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HapSolo: an optimization approach 
for removing secondary haplotigs 
during diploid genome assembly 
and scaffolding
Edwin A. Solares, Yuan Tao, Anthony D. Long and Brandon S. Gaut* 

Abstract 

Background: Despite marked recent improvements in long-read sequencing tech-
nology, the assembly of diploid genomes remains a difficult task. A major obstacle is 
distinguishing between alternative contigs that represent highly heterozygous regions. 
If primary and secondary contigs are not properly identified, the primary assembly will 
overrepresent both the size and complexity of the genome, which complicates down-
stream analysis such as scaffolding.

Results: Here we illustrate a new method, which we call HapSolo, that identifies 
secondary contigs and defines a primary assembly based on multiple pairwise contig 
alignment metrics. HapSolo evaluates candidate primary assemblies using BUSCO 
scores and then distinguishes among candidate assemblies using a cost function. 
The cost function can be defined by the user but by default considers the number of 
missing, duplicated and single BUSCO genes within the assembly. HapSolo performs 
hill climbing to minimize cost over thousands of candidate assemblies. We illustrate the 
performance of HapSolo on genome data from three species: the Chardonnay grape 
(Vitis vinifera), with a genome of 490 Mb, a mosquito (Anopheles funestus; 200 Mb) and 
the Thorny Skate (Amblyraja radiata; 2650 Mb).

Conclusions: HapSolo rapidly identified candidate assemblies that yield improve-
ments in assembly metrics, including decreased genome size and improved N50 
scores. Contig N50 scores improved by 35%, 9% and 9% for Chardonnay, mosquito and 
the thorny skate, respectively, relative to unreduced primary assemblies. The benefits 
of HapSolo were amplified by down-stream analyses, which we illustrated by scaffold-
ing with Hi-C data. We found, for example, that prior to the application of HapSolo, 
only 52% of the Chardonnay genome was captured in the largest 19 scaffolds, corre-
sponding to the number of chromosomes. After the application of HapSolo, this value 
increased to ~ 84%. The improvements for the mosquito’s largest three scaffolds, rep-
resenting the number of chromosomes, were from 61 to 86%, and the improvement 
was even more pronounced for thorny skate. We compared the scaffolding results 
to assemblies that were based on PurgeDups for identifying secondary contigs, with 
generally superior results for HapSolo.
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Background
Traditionally, reference genomes have been produced from genetic materials that sim-
plify assembly; for example, the first two plant species targeted for reference qual-
ity genomes, Arabidopsis thaliana [1] and rice (Oryza sativa) [2], were chosen in part 
because they naturally self-fertilize and are therefore highly homozygous. Other early 
genomes, such as those from Caenorhabditis elegans and Drosophila melanogaster [3, 
4], were also based on inbred, highly homozygous materials. Recent sequencing of addi-
tional model and non-model species have continued to rely on near-homozygous mate-
rials, either through inbreeding [5, 6] or by focusing on haploid tissue [7, 8].

The reliance on homozygous materials is fading rapidly, however, for at least three 
reasons. The first is that it has become clear that inbred materials can misrepresent the 
natural state of genomes. A dramatic illustration of this fact is that some lines of maize 
purged 8% of their genome in only six generations of self-fertilization [9]; more generally, 
inbred genomes tend to be smaller than those based on outbreeding species [10, 11]. The 
second is that many species of interest cannot be easily manipulated into a homozygous 
state. Many animals fall into this category, such as mosquitoes [12], as do many peren-
nial crops like grapes, which are highly heterozygous [13] and can be selfed but only with 
substantial fitness costs that limits homozygosity [14]. Finally, some important features 
and phenotypes—such as sex determination [15] and other important adaptations—can 
only be identified by analyzing heterozygous samples.

Fortunately, the resolution of highly heterozygous regions, which often contain large 
structural variants, is now possible due to improvements in sequencing technologies and 
their affordability. In theory, long-read sequencing technologies, like those from Pacific 
Biosciences and Oxford Nanopore, provide the capability to resolve distinct haplotypes 
in heterozygous regions, leading to the assembly of reference-quality diploid genomes 
[5, 16, 17]. Several genomes based on highly heterozygous materials have been published 
recently [13, 18–22], with many additional efforts ongoing.

Nevertheless, the assembly of heterozygous genomes still presents substantial chal-
lenges. One challenge is resolving distinct haplotypes in regions of high heterozygosity. 
Programs that assemble long-reads, such as FALCON and Canu [23], can fuse distinct 
haplotypes into the primary assembly. This haplotype-fusion produces genomes that 
are much larger than the expected genome size. When haplotypes are fused, either into 
the same contig or as different contigs into the primary assembly, the increased size and 
complexity of the assembly complicates down-stream approaches, such as scaffolding 
by Hi-C or optical mapping. In theory, FALCON-unzip [19] solves some problems by 
identifying alternative (or ‘secondary’) haplotigs that represent the second allele in a het-
erozygous region and then providing a primary assembly without secondary contigs.

It remains a difficult problem to identify and remove alternative contigs during assem-
bly, but there are some suggested solutions. For example, Redundans identifies second-
ary contigs via similarities between contigs [24] and removes the shorter of two contigs 
that share some pre-defined level of similarity. Another approach, PurgeHaplotigs uses 
sequence coverage as a criterion to identify regions with two haplotypes [25]. The 
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reasoning behind PurgeHaplotigs is that alternative alleles in a heterozygous region 
should have only half the raw sequence coverage of homozygous regions. Accordingly, 
the algorithm proceeds by first remapping raw reads to contigs, then flagging contigs 
with lower than expected read depth, and finally re-mapping and removing low-cov-
erage contigs from the primary haplotype-fused assembly. A more recent approach, 
implemented in the purge_dups tool [26], builds on the coverage-based approach of 
PurgeHaplotigs. Purge_dups has been compared to PurgeHaplotigs and is superior 
based on a few exemplar assemblies [26].

Here we report another strategy, which we call HapSolo, to identify and remove poten-
tial secondary haplotigs. Our approach is similar to Redundans, in that it begins with an 
all-by-all pairwise alignment among contigs and uses features of sequence alignment as 
a basis to identify potential alternative haplotigs. However, HapSolo is unique in explor-
ing the parameter space of alignment properties to optimize the primary assembly, using 
features of BUSCO scores as the optimization target. Here we detail the approach and 
implementation of HapSolo, demonstrate that it efficiently identifies primary versus sec-
ondary haplotigs and show that it improves Hi-C based scaffolding outcomes relative to 
purge_dups. HapSolo has been implemented in python and is freely available (https ://
githu b.com/esola res/HapSo lo).

Approach and implementation
Pre‑processing

Our method begins with the set of contigs from genome assembly. In theory, HapSolo 
will work for any set of contigs from any assembler and from any sequencing type (i.e., 
short-read, long-read or merged assemblies). Given the set of contigs, the first steps are 
to size sort the contigs and then to perform an all-by-all pairwise alignment among all 
contigs (Fig. 1, steps 1 and 2), using each contig as both a reference and a query. In the-
ory, pre-processing alignments can be performed with any algorithm, with the HapSolo 
implementation supporting either BLAT [27, 28] or minimap2 [29] input files.

Steps within HapSolo

HapSolo imports alignment results into a PANDAS (https ://panda s.pydat a.org/) data-
frame to form a table with rows representing pairs of aligned contigs and columns con-
taining descriptive statistics for each pairwise comparison (Fig.  1, step 3). Columns 
include the percent nucleotide identity between contigs (ID), a metric similar to those 
used in previous haplotig reduction programs; the proportion of the query contig length 
that aligns to the reference contig (Q), which is included to recognize that alignments 
can be clipped; and the ratio of the proportion of the query aligned to the reference 
relative to the proportion of the reference aligned to the query (QR). QR is considered 
because it reflects properties of aligned length and potential structural variant differ-
ences between contigs. A downside of QR is that it can reach values > 1.0, as longer var-
iants may exist in either the query or the reference, and it is also non-symmetric. To 
compensate for this we include a symmetric value, which we define as QR′ = e−log

2
(QR) . 

The four parameters—ID, Q, QR and QR′—are the basis for filtering query contigs from 
the table and defining them as putative secondary contigs. For simplicity, however, we 
will emphasize QR, because QR′ is dependent on QR.

https://github.com/esolares/HapSolo
https://github.com/esolares/HapSolo
https://pandas.pydata.org/
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In addition to the alignment table, HapSolo generates a table of BUSCO properties 
[30] for each contig. This BUSCO analysis is performed on each contig of the assem-
bly prior to running HapSolo’s reduction algorithm. To perform these analyses, con-
tigs are split into individual FAStA files and then BUSCO v3.0.2 is run on each contig 
separately so that they can be evaluated in parallel. Ultimately, the BUSCO table 
generated by HapSolo contains a list of complete (C) and fragmented (F) BUSCO 
genes for each contig. This table is integral for rapidly evaluating potential candidate 
assemblies.
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Fig. 1 A schematic showing the basic workflow and ideas behind HapSolo. The rectangles on the right 
illustrate the basic steps, including pre-processing (blue rectangles), steps within HapSolo (red rectangles) 
and post-processing (green rectangle). Some of the HapSolo steps include iterations to perform hill climbing 
calculations, as described in the text and shown by the arrow. On the left, step 1 shows the contigs from the 
primary assembly, and step 2 illustrates the all-by-all alignment of contigs. Step 3 provides examples of some 
properties of potential alignments. The metrics—ID, Q and QR—were defined to help capture some of the 
variation among these conditions. Step 4 illustrates that new primary assemblies are formed by dropping 
putative secondary contigs
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Given the alignment table and the BUSCO table, HapSolo begins by assigning thresh-
old values for ID, Q and QR, which we denote as IDT, QT and QRT. The threshold values 
can be assigned randomly, with set default values or with values defined by the user. The 
threshold values are applied to the alignment table to identify query contigs for purging. 
To be removed, a query contig must be in a pairwise alignment that satisfies three condi-
tions: (1) an ID value ≥ IDT; (2)  a Q value ≥ QT; and (3) a QR value that falls within the 
range min(QRT,QR′T) and max(QRT,QR′T). After purging query contigs, HapSolo calcu-
lates the number of Fragmented (F), Missing (M), Duplicated (D) and Single-Copy (S) 
BUSCO genes across all of the primary contigs that remain in the candidate assembly, 
based on values in the BUSCO table. It then calculates the Cost of the candidate assem-
bly as:

where θ1, θ2, θ3, and θ4 are weights that can vary between 0.0 and 1.0. Weights can be 
assigned by users; for all of our analyses below, we employ weights of 0.0 for F and 1.0 for 
M, D and S.

We then employ hill climbing to minimize Cost (Fig. 1). Once Cost is calculated with 
random starting values, IDT, QT and QRT are modified at each iteration by a randomized 
step in the positive direction, which in turn defines a new set of primary contigs for a 
new cost evaluation. The steps consist of a fixed increment, which can be set by the user 
but is set to 0.0001 by default, multiplied by a random value sampled from U(0,1). As 
such, HapSolo utilizes a randomized forward walking agent to traverse the search space. 
If Cost does not change with new parameter values for a specified number of steps or if 
parameters increase past their maximum limits of IDT = QT = 1.00, then HapSolo assigns 
new random values of IDT, QT and QRT. The process is repeated for n total iterations, 
and the iteration(s) with the smallest Cost are used to define the final set of primary con-
tigs. When there are multiple solutions that minimize Cost, we retain all unique solu-
tions; these additional solutions can be exported by the user for post-processing steps 
and evaluation. The values that determine the behavior of this minimization—e.g., the 
threshold for the number of consecutive cost plateaus, the number of x unique best can-
didate assemblies retained, the increase in step size by a fixed value, and the total num-
ber of iterations—can be set by the user.

To retain candidate assemblies with the smallest Cost, we implemented a unique prior-
ity queue (UPQ). The UPQ maintains a maximum number of x best assemblies, where 
x can be set by the user. The UPQ initially takes a list of one set of values, the score, 
primary contigs and other assembly information. The UPQ then takes the number of 
primary contigs for each of the candidate assemblies and sorts them by size. It then com-
pares only the candidate assemblies of the same size, because assemblies of unequal size 
cannot be the same assembly. Therefore our algorithm, in order to reduce the number 
of contig set comparisons, only compares contig sets of the same size. Once it is estab-
lished that the candidate assemblies of the same number of contigs are equal, only the 
candidate assembly with the lowest score is saved. The list is then sorted by score and 
returned. This allows retention of the max score of the best x number of assemblies by 
looking at the score of the last candidate assembly in the list, giving O(1) access to this 
value. Sorting takes O(x log(x)), where x is the best number of candidate assemblies to 

Cost = (θ1M+ θ2D+ θ3F)/θ4S
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return, giving our UPQ a time complexity of O(x log(x)). Since we can instantaneously 
access the worst of the x candidate assemblies, we then perform an integer comparison 
of the score of our current candidate assembly with the worst score of our best x number 
of assemblies, reducing our computational time complexity. Only assemblies with the 
same or lower scores than the worst candidate assembly are then added to our UPQ. 
This reduces our total time complexity to O(i x log(x)) where i is the number of iterations 
which produce scores lower than our max of x, and x is the number of best candidate 
assemblies to keep.

Post‑processing

Once HapSolo converges on a set (or x sets) of primary contigs that minimize Cost, the 
contig set is employed for post-processing to evaluate the candidate assembly. Specifi-
cally, we run QUAST v4.5 [31] and BUSCO 3.0.2 on the set of primary contigs that rep-
resent the best (or set of x best) candidate assemblies. QUAST measures basic genome 
assembly statistics, such as, N50, total assembly length, L50 and the largest contig size. 
Although not part of the HapSolo method, we provide scripts that run QUAST and 
BUSCO to output their results into a single score file.

Implementation and requirements

HapSolo has been implemented and optimized for Python 2.7, but it is also supported 
under Python 3. However, we recommend using Python 2.7, for faster run times. Hap-
Solo requires the input of a contig assembly (as a FAStA file), the location of a directory 
for individual contig BUSCO results, and the input of pairwise alignments. It currently 
supports either BLAT or minimap2 alignment output files (PSL or PAF or compressed 
PSL.gz or PAF.gz file).

Results
Primary assemblies

We illustrate the application and results of HapSolo on three diploid genome data sets. 
The three—including the Chardonnay grape (Vitis vinifera), the Anopheles mosquito 
(A. funestus) and the Thorny Skate (Amblyraja radiata)—represent a range of expected 
genome sizes, at 490 Mb [32], 200 Mb [20] and 2560 Mb (https ://vgp.githu b.io/genom 
eark/Ambly raja_radia ta/), respectively. The three datasets also represent a range of raw 
sequence coverage (at 58×, 240×, and 128×, respectively), and two different assem-
bly methods—i.e., a hybrid assembly for Chardonnay [13] and Falcon_Unzip for both 
mosquito [20] and thorny skate [33]. The sequencing data are based on the Pacific Bio-
sciences (PacBio) sequencing platform, but HapSolo should be applicable to any contig 
assembly drafted from any long-read assembler.

For pre-processing, we utilized pairwise alignments with BLAT and minimap2 for the 
Chardonnay and mosquito data. To limit run time, we applied BLAT to the Chardonnay 
and mosquito data without long contigs (> 10 Mb) as queries, because we reasoned that 
> 10 Mb contigs are unlikely to represent alternative haplotigs (see “Methods” section). 
These long contigs were included as references, however, so that they are represented in 

https://vgp.github.io/genomeark/Amblyraja_radiata/
https://vgp.github.io/genomeark/Amblyraja_radiata/
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pairwise alignments. We used only minimap2 for the larger skate genome, due to pro-
hibitively long run times with BLAT.

For each species, we applied HapSolo with and without hill climbing and compared 
the outcomes to the original unreduced assembly. Table 1 provides assembly statistics, 
and it illustrates improvements from the unreduced assembly, to the assembly without 
hill climbing (−HC) based on default values, and finally to the assembly with hill climb-
ing (+HC), which is based on random starting values and 50,000 iterations. Focusing 
on Chardonnay, for example, the primary contig genome size declined 13% from the 
unreduced assembly to the −HC assembly and another 5% from the −HC assembly to 
the +HC assembly. Not surprisingly, as genome size decreased, so did the number of 
contigs included in the assembly, which fell from 2072 to 1369 (−HC) to 1155 (+HC). 
Moreover, contig N50 increased by 35% from 1.066 Mb to 1.441 Mb. Similar results were 
achieved after applying HapSolo to contigs from mosquito and thorny skate (Table 1). 
For both assemblies, the number of contigs, L50 and genome size decreased, while the 
contig N50 improved by 9% for both mosquito and the thorny skate. We note, however, 
that hill climbing did not increase N50 for the mosquito assembly much beyond that 
achieved by applying HapSolo for one iteration with its default values, suggesting that 
the default values performed well by this measure with this dataset.

Although N50 did not decline for the mosquito data, our implementation of hill climb-
ing reduced Cost, as we expected, with the expected effects on BUSCO scores. Figure 2 
illustrates a sorted representation of Cost, showing that lower Costs were identified. 
The behavior of hill climbing is dependent on the assembly, starting values for the three 
parameters (IDT, QT and QRT), and the number of local minima in the Cost function. 
Nonetheless, substantial improvements occurred within the first 1000 iterations for all 
three datasets (Additional file 1: Figure S1), with only minor improvements thereafter. 
Overall, the improvement in Cost suggests value in applying hill climbing to new data 
sets, especially given that the computational requirements are minor (see below).

Table 1 Contig assembly statistics for three primary assemblies for each of three species

a Results in this column are based on the primary assembly without application of HapSolo
b Results in this column are based on application of HapSolo without hill climbing (−HC) and with default parameters of ID, 
Q and QR = 0.70
c Results in this column are based on application of HapSolo with 50,000 cycles of hill climbing (+HC)
d Results for HapSolo were generated using minimap2. Chardonnay and mosquito statistics are based on BLAT

Species Chardonnay Mosquito Thorny  Skated

Assembly 
type

No 
 HapSoloa

HapSolo 
–HCb

HapSolo 
+HCc

No 
HapSolo

HapSolo 
−HC2

HapSolo 
+HC3

No 
HapSolo

HapSolo 
−HC

HapSolo 
+HC

# of Con-
tigs

2072 1369 1155 1073 674 666 16,218 14,494 12,937

Contig 
assem-
bly size 
(Mb)

655.2 569.3 539.0 212.0 200.4 200.0 3229.4 3147.8 3031.3

Largest 
contig 
(Mb)

11.6 11.6 11.6 7.6 7.6 7.6 3.4 3.4 3.4

Contig N50 
(Mb)

1.1 1.3 1.4 0.6 0.7 0.7 0.4 0.4 0.5

Contig L50 141 106 95 86 77 77 2022 1928 1800
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Table 2 complements information about Cost by reporting BUSCO scores. HapSolo 
achieved its principal goal, which is to generally increase the representation of single 
copy (S) BUSCO genes and decrease duplicated (D) genes in reduced compared to 
unreduced assemblies. Note the differences between the −HC and +HC assemblies, 
because in some cases the −HC assembly had more single copy genes but at the cost 
of also having more duplicated genes. Thus, the +HC option can produce assemblies 
with lower Cost but with fewer BUSCO genes.

Figure  3 plots the cumulative contig assembly length for the three assemblies for 
each of the three species, and it illustrates two important points. First, HapSolo 
reduced the total assembly length primarily by removing numerous contigs of small 
size. Second, differences between the −HC and +HC reduced assemblies were more 
evident for some species (e.g., thorny skate) than for others (e.g., Chardonnay). 

Fig. 2 A graph of the sorted performance of hill climbing over 5000 iterations, with normalized Cost on 
the y-axis and the number of iterations on the x-axis. For most of our analyses with HC, we performed 5000 
iterations on each of 10 cores; here we are showing results from one core. The top right provides a graph with 
altered scale for better visualization of Chardonnay and mosquito results

Table 2 Starting and  ending BUSCO values for  the  three species for  primary contig 
assemblies

a Genome Size (GS) based on the sum of all contigs for the primary assembly
b Busco based on all contigs prior to the application of HapSolo. The three values represent the complete (C), the single (S) 
and duplicated (D) BUSCO genes

No HapSolo HapSolo (−HC) HapSolo (+HC)

Species GSa BUSCOb GS BUSCO GS BUSCO

Chardonnay 655.2 C:1357 569.3 C:1356 539.0 C:1357

S:1004 S:1152 S:1205

D:353 D:204 D:152

Mosquito 212.0 C:2640 200.4 C:2609 200.0 C:2621

S:2493 S:2548 S:2566

D:147 D:61 D:55

Thorny Skate 3229.4 C:2091 3147.8 C:2087 3031.3 C:2080

S:1651 S:1675 S:1715

D:440 D:412 D:365
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Nonetheless, when there were differences, hill climbing decreased both assembly size 
(Table 1) and Cost (Table 2).

Hi‑C scaffolding results

HapSolo focuses on the improvement of primary assemblies, but there are potential 
advantages for removing haplotigs for downstream operations like scaffolding. Failing 
to remove duplicate haplotigs can cause false joins between duplicate haplotigs or lead 
to non-parsimonious joins between duplicate haplotigs and adjacent single copy regions. 
Here we illustrate the advantage of running HapSolo on primary assemblies prior to 
Hi-C scaffolding. For these analyses, the unreduced assembly and both reduced assem-
blies (i.e., −HC and +HC) were scaffolded using the 3D-DNA pipeline [34], resulting in 
more continuous assemblies overall. We compared the improvements of the two scaf-
folded HapSolo assemblies against the unreduced scaffolded assembly (Table 3). Gains 
in improvements to the largest scaffold were clear across all assemblies relative to the 
unreduced assembly. For example, the largest scaffold increased by 1.71× (−HC) and 
1.91× (+HC) for Chardonnay and by 1.22× (−HC) and 2.18× (+HC) for mosquito 
(Table 3).

Figure  4 illustrates the distribution of scaffolds for each of the three species under 
various HapSolo implementations. For each scaffold we measured the proportion of the 
genome that was contained in the k largest scaffolds, where k is the haploid number of 
chromosomes for each species. For example, Chardonnay has 19 chromosomes, and the 
19 largest scaffolds based on the unreduced assembly represented 52% of the genome 
size. Following HapSolo haplotig reduction, the largest 19 scaffolds encompassed up to 
93% of the total expected genome size of 490 Mb. Similar improvements were identified 
for the two other species, with mosquito improving from 61.9 to 85.7% and thorny skate 
from 31.5 to 106.3%. The observation that  106.3% of the thorny skate is contained in the 
largest k scaffolds indicates that the expected genome size is incorrect or that there is a 
need for additional purging of haplotigs.

HapSolo scaffolded assemblies were always demonstrably superior to the unreduced 
scaffolded assemblies for all three species, but the additional value of hill climbing var-
ied among datasets.  The value of hill climbing was clear for the mosquito, where the 
first 3 scaffolds (representing k = 3 chromosomes) represented ~ 68% of genome with 

Chardonnay

A
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bl

y 
S
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e 

(M
b)

HapSolo Contig Cumulative Length Graph
Mosquito Thorny Skate

ca b

Fig. 3 The cumulative assembly size (cdf ) based on contigs. For Chardonnay (a) and mosquito (b), the five 
lines depict: an unreduced assembly (-HapSolo −HC), HapSolo applied with default parameter values and 
no hill climbing (+HapSolo −HC) using BLAT or minimap2 (+Hap Solo +MM2 −HC), HapSolo with random 
starting values and 50,000 iterations of hill climbing using BLAT (+HapSolo +HC) or minimap2 (+HapSolo 
+MM2 +HC). For thorny skate (c), three analyses were performed: an unreduced assembly (-HapSolo −HC) 
and Hapsolo analyses based on minimaps 2 pairwise alignment with and without hillclimbing
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scaffolded −HC assembly versus 86% for the +HC reduced assembly. In contrast, hill 
climbing produced a disadvantage for Chardonnay (k = 19, 92.6% −HC vs. 88.0% +HC) 
and only a small improvement for thorny skate (k = 49, 104.7% −HC vs. 106.3% +HC). 
This being said, our metric based on the proportion of the genome in the k largest scaf-
folds is imperfect. For example, something as simple as a single split chromosome rep-
resenting two metacentric arms could have a large effect on the metric. We therefore 
also examined other metrics, like the percentage of the genome encompassed in > 10 Mb 
scaffolds and the longest scaffold. The largest differences were again due to application 
of HapSolo, with sometimes  relatively minor differences associated with hill climbing 
(Table 3).

Finally, we focused on results based on comparing the two pre-processing alignment 
algorithms, BLAT and minimap2. We applied both algorithms to Chardonnay and mos-
quito. For mosquito, the results were similar with either aligner, but the BLAT results 
were markedly superior for Chardonnay (Figs. 3, 4). We do not know the cause of the 
discrepancy with Chardonnay, but we note that it is a genome that contains extensive 
structural variation between haplotypes, such that ~ 15% of genes are estimated to be 
in a hemizygous state [13]. We suspect that minimap2 often failed to extend alignments 
beyond large insertion and deletion events, even though we applied it with low gap and 
extension penalties substantially (see “Methods” section). Minimap2 is, however, highly 
preferable for run times, and it can be applied easily to gigabase-scale genomes like 
thorny skate.

Table 3 Scaffolded assembly statistics after Hi-C analysis on HapSolo assemblies, for three 
primary assemblies for each of three species

a Results in this column were based on the primary assembly without application of HapSolo
b Results in this column were based on application of HapSolo without hill climbing (−HC) and default parameters of ID, Q 
and QR
c Results in this column were based on application of HapSolo with 50,000 cycles of hill climbing (+HC)
d Percentage of genome in the largest k scaffolds, where k is equal to the number of chromosomes expected for each 
species
e Percentages normalized using expected genome sizes of 490 Mb, 200 Mb and 2560 Mb for chardonnay, mosquito and 
thorny skate respectively
f Results for HapSolo were generated using minimap2

Species Chardonnay Mosquito Thorny  Skatef

Assembly type No 
 HapSoloa

HapSolo 
−HCb

HapSolo  
+HCc

No 
HapSolo

HapSolo 
−HC

HapSolo  
+HC

No 
HapSolo

HapSolo 
−HC

HapSolo  
+HC

# of Scaffolds 1332 2748 2403 1211 603 611 14,238 12,269 10,009

% of Genome 
in k largest 
 scaffoldsd,e

52.0% 89.0% 84.0% 61.9% 68.3% 85.7% 31.5% 104.7% 106.3%

% of Genome 
in Scaf-
folds > 10Mbe

44.0% 94.0% 94.0% 93.5% 94.7% 94.1% 40.4% 103.3% 105.5%

Scaffold assem-
bly size (Mb)

656.1 570.4 540.1 212.5 200.8 200.3 3240 3158 3039

Largest scaffold 
(Mb)

19.1 32.6 36.5 43.6 53.0 95.0 170.0 208.4 250.5

Scaffold N50 
(Mb)

7.2 23.5 20.7 37.9 41.5 41.6 62.1 65.5 69.8

Scaffold L50 28 11 11 3 3 2 16 35 13
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Comparing HapSolo to an alternative method

Other algorithms have been devised to identify and remove alternative haplotigs [24, 
26, 32]. In the publication of purge_dups, Guan et al. [26] compared its performance to 
PurgeHaplotigs and found it to be generally superior. We compared HapSolo to purge_
dups, focusing on scaffolding results after Hi-C analysis. Figure 4 indicates that HapSolo 
generally led to better scaffolded assemblies than purge_dups, but with some caveats. 
For example, the HapSolo-based Chardonnay assembly was superior to the purge_dups 
assembly when BLAT was used to perform pre-processing. In this case, the percentage 
of the genome with > 10 Mb scaffolds was 97.7% for HapSolo versus 67.4% purge_dups, 

Thorny Skate

HapSolo Scaffold Cumulative Length Graph
Chardonnay

Mosquito

a

b

c

Fig. 4 The cumulative assembly size (cdf ) based on scaffolds for a different species in each row. The three 
rows represent analyses based on Chardonnay (a), mosquito (b) and thorny skate (c) data. There are two 
graphs for each species; the one on the left focuses on the chromosome length scaffold portion of the 
assembly (number of scaffolds), while the one on the right is the complete assembly on a  log10 (number 
of scaffolds) scale. Each graph for Chardonnay and mosquito have five lines and follow the key provided in 
the right-hand graph in panel B for mosquito. The analyses are scaffolded genome based on purge_dups 
(purge_dups + HiC), the unreduced assembly (-HapSolo −HC  +HiC), scaffold based on the HapSolo reduced 
assembly with BLAT preprocessing and without hill climbing (+HapSolo −HC  +HiC), and the scaffold based 
on the HapSolo reduced assembly with BLAT preprocessing and with hill climbing (+HapSolo +HC +HiC) 
and, finally, HapSolo reduced assembly with hill climbing using minimap2 (+HapSolo +MM2 +HC +HiC). In 
all graphs, the dotted line indicates the number of chromosomes for the species. c Reports results for thorny 
skate, which did not include BLAT processing. The HapSolo analyses are based on minimap2 alignments and 
presented with (+HC) and without (−HC) hillclimbing
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with a 32% improvement in largest scaffold (Table 4). However, purge_dups performed 
similarly to HapSolo for Chardonnay when pairwise alignments were based on mini-
map2 (Fig.  4). For mosquito, purge_dups performed more poorly than HapSolo with 
either pre-processing aligner, as long as hill climbing was included in HapSolo analysis. 
Finally, for the larger thorny skate genome, HapSolo with hill climbing outperformed 
purge_dups (Fig.  4), resulting in a higher proportion of genomes in k scaffolds, more 
large (> 10 Mb) scaffolds, and a 26% larger ‘largest scaffold’ (Table 4). Overall, HapSolo 
performed as well or better than purge_dups, based on the three exemplar datasets.

Applying HapSolo to a genome with low heterozygosity

HapSolo was designed to address a specific problem: the assembly of highly heterozy-
gous genomes with divergent haplotigs. We chose our three exemplars to represent the 
problem. But how does HapSolo perform on less heterozygous genomes? We applied 
HapSolo to the mouse, Peromyscus leucopus, a mammalian genome from a single dip-
loid individual with low (0.33%) heterozygosity [35]. In samples with low heterozygo-
sity, alternative haplotigs are less likely to exist, and hence we expect fewer benefits with 
the application of HapSolo. Indeed, we found no benefit. Comparing results between 
the reference assembly and the HapSolo assembly (with minimap 2 and hill climbing), 
we found similar proportions of the genome encompassed in 10  Mb scaffolds (96.8% 
vs. 95.7%) and a substantially smaller proportion of the genome encompassed in k = 24 
chromosomes (88.5% vs. 71.1%) (Additional file 1: Table S1). The HapSolo assembly was, 
however, largely contiguous with the reference assembly (Additional file 1: Figure S2). 
Interestingly, purge_dups did not find any alternative contigs on this assembly and ulti-
mately failed with an error, so we are unable to compare its performance.

Table 4 A comparison of  scaffolded assemblies after  Hi-C analysis, based on  HapSolo 
and purge_dups primary assemblies

a Data for HapSolo are based on BLAT alignments for Chardonnay and mosquito, and minimap2 alignments for thorny skate
b Results in the +HC columns are based on application of HapSolo with 50,000 cycles of hill climbing (+HC)
c Percentage of genome in the largest k scaffolds, where k is equal to the number of chromosomes expected for each 
species. Percentages are normalized using expected genome sizes of 490 Mb, 200 Mb and 2560 Mb for Chardonnay, 
mosquito and thorny skate respectively
d Percentages normalized using expected genome sizes of 490 Mb, 200 Mb and 2560 Mb for chardonnay, mosquito and 
thorny skate respectively
e Results for HapSolo were generated using minimap2

Speciesa Chardonnay Mosquito Thorny Skate

Assembly type HapSolo +HCb purge_dups HapSolo +HC purge_dups HapSolo +HCe purge_dups

# of Scaffolds 2403 294 611 635 10,009 1534

% of Genome 
in k largest 
 scaffoldsc

88.0% 58.5% 85.7% 83.7% 106.3% 86.8%

% of Genome 
in scaf-
folds  > 10Md

97.7% 67.4% 94.1% 92.7% 105.6% 86.0%

Scaffold assembly 
size (Mb)

540.1 470.4 200.4 200.3 3039.3 2251.4

Largest scaffold 
(Mb)

36.5 24.9 95.0 74.1 250.5 184.1

Scaffold N50 (Mb) 20.7 12.7 41.6 51.2 69.8 61.7

Scaffold L50 11 15 2 2 13 11
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In addition to the low heterozygosity, the P. leucopus genome has a low percentage 
of duplicated BUSCOs relative to the complete set of BUSCOs, at 2.1% (Additional 
file 1: Table S1). In contrast, Chardonnay, mosquito and thorny skate have 26.0%, 5.5% 
and 21.0%, respectively (Table 2). Perhaps unsurprisingly, given this statistic, mosquito 
exhibits the least dramatic improvements in assembly statistics after application of Hap-
Solo (Table 3). These observations suggest that there are lower limits at which HapSolo 
becomes ineffective and perhaps even detrimental. Based on the data we have analyzed, 
we suggest that ~ 5% may be a lower limit for the proportion of duplicated BUSCOs. 
Heterozygosity is likely to define another lower limit. Given that heterozygosity is 0.33% 
for P. leucopus, we expect that HapSolo will not be useful for the assembly of human 
genomes, because species-wide human heterozygosity is 0.05% [36]. Our results none-
theless suggest that HapSolo is likely to be a helpful tool for assemblies with a high num-
ber of duplicate BUSCOs.

Execution time and memory efficiency

To measure runtime, HapSolo was run on dual CPU Intel E5-2696 V2 nodes containing 
512 GB of RAM and storage attached via a 40Gbe Infiniband connection. CPU runtime 
depends on the number of iterations, but it is also dependent on the data and parameter 
values. We measured runtime across the datasets, measuring different configurations in 
terms of the number of cores and the number of iterations per core (Additional file 1: 
Table S2). Under the conditions we used for empirical data (i.e., hill climbing on 10 cores 
with 5000 iterations per core), the total time was < 10  min for both Chardonnay and 
mosquito but substantially longer at 13 h and 45 min for the much larger thorny skate. 
Note that memory usage was dependent on the size of the alignment file and independ-
ent of the number of iterations, because HapSolo stores alignments in memory for rapid 
filtering at each step during hill climbing. Nonetheless, the memory and speed require-
ments are such that HapSolo can be run on a laptop or desktop computer.

Discussion
We have presented an implementation, HapSolo, that is focused on improving primary 
assemblies by removing alternative haplotigs. In theory, the HapSolo package can be 
applied to any set of contigs from any assembly algorithm. The approach implemented 
in HapSolo is intended to replace laborious manual curation [37], and it follows some of 
the logic of existing programs, like Redundans [24], PurgeHaplotigs [25] and purge_dups 
[26]. However, HapSolo differs from competing programs by at least three features. First, 
it utilizes multiple alignment metrics, so that it is not reliant only on percent identity 
(ID). The goal of these multiple metrics is to better discriminate among some situations 
that may yield high identity scores but nevertheless lead to the retention of different 
contigs in the primary assembly (Fig. 1). Second, when the hill climbing option is uti-
lized, HapSolo relies on a maximization scheme based on BUSCO values. The under-
lying assumption is that maximizing the number of single-copy BUSCOs establishes 
more complete and less repetitive genomes. We emphasize that this is an assumption 
common to the genomics community, because most new genomes are reported with 
BUSCO scores to reflect their completeness and quality. Third, an important feature of 
HapSolo is the ability to modify the Cost function, so that the user may choose to weigh 
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duplicated BUSCO genes less heavily or perhaps even ignore them altogether. This flex-
ibility may prove useful for some applications. For example, it may be useful to ignore 
costs related to duplicated BUSCO genes when assembling polyploid genomes and 
instead focus only on complete and fragmented genes.

We have illustrated some of the performance features of HapSolo by applying it to data 
from three species that differ in genome size and complexity: Chardonnay grape, a mos-
quito, and the thorny skate. The common feature of these species is that diploid assembly 
is necessary. For all three species, we compared the unreduced primary assembly to two 
HapSolo assemblies, one that used default values (−HC) and one that used hill climb-
ing minimization (+HC). Both HapSolo assemblies reduced genome size and markedly 
improved standard statistics like N50 (Table 1 and Fig. 3). The +HC contig assembly was 
generally better than the −HC assembly, but not always; the most substantial differences 
occurred between the unreduced assembly and either of the two HapSolo assemblies.

Our reduced assemblies scaffolded faster than unreduced assemblies and also led 
to more contiguous genomes. For each of our three species, the cumulative genome 
length associated with first k scaffolds (where k is the chromosome number) was much 
larger based on reduced vs. unreduced assemblies. The percentage of the genome con-
tained in chromosome length scaffolds increased by at least 25% (Table 3). We conclude 
that in highly heterozygous samples that potentially have a large number of alterna-
tive haplotigs, some reduction step is critical for curating a primary assembly and for 
downstream scaffolding. This is true even when the primary assemblies are from FAL-
CON_Unzip [19] which has already (in theory but perhaps not always in practice) iden-
tified secondary haplotigs. We further advocate for the use of the hill climbing feature 
in HapSolo, because the computational cost is relatively small but the gains can be large 
(Fig. 3). Finally, we find that BLAT tends to outperform minimap2 as the pre-processing 
aligner and advocate for its use. However, it can be time prohibitive on large genomes, 
and hence HapSolo includes support for minimap2.

Conclusions
Based on the data in this paper, HapSolo generally led to similar or better outcomes than 
purge_dups [26], another recently published method to identify and remove haplotigs. 
That is not to say, however, that HapSolo cannot be improved. We can see three obvious 
areas for future growth. The first is to consider coverage statistics, which represents a 
point of departure between our approach and that of both Purge Haplotigs and purge_
dups. We predict, but do not yet know, that the inclusion of coverage with our existing 
alignment statistics could lead to more accurate inferences. A second area of improve-
ment may be to implement alternative maximization algorithms, such as simulated 
annealing. Finally, it may also be possible to include additional features in the calcula-
tions of Cost. Our present reliance on BUSCOs has the advantages of speed and wide 
acceptance in the genomics community. However, depending on the initial assembly, it 
is likely that some contigs do not contain a BUSCO gene, are therefore not considered 
in Cost and do not form the approximation of threshold parameters (IDT, QT and QRT). 
It is not yet clear what additional features could be included in the Cost function, but 
identifying contigs containing an over-representation of shared k-mers is one possibility.
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Methods
Species and data

The data for the assemblies for V. vinifera (cultivar Chardonnay) [13], A. funestus 
(mosquito) [20], and A. radiata (thorny skate) [33] were downloaded from public 
databases (see Data Availability). As mentioned, the contig assemblies were based on 
PacBio data. The chromosome number for each species was found in various sources 
[20, 33, 38]. The P. leucopus data were published in [35].

Pre‑processing

For each genome, pre-processing prior to application of HapSolo consisted of all-by-
all pairwise contig alignments, as described above. For this study, we used BLAT v35 
[28] and minimap2 [29]. BLAT was run with default options after the reference was 
compressed into 2 bit format, and it was run using each contig as a separate query to 
reduce run time. Although not technically a feature of HapSolo, our github release 
provides a script to run Blat v35 [28] using this parallel approach. After running on 
individual contigs, the resulting PSL files were concatenated into a single PSL file for 
input into HapSolo. Minimap2 was used to compare feasibility and results between 
aligners; it was employed with the options “ -P -k19 -w2 -A1 -B2 -O1,6 -E2,1 -s200 
-z200 -N50 -min-occ-floor = 100”.

Assemblies, Hi‑C data and scaffolding

HapSolo was applied to with default parameters of 0.70 for  IDT,  QT and  QRT; hill 
climbing started with random values of  IDT,  QT and  QRT and then minimized Cost 
using hill climbing over 50,000 iterations. In HapSolo, BUSCO is run in geno mode on 
each contig using the orthoDB9 datasets and the AUGUSTUS species option. BUSCO 
v.3.0.2 relies on BLAST v.2.2.31+, AUGUSTUS v3.3, and BRAKER v1.9.

We obtained short-read Hi-C data from online public databases for scaffolding [13, 
20] (see Data Availability). The Hi-C sequencing data were mapped to their respective 
assemblies using BWA [28]. The scaffolding of raw assembly and HapSolo processed 
assemblies were processed with the 3D de novo assembly pipeline v180419 [39], avail-
able from https ://githu b.com/theai denla b/3d-dna/. We ran QUAST v4.5 [31] for our 
post processing example and to assess performance during program development. 
For Fig.  2 and Additional file  1: Figure S1, the normalized value was calculated by 
first subtracting the minimum observed Cost min(Cost) from the observed Cost. The 
numerator [Cost-min(Cost)] was then divided by [max(Cost)-min(Cost)].

Computational resources and processing

For runtime analyses, HapSolo was run on dual CPU Intel E5-2696 V2 Nodes contain-
ing 512 GB of RAM. The Blat, minimap2 and BUSCO pre-processing steps were run on 
these same nodes, but also one the UC Irvine High Performance Computing Cluster, 
Extreme Science and Engineering Discovery Environment [40], San Diego Supercom-
puter Center Comet [41] and Pittsburgh Supercomputing Center Bridges [42] clusters.

https://github.com/theaidenlab/3d-dna/
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