I

2
i,j,k,x)

=
ci∑
j=1

E(I1
i,j,k,xI

2
i,j,k,x)−

ci∑
j=1

E(I1
i,j,k,x)E(I2

i,j,k,x)

Clearly, E(I1
i,j,k,x) = E(I2

i,j,k,x) = ri,ksi,x, and

E(I1
i,j,k,xI

2
i,j,k,x) = E[

∑
1≤t1<...<tk≤Ki

∞∑
xt3=1

· · ·
∞∑

xtk=1

I{Bij,t1,...,tk(x, x, xt3 , ..., xtk)}]

= ri,ksi,x,x

Thus, cov(n1
i,k,x, n

2
i,k,x) = ciri,ksi,x,x − ci(ri,ksi,x)2.

Therefore,

var(ni,k,x) = {ciri,ksi,x(1− ri,ksi,x) + (k − 1)[ciri,ksi,x,x − ci(ri,jsi,x)2]}/k

= {ciri,ksi,x + (k − 1)ciri,ksi,x,x − kcir2
i,js

2
i,x}/k.

(b) Again based on the definition of ni,k,x,

cov(ni,k,x, ni,k,y) = {cov(n1
i,k,x, n

1
i,k,y) + (k − 1) cov(n1

i,k,x, n
2
i,k,y)}/k.

Similar to the proof in (a), we can obtain

cov(n1
i,k,x, n

1
i,k,y) = −ciri,k2si,xsi,y

cov(n1
i,k,x, n

2
i,k,y) = ciri,ksi,x,y − ciri,k2si,xsi,y.
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Therefore,

cov(ni,k,x, ni,k,y) = {−ciri,k2si,xsi,y + (k − 1)(ciri,ksi,x,y − ciri,k2si,xsi,y)}/k

= {(k − 1)ciri,ksi,x,y − kcir2
i,ksi,xsi,y}/k.

(c) Since cov(ni,k,x, ni,l,y) = cov(n1
i,k,x, n

1
i,l,y) = −ciri,ksi,xri,lsi,y, the proof

completes.

Proof of Proposition 6. First, define ni,+ =
∑Ki
k=1 ni,k, which is the number

of species observed in assemblage i. W.l.o.g, we assume species j, j = 1, . . . , ni,+, are

observed among the ci species. Following the notation used in the proof of Theorem 4,

we denote the sample covariance matrix of Ii,1,. . . ,Ii,ni,+ by Si, and its element on the

j-th row and k-th column by Si,j,k. We denote the plug-in estimate of Vi by V̂i, and its

element on the j-th row and k-th column by V̂i,j,k. In the following, we first prove that

V̂i = ni,+ · Si +nininininini
′(1/ni,+ − 1/ĉi).

First of all, for any diagonal element of Si, Si,x+m(k−1),x+m(k−1), when 0 < x ≤

m and 1 ≤ k ≤ Ki, we have,

Si,x+m(k−1),x+m(k−1) = 1/ni,+

ni,+∑
j=1

Ñ
k∑
v=1

Ivi,j,k,x/k − 1/ni,+

ni,+∑
j=1

k∑
v=1

Ivi,j,k,x/k

é2

= 1/ni,+

ni,+∑
j=1

(
k∑
v=1

Ivi,j,k,x/k

)2

−

Ñ
ni,+∑
j=1

k∑
v=1

Ivi,j,k,x/k

é2

/n2
i,+.

Since Ivi,j,k,x is either 0 or 1, Ivi,j,k,x = 0 for j = (ni,++1), . . . , ci, and ni,k,x =
∑ni,+
j=1

∑k
v=1 I

v
i,j,k,x/k,

Si,x+m(k−1),x+m(k−1) = 1/ni,+

ni,+∑
j=1

Ñ
1/k2

Ñ
k∑
v=1

Ivi,j,k,x + 2
∑

1≤v1<v2≤k
Iv1i,j,k,xI

v2
i,j,k,x

éé
− n2

i,k,x/n
2
i,+

= 1/ni,+{1/k2(k · ni,k,x + k(k − 1)ni,k,x,x)} − n2
i,k,x/n

2
i,+

= 1/k{ni,k,x/ni,+ + (k − 1)ni,k,x,x/ni,+} − n2
i,k,x/n

2
i,+.
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Since V̂i,x+m(k−1),x+m(k−1) is the estimate of var(ni,k,x), based on our estimating proce-

dure, we have,

V̂i,x+m(k−1),x+m(k−1) = 1/k{ni,k,x + (k − 1)ni,k,x,x − kn2
i,k,x/ĉi}.

Therefore, V̂i,x+m(k−1),x+m(k−1) = ni,+ · Si,x+m(k−1),x+m(k−1) + n2
i,k,x(1/ni,+ − 1/ĉi).

Similarly, for the off-diagonal elements of Si when 0 < x, y ≤ m and 1 ≤ k ≤

Ki,

Si,x+m(k−1),y+m(k−1) = 1/ni,+

ni,+∑
j=1

Ñ
k∑
v=1

Ivi,j,k,x/k − 1/ni,+

ni,+∑
j=1

k∑
v=1

Ivi,j,k,x/k

é
Ñ

k∑
v=1

Ivi,j,k,y/k − 1/ni,+

ni,+∑
j=1

k∑
v=1

Ivi,j,k,y/k

é
= 1/ni,+

ni,+∑
j=1

Ñ
k∑

v1=1

Iv1i,j,k,x/k ·
k∑

v2=1

Iv2i,j,k,y/k

é
− ni,k,xni,k,y/n2

i,+

= 1/ni,+

ni,+∑
j=1

1/k2 · 2
∑

1≤v1<v2≤k

Ä
Iv1i,j,k,xI

v2
i,j,k,y

ä
− ni,k,xni,k,y/n2

i,+

= 1/k{(k − 1)ni,k,x,y/ni,+ − k · ni,k,x/ni,+ · ni,k,y/ni,+}.

Since V̂i,x+m(k−1),y+m(k−1) is the estimate of cov(ni,k,x, ni,k,y),we can see that

V̂i,x+m(k−1),y+m(k−1) = 1/k{(k − 1)ni,k,x,y − kni,k,xni,k,y/ĉi}

= ni,+ · Si,x+m(k−1),y+m(k−1) + ni,k,xni,k,y(1/ni,+ − 1/ĉi).

Last, let us consider the off-diagonal elements of Si when 0 < x, y ≤ m and

1 ≤ k1 6= k2 ≤ Ki,

Si,x+m(k1−1),y+m(k2−1) = 1/ni,+

ni,+∑
j=1

Ñ
k1∑
v=1

Ivi,j,k1,x/k1 − 1/ni,+

ni,+∑
j=1

k1∑
v=1

Ivi,j,k1,x/k1

é
(
k2∑
v=1

Ivi,j,k2,y/k2

− 1/ni,+

ni,+∑
j=1

k2∑
v=1

Ivi,j,k2,y/k2)

= 1/ni,+

ni,+∑
j=1

Ñ
k1∑
v1=1

k2∑
v2=1

Iv1i,j,k1,xI
v2
i,j,k2,y

/(k1k2)

é
− ni,k,xni,k,y/n2

i,+.
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No species can appear in exactly k1 and k2 quadrats at the same time, therefore

Iv1i,j,k1,xI
v2
i,j,k2,y

= 0. Thus

Si,x+m(k1−1),y+m(k2−1) = −ni,k,x/ni,+ · ni,k,y/ni,+.

Since V̂i,x+m(k1−1),y+m(k2−1) is the estimate of cov(ni,k,x, ni,l,y), we can see that,

V̂i,x+m(k1−1),y+m(k2−1) = −ni,k1,xni,k2,y/ĉi

= ni,+ · Si,x+m(k1−1),y+m(k2−1) + ni,k1,xni,k2,y(1/ni,+ − 1/ĉi).

So far, based on the above results, we have proved that V̂i = ni,+ · Si +

nininininini
′(1/ni,+ − 1/ĉi). Because Si is a sample covariance matrix and ni,+ > 0, ni,+ · Si

is positive semi-definite; because 1/ni,+ − 1/ĉi ≥ 0 and nininininini
′ is positive semi-definite,

nininininini
′(1/ni,+ − 1/ĉi) is positive semi-definite. Therefore V̂i is positive semi-definite. We

know that Σ̂K,m = T1V̂1T
′
1 +T2V̂2T

′
2. For any non-zero vector xxx of dimension m+K−1,

xxx′Σ̂K,mxxx = (xxx′T1)V̂1(xxx′T1)′ + (xxx′T2)V̂2(xxx′T2)′. Because V̂i ≥ 0, xxx′Σ̂K,mxxx ≥ 0. Therefore

Σ̂K,m is positive semi-definite.

Proof of Proposition 7. Assume m1 is a large integer such that ni,k,x = 0

for x ≥ m1 and m2 is an integer greater than m1. It is obvious that, for i = 1, 2, η̂i,K,m1 =

(ĝi(1), . . . , ĝi(m1), τ̂i(2), . . . , τ̂i(K))′ and η̂i,K,m2 = (ĝi(1), . . . , ĝi(m1),0m2−m1 , τ̂i(2), . . . , τ̂i(K))′,

where 0m2−m1 is a m2 −m1 dimension vector with all its elements equal to zero.

Moreover, if we write Σ̂K,m1 as a block matrix,

ám1 − 1 K

m1 − 1 A B

K C D

ë
, then
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Σ̂K,m2 =



m1 − 1 m2 −m1 K

m1 − 1 A O(m1−1)×(m2−m1) B

m2 −m1 O(m2−m1)×(m1−1) O(m2−m1)×(m2−m1) O(m2−m1)×K

K C OK×(m2−m1) D

,

where Ox×y stands for a x× y matrix with all its elements equal to zero.

To find the eigenvalues of Σ̂K,m2 , we solve the following equation of λ,

|Σ̂K,m2 − λI| = 0.∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A− λIm1−1 O(m1−1)×(m2−m1) B

O(m2−m1)×(m1−1) −λIm2−m1 O(m2−m1)×K

C OK×(m2−m1) D − λIK

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

from which one immediately derives∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A− λIm1−1 B O(m1−1)×(m2−m1)

C D − λIK OK×(m2−m1)

O(m2−m1)×(m1−1) O(m2−m1)×K −λIm2−m1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Σ̂K,m1 − λIm1−1+K O(m1−1+K)×(m2−m1)

O(m2−m1)×(m1−1+K) −λIm2−m1

∣∣∣∣∣∣∣∣∣ = 0,

which is |Σ̂K,m1 − λIm1−1+K | · | − λIm2−m1 | = 0. Therefore Σ̂K,m2 and Σ̂K,m1

have the same non-zero eigenvalues. Thus v̂ does not depend on m.

Assume

á
m1 − 1 yi1

K yi2

ë
is the standardized eigenvector of Σ̂K,m1 correspond-

ing to λ̂i (i = 1, . . . , v̂). Then we have

Σ̂K,m1 ×

á
yi1

yi2

ë
=

á
A B

C D

ë
×

á
yi1

yi2

ë
=

á
Ayi1 +Byi2

Cyi1 +Dyi2

ë
=
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λ̂i

á
yi1

yi2

ë
.

Therefore Σ̂K,m2 ×


yi1

0m2−m1

yi2

 =


A O(m1−1)×(m2−m1) B

O(m2−m1)×(m1−1) O(m2−m1)×(m2−m1) O(m2−m1)×K

C OK×(m2−m1) D

×


yi1

0m2−m1

yi2

=


Ayi1 +Byi2

0m2−m1

Cyi1 +Dyi2



= λ̂i


yi1

0m2−m1

yi2

, and


yi1

0m2−m1

yi2

 is the eigenvector of Σ̂K,m2 , obviously standard-

ized. By far one can easily verify that R̂v̂ does not depend on m. At the beginning, we

proved v̂ does not depend on m. So in all, the test procedure does not depend on m.
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