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ABSTRACT OF THE DISSERTATION

Countering financially-motivated malicious actors on the Internet

by

Michael Joseph DeBlasio

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Alex C. Snoeren, Chair

Fraud, theft and other abuses are unfortunate realities of the modern Internet. While

defenders work to stop these bad things from happening, attackers are constantly evolving to

try to stay one step ahead. Experience shows that not all attacks can be prevented, so defenders

must also work to detect ongoing attacks quickly to contain the inevitable damage.

As attacks evolve, detecting them requires new methods. A challenge remains on how

to efficiently develop these new methods across the diverse threat landscape given that attack

methods vary widely, and most current systems to detect attacks are deeply domain-specific

and hard to generalize. Despite first appearances, however, many attacks do have something

important in common: their underlying motivations.
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These common motivations can help guide the development of new detection and mit-

igation methods, regardless of how the attack is ultimately carried out. For financially-driven

malicious actors in particular, there is an inherent tension in evading detection: the better they

maintain their illusions, the more effectively they can monetize their attack, but good evasion

is expensive and cuts into the attacker’s profit. As such, attackers construct illusions that are

good enough only to counter expected defenses, rather than blend in perfectly. Understanding

these incentives and constraints guides us not only to identify what attackers may target, but also

where they are most likely to leave themselves unprotected.

In this dissertation, I demonstrate the value and applicability of this approach in three

vastly different environments. I use it to detect web site compromise at scale by leveraging the

incentive to perform password re-use attacks, to mitigate fraud on search engine advertising

by eliminating verticals where fraudsters are forced to congregate, and to identify deceptive

commercial VPN providers by identifying when providers strategically deceive users in what

vantage points they offer. In each case, understanding where malicious actors would not or

could not effectively mask their activity yields concrete techniques to detect and mitigate their

malicious activity.
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Chapter 1

Introduction

Theft, fraud and other crime are timeless problems, and while the methods people use

to interact have changed, this fundamental truth still holds on the Internet today. Defenders

constantly work to stop malicious actors, and so those actors necessarily change their methods to

stay one step ahead. Defending against attacks in this ecosystem is hard—while defenses are

essential in preventing and slowing attacks, experience shows that attacks can not be stamped

out entirely, and indeed successful attacks are still commonplace. Defenders must then do their

best to contain the inevitable damage.

While not all malicious activity fits this model, many malicious actors aim to remain

completely under the radar during and after their attacks. Fraudsters abusing a service—like

Twitter trolls or deceptive advertisers—are able to continue their abuse with impunity as long as

they are not kicked off of the platform. Many types of stolen data—such as credit cards—lose

their value once victims know that their information is exposed. Malicious actors with a public

presence—like a purported news organization—lose much of their influence once their malicious

activity is identified publicly. Detection reduces the value the malicious actors can extract from

their malicious activity, and correspondingly, reduces the damage to the victims.

To enable early detection of malicious activity, defenders must identify small tells that

belie the attacker’s true intentions from their earliest actions. Significant work has gone into

developing tools that aim to provide this early detection [31, 100], but while these systems help,

1



they are often deeply domain-specific. It is difficult to generalize detection methods because

mechanisms of attack vary so widely, and different attacks seem to lack commonalities in how

they work. For instance, techniques to detect unexpected activity on a corporate network appear

to have little in common with techniques to detect fraudulent activity on stolen credit cards,

which traditionally share little in common with methods to identify fake accounts on a web

service.

Despite appearances, these attacks do have commonalities; rather than sharing similar

mechanisms, however, many attacks share similar underlying motives. In this dissertation, I

advocate for a strategy to guide development of methods to detect and prevent fraud, abuse and

other attacks based on an understanding of the common attacker motives. By focusing on these

commonalities, strategies can apply widely across any malicious activities that share the same

fundamental motives, and can remain usable regardless of who the malicious actor is.

In this dissertation, I show that identifying and understanding the constraints under which

malicious actors operate can guide defenders in identifying leads on where attackers would

not—or cannot—invest enough time or money to evade detection. No single approach can detect

or prevent all fraud, but this approach can help provide meaningful tools to mitigate significant

previously-undetected attacks across a wide range of environments.

This dissertation focuses on the subset of malicious actors that are driven by financial

incentives—that is, those that want to make money. These actors are unified by their need not just

to succeed in their malicious activity, but to do so profitably: the revenue gained from monetizing

the activity must exceed all associated costs with it, including that of staying undetected.

Efforts to stay undetected can take many forms. Malicious actors may take additional

action to act like authentic users and thus build up their disguise, or they may artificially slow or

restrict their behavior to avoid suspicion. Malicious actors may also need to cover their tracks by

deleting log files or otherwise destroying evidence. Finally, malicious actors must be cautious in

how they implicitly announce their attacks, for instance in limiting how they sell the fruits of

their labor. These methods collectively construct illusions of legitimacy to aid in staying under
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the radar.

There is an inherent tension for malicious actors in constructing and maintaining these

illusions: doing so can be costly, and cut into their profit. As such, like magicians, attackers

must instead ensure their illusions look perfect from the audience’s perspective, but need not

ensure that the illusions work well from other angles. Perfecting illusions from all angles may be

difficult, or even impossible.

Put succinctly, while each ecosystem is different, financially driven malicious actors

wishing to remain undetected operate under the mixed incentives of maintaining the illusion of

legitimacy and maximizing profit of the attack. In this dissertation, I show that these trade-offs

lead to imperfect illusions that can be systematically exploited to detect or mitigate the malicious

behavior. I demonstrate this approach’s feasibility by showing that it works across a wide variety

of scenarios: when the adversary is an external attacker stealing information from a service,

when the adversary is a fraudulent user of a service, and even when the adversary is a fraudulent

service itself.

1.1 Understanding attacker motivation

While malicious activity can take a variety of forms, many malicious actors are driven by

a relatively small number of motivations. A few common motivations are worth briefly exploring

on their own to provide context on why this dissertation focuses on those wanting to make

money.

Some malicious actors are driven by external, state-sponsored motivators like espionage

or cyberwarfare to meet strategic national objectives. In 2016, for example, attackers affiliated

with the Russian government targeted several US political organizations including the Democratic

National Committee and presidential campaign of Hillary Clinton [81]. In other instances, North

Korean hackers reportedly tried to steal billions of dollars from the New York Federal Reserve,

and may have successfully stolen at least $81 million [85, 84]. Detecting these actors can be
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challenging because they may bring substantial financial and technical resources to bear to evade

defenders, and may lack the constraints that other attackers may work under.

Other malicious actors are driven by fame, revenge, politics, or fun. As an example,

Anonymous, a group of vigilante hackers, is notorious for defacing websites of their enemies,

from ISIS to members of Congress [82, 128, 64]. In several other recent incidents, online gamers

will spoof phone calls to 911-operators, claiming that a violent situation requiring a SWAT team

is in progress at their victim’s location. This form of online harassment to punish the enemies of

the attackers can even result in accidental death [129]. Across many of these attacks, detection

is an expected outcome, and may indeed be the point. While these actors also have constraints

under which they operate, those constraints are not as clear cut as our next group of actors.

Finally, many malicious actors on the Internet, and the focus of this dissertation, are

financially driven. These malicious actors want to make money, and attacking users or services

serves that end. Examples of these actors are easy to find—for example, most Internet users

are familiar with email spam attempting to sell pharmaceuticals. In another example, Dropbox

experienced a breach of 68 million sets of user credentials in 2012 which later turned up for sale

on underground markets [127]. A common form of malware is ransomware, which encrypts all

files on a computer before demanding payment to decrypt them [22]. Services exist online to

perform distributed denial of service attacks on the target of your choice for a fee [21]. Across

these cases, the attackers’ goal is to make money, and ultimately if the actors are unable to do so,

they will go elsewhere [67]. These constraints provide an opportunity for defenders to get insight

into how attackers think about a problem, which in turn dictates how the attackers will act.

It can at first glance be challenging to understand how an attacker can monetize the fruits

of all attacks. When credit card information is stolen, making money may appear straightforward,

but what about when, for instance, an attacker generates hundreds of accounts on a service?

In these cases, stolen resources may be used to facilitate additional attacks. The modern

cybercriminal ecosystem streamlines this process by commodifying the resources used in cyber

attacks. In so doing, an attacker can specialize and focus on what they are good at (e.g. phishing,
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or attacking a particular system or a service), and rely on the secondary market to turn the stolen

resource into cash [43, 77, 78]. The attackers in the Dropbox breach, for instance, did not have

to use the stolen credentials themselves, but could instead directly sell those usernames and

passwords to someone else. In another recent example, an attacker stole plans for a military

drone and put them up for sale on underground markets [19], which allowed the attacker to focus

on the initial attack, rather than knowing how to use the drone plans themselves.

Understanding these motivations of financially driven attackers can lead to insights into

how to counter malicious activity, but it is still important to understand the technical details of

how a malicious actor does what they do. In later chapters of this dissertation, I explore several

specific problem spaces in detail and discuss the mechanisms that malicious actors use in each

case.

1.2 Context

This dissertation is far from the first work to attempt to detect attacks as they occur, nor

is it the first to consider attacker incentives for financial constraints. Understanding how this

approach differs from past work helps to contextualize why this perspective is unique. Much of

the preceding work focuses on particular problem domains and builds systems to address those

needs, for instance in network intrusion detection systems [31, 100]. The technique described in

this dissertation is general, and can be more widely applied.

Much work has been done in detection and mitigation specifically focusing on the

cybercrime ecosystem. For instance, Levchenko et al. [61] present a thorough analysis of the

entire “spam value chain” to identify what interventions might be most effective in combating

spam. They identify bottlenecks wherein some 95% of spammers used just a handful of banks to

process their payments, and that switching banks was an expensive and time-consuming process

for spammers. In so doing, their work suggests that aggressively pursuing cleaning up these

banks could uniquely hinder the profitability of the entire spam ecosystem. This dissertation aims
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to continue this style of financially-driven analysis and generalize it into a strategy for identifying

and combating malicious behavior in the general case. Several other efforts [29, 106, 108] have

investigated other aspects and angles of the underground ecosystems themselves.

In another work, Thomas et al. [109] analyzed the underground market for Twitter

accounts by targeted purchasing of thousands of accounts for sale online. These accounts were

then subsequently used to create a classifier to detect all such fraudulently created accounts on

the platform. This paper fits quite well within the work of this dissertation in that those malicious

actors chose to advertise their product widely (in hopes of increasing sales volume), and in so

doing, facilitated Twitter’s own detection and mitigation mechanisms.

1.3 A widely applicable approach

An advantage of the approach described throughout this dissertation is not just that it

applies across types of attacks, but also that it guides defenders no matter from where an attacker

attacks or where a defender tries to counter that attack. While there are exceptions, for our

purposes it is useful to think of the Internet as being a series of discrete services in which users

interact directly with each service. Interaction between users is indirect, and only as facilitated by

the service. In a social network, for instance, users log on to a web service, posting content via

that service’s website in order to interact with other users. In this model, attackers and defenders

can fulfill any of the roles of user, service, or third-party. In each of the following three chapters

of this dissertation, I explore a distinct problem area where the attackers and defenders assume

varying roles. In each case, I demonstrate the value of the approach as a whole, and identify

instances where the attacker’s carefully-crafted illusions break down, and where defenders can

leverage the differences to counter the malicious actors.

In Chapter 2, I describe a system I developed called Tripwire that allows identification

of when web services have their user databases exposed to a third party. This approach puts

few constraints on how attackers compromise a site, and can be used by the service provider,
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users or even as a third party. This method scales well to a large number of services, has no false

positives, and requires no coordination with the services under test. I do this by recognizing the

financial incentive for the attacker to perform password reuse attacks. By setting up our own

honeyaccounts, we detect password reuse attacks and infer when a site is breached. I describe

my proof of concept implementation that detects several unknown compromises on sites large

and small.

Chapter 3 describes an investigation on fraud data of search advertisements on Bing

Search from the perspective of the service itself. Advertisers on the platform are users of Bing’s

advertising service, creating ads that run alongside results on Bing web search. Fraudulent

advertisers use the prominent placement of their ads to lend an air of legitimacy, and to promote

traffic to deceptive or fraudulent sites. While these advertisers spend significant effort to blend

in with legitimate advertisers (e.g. by choosing bidding behavior that matches non-fraudulent

advertisers’ median bidding behavior), I identify several significant behavioral differences

between non-fraudulent and fraudulent advertisers that the ecosystem forces fraudsters to adhere

to if they want to make money. Most notably, advertisers are largely centralized among a few

highly-fraudulent verticals, which Bing can target to aggressively reduce fraud on the platform.

Chapter 4 applies this same methodology to the area of malicious service providers. This

study systematically evaluates commercial VPN providers’ offerings for evidence of deceptive

and fraudulent advertising as well as traffic monitoring and manipulation. By recognizing that

the dynamics of making money as a VPN service provider strongly incentivize lying about

what countries the VPN provider offers servers in, I develop a signal that identifies when these

providers deceive their customers into buying a product quite different from promised.

In Chapter 5, I conclude by summarizing the contributions of the dissertation then briefly

discuss the limitations of the framework and where future work may be able to expand or refine

the approach.
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Chapter 2

Inferring site compromise with Tripwire

In this chapter, we apply our method for developing detection strategies to the common

problem of web service compromise. We provide an effective detection method that puts no

restrictions on how the attacker compromises a web service. Further, the method can similarly be

used by the web service, users, or even by third parties. In web service compromise, the attacker

typically takes control of or extracts valuable user information from the service by exploiting

a bug in the website’s code. Whether email, social networks, or e-commerce platforms, web

services contain valuable user information. In this chapter, we describe a technique for inferring

the occurrence of such compromises by leveraging the very financial incentives the attacker uses

to monetize the compromise. In particular, we focus on a monetization vector which is too sweet

for attackers to ignore, but which leaves the attacker open to detection if used: password reuse

attacks.

2.1 Introduction

While there are a range of deleterious effects that can occur as a result of site compromise,

one of the most pernicious arises from the confluence of data breaches and password reuse. In

password reuse attacks, a site is compromised such that all of its accounts and passwords (or,

more commonly, password hashes) are exposed. Then, the attacker leverages this information

to access other accounts a user has using the same credentials on another site. This situation is
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exacerbated by the widespread use of email address as a user’s standard username [12, 39, 110].

In one recent study, Das et al. estimated that over 40% of users reuse passwords [24] and our own

anecdotal experience with stolen bulk account data suggests that up to 20% of stolen credentials

may share a password with their primary email account.

Opportunities for such attacks abound, with reports of data breaches now commonplace:

in 2016 alone, reports surfaced of 117 million account credentials stolen from LinkedIn [1] and

360 million from Myspace [6]. In 2014, Hold Security reported obtaining credentials for more

than a billion users from breaches on several Internet services [92]. Indeed, the market for stolen

credentials is thriving, with credentials being sold in bulk for under a penny a piece [108]. The

value of these credentials lies in their ability to be used across sites, enabling account compromise

at sites otherwise wholly unaffected by the unrelated original site’s compromise.

One of the most sensitive and important account credentials targeted are those associated

with major email providers (e.g., Gmail, Live/Hotmail, Yahoo, etc.). In modern usage it is

these accounts that are the foundation for one’s Internet footprint. In particular, online services

commonly require an email address to register, to reconfirm accounts, to communicate key

information and to reset or recover passwords. Thus, access to someone’s email account can

be sufficient to gain access to a broad array of other services as well. Only one major email

provider has had a public breach to date (Yahoo, in late 2014 [86]), but despite this, individual

email accounts are routinely compromised en masse and widely available for sale in underground

marketplaces, undoubtedly in large part due to password reuse.

Unfortunately, mitigating the password reuse problem is not easy. While it can be

prevented with the use of password managers and two-factor authentication, adoption requires

mass changes in user behavior that have proved difficult to achieve. Absent these changes, most

providers behave reactively: once it becomes known that a site is compromised, the operators of

the compromised site commonly reset the accounts of their users. A reset acts to protect that

initially compromised site, but does nothing to protect users accounts at other sites. To mitigate

this risk, some large service providers will reset or lock down the accounts of their customers
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known to have accounts with a compromised site (on the presumption of password reuse).

Even these imperfect responses are predicated on companies knowing of the compromise

occurring and then acting on that information. In many cases such compromises may never be

discovered, let alone become public. Small sites may lack the staff and instrumentation to detect

compromises and even large, well-managed sites have no easy way to identify the source of a

breach when their accounts are compromised via password reuse. Even when a service knows

that it has been compromised, companies may choose not to inform their users of the breach

for political or business reasons [83]. Further, attackers themselves are incentivized to be quiet

about successful breaches: if the breach is known publicly, users and service providers can take

steps to mitigate the effects, thus devaluing the attacker’s cache of credentials.

Given this reality, a critical issue is being able to determine when credential breaches

occur in the first place. In this chapter we describe a technique for inferring the occurrence of

such breaches (both large and small) without requiring any special access to Internet sites or

their hosting infrastructure. Our measurement approach detects site compromises externally

by exploiting precisely the attacker’s interest in the password reuse vector. In particular, by

registering honey accounts at Internet sites using unique email addresses, we place our own

accounts at risk, indistinguishable from any other user’s account at each site under observation.

By further arranging that each of these accounts shares a unique password with its corresponding

email account, we create a clear password reuse attack opportunity. If any of these email accounts

is ever accessed, such action provides strong and singular evidence of a compromise at the

corresponding site. This approach allows a wide array of Internet sites to be efficiently monitored

for compromises by an outsider and admits no false positives—presuming the email provider

itself is not compromised. Further, an attacker wishing to avoid detection by this mechanism is

forced to avoid using stolen credentials for password reuse attacks, which represents a significant

lost revenue opportunity.

We have built a prototype system, called Tripwire, to implement this technique, which

automatically crawls and registers accounts in this matter. We partnered with a major email
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provider to conduct a pilot study of this approach covering approximately 2,300 sites. Over

a year’s time, we discovered evidence of compromise at 19 sites, all but one of which were

previously undisclosed to the best of our knowledge. The sites at which we detected breaches

range in size from very small to a large publicly-traded company with more than 45 million

active customers at the time of compromise. Moreover, by controlling the form of the passwords

we can determine whether a compromise is consistent with a dictionary attack on password

hashes (and thus users with strong passwords may have been protected) or whether the attacker

was able to obtain the passwords in clear text (and a strong password would not have helped).

In the remainder of this chapter, we discuss previous work related to the Tripwire

technique, the ethical considerations that guide our study, and our account creation, registration,

and monitoring methodology. We then quantify the effectiveness of our pilot monitoring, and

report our qualitative experience disclosing our findings to each of the affected sites, including

how they receive such evidence and the extra-technical challenges in using it to change behavior.

We conclude the chapter with a discussion of the complexities of automated account registration

and the challenges in scaling such a service further.

2.2 Related work

The Tripwire measurement technique fundamentally depends on attackers stealing email

account credentials on one site and then taking advantage of shared password behavior to access

the stolen account on the email provider. Researchers have repeatedly found that users reuse

their passwords across multiple services [24, 37], and that they have accounts on at least 25

distinct online sites [23, 44, 34], with some estimates putting the number over 100 sites [25].

Given this landscape, it seems likely attackers will continue to exploit this reuse to try to take

over additional accounts that might be of greater value [53]. Indeed, there have been several

recent reports of attackers taking a large list of usernames and passwords acquired at one service

and trying those credentials at another [12, 39, 42].
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Previous work has also shown how to detect sites vulnerable to attack [32, 35, 56], defend

against those attacks [7, 9], and evaluate the risk of compromise to a site or predict whether

a site will be compromised in the future [102, 117]. Yet Canali et al. found that few shared

hosting providers or “add-on” security services managed to detect even simple site compromises,

despite direct server access [11]. Tripwire offers an advantage over these and other schemes

because it can be deployed and operated by a third party not affiliated with the websites or their

users. Moreover, it is able to detect the effects of both online (e.g., key logging) and offline (e.g.,

external database dump) attacks, relying only on the integrity of a major, independent email

provider, not of the sites being measured.

The use of a designated decoy device or account to detect attacks against a service is

a classic security mechanism [15], and honeypot accounts have been used to observe recent

attacker behavior in general [89] and, in particular, have been suggested as a means of detecting

compromise on an online service since at least 2008 [48]. A mechanism of honeypotting has also

been suggested to detect password bruteforcing [54]. All of these systems rely on some aspect of

the underlying service being measured having not been compromised, and we believe Tripwire

is the first use of honeypots where no part of the system under measurement needs to be trusted.

2.3 Ethical considerations

Before detailing our system and methodology, it is important to discuss the ethics and

potential for harm associated with our study. First, while we obtained the full consent and

cooperation of our partner email provider, we do not seek the consent of the websites that we

monitor. It is both impractical and potentially damaging to the scientific validity of our study

for us to seek prior consent from websites before registering accounts. In particular, sites might

opt-out in a biased way (e.g., those who suspect their security to be flawed might wish to avoid

being included), or choose to handle our accounts in a special fashion that would break the link

between our account disclosure and site compromise.
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Largely because we lack informed consent of the websites under test, we do not undertake

our study glibly or without significant deliberation. In our view, there are two distinct issues:

one of ethics and potential harm, the other of liability.

It is our belief that the potential direct harm we can cause to a site by attempting to

register for a few (at most three) accounts that are rarely, if at all, accessed subsequently is

limited to the small amounts of storage and load associated with these actions. Our automated

crawler was rate-limited to attempt page loads no faster than every three seconds—and typically

much slower than that due to intentional processing delays. Only three sites received more than

eight registration attempts from our crawler1—with the overwhelming majority of sites receiving

two or fewer attempts—a load unlikely to burden even tiny sites.

However, there are also indirect harms which may result to the brand or reputation of

such sites if the knowledge of their breaches were to become known. For this reason, we have

explicitly obscured the identify of the websites at which we detect compromise. Balanced

against these potential harms is the concrete benefit to sites arising from earlier knowledge of

a data breach and the benefit to consumers from earlier notification of their credentials being

compromised. As detailed below, we attempted to notify the operators of all the sites where we

detected compromise.

As we discuss at length later, however, our passive monitoring approach—specifically,

one that provides concrete evidence of a compromise but no information regarding the exploit or

mechanism employed such as pen testing or similar invasive methodologies would provide—can

place notified site operators in a challenging position. Disclosing a compromise or forcing a

password reset is, at least for some, perceived as a risky move that could drive users away from

a service [83]. Depending on jurisdiction, however, sites may be required to notify users of

any known compromise to their service [10]. In cases where a site is unable to independently

corroborate a compromise, they are forced to choose between their own investigation and our

evidence. Further, without being able to find the source of the compromise, they have no ability

1Due to crawler debugging, the three most frequently accessed sites were contacted 16, 15, and 9 times.
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to assure users that future compromises will not occur.

On the legal side, we consulted extensively with general counsel and acted with the

permission and knowledge of our administration. While we make no attempt to explicitly check

the terms of service for each site in our study, it is quite likely that one or more aspects of our

methodology are contrary to policies on some sites (e.g., sites frequently disallow “automated

registration”). Even if not explicitly disallowed, bot activity is plainly discouraged by many sites

through the use of CAPTCHAs and other Turing-test-like aspects of their registration processes,

which we intentionally try to overcome. Moreover, if sites asked for personal information as

part of the registration process, we provided fictitious details. Nevertheless, counsel advised us

that the legal risk was low and outweighed by the scientific merits of the work and, moreover,

that both the absence of real damages to any party and the limitations on the enforceability of

terms-of-service contracts minimize even these limited risks.

Finally, we note that there are no human subject concerns in this study: all of the

information we are providing is fictitious, and no human (other than perhaps an attacker who

compromised a website under study) ever interacts with the email addresses or the accounts.2

2.4 Methodology

Conceptually, Tripwire consists of two distinct phases: account registration and monitor-

ing. We designed an automated web crawler to register for accounts, and then partnered with a

major email provider to monitor activity at the associated email accounts. Here we describe how

we created and populated the email accounts used by Tripwire, the way in which we interact

with the email provider, and the operation of our web crawling infrastructure.

2.4.1 Account and identity management

Tripwire ensures that each account maintains a one-to-one mapping to an identity. These

identities minimally consist of an email address and password, though many sites require

2Aside from a handful of phone calls to the numbers associated with our accounts (see Section 2.5.2).
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additional information.

Identities

Tripwire identities must not easily be distinguishable from organically created accounts

so that attackers cannot selectively avoid them. Hence, we created a database of fictitious

identities and associate each with an email account and password at our email provider that

were designed to look as organic as possible. Tripwire identities have full names, addresses,

phone numbers, dates of birth, employers, etc. We generate names from sets of real names, and

addresses are syntactically and semantically valid (although not necessarily extant) US street

addresses [33]. Identities have real US phone numbers under our control. No site saw the same

phone number more than once.

We generate usernames and email addresses to look plausible, yet be very unlikely to be

taken. We generate the local-part of email addresses in the form of an adjective, a noun, and a

four-digit number (e.g., ArguableGem8317), and then use the first 14 characters as the username

at sites that require a username distinct from the email address. (Experience shows that many

sites limit the username length.) Since the email provider does not create email accounts for

us when there already exists an account with that username, we use this check as a heuristic

for probable availability of a given username on all other services. This allows us to reduce the

complexity of the crawler (by allowing us to assume that the username is available).

Passwords

We created accounts with two types of passwords to distinguish the types of compromises

that may occur. “Hard” passwords are random alpha-numeric, mixed-case, ten-character strings

without special characters (e.g., i5Nss87yf). “Easy” passwords are eight-character strings

combining a single, seven-character dictionary word with its first letter capitalized, followed by

a single digit (e.g., Website1). Easy passwords are deliberately easy to crack in a brute-force

fashion, while hard passwords are designed to be as difficult to brute-force as common password
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policy constraints would allow.

Nearly every website we crawled permits eight-character passwords, and many require at

least eight characters. The hard password ten-character length is a balance between a desire for

long, complicated passwords, and the need to support websites with short maximum password

lengths. Passwords do not contain non-alphanumeric characters as, in our experience, few

websites require special characters in the password, while several do not support them. These

assumptions simplify our crawler by not having to consider password policy when trying to

create an account.

Tripwire typically registers for multiple accounts on a site by first attempting to register

an account with a hard password. If Tripwire believes that registration succeeded, it enqueues

up to two additional registration attempts with differing password types. If we later detect

compromises for a site only on accounts with easy passwords (or where those accounts are

compromised much earlier than ones with hard passwords), it would suggest that, while the

website’s database was breached, the website’s passwords were well hashed. If Tripwire also

detects activity on accounts with hard passwords, then it suggests that the site was either storing

passwords in plaintext, using a weak hash, or the compromise was able to bypass the hashing

step.

2.4.2 Interaction with the email provider

We approached our email provider with the idea of Tripwire because Tripwire works

best with a sufficiently attractive target email account. The email provider was only involved

in providing accounts to our system, and was not aware of what accounts were used on what

services.

We provided a list of identities in advance to our email provider, who then created the

corresponding accounts unless they collided with a pre-existing account or violated the provider’s

naming policies. All email accounts were created with their corresponding name (in case an

attacker sought to validate the authenticity of the accounts by checking the personal information
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at the email provider against the website’s records) and forwarded any mail received to our own

mail server, where we stored and parsed incoming messages for registration information. Since

forwarding addresses are visible in the web interface of our email provider, we used forwarding

addresses of accounts at one of a small number of domain names under our control who had

their mail hosted by a third-party mail provider. This provider then forwarded messages to our

mail server.

In addition to forwarding messages, the email provider notifies us of any successful

logins in these otherwise-unused accounts. In particular, we receive sporadic dumps of login

information for all of the identities we created, independent of whether they have been used to

register accounts at any websites. Our provider is unaware of which accounts have been used,

and which remain unassociated. The provider dumps provide timestamp, remote IP, and method

(IMAP, POP, etc.) for any successful logins, but does not disclose failed attempts. We also

maintain a set of control accounts that are not associated with a website, but into which we log

in at our email provider from time to time. All such control login events have been accurately

reported by our provider.

2.4.3 Crawler

To scale account registration, we developed a custom-built web crawler to automatically

visit a given site and register for an account. The crawler attempts registrations on a ‘best-effort’

basis: the crawler explicitly does not attempt to support all of the site registration mechanisms

encountered on the Web, as our experiment is designed only as a proof of concept and does not

require complete coverage.

Registration

The crawler uses PhantomJS [49], a scriptable, headless web browser based on the

WebKit engine [130]. It processes pages according to the flow shown in Figure 2.1. It attempts

to identify a registration page on the site, and if successful, identify and fill each form field
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serially. If any stage fails, the crawler aborts with a corresponding error code. The crawler does

not support any site whose registration system does not follow this basic flow, nor sites that use

external account services such as those provided by Google or Facebook. The crawler relies on

many hand-crafted heuristics to locate registration forms, fill them out, and submit them. These

heuristics take the form of a series of weighted regular expressions and sets of DOM elements to

which they apply. Our current heuristics are only designed to support sites written in English.

If an email address or password was ever shown to a site—regardless of Tripwire’s

assessment of the success of this submission—we “burn” the identity and forever associate it

with that website. If a registration attempt fails, the identity used may be returned to the general

pool to be used on another attempt only if neither the email address nor password were exposed

to the website. The horizontal line in Figure 2.1 depicts the approximate point at which an

identity typically becomes permanently associated with a site.

Bot-detection avoidance

The crawler bypasses some rudimentary bot-checking systems (such as CAPTCHAs or

basic human-knowledge questions) by relying on a third-party CAPTCHA-solving service [30].

The crawler operates using a small network of web proxies that our group maintains solely for

research purposes. These IPs are not meant to be unattributable—WHOIS records clearly state

our institution name. They serve simply to decouple multiple registration attempts at the same

site: websites receive at most one account registration from a given IP. We made no attempt to

match the geolocation of the proxy IP to the address for a given identity, but in practice this did

not seem to prevent registration.

Mail handling

Since many websites require confirmation of email addresses to create an account, our

email provider forwards any messages delivered to our accounts to a mail server under our control.

This server retains a copy of all messages received, and, as needed, processes incoming message

18



contents. In particular, it processes all incoming messages to evaluate whether a message is

associated with a recently-registered account, and, if so, if the message contains a validation link.

If it does, the mail server loads the verification page and saves it for future debugging.

2.4.4 Interpreting account compromise

The key assumption with Tripwire is that a successful login reported by the email provider

is the result of an attacker having stolen credentials from the site on which we registered with our

email account. We end our methodology by arguing why we believe this assumption to be valid.

Acquiring the correct credentials requires collecting them either on a machine storing

them, or in transit between credential holders. Credentials are stored in three places: within our

own database, with the email provider, and with the site under measurement. We have striven

to minimize the risk of leaking data from any of these sources. Our database is accessible only

from a small number of servers on a small internal network, none of which provide externally

accessible services. Communication between our servers is tunneled over SSH. Individual

instances of the crawler have only the identity assigned to one site, so compromise of multiple

identities would require full arbitrary code execution on the crawling machine.

The provider treats the email accounts used in Tripwire equivalently to their hundreds of

millions of other accounts. The email provider has mechanisms to detect attempts to brute-force

passwords. No known breaches of the email provider affected accounts used in Tripwire, and

sensitive account credentials were only exchanged between the authors and the email provider

via verified PGP.

Perhaps the most compelling evidence of the integrity of the Tripwire accounts is from the

fact that no accounts were tripped that were not associated with Tripwire registrations. Tripwire

has a database including more than 100,000 valid email addresses and passwords obtained from

the provider that were monitored for logins, but were not registered with sites. The unused

accounts conveniently serve as honeypot accounts to detect any compromise of the email provider

or our own database since they are stored with the accounts used in the study, but have not been
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used for registrations. None of these unused accounts have ever been accessed.

For the sites under measurement, a possibility is that an attacker brute-forced our creden-

tials without explicitly breaching a site, e.g., an attacker somehow guesses our usernames (or a

site exposes them) and the site does not prevent brute-forcing attempts on its accounts. If so,

then an attacker could conceivably have found the Tripwire username, brute-forced the password

with the site, and then used those credentials in a password-reuse attack on the email provider.

While unlikely, we consider this within the bounds of attacks that Tripwire should detect, and

Tripwire would correctly declare a site as compromised in this situation.

In communicating with sites under measurement, the system used HTTPS when preferred

by the site, validating certificates with a commonly accepted list of roots, and many of the tripped

sites used HTTPS during the registration process. It is possible that an attacker may have actively

impersonated a site during Tripwire’s registration process. But we consider this threat to be an

unlikely one, with only a few attacks of this kind having been seen in the wild, primarily due to

targeted attacks by state-sponsored actors [18].

Finally, it is possible that a Tripwire account is stored in a sharded database on the site,

and only a subset of the shards are compromised in an attack. If a Tripwire account is in an

exposed shard, Tripwire indicates that a database breach occurred and still detected a significant

compromise of the website under measurement. Conversely, if a Tripwire account is not in the

shards exposed, then Tripwire will miss any attacks on the affected users (similar to a breach

that did not result in password-reuse attacks). Registering for many additional accounts could

reduce the possibility of being stored in an unbreached shard, but we consider this possibility to

be remote, and additional registrations introduces ethical challenges that are not outweighed by

the benefit to this rare case, especially given Tripwire’s otherwise negligible false-positive rate.
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2.5 Account creation

We used the Tripwire crawler to register for accounts in batches between July 2014 and

July 2016, with most occurring between January and March 2015. Tripwire made 65,413 distinct

registration attempts across 33,634 different sites, using a total of 8,352 identities. We detail

our validation methodology below. In our best estimate, Tripwire successfully registered for

approximately 3,664 accounts on around 2,302 sites.

2.5.1 Website selection

We registered accounts primarily on four occasions from December 2014 through May

of 2016. We initially seeded our crawler with the Alexa top-1,000 sites [3] combined with the

Quantcast top-1,000 sites [94] (with duplicates removed) in December of 2014. Subsequent

registrations occurred from January through March of 2015 covering the Alexa top-25,000 sites.

In late November 2015, we attempted registrations on all sites in the Alexa top-30,000. Finally,

in May 2016 we manually registered for accounts at all of the eligible Alexa top-500 sites to

ensure good coverage of the most popular sites. In each case, we used the most up-to-date

rankings available at the start of the registration window.

In all of the automated cases, we filtered URLs through a set of regular expressions to

remove sites known to use common backends—e.g., Google, YouTube, Blogger, Blogspot, etc.

2.5.2 Registration attempts

Because our infrastructure has no automated way to validate registrations after it attempts

to create them, there is uncertainty in the number of accounts and sites for which the crawler

successfully registered. Hence, we rely on heuristics during the registration process, email-based

indicators, and manual sampling to estimate success.
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Figure 2.1. Control flow of the Tripwire crawler. Given a URL, the crawler returns the reason
for termination.

Crawler termination conditions

Figure 2.1 presents the termination conditions for the Tripwire crawler’s execution across

various sites. “Required fields missing” indicates that the registration form did not meet the

conditions for a valid form (e.g., did not ask for both password and email), or the crawler was

unable to recognize a sufficient number of fields to attempt registration. “Submission heuristics

failed” corresponds to the case where the crawler submitted a registration, but suspects that it did

not succeed, while “OK submission” indicates its heuristics suggest it did. Finally, “System Error”

represents cases where the crawler was otherwise unable to process the site. We investigate the

outcomes of the crawler in Section 2.7, though we note here that crawler outcome distributions

were similar across Alexa ranks.
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Table 2.1. Estimates of accounts created by account status.

Attempted Estimated Valid

Account Status Hard Easy Total Sites Success Hard Easy Total Sites

Email verified 1,552 508 2,060 1,359 98% 1521 498 2,019 (55%) 1,332
Email received 128 51 179 106 82% 105 42 147 (4%) 87
OK submission 1,069 703 1,772 860 59% 631 414 1,045 (29%) 507
Bad heuristics/Fields missing 4,395 122 4,518 3,420 7% 308 9 317 (9%) 239
Manual 0 137 137 137 100% 0 137 137 (4%) 137

Total 7,144 1,521 8,666 5,882 2,565 1,100 3,665 (100%) 2,302

Out-of-band confirmation

In addition to the heuristics Tripwire uses at registration time, some sites provide further

confirmation of registration via email. If an email account receives an account verification

message, we label it “Email verified”. If the account receives email, but we do not recognize it

as a verification message, we label the account “Email received”. Over 47% of “OK submission”

results at registration time triggered a verification message, and 4% more triggered at least some

kind of email message. Fewer than 8% of the registration attempts of the other categories resulted

in any kind of email message.

While it is possible that registrations could also be verified by phone, no phone verification

occurred in our sample. We did receive 18 calls from seven distinct self-identifying sources (“Hi,

this is John from site X”) to our phone numbers that were directly attributable to the accounts we

registered. (We received several additional phone calls, but they seemed to be wrong numbers

or call-center scams that cannot be conclusively tied to the phone numbers used in Tripwire

accounts.) All attributable calls were sales teams following up on what appear to be free-trial

accounts for which Tripwire registered.

Success estimation

After accounting for email reception, we have five distinct outcome categories shown in

Table 2.1. We manually tested a random sample from each category to determine their expected
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success rates as a basis for estimating the number of accounts and sites for which registration

succeeded.

The “Attempted” columns on the left of Table 2.1 show the number of accounts and sites

according to each registration attempt. “Hard” and “Easy” correspond to accounts created with

those respective password strengths, and “Total” is their sum. “Sites” corresponds to the total

number of sites on which we registered accounts (some sites had multiple accounts). We estimate

the success rate in each category by selecting 50 random accounts and manually attempting to

log in to the corresponding site. The “Success” column shows the success rate of these login

attempts. The “Estimated Valid” columns on the right then show our estimates of the true success

rates by discounting the “Attempted” columns by the login success rates.

Email verified. Our highest confidence bin for automated registrations is any account that

received a recognized verification email. This category consists of 2,060 automated registrations.

In our manual tests of a sample of accounts, they succeeded in 98% of cases, resulting in an

estimated 2,019 accounts across 1,332 domains.3

Email received. An additional 179 registration attempts received email, but the message

did not appear to require email verification. These accounts were valid in 82% of our tests, for

an additional 147 accounts on 87 domains.

OK submission. In 1,772 registration attempts, our attempt passed all heuristics for

success, but no email was received. In our sampling, 59% of these accounts exist, accounting for

1,045 more accounts on 507 domains.

Bad heuristics/Fields missing. The lowest-probability-of-success outcome is that the

system exposed a username and/or password, but the system triggered a heuristic signaling

failure or did not attempt to submit the form. In these cases, approximately 7% of attempts still

succeed, for an additional 317 accounts on 239 domains.

Manual. Finally, we manually registered accounts at the 137 English-language sites

3In the one “failure” case, the site in question is an app-development site partially hosted at GitHub with a local
account registration. Tripwire successfully signed up for an account on GitHub instead of the site in question.
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Figure 2.2. Login activity to email accounts stolen from compromised sites. Each row
corresponds to a compromised site, and different colors on the same row indicate activity
on different accounts at that site. The numbers along the right y-axis indicate the total number of
logins for that site across all accounts. The shaded region in Spring 2015 corresponds to a gap in
our logs.

accepting registrations among the Alexa top-500 sites (4% of all accounts registered).

2.6 Compromises detected

At various points during our study, our email provider reported any successful login

activity for Tripwire email accounts. (For non-technical reasons, we were unable to collect

login information on a periodic or real-time basis.) As discussed in Section 2.4.4, we interpret a

successful account login as indicating a compromise of the associated site. Among the estimated

2,302 sites with successful account registrations, Tripwire detected 19 such site compromises

between June 2015 and February 1, 2017.

Figure 2.2 shows the login activity to email accounts stolen from the compromised sites

across time. Each row corresponds to a compromised site, vertical ticks show when we registered

for accounts on the site, squares show logins to email accounts with easy passwords, and triangles

show logins to email accounts with hard passwords. They are sorted from the top according to

time of first account login. Numbers to the right of each row indicate the total number of account

logins for that site. The shaded region in Spring 2015 corresponds to a gap in our account login
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data. Due to a misunderstanding of the retention limits at the email provider, login activity was

lost from March 20, 2015, through June 1, 2015. Although no logins were detected for more

than a month after collection resumed, it is possible that additional sites were compromised and

would have tripped our system during that time.

In the rest of this section, we characterize the sites that were compromised and detected

by Tripwire, as well as other compromised sites during the same time frame. We then describe

our results of disclosing the compromises to the sites. Finally, we summarize the activity of

attackers who accessed the stolen email accounts.

2.6.1 Sites compromised

For each site, Table 2.2 shows the approximate Alexa rank, site category, the number of

accounts created and accessed, and whether an account with a hard password was accessed. We

explore what site characteristics appear to correlate with their compromise, how sites manage

their account databases, and which compromises we detected were also disclosed by the sites

themselves.

Overall, we find that while most of detected compromises are at small sites with few staff,

Tripwire has also detected compromises on large sites as well. Tripwire detected both plaintext

and hashed-password breaches, and has predominantly discovered breaches that have previously

been undisclosed.

Site characteristics

The compromised sites cover a wide range in terms of popularity. The detected compro-

mised sites are distributed throughout our covered site ranking, from a top-500 site through the

full range of sites selected.

The most popular site compromised is a well-known American startup with more than 45

million active customers as of the quarter they were compromised (Site A). Sites E and F, owned

by the same parent company, are a large gaming-services company well known within online
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Table 2.2. Summary of sites with detected login activity. Rank at registration time rounded up
to nearest 500. No ‘hard’ account was registered at site P.

Site Accounts
accessed

Hard
accessed Category Alexa

rank
A 2 of 2 Y Deals 500
B 1 of 2 N Gaming 8500
C 1 of 2 N BitTorrent 5500
D 3 of 3 Y Wallpapers 20500
E 1 of 2 N Gaming 16000
F 1 of 2 N Gaming 18500
G 2 of 2 Y RSS Feeds 17500
H 2 of 2 Y Marketing 17500
I 2 of 2 Y Horoscopes 7500
J 2 of 2 Y Gaming 20500
K 2 of 2 Y Classifieds 20500
L 1 of 3 N Adult 11000
M 2 of 2 Y Vacations 20000
N 1 of 2 N Gaming 11500
O 1 of 2 N Outdoors 18000
P 1 of 1 – Adult 1500
Q 2 of 2 Y Tourism Guide 22000
R 2 of 2 Y Press Releases 22500
S 1 of 2 N BTC Forum 4000

gaming communities. We also detected compromise on a top-500 site in India, the top-ranked

site in its category (Site I) which claims millions of installs of their app and more than 60 million

visits to their site per month. Site P, a ‘tube’-style pornography site, is a top-400 site in Germany.

Site Q is owned by a company with a large portfolio of travel recommendation websites, claiming

40 million views across all sites every month.4 Finally, site S, bitcointalk.org, is a prominent

Bitcoin discussion forum that experienced a publicly acknowledged database breach in May of

2015. Contents of that breach were reportedly sold online in 2016. While the distribution looks

somewhat skewed towards lower-ranked sites, there are too few sites to observe the distribution

definitively.

The compromised sites comprise a variety of site categories, although gaming (i.e., sports

4We did not register at any other sites owned by this company, so cannot speculate whether the compromise is
limited to that site or spans across their properties.

27



or video games) is the most prevalent. These sites are fairly representative of sites with large

user bases towards the tail of popularity.

Except sites A, E/F, Q and R, the remaining sites appear to be run by individuals or small

teams. A few of the sites have not been meaningfully updated in several years, and site C has

since disabled account registration. Most of the sites appear to have been created with good

intentions for their stated purpose. Three sites (G, K, M), though not malicious per se, appear to

have been created explicitly to generate ad revenue and offer services with little actual value.

Password management

The password strengths of the accounts provide insight into the password management

practices of the sites. For sites that only store hashed passwords, easy passwords can be guessed

using dictionary attacks while hard passwords remain protected. For sites that store passwords in

plain text, both easy and hard passwords are vulnerable.

In eight cases (sites B, C, E, F, L, N, O, S), our system registered for both an ‘easy’ and a

‘hard’ account at a site, but logins only occurred on the ‘easy’ accounts. This behavior suggests

that these sites hash passwords sufficiently to at least delay the compromise of accounts with

stronger passwords, or are leaking account credentials due to large-scale brute-forcing. Despite

well-known security practices, we observed logins using ‘hard’ passwords on ten sites (including

site A). These sites appear to have stored account passwords in the clear or used easily-reversed

hashes. (For site P, we only successfully registered an account with an easy password.)

Our methodology only registered for accounts with easy passwords after it estimated that

a hard registration succeeded. This biases our results to under-report compromises, as ‘easy’

passwords are more frequently compromised. Subsequent invocations of a Tripwire system

should avoid this pitfall.

28



Breach indicators

Of the 19 sites that we detected as being compromised, we found only three with external

indications of compromise.

As mentioned above, site A is a well-known, popular American startup. Around the time

of our observed logins, several of their users on Twitter complained of their accounts on site

A being compromised. One publication ran a story discussing the claims, but the site denied

the allegations. We can find no further reporting on the issue, but our account logins on site

A corroborate these reports, show evidence of attackers using stolen account information for

password reuse attacks, and serves as an example of our system providing ground-truth evidence.

Section 2.6.3 details our discussions with the site when we disclosed our account compromises;

from their investigations, they reported finding no internal evidence of a site compromise but

could provide no explanation for our results.

We also found a post on an unrelated forum claiming to provide a link to the user database

of site L, a pornographic ‘tube’-style site. We were unable to verify the availability of the database

or the validity of the claim, but the posting time is consistent with the login attempts we see on

account l1.

Finally, we detected an account compromise on site S, bitcoin talk.org. This site was

known to be compromised as of May 2015, and there were subsequent reports of the database of

hashed passwords being for sale on underground markets in 2016. Our detections are consistent

with this timeframe, and consistent with the leak of hashed passwords [20].

We could find no evidence of disclosure of any of the other compromises. We provided

the usernames we used on sites A–O to several major threat intelligence companies and online

service providers in possession of large collections of compromised accounts, and none of the

companies found any evidence of breaches.5 We also searched a variety of public and private

sources of compromised database dumps for evidence of our breaches without success.

5These companies requested to not be named in exchange for their assistance.
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Recovery from compromise

Although we found only three external indicators of account breaches, most of the sites

appear to have either only been compromised at a single point in time, or were able to recover

from the breaches. We registered for additional accounts on all sites except C (which no longer

accepts registrations) and O--R (whose compromises had not yet been detected) as of mid-May

2016. To date, only our additional account at site H has been accessed and none others.

2.6.2 Undetected compromises

It is natural with a system like Tripwire to want to calculate the proportion of compromises

that Tripwire is able to detect (i.e. recall). Unfortunately, such a calculation is not possible in

practice, as it is not possible to generate an accurate number of total compromises that have

occurred in the open Internet. Further, Tripwire does not attempt to detect all compromises—it

merely aims to expose compromises that otherwise would have gone undetected. It is still

valuable, however, to understand why our implementation fails to detect an otherwise known

breach. In this section we explore why Tripwire did not detect 50 recent data breaches as listed

on a site that curates public data breaches [46] and, for each, examined why Tripwire did not

detect a compromise.

Missed due to scale/scope

In 22 of 50 cases, the sites involved with the compromise were ranked too low according

to Alexa to make our test corpus, despite many sites being quite large. Choosing sites to target is

a non-trivial problem. While Alexa provides high-quality rankings for the most popular sites,

our experience has shown it to be less reliable for the long tail of the distribution.

In seven instances, the sites involved with the compromise were not in English (six were

Chinese-language sites and one was Russian). In both cases, a larger-scale and language-agnostic

deployment of Tripwire may have been able to register for accounts without issue.
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Missed due to technical challenge

In 14 of the 50 cases, the sites were missed due to limitations of the Tripwire prototype.

In five cases, the crawler failed because it was not designed to handle multi-page registration

forms. In four additional cases, the crawler failed a bot-detection check (e.g., a CAPTCHA

image or a free-form common-knowledge question). In one case we successfully registered, but

failed to properly verify the accounts by clicking on links sent to the email address.

In four cases, the crawler was unable to locate the registration page either due to it not

being clearly accessible from the home page of the site, or because the registration page was not

obvious based on the text of the page (e.g., because they relied on text embedded in images).

These cases represent significant technical challenges which any implementation is likely to

struggle with; however, they are not fundamentally at odds with the Tripwire approach either.

For this limitation, it may be possible to rely on search engines to help locate the registration

pages.

Missed due to inherent limitations

In six cases, Tripwire could not have registered for accounts either because the site

required payment (two cases) or because the site did not support online registrations (four cases)

due to accounts being established by external means (e.g., being a customer of a bank). In one

case, the site limited the length of the email address to fewer than 16 characters but the address

we tried was 18 characters. These sites are largely out of scope for Tripwire. While technically

possible to automate payment, it is quite difficult to scale. Sites that have login systems but that

do not support purely-online registration (e.g., many banks) are similarly out of scope.

2.6.3 Disclosure

Given the significance of account breaches, we contacted all sites from which attackers

had gained access to our accounts (except for one case where the breach became publicly known).

We disclosed our identities, methodology, and findings, and engaged with each site to the extent
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that they were willing. Although each site had its own unique situation, we can summarize our

findings as follows:

• Six of eighteen sites responded to our disclosures.

• Sites that did respond typically responded quickly and took the disclosures seriously.

• Only one site directly corroborated a breach, and the compromise was previously known

to them. Some sites acknowledged that security was not their highest priority. No sites

that disputed our claim were able to explain how our accounts could otherwise have been

compromised.

• No sites have notified users to date (although one site said they would force a password

reset).

Disclosure Methodology

We disclosed to sites in two batches, with most occurring on September 7th, 2016, and

sites compromised after that date on November 4th, 2016. We sent similar email messages to

each site, making small changes as applicable (see Appendix A for our templates).

The first message we sent identified ourselves as researchers, explained that we believed

that usernames and passwords at the site had been compromised, that we were willing to discuss

details with the appropriate party, and asked if such a person could respond. We chose this

phrasing both to provide confidence and to encourage a response. If we received a response from

the site, we sent a second message explaining our methodology and some details of the specific

compromise. Subsequent messages, and phone calls if requested, were answered as needed.

Verbatim responses from several sites are available in Appendix A.3.

We chose recipient email addresses by looking for contact information on the site,

emailing the registrants listed in WHOIS data, and emailing common email addresses that might

be relevant (e.g. ‘security@example.com’, ‘webmaster@example.com’). No site provided an

obvious direct method for contacting the appropriate security contact. In each case, we emailed
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the complete set of addresses in case any individual address was invalid. We sent messages from

the first author’s institutional email address, with other authors’ institutional addresses CC’d.

Sites without responses

Twelve sites — B, D, H, I, J, K, M, N, P, Q and R — did not respond to messages. Though

we found additional contact information for a number of the sites, these messages also did not

receive a response. A message to site I resulted in an automatic creation of an account at their

internal ticketing system, but no response was ever generated. Site J had no MX record. Site

M’s email was forwarded to another domain that had expired and was purchased by a domain

squatter. For site M, we also sent email to an email-to-SMS gateway address used as a contact in

their WHOIS records.

Site A (Deals, Alexa rank 500)

The head of security at site A responded within 10 minutes of our initial notification

asking for details. Per their preference, most subsequent communications with them were either

PGP encrypted or by phone.

Site A asked if we were willing to sign a mutual NDA, which we declined. Per their

request, the authors met over the phone with the head of security of site A, an additional engineer,

and a member of their in-house counsel. During this call, their head of security asked questions

to vet the process of detection and our methodology.

Site A understandably lamented the significant delay between initial compromise and

notification—an artifact of our specific measurement implementation, and worse for site A

than for other sites. The operators of site A reported that, after our initial disclosure, they

employed a third-party incident response team to investigate. Despite both internal and third-

party efforts, they were unable to find internal evidence of the breach, but did not have an

alternative explanation for how our accounts were compromised. Site A did acknowledge that

they were aware of the article we made reference to in Section 2.6.1.
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Site C (BitTorrent, Alexa rank 5500)

Six days after notification, we received a request for more information, and the subsequent

conversation provided details from the operator of site C. The operator explained that an attacker

had managed to compromise the site sufficiently to create a competing clone in 2016. Our

notification was the first indication to the site owner that the vulnerability had been used prior to

2016.

Site C’s owner explained that until this year, passwords were simply hashed with MD5.

When asked about whether they would be disclosing the attack to users, they indicated that there

was no need, given that ‘this information has already become public sine the hacker started a

sote fork some months ago’ [sic]. When asked about any technical countermeasures, the owner

responded with ‘sorry cannot tell. however be assured user are protected well’.

Sites E and F (Gaming, Alexa ranks 16000, 18500)

Within 30 minutes of the initial message to the owner of sites E and F, the primary

author received a voicemail from the in-house counsel of the company attempting to verify our

identities. Our initial notification message did not include telephone contact information for the

author, but that information was readily available via online search. Shortly after the initial voice

message, we received an email message asking us to confirm via phone that we had indeed sent

the message, and to read their responsible disclosure policy.

We received a follow-up from the head of security at the immediate parent company

explaining that they were unable to corroborate the data from our study with any of their internal

information, and expressed understandable frustration that so much time had passed between

event and notification.

The company was very interested in obtaining all related information available, including

communicating with the email provider. We provided them with timestamps and IP addresses

associated with all relevant logins. Pages on their sites list usernames, and the company asked

if these could have been used by an attacker to brute-force guess passwords either at the sites
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or the email provider. While our email provider provides checking against brute-forcing, sites

E and F do not. But if indeed this is what occurred, then it represents a compromise consistent

with Tripwire’s goals.

Site G (RSS Feeds, Alexa rank 17500)

The owner of site G responded three days after notification inquiring about our dataset.

Upon explaining our data and methodology, the owner responded that, after looking for a while,

he did find some SQL commands that were improperly escaped, and he knew that his server was

under constant SSH brute-forcing attempts, but that he had not been aware of any prior breach.

The owner also explained that he needed to update his installation of WordPress and that he

would force a password reset after he had finished development. To date, a required password

reset has yet to occur.

Site L (Adult, Alexa rank 11000)

The owner/admin of Site L explained that he had started the site in 2007. Although

he personally had ‘a low level of IT knowledge’, in April of 2015 he got rid of his system

administrators due to their cost and because he felt they were making his job harder, not easier.

Before recently migrating to a cloud provider, his site ran on approximately sixty dedicated

servers. Since removing his system administrators, he has been running the site himself, and that

‘being thrown in the deep end is an understatement’.

By the owner’s own evaluation, security had not been a priority for the site: most of

the code is from 2008, and requires PHP 5.3; passwords have only been stored in a hashed

(‘encrypted’) form since 2015, but are still unsalted; the site suffers from some known XSS

vulnerabilities that he has been intending to fix. The owner speculated that the compromise could

be related to a large DDoS attack he experienced around the time of compromise which lasted

several days.

He explained that he plans to prioritize salting passwords and upgrading his PHP and
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web server versions, although he was not presently planning on notifying users of the breach.

Site O (Outdoors, Alexa rank 18000)

We received a response from site O less than 45 minutes after the initial notification was

sent. This response, from the CEO of a competing site, explained that they had recently acquired

site O from a major American travel-reviews company and that they had transferred accounts

from site O to their own site in May of 2016 (the timeframe that our accounts were compromised).

After we responded with our methodology and data for their site, the CEO responded saying

that they were unaware of any account breach, but that they had performed a “lot of scripted

testing” of logins onto their own site to ensure a smooth transition. Additional clarifications and

questions regarding actions they planned on taking did not receive a reply, and users of site O

have not been notified of the compromise.

Discussion

We believe that account information was stolen from the sites at which our registered

accounts were accessed. As discussed in Section 2.4.4, we took many steps to ensure the integrity

of our methodology, but we cannot categorically rule out the possibility that either the email

provider or our own systems were compromised and that this was unwittingly the source of the

account leaks.

However, the empirical evidence is inconsistent with the accounts being obtained via a

breach other than at the sites at which they were registered. We had over 100,000 email accounts

from the provider, only a subset of which were used to register accounts. Only a small number

of those accounts were ever accessed, and all the ones accessed were used to register accounts.

It also seems unlikely that an attacker would have defeated our operational security (or that of

the email provider), obtained the account credentials, and then accessed only a fraction of the

accounts acquired. Moreover, the odds that, in so doing, they would have happened to select just

the accounts we used at these sites seems vanishingly small. Realistically, they would also need
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to know the sites at which we used each account, and have some reason to specifically target the

accounts at those sites.

When engaging with the sites, only one of the sites we contacted (Site C) was able to

confirm that their site experienced a breach, and in this case the breach was implicitly public

since the site was illegally cloned by an attacker. Even in this case, though, the owner did not

explicitly notify the site users that their account information had been stolen. All other sites were

unable to confirm a breach. Yet, none of the sites were able to offer another explanation for how

our account information could have been stolen, and in two cases we have other corroborating

evidence (Section 2.6.1).

Given this situation, there are two immediate possibilities for why sites may not inform

users about a breach. One is that the sites did not have sufficient information to corroborate

the breach. Indeed, consider the perspective of the sites we contacted. The disclosures we

provide inform sites that they have been breached, but do not give any information about how this

occurred. Tripwire provides bounds of a compromise timeframe (between account registration

and first login), but those bounds can be quite broad—in our study, this period was more than 18

months in the most extreme case. Further, while sites naturally asked to know which accounts on

their service triggered detection, there is little information to be gleaned from these accounts,

provided the compromise occurred after registration time. Such information provides sites

with little insight on where to look for evidence of a compromise, nor how to prevent it from

happening again.

Finally, even if a site believes Tripwire’s evidence that a breach occurred, the specifics

may not be sufficient to convince sites to incur the cost of acknowledging a breach. There

are substantial potential legal and financial repercussions of publicly acknowledging a breach,

particularly for sites run by businesses. The knowledge of a small number of leaked accounts,

internally confirmed or not, may not constitute sufficient risk given the potential cost.

37



2.6.4 Attacker behavior

Lastly, we characterize the activity of attackers with the stolen email accounts [89]. In

general, most attackers accessed the accounts repeatedly over the observation period. Although

some accounts were shut down for sending spam, in many cases attackers have not taken active

steps to use the accounts beyond siphoning email. Accounts appear to be accessed through a

global network of predominantly compromised residential machines acting as proxies, typically

via IMAP. Account login timing and frequency suggests that credentials are being fed into

automated collection systems. We have released our data for these accesses with lightly reduced

granularity, which we discuss in more detail in Secion 2.7.4.

Login frequency

Table 2.3 lists the email accounts accessed, the type of password used by the account, the

total number of accesses, and the number of days between account registration and first remote

access, number of days since last access (as of Feb. 1, 2017), and the number of days between

the first and last accesses. ‘Frozen’ indicates whether the account has been frozen by our email

provider due to suspicious activity. The account aliases encode the sites at which they were

registered (e.g., we registered account a1 at site A).

Two of the sites (E and F) show periodic, temporally aligned logins. Manual inspection

revealed that these two sites were owned and operated by the same entity, and appear to use the

same registration backend. Otherwise, we found no discernible pattern across accounts regarding

access timing. The data shows both recurring and non-recurring logins for sites: at the most

popular site A, both accounts were only accessed once, while account m1 has been accessed 392

times. Accounts from several of the sites exhibit behavior consistent with ongoing observation

or scraping rather than simply verifying credentials.
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Table 2.3. Number and date range of login activity for compromised accounts. “Until” indicates
the number of days between registration and first access. “Since” indicates the number of days
since the most recent login (as of last check).

Type # Logins Until Since Frozen Days
Accessed

a1 hard 1 175 569 N 0
a2 easy 1 141 569 N 0
b1 easy 83 153 28 Y 518
c1 easy 27 167 45 N 496
d1 hard 10 195 53 N 452
d2 easy 4 193 177 N 328
d3 hard 85 35 15 N 366
e1 easy 22 214 26 N 459
f1 easy 119 214 54 N 430
g1 hard 181 235 10 N 458
g2 easy 62 311 2 Y 385
h1 hard 42 3 132 Y 296
h2 easy 48 38 133 Y 88
i1 easy 58 345 5 N 358
i2 hard 94 353 133 Y 228
j1 easy 3 374 299 N 26
j2 hard 8 378 78 N 245
k1 easy 3 381 301 Y 16
k2 hard 1 383 318 N 0
l1 easy 9 387 14 N 298
m1 hard 207 392 2 Y 306
m2 easy 363 390 65 Y 244
n1 easy 23 439 22 N 237
o1 easy 1 447 252 N 0
p1 easy 3 533 162 N 13
q1 easy 9 548 43 N 108
q2 hard 18 553 37 N 110
r1 hard 38 571 12 N 118
r2 hard 39 250 8 N 121
s1 easy 6 639 68 N 1

Bursty logins

Although no overall pattern emerges, eleven of the accounts have bursty login behavior

where multiple logins occur to the same account from different IP addresses in rapid succession
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of each other. In the peak case, g1 experiences 46 distinct IPs accessing the account over 10

minutes. This behavior suggests that the systems used to login to accounts are very loosely

coupled and failure is common. Nine of the accounts (b1, e1, f1, g1, k1, k2, m1, m2, r2)

experience bursts of logins wherein a single IP accesses the same account dozens or hundreds of

times within a few seconds. In the extreme cases, this can make up more than 75% of the logins

seen for an account.

Login IPs

The IP addresses originating the account logins are consistent with large-scale botnets of

leased proxies. As of our final check, a total of 1316 distinct IPs logged into the our accounts

across approximately 1792 login attempts. Only 181 IPs appeared more than once in the logs,

with one IP appearing 58 times (to account r2).

Based on WHOIS data, the most popular countries represented are Russia (194 IPs),

China (144), USA (135), and Vietnam (89), with a total of 92 countries represented. Combining

manual analysis of WHOIS with DNS, the majority of these IPs appear to be residential/consumer

IPs, though several higher-volume IPs map to datacenter IPs with hosts serving legitimate content,

suggesting compromised servers.6

Account activity

Since one of the goals of site compromise is to steal accounts, it is somewhat surprising

that many of the stolen accounts have been relatively idle. No email account that has been

accessed has received any unexpected email messages beyond a few generic spam messages.

Eight of the 27 accounts do show suspect behavior, though. The email provider forced a

password reset on one of our accounts, m1, after recognizing account compromise. Accounts b1,

g2, h1, h2, i2, k1 and m2 were all deactivated by the email provider for sending spam. Prior to

being shut down, account g2 had had the password changed and our forwarding address removed

6While we did not check extensively for spoofed reverse DNS, several spot checks suggested that reverse DNS
either matched forward DNS or contained domains owned by the owner information present in WHOIS.
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44.3%
Non-English

12.7%
No Registration

~18.8%
Success on
Eligible Sites

47.2%
Form Misidentification +
Multistage Forms

6.7%
Load Failure

19.1%
System Errors

21.5%
Requires Unavailable Info,
Failed CAPTCHAs, or
Field Misidentification

12.2%
System-estimated
Success

(as understood by crawler)(manually measured) (estimated)

36.2%
Eligible

63.8%
Ineligible

(of all sites submitted) (of eligible sites)

Figure 2.3. Possible outcomes of Tripwire registration attempts. The left and right thirds of the
funnel are estimates, while the middle corresponds to crawler-measured outputs.

by the attacker. For the accounts where passwords have not been changed, one possibility is that

attackers are stockpiling the compromised accounts for later use or sale. Another possibility is

that attackers watch these accounts for messages from sites such as banks that can be leveraged

for direct monetization.

2.7 Discussion

Though just a means to an end for our study, automated account registration is also

potentially useful for others. We lead this section with more details on our registration results,

lessons learned, and what would be required to further scale such a system.

Since a system like Tripwire must be robust against circumvention, we follow with a

discussion on what would be required of an attacker to evade detection when compromising a

site under Tripwire-like surveillance. Finally, we end with a brief discussion of what data and

source we are making available.
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Table 2.4. Registration eligibility of sites as determined by 100-site manual sample.

Start
Rank

Load
Failure

Not
English

No
Registration Ineligible Rest

1 3% 43% 7% 4% 43%
1,000 9% 37% 15% 6% 33%

10,000 8% 53% 16% 5% 18%

Average 6.7% 44.3% 12.7% 5.0% 31.3%

100,000 8% 43% 29% 3% 17%

2.7.1 Site eligibility

To evaluate what proportion of sites are even eligible for a Tripwire-like system, we

manually visited three sets of 100 sites from the Alexa rankings, starting with Alexa ranks 1,

1,000, and 10,000, and Table 2.4 shows the results. On average, 6.7% of the pages failed to load,

and 44.3% of pages rendered by default in a language other than English. Nearly 13% of them

did not support any web registration, while 5% required a credit card or other information that

Tripwire is unable to provide. In the end, fewer than a third of the sites were even plausible

candidate sites for automated account registration.

One notable trend is the precipitous decline in the fraction of sites with viable registration

pages (from 43% in the top-100 to 18% at top-10,000).7 This trend does not affect the percentage

of load failures and non-English sites, indicating that sites become decreasingly useful for

registrations as one proceeds down the Alexa ranking. Although we did not use them, search

engines may be an alternate source of sites to monitor.

Systematically, although we visited tens of thousands of sites across the Alexa rankings,

only a fraction of them were compatible with our automated registration system. Figure 2.3

depicts the funnel of website registration attempts starting from the full set of URLs supplied

to our automated account registration system on the left to the resulting set of successfully

registered accounts on the right.

7For added scope, we also manually visited another 100 pages starting at Alexa rank 100,000 with similar results
as the top-10,000.
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We input sites to the crawler without any additional knowledge about the sites other

than URL and Alexa rank. The crawler ignores non-English or otherwise ineligible sites. The

first third of the figure breaks down the reasons that our crawler is unable to register for an

account, which we estimate to be about 64% of cases (see Table 2.4). Our crawler fails to find

a registration page in about 69.2% of cases. In a manual inspection of 181 of sites where it

failed, we only found valid registration pages on eight of them. This finding is consistent with an

estimated false negative rate of around 5%, suggesting that if a site is completely ineligible for

the current version of the crawler, the crawler is unlikely to identify a registration page on that

site.

Any study that relies upon registering accounts across many sites likely has a notion of

“high-value” sites, such as very popular sites. Although we originally intended to solely use

automated means for registering accounts, in the end we augmented that process with manual

registrations for top-ranked Alexa sites (Section 2.5.1). We consider the additional manual effort

for high-value sites to be well worth the cost since registrations need only occur once.

2.7.2 Extending the crawler

The middle third of Figure 2.3 visually depicts the outcomes from the crawler (omitting

the proportion in which no registration was possible). The final third shows the success outcome

after accounting for email verification and discounting the various categories according to our

success estimation methodology (Section 2.5.2). With the present system, the automated success

rate is roughly 20% even when considering only eligible sites. What steps are necessary to

improve the success rate?

Non-English sites alone make up more than forty percent of all sites, none of which are

presently evaluated. Supporting multiple languages would be the single greatest improvement

to the crawler’s coverage. More tuning could also go into the heuristics used by the Tripwire

crawler. Even with this and other improvements, however, automated registration on arbitrary

sites is a sufficiently ill-formed problem that additional steps would be necessary.

43



Bot detection. In our manual study above, 19% of sites (37% of the top-100) with

registration forms used some kind of test to ensure the registration form was being filled out by

a human actor. If our crawler recognizes that a field is asking for human validation, it defers

to third-party CAPTCHA-solving services (or, if available, a human operator). Such solving

services have non-trivial error rates [76], and the crawler has no ability to handle interactive

CAPTCHA services like modern reCAPTCHA [95] or KeyCAPTCHA [58].

Multi-stage forms. Around 10% of sites with registration forms that we tested have

multi-step forms, in which a user completes a portion of the form before being able to advance

and complete the remainder. Our crawler makes no attempt at handling these multi-step forms,

resulting in both failures to recognize the first page of some registration forms (a ‘no form found’

result), and to fill out subsequent pages (a ‘bad heuristics’/‘field missing’ result).

Form and field misidentification. A common failure mode for the crawler is to misidentify

the meaning of individual form fields or to not recognize a given form as a registration form.

Machine learning techniques would likely more reliably identify such forms and fields instead of

heuristics.

Invalid identity assumptions. We chose usernames and passwords based on common

policies at sites, but a small number of sites have password policies that have uncommon

requirements (e.g., require special characters). Our crawler makes no attempt at inferring these

policies, and since our usernames and passwords are created ahead of time, we currently have

little ability to correct for these cases.

2.7.3 Evading Tripwire

The results presented in this chapter have the advantage that no system like Tripwire

(involving coordination between unrelated services to detect compromise) has previously existed,

and attackers are thus unlikely to try to evade our detection. Future implementations of a similar

system will not have that luxury, thus it is worth a brief discussion about what an informed

attacker could do to evade Tripwire’s detection. In this subsection, we assume that, at a minimum,
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an attacker knows that Tripwire exists, and generally how it works.

Avoiding Tripwire detection amounts to avoiding logging on to an observed email

account in Tripwire. An attacker may be able to avoid this detection in a variety of ways,

but each requires trade-offs. Firstly, an attacker could compromise the user database of a site

not under our measurement. This is not so much an attack on Tripwire, so much as it is an

acknowledgement that a system like Tripwire cannot have perfect coverage. Knowing what

sites to attack requires having compromised the Tripwire operator, and thus evasion otherwise

amounts to taking calculated risks on sites Tripwire was unlikely to cover. An attacker could

also avoid detection by not attempting logins with the email provider, or by attempting to pick

and choose which accounts to check. The odds of detection are inversely proportional to the

percentage of email accounts tested. If all the attacker cares about is what approximate proportion

of accounts re-use their password for the corresponding email accounts (if, for instance, the

attacker was preparing the accounts for resale), then perhaps testing only a small sample may be

sufficient. Alternatively, an attacker can also avoid detection by testing other accounts in lieu of

testing the email account (e.g., at an OSN). As mentioned earlier, however, avoiding testing the

credentials with the email provider closes off a substantial opportunity for monetization.

If the email provider for Tripwire were known, an attacker could choose to avoid checking

accounts with that email provider. While effective, we chose a prominent email provider in part

because a significant fraction of organic accounts on any service are likely to use this email

provider, and thus this strategy is not without cost. As a happy side effect of our not disclosing

our email provider partner, attackers are also left to wonder whether they must avoid checking all

accounts from the largest email providers. Accounts with the largest providers, however, likely

account for a significant majority of the accounts found in the breach.

An attacker may also attempt to determine specifically which accounts belong to Tripwire-

like systems. Were the attacker able to determine the entire list of Tripwire accounts (for instance

by compromising the Tripwire operator or the email provider), they would be able to form a

complete blacklist of accounts to avoid, and completely evade Tripwire’s detection. Provided that
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neither Tripwire’s operators nor the email provider are compromised, an attacker must attempt to

infer this information from signals associated with the accounts.

As discussed in Section 2.4.1, usernames, passwords and other identity information

were chosen to look plausible, and thus hard to identify as part of the Tripwire system. If an

attacker has access to information regarding initial registration, the attacker may be able to

deduce which accounts are ours based on registration IP address. For our study, for ethical

reasons and transparency, we registered for accounts with IP addresses that were clearly owned

by our institution, but an operational deployment of Tripwire should use plausible user IPs to

avoid this technique as a detection mechanism.

2.7.4 Data and source availability

Tripwire uses a variety of heuristics to find and fill registration forms, as well as to handle

incoming email. All of these heuristics are detailed in the source code for the crawler, which

is available at https://github.com/ccied/tripwire. In addition, we have provided an anonymized

version of the login data at the same URL. This data consists of an entry for each login event.

This record provides the account alias (e.g. ‘a1’), a timestamp (rounded to the day), /24 of the

accessing IP, and login method (e.g. ‘IMAP’). This anonymization was chosen to balance the

desires of transparency and protecting the accounts in the Tripwire sample.

2.8 Conclusions

Website security is a critical problem whose personal and financial impacts are continuing

to grow. While preventing and containing site compromise and account disclosure are clearly

of utmost importance, experience suggests that there will never be a time without website

compromise. In this chapter, we have shown that the same incentives that give rise to this

attack ecosystem can be leveraged to passively monitor for compromise at a wide range of sites

and detect compromises of which site operators are either unaware or unwilling to publicly

disclose. A major open question remains, however, in how much (probative, but not particularly
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illustrative) evidence produced by an external monitoring system like Tripwire is needed to

convince operators to act, such as notifying their users and forcing a password reset.
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Chapter 3

Search advertiser fraud on Bing

In the previous chapter, we showed how to detect credential theft from web services by

leveraging the attacker’s incentive to monetize the stolen information. This incentive caused

visible side effects that the attacker could not prevent without taking a substantial financial hit.

But does this top-down incentive-driven approach work in other contexts? In this chapter, we

shift gears to explore the case when an attacker, acting as a malicious user of a service, works

to abuse that service. In particular, we explore fraudulent advertising on Bing’s web search,

investigating the behavior of these attackers from several angles. Ultimately, we identify a strong

opportunity for mitigating fraud and abuse on the platform by focusing again on the attacker’s

trade offs between blending in and taking full advantage of their opportunity to make money.

3.1 Introduction

Today’s Internet ecosystem delivers free access to a wide variety of services from a

host of providers, much of which is underpinned by a common advertising revenue generation

mechanism. Web search engines, in particular, derive much of their revenue from paid search

advertisements. Unfortunately, recent reports indicate fraudulent online advertisements are often

being used to mislead and even harm unsuspecting Internet users. Savvy web surfers have

become rightly wary of clicking on ads, which, in the end, may bite the hand that feeds us all.

By all accounts, online advertising remains a thriving industry, with Forrester Research
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reporting that online advertising spend will surpass $100 billion by 2019 [98]. Search advertising

depends critically, however, on the trust and participation of the public at large. If end users are

unwilling to click on advertisements due to the risk of fraudulent ads, these fraudsters have the

very real potential to undermine the search ad ecosystem and the services it supports.

For web search, ads display content associated with keywords that users search for. When

fraudulent advertisers advertise on the platform, as with benign ads [118], their goal is to entice

users to click on the ad, and thus visit their website. Once a user has clicked on an ad, the

fraudulent advertisers monetize these visitors through a variety of illicit and malicious means,

such as selling counterfeit goods, tricking users into paying for fake anti-virus products, over

charging for technical support, or even injecting malware on unsuspecting user’s machines.

Given the alarming rate at which new advertising scams seem to appear, it is an open

question whether the current model of ad-supported search is sustainable. Very little is publicly

known about the vitality of online search advertising as an enterprise, in particular the true costs

of fraud and abuse to the search ad networks themselves. Fraudulent ads are a very real problem

for search engines, who have strong motivation to defend against them. Although search engines

normally profit from users clicking on ads, fraudulent ads often are not billable (if, for instance,

the advertiser is using a stolen payment instrument), and, instead, search engines lose legitimate

revenue from non-fraudulent advertisements that may be displaced.

We present the first characterization of the fraudulent advertiser ecosystem at Bing, one

of the largest search engines, from the perspective of the ad network. Using over two years

of data regarding advertiser spend and campaign management, along with user engagement

(i.e., impressions, click-through rates, etc.) we measure the scale of the activity, the particular

bidding behaviors exhibited by fraudulent advertisers, and the impact those behaviors have on

non-fraudulent advertisers.

Our results show that despite a large fraction of new account registrations being fraudulent,

Bing successfully prevents most from showing even a single ad. Further, fraudulent advertisers

that do succeed in posting ads typically survive only a few hours to days, forcing many fraudulent
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advertisers to act aggressively. This aggressive action, where fraudulent advertisers opt to

advertise more quickly, rather than more subtly, causes many fraudulent advertisers to stick out.

Further, in order to reach their customers, fraudulent advertisers are largely forced into

a small set of relatively lucrative, but often dubious verticals (e.g., weight loss supplements

and designer sunglasses). This targeting comes from the very nature of web advertising—

advertisements that do not provide what they claim are punished by having fewer opportunities

to show their advertisements. Similar to the situations seen in Chapters 2 and 4, these malicious

actors on Bing can choose to blend in more—by advertising on other verticals—but doing so

comes at the price of less traffic and thus lower monetization. Also similar to other chapters, this

behavior provides an opportunity for Bing to defend their platform by targeting these verticals

and thus limit fraudulent advertising.

3.2 Background and related work

At a high level, attackers commit fraud in the online advertising ecosystem in two ways.

The first is click fraud, in which attackers generate fake ‘clicks’ to earn payment by posing

as the publisher. Click fraud has been extensively studied in the past [26, 27, 28, 45, 55, 68,

69, 75, 103]. Efforts have studied both the infrastructure—often botnets—used to generate the

clicks [4, 27, 28, 91] and the quality of the traffic so generated [103, 138]. More sophisticated

forms of click fraud are emerging in the mobile space, where unscrupulous actors place ads in

locations on the screen where real users are likely to accidentally click on them [63].

In this chapter, we focus instead on fraudulent advertisers who post ads to attract legiti-

mate click traffic for a variety of malicious goals, including trying to infect the user’s browser

with malware (drive-by downloads) [36, 62, 97, 136], stealing email and bank account credentials

with fake pages (phishing) [62], collecting personal information to sell to third-party marketing

companies (lead generation) [131], bundling malware with software downloads (download stuff-

ing) [47], selling ‘miracle’ supplements and nutraceuticals (diet or body-building supplements,
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anti-aging creams, etc.) [57], or perpetrating money-making scams such as convincing the user

that their computer is infected with malware and selling them fake anti-virus software [105].

In general, attackers post fraudulent ads at scale in two ways. Either they compromise

the accounts of existing legitimate advertisers, or they create new accounts with fraudulent

information, including names, email addresses, and credit card information (which is typically

stolen). As a result, search engines have stringent account validation (such as credit card

verification) for new accounts [41], and also provide tools for advertisers to better protect their

accounts [73, 74]. Search engines also proactively attempt to detect fraudulent ads posted

by advertisers. When new ads are created, search engines vet the site linked to by the ad at

posting, and again when the search engine visits the page over time to update its search index.

Search engines have a variety of heuristics to decide whether a page delivers content that tries to

compromise the browser, scam the user, or is malicious in other ways.

Despite search engines’ best efforts, attackers are still able to defeat such approaches,

siphoning millions of dollars from search ad networks. Verified accounts are straightforward

and cheap to obtain via underground markets [109]. Furthermore, since normal user accounts at

Bing, Google, etc. can be converted to advertiser accounts with just additional verification (such

as a credit card), there is a constant stream of accounts compromised via phishing [50], host or

browser compromise [43], or other means that can be used for the purpose. Finally, attackers use

‘cloaking’ on the pages they advertise to evade detection by the search engine crawler. Cloaking

has traditionally been used to poison search results [123, 124, 125, 135], and attackers have

developed many different kinds of cloaking over the years that fraudulent advertisers now also

employ. In this chapter, it is these fraudulent advertisers that we characterize on the Bing ad

network.

51



3.3 Sources and definitions

Our analyses focus on a two-year time span in the recent past, with much of our in-depth

analysis focusing on a few representative shorter time periods. We chose these windows to be

sufficiently far in the past to ensure that most fraudulent actors active during that time have been

identified by Bing. Where appropriate, we have verified that more recent data is in line with

our analysis. We believe that the trends we report on have not changed significantly during our

extended measurement period except where noted.

3.3.1 Datasets

For the purposes of this chapter, we focus on three primary data sources:

• Customer and ad records: This dataset contains information on each advertiser (when

their account was opened, market, language, home currency, etc.), every ad (title, de-

scription, display URL and destination URL), keywords bid on, bid types and maximum

amounts.

• Ad impression and click records: This dataset contains information on ad impressions

and ad clicks. In each case, Bing records ad information (advertiser, ad, keywords, etc.),

some basic matching information (why the ad matched the query, how much Bing charged

the advertiser, etc.), as well as some basic user and query information (search query,

market, etc.). This dataset forms the basis for determining how effective a fraudulent

advertiser is relative to other advertisers.

• Fraud detection records: This dataset represents actions taken by Bing to shut down

fraudulent accounts, generated by both Bing’s algorithms and by manual review. It covers

the entire lifetime of the accounts, from creation through long-term monitoring.
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3.3.2 Fraud under measurement

For the purposes of this chapter, our designation of ‘fraudulent’ advertisers are those that

Bing has shut down according to their own internal policies [70]. This group primarily includes

advertisers who attempt to defraud or deceive either Bing (for instance by providing stolen

payment credentials) or Bing’s users (e.g., by advertising miracle-cure products or implying that

the advertiser is affiliated with a person or organization with whom they are not). Each time an

advertiser is shut down by Bing, information about that advertiser’s identity and/or advertising

campaigns may be blacklisted. Conversely, ‘non-fraudulent’ advertisers are the set of active

advertisers that Bing has not (yet) determined to be non-compliant; it does not include the set of

advertisers whose accounts have yet to be granted initial approval.

Bing uses a variety of mechanisms to apprehend fraudulent advertisers, a discussion

of which is out of scope of this dissertation. Many of these mechanisms, however, involve a

manual review of the advertiser account in question. This review helps Bing to avoid accidentally

shutting down accounts of legitimate paying customers. In addition, in cases where a customer

may be out of line with Bing policy, an individual ad or keyword may be removed or otherwise

flagged without shutting down the entire account. Thus, accounts that are entirely shutdown are

overwhelmingly fraudulent, with the rate of ‘friendly fire’ being rather low.

There is some amount of inherent subjectivity when it comes to some policies. For

instance, Bing’s policy forbids claiming a non-existent affiliation with companies or individuals.

But determining when the line has been crossed can be blurry when endorsements are implied

rather than stated. On the whole, however, we believe that this definition represents the best

ground-truth data available. As with any imperfectly labeled set, our definition may introduce

some bias into our analysis. Given that we believe the system minimizes false positives (that is,

incorrectly shutting down advertisers), the effects we identify in this work may be slightly under

reported.

Our definition also necessarily leaves out other classes of advertisers who are worthy
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of study. By ignoring accounts that are frozen temporarily, for instance, we may be ignoring

a potentially interesting dataset. We performed a manual inspection of advertisers that have

been identified by behavioral fraud detection algorithms repeatedly but subsequently allowed

to continue advertising to determine if the behavior of these accounts varies from confirmed-

fraudulent advertisers. While there are not many of these advertisers, by and large they were

either benign or behave similarly to other fraudulent advertisers, and only manage to evade

shutdown by way of narrowly avoiding policy violations. We have found no significant sets of

advertisers whose behavior meaningfully differs from other advertisers in their vertical. Further,

as policies and algorithms adapt and change, advertisers who previously evaded detection tend

to be labeled fraudulent—the observations in Section 3.5.2 regarding third-party tech support are

a good example of this evolution.

We also necessarily omit advertisers who are fraudulent even by current policy standards,

but are wholly undetected by Bing’s detection methods. While some amount of undetected

fraud is inherent in such analyses, we believe that there are several factors that combine to guard

against large swaths of undetected fraudulent activity:

• Bing accepts manual reporting: Bing accepts complaints from users regarding illegiti-

mate ads. These reports are investigated. If a fraudulent advertiser was not being detected

by Bing’s internal mechanisms, a user is likely to complain given sufficient activity.

• Payment fraud detection is high: For the portion of fraudulent advertisers who use

illegitimate payment mechanisms, fraud is often detectable in the form of chargebacks or

other indications from the payment network. Moreover, once an advertiser is detected as

fraudulent, they may find their payment instruments blacklisted. This restriction effectively

forces advertisers defrauding users into also committing payment instrument fraud, as

unless the advertiser has access to a large number of genuine payment instruments, payment

fraud is necessary to continue operating within the network.

• We report on activity in the past: Experience shows that fraudulent advertisers rarely
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walk away from working accounts. As a result, it is safe to assume that most fraudulent

advertisers with meaningful amounts of activity that have not been detected by Bing will

remain active until their detection, but also it is likely that Bing will detect this ongoing

activity given sufficient time. We take advantage of this by running our analyses on data

that is at least 6 months old, and typically much older. By including the oldest data in our

analysis, we permit time for Bing to detect as many fraudulent advertisers active in that

time period as possible.

Lastly, our data sources also limit insight into fraudulent actors who are unable to

successfully open a Bing advertiser account in the first place due to Bing’s immediate detection

of potential fraud. Given that these actors, by definition, do not show ads and are not visible to

users or other advertisers, we consider them to have negligible impact on the ecosystem.

3.3.3 Subset definitions

To make our analyses more tractable, in many instances we consider subsets of adver-

tisers (both fraudulent and non-fraudulent) to represent the whole. In each case, we choose

approximately 10,000 advertisers from the complete pool of advertisers active during the time

period.

Fraudulent subsets

We construct four types of fraudulent subsets: a uniformly random selection across all

fraudulent advertisers who were alive at any point during the measurement window (labeled

‘Fraud’), a uniformly random selection across all fraudulent advertisers whose ads received

any clicks during the measurement window (‘F with clicks’), and two subsets with weighted

probability of inclusion. In the spend-weighted subset (‘F spend weight’), fraudulent advertisers

are chosen for inclusion with probability proportional to how much money they spend on Bing

during the measurement window. The volume subset (‘F volume weight’) has advertisers chosen

with probability proportional to the number of clicks received during the measurement window.
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Non-fraudulent subsets

We use a total of seven types of non-fraudulent subsets. Four are defined similarly to

their fraudulent counterparts (‘Nonfraud’, ‘NF with clicks’, ‘NF spend weight’, ‘NF volume

weight’)—their selection is designed to represent the non-fraudulent advertisers as a whole,

and are used when investigating the effects of fraud on legitimate advertisers. The remaining

three subset types are designed to facilitate comparisons between fraudulent and non-fraudulent

advertisers of similar ilks and correct for differences in the demographics of fraudulent and

non-fraudulent advertisers that would otherwise make behavioral comparison difficult. Each

advertiser selected for inclusion is chosen to most closely resemble a corresponding advertiser

in the matched subset (that is, chosen to minimize the difference between their corresponding

metrics).

‘NF spend match’ comprises non-fraudulent advertisers chosen to match the fraudulent

advertisers in the ‘F spend weight’ set, where similarity is defined according to amount of money

spent. ‘NF volume match’ corresponds to ‘F volume weight’ according to click volume. Finally,

‘NF rate match’ corresponds to a subset wherein non-fraudulent advertisers are chosen to match

members of ‘F volume weight’ according to the rate at which the advertisers receive clicks

during measurement. In both cases, this rate is defined as the number of clicks received during

the measurement window divided by the period of time that the advertiser could have been

generating activity during that window. That period stretches from the later of the start of the

measurement window and the account creation, until the earlier of the measurement window

ending or the account being frozen (if applicable).

3.4 Scale and scope

We begin by quantifying the scale of the fraudulent advertising problem at Bing. We

start our analysis with account registration, as from the point of view of the search ad network,

accounts represent the unit of accountability.
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Figure 3.1. Proportion of active advertisers subsequently marked as fraudulent over time,
labeled by end of measurement period.

Table 3.1. Top-five countries for fraudulent advertisers, as indicated at account registration. We
consider four different subsets of fraudulent accounts.

#1 #2 #3 #4 #5
all fraud US IN GB BR AU

% 50.3 17.2 14.3 2.5 1.8
with clicks US IN GB BR CA

% 58.1 14.3 12.3 2.4 1.9
volume weight US IN GB BR DE

% 59.5 15.1 8.7 2.6 1.9
spend weight US IN GB CA DE

% 60.4 15.1 11.5 1.8 1.7

3.4.1 Account registration

While a single fraudulent actor may register for multiple accounts, an advertiser account

is the natural unit of accountability. By this metric, fraudulent advertisers represent a significant

challenge for Bing. As shown in Figure 3.1, during the two years we study, generally more than

a third—and near the end more than half—of new account registrations each day are eventually

discovered to be fraudulent. The overwhelming majority of fraudulent advertisers have languages,

currencies and registered home countries suggesting that fraudsters are based in English-speaking

countries—primarily the US and India. Table 3.1 shows the top-five countries from four different
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Figure 3.2. Fraudulent account lifetimes, as measured either from account registration or first
ad creation. All fraudulent accounts detected as fraud in first and second year of measurement
are shown.

populations of fraudulent advertisers, each weighted according to the indicated account factor.

Given the high rate of fraudulent account registration, Bing must be vigilant in identifying

and acting upon signs of fraudulent activity, which can occur at almost any stage of the account

lifetime. 35% of all account shutdowns, however, occur before the advertiser account is able to

display even one ad, with the median fraudulent account surviving less than a day from account

creation. Of those accounts that are successful in posting any ads at all, most will be shut down

within eight hours of beginning to post advertisements, and 90% of all account shutdowns happen

within four days of initial ad posting. Figure 3.2 shows the cumulative density function (CDF) of

fraudulent account lifetimes, measured both from account registration and first ad creation. We

find that lifetimes are similar in both years of our study.

3.4.2 Advertiser effectiveness

Despite their relatively short lifespans, fraudulent accounts are able to generate a non-

trivial amount of traffic on Bing each month. Over the two-year period of our study, traffic

regularly averaged tens of millions of clicks, and over ten million USD losses to Microsoft.

Figure 3.3 plots the total amount of billable activity or ‘spend’ and clicks generated

each week by the fraudulent accounts present on Bing that week. We break the activity into
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Figure 3.3. Weekly aggregate fraudulent activity over time. ‘In-window’ indicates the account
detected as fraudulent within 90 days of the given date. ‘Out-of-window’ indicates accounts that
were discovered after more than three months. Spend is normalized by maximum value.

two categories based upon account. The ‘in-window’ line includes the activity from accounts

detected as fraudulent within a 90-day rolling window starting from the date of activity. The

values have been normalize by the maximum value. We observe that fraudulent activity has

nearly halved during the period of study.

In contrast, the ‘out-of-window’ line accounts for activity that was determined to be

fraudulent by the end of our study, but not within 90 days of occurrence. We present this line

not because it is an accurate accounting of this fraction; indeed, it cannot be: it decreases and

necessarily stops approximately 3 months before the end of the figure, as the number of days, and

thus opportunities for shut down, approaches zero. Rather, we show it to suggest that our analyses

represent a substantial, but unavoidable, under-reporting of fraudulent activities—potentially by

a factor of two or more.

A result of the rapid capture of most fraudulent advertisers is that success is centralized

among the top few who dominate the rest. In most time periods, the top 10% of advertisers, as
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Figure 3.4. Cumulative proportion of total fraudulent spend/clicks per advertiser for five distinct
time periods. Advertisers are in decreasing order of spend.

ordered by number of clicks received, collectively account for more than 95% of all fraudulent

clicks received. In terms of spend, the situation is similar: the top 10% of advertisers make up

80–90% of spend. Figure 3.4 shows the distributions of spend and clicks across advertisers over

several measurement windows.

Click-through rate (CTRs), the probability that a random user will click an advertiser’s

ad, provides the primary mechanism for demonstrating ad quality and relevance to search queries.

Another metric, cost-per-click (CPC), provides the average amount spent by an advertiser to

receive a click. Ad performance, as measured by CTR and CPC, heavily influences whether an

ad is shown at all, as well as where the ad appears on the page. While one might expect better

performance from fraudulent ads over legitimate advertising, click-through rates for fraudulent

advertisers tends to be slightly lower than their non-fraudulent counterparts, only being slightly

higher for the highest-spending fraudulent advertisers. Put differently, most fraudulent ads are

less alluring to users than legitimate ads, except for the most successful few among them. The

fraudulent advertisers that spend the most do so in part because they pay more per click than

almost everyone else, existing almost entirely in the upper end of the distribution for cost per

click, with CPCs regularly in the several tens of dollars. Many of these advertisers sell products

costing more than $100, perhaps permitting such high click costs.
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Figure 3.5. Impression rate witnessed during Year 1 Q2.
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Figure 3.6. Impression rate vs. number of clicks received in Year 1 Q2.

3.5 Advertiser behavior

Fraudulent advertisers work hard to attract as many clicks to their ads as possible before

they are detected. In doing so, they must be careful when choosing their ads and keywords.

Effectively-targeted ads will increase the likelihood that a user will click on the ad, which causes

Bing to show the ad more often. Conversely, however, having many ads and keywords that make

clear what a fraudulent advertiser is offering provides greater surface area for Bing to detect

dubious activity.
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3.5.1 Rates

Figure 3.5 shows the distribution of impression rates over a representative measurement

window. As one might expect, fraudsters show ads more rapidly than their legitimate counterparts.

Several reasons contribute to this phenomenon; in addition to fraudsters attempting to gain as

much traffic as possible prior to detection, illegitimate advertisers may have no intention of

paying their bill to Bing (e.g. payment instrument fraud), and may operate in affiliate programs

that pay out per-click, and are not discerning about their traffic. Click and spend rate distributions

(not shown) have similar shifts with respect to non-fraudulent accounts.

The differences in rate between fraudulent and non-fraudulent disappear when one

focuses on prolific advertisers, however. Figure 3.6 shows the number of clicks received as

a function of impression rate during the Year 1 Q2 measurement window. The important

observation is that, while there is noticeable separation between fraudulent and non-fraudulent

advertisers at lower click volumes, higher valued non-fraudulent advertisers are substantially

more likely to have rates roughly equaling the performance of similarly-prolific fraudulent

accounts. As a result, while rate checks are effective for detecting many low-volume fraudulent

users, the most successful fraudulent users blend in with their non-fraudulent counterparts.

3.5.2 Targeting

Bing determines how often to show ads in part by the performance of the advertisement

when shown [8]. As a result, targeting an ad too broadly results in lower relevance to the search

queries, which often hurts performance. We find that successful fraudulent advertisers target

their audiences similarly to legitimate advertisers [119] (e.g. advertisers that bid on terms such as

‘YouTube’, ‘videos’ or ‘news’ offer ads for sites designed to look like video or news sites), but

with the added challenge of evading blacklisted keywords or ad copy that is likely to trigger filters.

Moreover, because adding ads and keywords only increases the ways in which the advertiser can

be identified (both for current accounts and in the future), fraudulent advertisers are pressured to
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Figure 3.7. The distribution of ads and keyword sets added or modified as a function of advertiser
type from Year 1 Q2. Normalized by median number of creations from ‘NF with clicks’.

keep the number of ads and keywords low to reduce the probability of detection.

Figure 3.7 shows the distribution of the number of ads and number of keywords created

or modified per account. The total numbers of ads created and keywords on which fraudulent

advertisers bid are each more than an order-of-magnitude less than their non-fraudulent coun-

terparts, with the differences greatest when compared to advertisers posting at similar rates to

fraudulent advertisers. This is true even though fraudulent advertisers appear to maintain their

ads and keyword sets at rates similar to other advertisers. This effect is even more pronounced

when compared against non-fraudulent advertisers with similar rates of posting ads, consistent

with fraudulent advertisers pushing to receive as much traffic per-ad as possible.
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Table 3.2. Example ads from selected popular categories.

Category Ad Title
Ad Body

techsupport Install Printer
Call Our Helpline Number. Online Printer Support By Experts.

downloads Discord Free Download
Latest 2017 Version. 100% Free! Instantly Download Discord Now!

luxury 75% Off C0ACH Factory Outlet
Enjoy 75% Off & High Quality C0ACH Bags & Purses. Winter Sale Limited Time...

wrinkles Best Anti Wrinkle Cream
Premium Skin Care Product! Removes Wrinkles in Weeks! Clinically Proven

impersonation Target - Online Shopping
Store Hours & Locations. Go To Target.com Online Shopping Now.

Verticals

Fraudulent ads span a wide array of topics. The significant majority of fraudulent

advertisers, however, appear to participate in pay-per-click or pay-per-action affiliate programs.

These programs are a popular choice among fraudulent advertisers because they are quick and

easy to join and require little sophistication to begin monetizing. Many advertisers involved with

the easier-to-join programs advertise for several programs simultaneously, using one advertising

account across their campaigns. The highest spending accounts, however, tend to be more

focused on fewer, more specialized and lucrative verticals.

The top categories in terms of clicks are typically sites dedicated to offering downloads

of popular software. These range from heavily ad-laden sites providing unmodified copies of

open source software to sites spreading malware bundled with cracked versions of commercial

software. A common strategy is offering open source software bundled with ad-injecting

installers.

Figure 3.8 shows some of the most popular verticals targeted among the most prolific

advertisers (in terms of spend) periodically from year 2. Fraudulent advertisers target hundreds of

distinct verticals; these verticals were chosen for their prevalence in at least one month. Table 3.2

provides sample ads for some prominent categories.
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Figure 3.8. Primary verticals targeted by fraudulent advertisers, manually labeled from ad copy
on all advertisers with more than $2000 spend in a month. Amounts are aggregated per-month
with data points every three months, with monthly frequency at edges of date range. Data
normalized by same value as in Figure 3.3.

The first quarter of the measurement period offers a particularly interesting example

of targeted intervention. During that quarter, ‘techsupport’ was by far the vertical with the

most fraudulent spend. In this model, advertisers offer technical support for business accounting

software, printers, routers, antivirus products or other technology, and work by encouraging

users to call a phone number, where users pay hundreds of dollars for a single support call.

This vertical was dominated by a few especially prolific advertisers; in the first quarter of

year 2, just fourteen advertisers survived long enough to spend more than $100,000, and 134

spent more than $10,000. Of these, 11 of the 14 and 81 of the 134 were selling third-party tech

support. In contrast, no other category received more than one advertiser in the top 14, and the

second-place holders (a three-way tie) made up just 7 of the top 134.

The precipitous drop-off corresponds to a policy change in which Bing prohibited the

marketing of third-party technical support services [71]. Prior to this change, Bing only prohibited
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advertisers from inaccurately suggesting an affiliation with other companies.

Phishing

One vertical deserves special mention, given its recent prominence in the popular press:

phishing. By the numbers, phishing-type scams historically make up only a small percentage of

the total fraudulent advertising activity on Bing. When we manually inspected all advertisers in

Year 2 Q1 who managed to spend more than $10,000, only one account was used for phishing;

most phishing accounts are shut down quickly. Similarly, manual inspection of the most

prolific advertisers at various points throughout the measurement period yielded few instances

of traditional credential phishing, though there was a noticeable uptick towards the end of our

measurement period.

We suspect phishing is somewhat less prevalent than one might expect due to aggressively

targeted machine learning and blacklisting. Like all blacklisting, Bing’s blacklisting is most

effective for high-value targets (like banks) with unique names, as the fraudster must name the

institution in order to impersonate it. The blacklisting is less effective, however, in a few cases:

when legitimate advertisers may purchase ads targeting the site (e.g. an ad may point to a user’s

YouTube channel), when the bare company name aliases with a term that isn’t easy to blacklist,

and where the institution is too small to have yet been added to the blacklist.

Indeed, much of the phishing we observe during the period of study targets small financial

institutions and services in non-English-speaking markets where the blacklist is not as developed,

and against services whose names cannot be effectively blacklisted. Fraudsters targeting these

small institutions can be effective in evading detection for a time, but as blacklists grow, the

fraudsters may run out of sufficiently-attractive targets. Impersonation of non-blacklistable

companies does pose an ongoing problem.

A superset of phishing that we see commonly is impersonation. Impersonation encom-

passes any time a site attempts to mimic a larger site to attract clicks. Many sites in this category

are not attempting to get a user to reveal private information, but are attempting to piggyback
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Table 3.3. Country distribution of fraudulent clicks from a typical sample day. ‘% of Country’
indicates the portion of clicks in that country that are to fraudulent accounts.

Country % of Fraud % of Country
US 61% < 2%
BR 10% < 6%
DE 10% < 3%
CA 5% < 2%
GB 3% < 1%
FR 3% < 1%
IN 2% < 2%

MX 2% < 1%
AU 1% < 2%
SE 1% < 2%

on the reputation of the more prominent sites. Streaming sites, rival search engines, large retail

establishments, and social networks are all popular impersonation targets. Visitors to these sites

may be greeted by any number of scams and low quality advertising.

Geography

Table 3.3 shows the countries receiving the most fraudulent clicks. The US is by far

the most attractive target, but the country with the greatest proportion of fraudulent traffic is

Brazil. Interestingly, the UK and France are significantly cleaner overall than other major

Western nations. An equivalent breakdown by language yields a very similar result. These results

mirror the fraudulent accounts’ stated home countries/languages at registration, and by and large,

accounts target ads in their own country.

This distribution is likely due to a combination of factors: Bing’s differing market share

across different markets, local regulation, market forces, relative tuning of detection algorithms

and language spoken of analysts, as well as cultural and other factors likely all play a role. We

were unable to locate any clear correlations between fraudulent click behavior and country, but

we speculate that the size and relative wealth of the markets in each language accounts for much

of this distribution.
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Blacklist evasion

Bing maintains blacklists of words and patterns (such as phone numbers and some

trademarks) that are not permitted in ad text or keywords. By and large, successful fraudulent ad-

vertisers rely on phrasing in ads and keywords bid on that are not easily blacklisted outright: e.g.,

terms like ‘news’, ‘download’ or ‘skin care’ are used by legitimate and illegitimate advertisers

alike.

Occasionally, fraudulent advertisers are motivated to circumvent these blacklists, and

we see every combination of words using look-alike characters (e.g. ‘O’ for ‘0’, diacritics). A

typical example is the prohibition of phone numbers in ads (since users calling a phone number

circumvent Bing’s billing mechanisms by not requiring a click). Advertisers often try to avoid

detection in these cases by injecting text into parts of phone numbers or presenting numbers in

odd formats (e.g. ‘CALL 1-800 (USA) 555 1000’).

Bing also maintains a fairly aggressive blacklist of domains used in fraudulent activities.

As a result, the URLs witnessed in fraudulent ads (either as the URL displayed or as the

destination URL after a click is received) are typically unique to that account. The most common

domains that are shared between fraudulent advertisers are third-party services which also serve

non-fraudulent traffic, including URL shortening services (e.g. bit.ly) and affiliate programs

(e.g. MaxBounty).

The most clicked-on domains are nearly universally unique to individual advertisers

(with a few affiliate programs added in). Fraudulent advertisers, however, often use more than

one URL. While 74% of fraudulent advertisers use a single domain in their advertisements, and

96% use 3 or fewer, most accounts are shutdown so quickly that these figures are misleading.

Predicating on accounts that have multiple ads moves the mean case to 3 domains, with the 90th

percentile having nearly 20.
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3.5.3 Bidding style

In Bing’s ad platform, advertisers choose a matching method alongside choosing key-

words to bid on. During a search, Bing assembles a list of ads that are eligible to be shown using

this match method (or ‘type’) to determine whether the keywords match the search query. Bing

supports three distinct types of matches that pair a search query with a given keyword phrase.

An ‘exact’ match occurs when the keywords chosen by the advertiser occur as the exact

search query, with no changes to ordering or additional words. A ‘phrase’ match occurs when the

keywords occur in the right order, but optionally with additional words preceding or following

the keywords. Finally, a ‘broad’ match occurs when the keywords, or any keywords that Bing

determines to be similar, occur in the query, regardless of order or existence of other words in

the query [72]. Across all match types, Bing normalizes for misspellings, plurals, acronyms and

other minor grammatical variations.

For many fraudulent advertisers, the strongest incentive is to ensure that their ad is seen

as many times as possible before their deception is uncovered by the advertising network—

precise targeting is less important, so long as users still engage. As such, fraudulent advertisers

skew away from precision matching, preferring broader matches. While a quarter of legitimate

advertisers use exact matches at least a third of the time, only about 10% of fraudulent actors use

exact matches that frequently. 60% of fraudulent advertisers do not have even a single exact bid

(compared to about 50% of legitimate advertisers). Proportions are similar for phrase matching.

In contrast, legitimate advertisers use broad matching less than 10% of the time, while the median

fraudulent advertiser uses phrase matching in half of cases. See Figures 3.9(a), 3.9(c), and 3.9(e)

for the full distributions.

Table 3.4 shows the distribution of clicks received according to the matching method

employed by fraudulent advertisers. As expected from their targeting strategies, the proportion of

clicks from exact matches is lower than in the non-fraudulent population. Interestingly, however,

phrase matching is considerably over-represented compared to the non-fraudulent population.
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Figure 3.9. Advertisers’ use of ad match types in Year 1 Q2. Bid values normalized by Bing’s
US default maximum bid amount.

70



Table 3.4. Match type distribution of clicks received on fraudulent ads on a typical sample day,
as compared to non-fraudulent advertisers.

Type % of Fraud % of Type Non-fraudulent %
Exact 61.62% 0.90% 67.88%
Phrase 31.05% 1.32% 23.32%
Broad 7.33% 0.83% 8.80%

Advertisers may also specify a different maximum bid for each match type and keyword

combination. Contrary to our initial expectations, bidding prices among fraudulent advertisers

are not significantly different than non-fraudulent advertisers (with the exception of some quickly-

caught advertisers). Across all bid types, for both fraudulent and non-fraudulent advertisers, the

median maximum bid is the same as the default amount in US markets. The most notable trend

in bid pricing for fraudulent advertisers is that only 17% of such advertisers are bidding more

than the default on both exact- and phrase-type matches, while non-fraudulent advertisers are

roughly double that. See Figures 3.9(b), 3.9(d), and 3.9(f) for the full distributions.

3.6 The Impact of Fraud

The final question we explore is the extent to which fraudulent advertisers impact other

advertisers competing in ad auctions. One might expect that because fraudulent advertisers are

often not spending their own money, they would be more profligate in their bids. As a result,

competing advertisers may lose auctions more often, or potentially have to pay more for ads.

We consider advertisers to be competing with fraud when their ads are shown alongside

ads from fraudulent advertisers. We ignore ads that compete in the auction, but are not shown.

We believe this to be a safe simplifying assumption as many ads that participate in auction

are still shown to the user (at a lower ranking), and in many cases, no ad is shown. Further,

the impact of losing bidders is limited to the prices offered by the ads shown at the lowest ad

positions.

In most markets, well less than 2% of search queries result in a fraudulent ad being shown,
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Figure 3.10. Proportion of impressions and revenue affected by fraudulent competition, per
advertiser from Year 1 Q2.

but the effects are not uniformly distributed. Most verticals have no overlap with fraudulent

advertising at all, so advertisers within these verticals are essentially unaffected by fraudulent

advertisers. For most advertisers, then, fraudulent advertising has little impact. While there are a

few markets with much larger rates of fraud, the percentage of fraud tops out at about one in

twenty ads shown (see Table 3.3).

3.6.1 Frequency of competition

Figure 3.10(a) shows the distributions of the proportion of an advertiser’s ad impressions

that compete with fraudulent ads. The median legitimate advertiser will have less than 0.6% of

their ad impressions shown with a fraudulent ad, and the 95th percentile legitimate advertiser

has less than 20% of their ads shown alongside fraudulent ads. Even in samples of advertisers

with substantial keyword overlap with the most prolific fraudulent advertisers (not shown), less

than 2% of the advertiser’s impressions were shown alongside a fraudulent ad in the median

case. And when non-fraudulent advertisers do encounter fraudulent competition, they are almost

always faced with only a single fraudulent ad.

Fraudulent advertisers often focus on niche areas, and there is substantial competition

among advertisers in those verticals. Figure 3.10(a) also shows the equivalent distributions for
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fraudulent advertisers competing with other fraudsters. For the median fraudulent advertiser,

more than 90% of their ads will be shown adjacent to a different fraudulent advertiser’s ad, and

the 95th percentile fraudulent advertiser has nearly all of their impressions in competition with

other fraudulent advertisers. Further, in the significant majority of cases, fraudulent advertisers

are competing with more than one fraudulent ad shown beside their own (not shown).

The distribution of proportion of spend affected, shown in Figure 3.10(b), is similar to

the impression distribution with one major difference: a disproportionate amount of the money

spent by fraudulent advertisers occurs during heavy competition with other fraudulent advertisers.

That is, fraudulent advertisers waste most of their money competing with each other. About 99%

of spend is affected by competition from other fraudulent advertisers for the fraudster, compared

with just 92% of impressions.

3.6.2 Impact of competition

While legitimate advertisers do not frequently compete with fraudulent advertisers, when

they do, the competition does negatively impact legitimate advertisers—especially when the

fraudulent advertisers are operating at volume.

Impact on ad position

On a search engine results page, ads can be displayed along the top of the page (the

‘mainline’, above traditional search results) or along the right edge of the page (‘sidebar’), with

the mainline traditionally receiving more clicks than the sidebar, and higher positions in the page

typically providing more traffic. In this way, we define ‘ad position’ as the rank of an ad in the

list of ads shown on the page, from the top of the mainline down to the bottom of the sidebar.1

For ease of comparison, we only examine the effects on ads that were displayed on the first page

of results (though fraudulent competing ads may appear on subsequent pages).

Figure 3.11(a) shows the impact on ad position of non-fraudulent advertisers competing

1While the ‘1’ slot is always the most valuable position, the number of ads in the mainline and sidebar is dynamic.
A particular ad position does not correspond to a particular slot on the page.
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(b) Effects for fraudulent advertisers

Figure 3.11. Effects of fraudulent competition on ad position for fraudulent and non-fraudulent
advertisers from Year 1 Q2

with fraudulent advertisers for two sets of non-fraudulent advertisers. Other non-fraudulent

advertiser subsets show similar effects. Both subsets are from a typical day in our second-quarter

Year-1 sample period.

While fraudulent advertisers are only about 5% more likely to achieve the top ad position

as compared to their non-fraudulent counterparts absent competition from other fraudulent

advertisers, non-fraudulent advertisers are considerably less likely to achieve the top ad position

when competing with fraudulent advertisers. The median non-fraudulent advertiser is likely to

achieve the top position about 20% of the time without interference (labeled ‘organic’); this

probability drops to about 10% when competing with fraud (labeled ‘influenced’), and similar

drops are present throughout the distribution. Put in other terms, competing with a fraudulent

advertiser typically costs the legitimate ad about one position. Figure 3.11(b) shows the same

distributions for fraudulent advertisers, with similar impacts. When fraudulent advertisers

compete with each other, however, their probability for reaching the top position drops by about

10%.
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Figure 3.12. Effects of non-self fraudulent influence on CTR for during Year 1 Q2 in dubious
verticals

Impact on CTR

Competing with fraud has a devastating impact on click through rates (CTRs) among

advertisers with lower than median performance. Figure 3.12(a) compares the CTRs for non-

fraudulent advertisers when competing against other non-fraudulent advertisers (‘organic’),

and when competing against fraudulent advertisers (‘influenced’). While few non-fraudulent

advertisers have close-to-zero CTRs when competing on a level playing field, the proportion

jumps to 50% when competing with fraud. Even among high-volume non-fraudulent advertisers,

CTRs drop by a factor of two in the median case.

A similar, but smaller effect occurs for fraudulent advertisers competing amongst them-

selves. Figure 3.12(b) shows similar CTR distributions for fraudulent advertisers, with and

without competition with fraud. Without competition, only a few percent of fraudulent advertis-

ers have near-zero CTRs, but this value jumps to nearly a third with competition. The median

case, though, does not experience nearly as significant of a change. Fraudulent advertisers are

accustomed to working in a high-fraud-competition environment.
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Figure 3.13. Effects on average CPC per advertiser for advertisers in dubious verticals. Nor-
malized by median CPC for ‘NF with clicks (organic)’

Impact on CPC

While competition with fraud results in a significant increase in the cost per click (CPC)

of legitimate ads across the board for the dubious verticals where they compete, this effect

is unevenly distributed. Figure 3.13(a) compares the CPC distributions for non-fraudulent

advertisers with and without competition with fraudulent advertisers, and Figure 3.13(b) shows

the same CPC distributions for fraudulent advertisers. High-volume advertisers in these dubious

verticals see increases in CPC around 30% in the median case, while randomly chosen advertisers

see impacts less than 5%. Fraudulent advertisers bear an even greater increase. For fraudulent

advertisers, CPC increases by around a factor of two when competing with fraud across all

subsets of fraudulent advertisers.

3.7 Discussion

Throughout this chapter, we have explored search advertiser fraud on Bing’s search

engine platform, quantifying the scale of fraud, the dynamics of being a fraudulent advertiser,

and how fraudulent advertisers impact other advertisers in the ecosystem. In this section, we

speculate on the implications of our findings for Bing, other search engines, and the advertising
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ecosystem more broadly.

At a high level, Bing’s fraud detection strategies are certainly necessary (e.g. up to a half

of new account registrations are fraudulent) and also are effective—fraudulent advertisers who

do succeed in evading detection sufficiently long to see non-trivial volume have to operate under

considerable constraints and have been relegated to niche aspects of the advertising keyword

space. Despite this, fraud is still a significant concern, costing millions of dollars a month, with

adaptable adversaries constantly probing defenses. So what can Bing, and potentially other

mature ad networks, do to further undermine fraudulent advertisers?

Given the mature state of Bing’s defenses, new anomaly detection strategies are likely to

have diminishing returns. Though many fraudulent advertisers are quickly detected, those that

remain have chosen their behavior carefully to look similar to existing non-fraudulent advertisers.

For instance, while certain keywords clearly indicate that a market segment is high risk (and thus

perhaps warrants greater scrutiny), it is not the case that successful fraudulent advertisers have

keyword or ad copy choices that are sufficiently different from all non-fraudulent advertisers. In

terms of bidding behavior, most of the fraudulent advertisers simply look average with respect to

bidding types. Where fraudulent advertisers have higher distributions than their non-fraudulent

counterparts (for instance in the proportion of bids that are for a broad match), thresholding is

effective to detect some fraud, but the spread among fraudulent advertisers is wide enough to be

inconclusive.

The ad strategies employed by the prolific fraudulent advertisers are diverse. In some

cases, we see advertisers running one or two campaigns at a time, discontinuing old campaigns

before starting new ones; in others, we see advertisers constantly adding new ads, allowing

the old campaigns to continue uninterrupted. The most prolific fraudulent advertisers even

reliably pay their substantial bills over months or years, indicating that it is unlikely that they

are using stolen payment instruments. In effect, Bing’s defenses over long time periods have

coaxed fraudulent advertisers into behaving similarly to legitimate advertisers, precisely to evade

anomalous detection.
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At this stage of the ad network ecosystem, the most dramatic impacts that Bing (and per-

haps other ad networks) can make are by providing targeted and enforced policy changes aimed

at the most prevalent verticals targeted by fraud. Fraudsters must target their advertisements

fairly explicitly in order to achieve substantial traffic from the platform, and fraudsters target the

verticals they do not purely by convenience, but by necessity. Eliminating these verticals from

the ecosystem will challenge these fraudsters into new, likely less profitable, verticals.

Though we can only speculate on the fraudulent ecosystem experienced in other adver-

tising networks, little of the high-level behavior we have described throughout this chapter is

likely to be unique to Bing. Bing’s policy change to explicitly prevent advertising of third-party

support services had the single most dramatic effect on fraudulent advertiser behavior that we

witnessed over two years. Similar policy changes in the future (e.g. on misleading celebrity

branding) are likely to continue to be the most effective instruments of fraud prevention as it

requires fraudsters to completely retool and change what they sell, rather than simply tweaking

around the edges to avoid detection.
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Chapter 4

Identifying malicious VPN providers

In the two preceding chapters, we explored two different areas where malicious actors

attacked or abused web services, but what about when the service itself is malicious? In

this chapter, we explore precisely that case by examining the ecosystem of commercial VPN

providers. In particular, we investigate a large number of providers looking for evidence of traffic

manipulation, traffic monitoring, or fraudulent claims about their service offerings. While we

find evidence of a variety of malicious behaviors, we detect our largest findings by leveraging

this dissertation’s key insight: malicious actors optimize for making money, and not for perfect

deception. By observing that VPN providers are incentivized to provide many geographical

vantage points, but that actually having servers in many countries is expensive, we develop a test

that identifies several providers defrauding their users by lying about their server locations.

4.1 Introduction

Virtual private network (VPN) providers have positioned themselves to play an integral

role in users’ attempts to secure their Internet freedom amid concerns of privacy, security

and censorship. Likely spurred by the large number of media articles recommending their

use [133, 134], VPN usage has grown dramatically in recent years. According to a recent market

research report [104], commercial VPNs are currently a 15-billion dollar industry expected to

grow 20% by 2022. Originally developed as a technology to privately send and receive data
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across public networks, VPNs are now marketed broadly as a privacy-preserving technology that

allows Internet users to obscure their personal information and web browsing history from third

parties such as Internet service providers (ISPs) and governments.

VPNs are widely used not only to preserve privacy and evade Internet censorship, but

also to access content that may be unavailable in a user’s home country due to copyright or

licensing agreements. Compared to sophisticated tools like Tor [111], commercial VPN services

purport to provide individuals a faster and easier solution to access blocked content and achieve

their privacy goals [60, 87, 113]. Commercial VPN services are often preferred by average users

over services like Tor due to improved performance and perceptions of enhanced usability.

Unfortunately, while many VPN services claim to operate robust and secure infrastructure

and ensure users’ privacy by not logging data, the VPN ecosystem is opaque and their claims are

difficult to verify. Outside of the mobile space [51, 137], there is little independent research to

systematically audit these security and privacy claims, and few practical tools for users to protect

themselves. As a first step toward providing users with a rigorous, third-party evaluation of VPN

service claims, we develop a test suite to do just that and apply it to a diverse set of 63 VPN

providers. We seek to not only highlight the issues surrounding the lack of transparency in the

commercial VPN ecosystem but also provide an active-measurement methodology that others

can use to evaluate and audit arbitrary VPN services.

Our work finds evidence that at least 10% of VPNs are intercepting user traffic. This

number is surely a lower-bound, as VPN operators are well situated to passively monitor user

traffic in ways that are difficult or impossible to detect as an end user. We also observe similar

amounts of fraud from VPN providers making false claims about their infrastructure. This

deception is motivated by VPN providers needing a constant feed of new subscriptions to

survive and grow. Attracting new customers requires standing out in a crowded market, and

one of the few ways that providers can differentiate themselves is by offering promises of

geographical diversity—VPN providers typically advertise that their service can make user

traffic route through, and appear to originate from, many distinct vantage points across the globe.
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While advertising this capability is easy, actually providing service from potentially hundreds of

distinct countries is expensive and complicated. Further, most customers have no practical way

of verifying the location of a vantage point aside from using third-party geo-location services.

This lack of verification permits disreputable VPN providers that wish to save money by placing

vantage points in more convenient locations, and then attempting to deceive geo-location services

to mask their vantage points’ true locations.

We develop a methodology to identify inconsistencies in purported vantage point loca-

tions by relying on the packet round-trip time to a variety of hosts with known locations. We were

able to detect that around 10% of VPNs fail to deliver on their promises of geographical diversity,

and show that the practice of ‘virtualizing’ vantage points—i.e. masking the true location of

VPN end points—is far more prevalent than VPN services let on. In the most extreme case, we

find a VPN provider claiming vantage points in more than 190 countries yet hosting servers in

what appears to be fewer than 10 distinct data centers.

4.2 Background

VPN users have been driven to VPN services out of fear of surveillance and/or censorship

from ISPs, governments, or others. Some of this fear is well founded. Even in the United States,

lawmakers used the Congressional Review Act (CRA) in March of 2017 to repeal privacy rules

developed by the Federal Communications Commission (FCC) [133, 120]. The rules would have

required ISPs to seek permission from customers for collecting and sharing sensitive personal

information such as Internet browsing history. In response to the repeal, some privacy advocates

have pointed to VPNs as a viable way to regain control over users’ private information.

VPN services advertise the ability for users to access content through services such as

Hulu and Netflix that limit access to some content based on user location. Leading VPN providers

must often work to continually evade blocking of their service from content providers [121].

VPN services also advertise themselves as a means to download copyrighted material without
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users needing to fear for legal repercussions, with the theory being that their traffic will originate

from countries with lax copyright enforcement, and providers offering minimal logging will be

unable to discern who is sharing files even if they wanted to.

While users flock to commercial VPN services, the effectiveness and security guarantees

of most providers remains unclear. Users must largely take VPN providers at their word, and

there is a dearth of independent user-friendly transparency tools to evaluate providers’ claims.

A few VPN providers have attempted to provide some assurances to their users—Tunnelbear

released a third-party security audit in 2017 [115], and several providers offer tools to detect

DNS and/or IPv6 leakage [88]—but these tools are limited and few. Not only is there a lack of

widespread positive evidence of security, there is substantial anecdotal evidence to the contrary.

In one recent instance, the Center for Democracy and Technology (CDT) filed a complaint

against HotSpot Shield VPN [13], an Android VPN service, that was actively redirecting user

traffic to partner websites. In another recent instance, IPVanish provided detailed activity logs to

the Department of Homeland Security despite having a stated policy of not maintaining such

logging [112].

Fierce competition between providers combined with the lack of objective metrics to

evaluate them in an unregulated market leads many VPN providers to attract clients through

deception. Several top-ranked VPN review websites are currently supported by affiliate marketing

and services. With strong economic incentives to funnel users to particular VPNs, it is hard

to be confident in the impartiality of the review websites. One popular VPN review site,

vpnMentor [122], lists over 250 VPN services with none scoring below a 4 out of 5. These

services funnel users to services that provide the best payoff to the affiliate site, rather than to

the best provider. Taken together, these factors suggest a strong need for comprehensive and

transparent evaluations of commercial VPNs.
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Table 4.1. VPN review websites crawled and their use of affiliate marketing

Website Affiliate Based Link

360topreviews.com X
bbestvpn.com X
best.offers.com X
bestvpn4u.com X
freedomhacker.net X
ign.com X
pcmag.com X
pcworld.com X
reddit.com 7

securethoughts.com X
techsupportalert.com X
thatoneprivacysite.net 7

tomsguide.com X
top10fastvpns.com X
torrentfreak.com X
trustedreviews.com X
vpnfan.com X
vpnmentor.com X
vpnsrus.com X
vpnservice.reviews X

4.3 Methodology

To get a comprehensive view of VPN providers active on the internet, we started by

creating a list of VPN services. While it is not possible to enumerate every VPN service provider

available online, we attempted to be as thorough as possible. To create this list, we combined

results from several sources:

• Review sites: To imitate how a user might find VPN providers, we started with a simple

web search. We examined the first 50 Google search results found using the keywords

“top VPN services”. These results included both links to individual VPN providers as well

as VPN review sites listing additional VPN providers. We extracted all VPNs listed, both

in the initial search results and from those review sites.
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Table 4.2. Number of VPNs extracted from each source of providers. Note that there is
substantial overlap between sources.

VPN Selection Category # of VPNs

Popular Services (from review websites) 74
Reddit Crawl 31
Personal Recommendations 13
“The One Privacy Site” 78
“vpnMentor” 156
Total Selected 200

• Reddit crawl: Many users may rely on recommendations or may not trust a simple

web search. We augmented our list with VPNs found by crawling Reddit’s subreddit

for VPNs [96]. This active forum sees individuals seeking out recommendations and

discussion of issues related to VPN setup and configuration. In July 2017, we extracted all

VPN recommendations from two main ‘mega-threads’ about VPN recommendations, as

well as VPNs mentioned in regular posts from the prior three months.

• Personal recommendations: To ensure we included VPNs common in censored countries,

we reached out on the Open Technology Fund [90] mailing list requesting recommenda-

tions for services known to be regionally popular in countries with censorship.

Table 4.2 lists the number of VPNs that we collected from each source. As these individual lists

overlap, in total, we collected 200 unique commercial VPN services.

4.3.1 VPN selection

Testing VPN services is a manual and time-intensive task. For each service, you must

first create and verify an account, likely pay money for any service, install the software, and

verify that it works. For VPN services with custom software (rather than using a standard VPN

protocol), manual intervention is also needed periodically during testing to switch between

vantage points. Our full test suite takes nearly 45 minutes to execute per vantage point, and
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there is limited ability to parallelize as each VPN consumes the machine it is running on during

testing.

Because of this manual labor and time, as well as the financial cost, it was not opera-

tionally feasible to perform measurements on all 200 VPN services we identified. Instead, we

created a stratified sample of the VPN services in the ecosystem, ensuring that we had sufficient

representation for a number of criteria:

• Popular VPN services: Nearly all of the review sites participate in some form of affiliate

marketing, and so we did not use their rankings for determining relative popularity. How-

ever, we do use the prevalence of a VPN across sites as an imperfect proxy for popularity.

Using this metric, we selected the 15 most prevalent VPN services for evaluation.

• VPNs with free or trial versions: Two websites, vpnMentor [122] and That One Privacy

Site [107], have details of VPN services including cost, features and number of vantage

points. We chose 30 VPN services because they included free-level or trial-level options.

Doing so both selected for services likely to be popular, and simplified our sign-up process.

• Random selection: From the remaining providers, we chose 18 services at random to

diversify our selection.

In total, we tested 63 VPN providers. For each provider, we aimed to test at least five vantage

points with as much geographic diversity as possible. The actual number of vantage points tested

per VPN varied between one (when only one vantage point was available) to nearly 150 (when

automated).

4.3.2 Environment and setup

We performed our testing in a macOS virtual machine running across several physical

systems. We restored the VM to a known state before testing a new VPN service to ensure a

uniform and consistent environment across our tests. macOS provided a UNIX environment
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while still being popular enough to have client software available from most major VPN providers.

In instances where there was no client software available, we tested the provider using OpenVPN

when available.

To test each provider, we first registered for a subscription, then downloaded and installed

the client. The test suite logs results for each experiment as well as traffic traces for passive

analysis. Several VPN servers disconnected repeatedly during the testing phase and hence

required partial re-collection of data, or omission from the dataset entirely. A general trend

notable across VPNs was the irregularity in vantage point connectivity—while North American

and European vantage points typically had few issues, other locales fared far worse. Multiple

initially-selected VPN services also had buggy or non-functional clients that prevented us from

testing. In this case, we replaced the VPN service with another from our list. Manual and

automated collection combined, we collected data from 868 vantage points.

4.3.3 Tests run

VPN services are tested along two main axes: identification of traffic manipulation or

surveillance by the provider, and deceptive practices in VPN infrastructure. In each case, we ran

this complete set of tests against every vantage point connected to.

Traffic interception and manipulation

We ran several tests to detect potential indicators of traffic interception or manipulation:

• Web page modification and content injection: To identify providers who inject content

or otherwise modify web traffic in-flight to users, we recorded our own accesses to two

specially-crafted ‘honeysites’ using the methodology of Tsirantonakis, et al. [114] and

Ikram et al. [51]. Both sites contained fixed content, but one site included ad-inclusion

JavaScript code from several major ad networks to provide opportunities for ad injection

or hijacking. This code used invalid publisher identifiers to ensure that no ads ran under

normal circumstances and there were no financial impacts on ad networks or advertisers.
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The pages loaded in a fully-featured Selenium-controlled [101] Chrome browser, recording

information about every resource that loaded and the reason for loading it (e.g. requested

by a particular iframe, etc.), as well as a complete copy of the final DOM.

• TLS interception and downgrades: To reveal any unexpected redirections or TLS stripping,

we recorded redirection and TLS information from more than 200 distinct domains. In each

case, our test connected to the domain over HTTP, followed any HTTP-based redirects,

and recorded all URLs and response headers along the way. The test also recorded and

validated every certificate seen against Mozilla’s CA trust store. Domains were chosen

from the Alexa top 100k sites to cover a wide variety of potentially sensitive topics

(including news, politics, pornography, government websites, defense contracting, etc.)

in a variety of languages and home countries. The set also contains a mix of sites using

HTTPS and non-HTTPS by default.

• Transparent proxies: Any transparent proxy present on a VPN may observe or selectively

modify traffic in a way not triggered by our previous tests. To try to detect this behavior,

we made a series of slightly malformed web requests to an HTTP echo server under our

control, and then compared the request sent with the request that the server received.

Transparent proxies will often either inject additional headers, or slightly modify requests

forwarded, both of which are detected by this test.

For the latter two tests, we also periodically collected known-unmodified data from a university

IP several times per day during our study. This dataset was then subsequently used as a ground

truth reference in identifying inconsistencies. All inconsistencies were manually investigated.

These tests are not perfect, and cannot detect a variety of techniques. Any purely passive

observation techniques (e.g. recording network traffic) is entirely invisible to tests. Similarly,

transparent proxies that do not modify requests will not be detected by our proxy identification

test. Finally, any traffic modification that is selectively targeted may not be triggered by our
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significant, but ultimately limited, set of domain accesses. As a result, our results should be

considered an underestimate.

VPN infrastructure inference

We also collected data on the performance and the purported geographic location of each

vantage point:

• Round-trip access times: To help aid in estimating the true location of VPN vantage points,

our tests collected a variety of latency information. We collected traceroutes to anycast-

capable public DNS resolvers (Google Public DNS and Quad9) and well-distributed DNS

roots (D, E, F, J, L), as well as ping-based RTT information to 50 RIPE Atlas anchors [99].

• IP geo-location: To compare claimed geo-location with IP database’s geo-location, our

tests collected both the coordinates and reverse geo-coding from the Google Maps API [40].

In addition, egress IPs were subsequently looked up in both IP2Location Lite [52] and

MaxMind’s GeoLite2 [66] databases.

It is possible to spoof latency measurements from ping, and so our estimates of deception based

on RTT should be considered a conservative estimate. Sanity checking as well as additional

testing using TCP-based RTTs suggest that such deception is not common place.

4.4 Results

VPN providers largely sell themselves as being neutral data brokers that securely transport

your network traffic from your computer to a network located in another location. In this section,

we investigate the network behavior of the selected VPN services (Section 4.3.1) using the tests

described in Section 4.3.3, and find that a meaningful proportion of VPN providers are not as

neutral as their users might hope.
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Figure 4.1. TTK blocked content page in Russia.

Table 4.3. Destination Domains of URL Redirections

Destination Domain VPNs Country

http://195.175.254.2 8 Turkey
http://[www.]warning.or.kr 5 South Korea
http://fz139.ttk.ru 4 Russia
http://zapret.hoztnode.net 2 Russia
http://warning.rt.ru 1 Russia
http://blocked.mts.ru 1 Russia
http://block.dtln.ru 1 Russia
http://blackhole.beeline.ru 1 Russia
https://www.ziggo.nl 1 Netherlands
http://213.46.185.10 1 Netherlands
http://103.77.116.101 1 Thailand

4.4.1 Traffic manipulation and monitoring

While we have limited ability to detect when traffic is transparently monitored (as this

can be done passively without leaving side effects), these tests can still detect some forms of

monitoring and traffic manipulation. We find that about 10% of VPNs tested monitor traffic for

an unknown purpose. In contrast, we find little evidence of traffic manipulation or tampering

from providers, with most manipulation we witnessed originating from country-level censorship,

rather than from the VPN itself.
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Website blocking, redirection and HTTPS downgrades

Our tests detect when unauthenticated HTTP requests unexpectedly redirect to an unre-

lated domain1 or the redirections failed to upgrade a connection to HTTPS when expected.

Table 4.3 enumerates the final destination of every instance of VPN-attributable HTTP

redirect that we encountered. In each instance, these redirections are upstream country-level

website blocking in Turkey, South Korea, Russia, Netherlands or Thailand. We only detected

redirection on endpoints claiming to be in the expected countries. Typically, redirections

were caused by HTTP 302 status codes. The types of content experiencing the most blocking

was pornography (Turkey, South Korea, Thailand, Russia), followed by file sharing (Turkey,

Russia, Netherlands). Additionally, Turkey blocked Wikipedia and Russia blocked jw.org and

linkedin.com. An example blocking page from a Russian ISP is shown in Figure 4.1.

We also identified several instances where websites appear to block known VPN traffic

systematically. In these cases, sites often responded with HTTP 403 response codes, though we

also encountered HTTP 200 response codes with a page explaining the block. Several of these

sites perform blocking prior to the initial redirect to HTTPS, and as a result, were identified

by our downgrade detection. We identified no VPN providers systematically stripping TLS or

causing malicious redirections, though we take the signals we do identify as validation of our

technique.

Traffic injection/modification

Our ‘honeysite’ test identified one instance of a VPN provider systematically injecting

content into pages. All pages loaded under a free trial account of Seed4.me via HTTP were

injected with an overlaid advertisement served by custom JavaScript hosted on a subdomain

of the VPN provider’s site, as shown in Figure 4.2. We identified no other instances of HTTP

injection.

1We considered two subdomains to be related if they shared a registered domain (according to the pub-
lic suffix list [79]), their registered domains differed only by public suffix (e.g. http://a.example.com to
http://b.example.org ), or if they were manually determined to be related.
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Figure 4.2. Advertisement injected by seed4.me trial VPN service.

Header-based proxy detection

In addition to the content injection from the previous section, we also detected transparent

proxies in use in five VPNs: AceVPN, F-Secure’s FREEDOME VPN, SurfEasy, CyberGhost

and VPN Gate. In each case, proxies did not inject additional headers, but consistently modified

our existing headers in ways consistent with header parsing and subsequent regeneration.

The presence of a proxy does not inherently mean that the VPN is doing something

nefarious—VPN Gate’s server software, for instance, appears to systematically proxy requests

(though we can find no documentation of this), but because VPN Gate’s server software is

provided as an academic project to avoid censorship, we presume malicious monitoring was not

the intent. That said, there is little reason to proxy requests, few VPN software stacks do this by

default, and so we do not expect legitimate proxying to be common-place. It is also possible that

additional services use transparent proxies that were not detected using this method.

4.4.2 Geographic distribution

VPNs make a variety of claims about where their vantage points are located geographi-

cally. They provide this list of locations as a selling point for performance, to evade geographic-

based blocking on services (such as used by Netflix), and to ‘enhance privacy’. While most

providers work hard to provide vantage points in a variety of physical locations, some VPN
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providers take steps to deceive geo-IP databases about the physical locations of their vantage

points. The industry occasionally calls these ‘virtual locations’.

Whether or not these virtual locations are a problem depends on the users’ intended

use case. Users interested in evading state-level censorship or jurisdictional arbitrage (e.g. for

downloading copyrighted content) may care deeply about a vantage point actually being located

in a particular country. Other users may only care that a vantage point’s apparent location

successfully fools a given web service. So long as VPN providers are open and clear about the

use of ‘virtual’ locations, the service is not defrauding the user, but problems arise when VPN

providers fail to ensure that users understand what the service is providing.

Claimed location vs. geo-IP databases

To get a handle on the level of disagreement between claimed VPN vantage point location

and perceived location, we compared the claimed location of 626 vantage points against the

locations provided by three geo-IP databases: IP2Location Lite [52], MaxMind’s GeoLite2 [66],

and Google’s location service as seen from the Google Maps API [40]. The first two services

are freely available, and the third can be used in a limited fashion to geo-locate a requester’s IP

address.

In all cases, there were significant disparities between claimed and IP-geolocated loca-

tions, with the greatest agreement coming from the freely available databases. Google was able

to provide a prediction of location in 541 cases, of which only 377 (70%) agreed with the VPN’s

claimed location. IP2Location and MaxMind each provided estimates for 612 vantage points,

but these locations matched the predicted locations in 552 instances (90%) and 583 instances

(95%) respectively.

For all databases, about one third of the inconsistencies were the database claiming a

vantage point was hosted in the US when the claimed location was elsewhere, with wide varieties

of claimed locations. The difficulty of geolocating IP addresses is well documented [38], and

errors exist in each dataset. However, the relative agreement among the free services, while
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Google’s service disagreeing nearly a third of the time suggests significant manipulation of IP

location databases by VPN providers, who can often change their geolocation in free databases

by contacting the database provider. In contrast, Google’s data suggests that ‘virtual’ vantage

points may be even more common than we identify in the next section.

Identifying ‘virtual’ vantage points

Our data allows us to identify several previously-unknown instances of ‘virtual’ vantage

points by identifying vantage point co-location through comparison of round trip times between

the vantage points and known hosts.

In total, we identified discrepancies in vantage point locations from six of our 63 VPN

providers: HideMyAss, Avira, LeVPN, Freedom-IP, MyIP.io and VPNUK. In some cases, we

were able to identify obvious discrepancies from discrepancies in ping times. As an example,

Avira’s ‘US’ vantage point registers ping times to known hosts in Germany, Luxembourg, and

the Netherlands in less than 9 ms each, while ping times to known US hosts ranged between 113

and 173 ms. Such ping times indicate that this vantage point is actually in Europe.

Often, however, discrepancies are harder to spot by individual measurements alone. In

these cases, we identify abnormalities by comparing measurements across multiple vantage

points. For each vantage point, the series of ping-based RTT times to known hosts forms a sort of

fingerprint that reflects the network properties of the particular data center in which the vantage

point is hosted. In addition to suggesting geographic location, comparing these fingerprints

reliably detects co-located hosts sharing a data center. MyIP.io, for instance, reports having five

vantage points located in the US, France, Belgium, Germany and Finland. While the egress IPs

of the US and French vantage points share the same /24 IP prefix, and the Belgian, German

and Finnish vantage points share another, this is not by itself a guarantee of co-location—some

VPNs that manage their own IP space heavily subdivide their ranges into very small chunks

across locations. Comparison of fingerprints, however, reveals a strong match between the US

and French vantage points, likely located in Montreal. Similarly, Belgium, Germany and Finnish
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Figure 4.3. Distributions of RTTs to web hosts, ordered from lowest RTT to highest, for various
vantage points of three different VPN providers. Note the strong correlation between some
series—these vantage points are co-located despite claims of being in separate countries. The
bottom graph plots 148 different series corresponding to distinct HideMyAss vantage points.
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locations appear to reside together, likely in the UK.

Figure 4.3 demonstrates co-location of vantage point at three VPN providers. In each

case, the graph shows a distribution of round-trip times to our chosen hosts, ordered from lowest

RTT to highest. Though not shown, the same hosts appear in the same order across vantage

points. In the case of the European vantage points of MyIP.io, ping times to a reference host

varied by less than 1.5ms across different vantage points.

The provider offering the most ‘virtual’ vantage points by far is HideMyAss. An analysis

of nearly 150 of their endpoints reveals relatively few physical locations. Dozens of locations in

North, Central or South America, for instance, appear to be based out of the Seattle area, while

dozens more vantage points appear to be based out of Miami, Prague, London and possibly

Berlin. While HideMyAss specifically advertises having ‘virtual’ locations—even listing them

separately from physical locations—many supposedly physical locations (like North Korea) are

listed as physical while still clearly virtualized.

4.5 Related work

Appelbaum et al. identified the theoretical security risks and vulnerabilities of com-

mercial and public VPN services [5], but did not measure the prevalence of any potential

malicious activity. Perta et al. [93] analyzed the behavior of 14 popular VPN services, identify-

ing widespread IPv6 leakage opportunities for severe DNS hijacking leading to a full failure of

the VPN’s ability to protect traffic against a strong adversary. This study did not fully investigate

the possibility of a malicious VPN provider. Al-Fannah studied the privacy risks of the intro-

duction of WebRTC APIs in modern web browsers [2], demonstrating how WebRTC API can

compromise user’s anonymity by leaking a range of client IP addresses to a visited website, even

if a VPN is in use. This chapter aimed to extend these works to systematically measure other

aspects of commercial VPN services.

The closest studies to our own have focused on the mobile space. A study by Ikram et
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al. [51] analyzed more than 200 Android VPN apps, identifying instances of malware, traffic

leakages, traffic manipulations and even TLS interception. Among other results, Ikram’s work

revealed that HotspotShield VPN actively injected JavaScript code to redirect users to partner

companies [13]. Finally, Zhang et al. investigated security vulnerabilities in 84 OpenVPN-based

Android applications [137], confirming the findings of previous studies in the mobile space, by

reporting instances of vulnerable VPN mobile apps due to insecure custom modification and

developer-induced misconfigurations. Our work is the first to our knowledge to measure the

prevalence of malicious VPN providers in the broader commercial VPN ecosystem outside of

the mobile space.

As VPNs claim to provide access to vantage points remotely, a number of academic

efforts leverage VPN services for censorship analysis [16, 65, 80, 113], and network analysis

of ISPs [17, 116]. The findings of this project confirm that running measurements over VPN

services require caution due to their frequent traffic manipulation practices.

Related studies have also investigated other mechanisms for routing traffic for censorship

evasion or anonymization [59, 126]. Some amount of traffic manipulation and monitoring also

occurs in these other types of network relays, including open HTTP proxies [114] and even

anonymity networks [14, 132]. The work by Tsirantonakis et al. studied header manipulations

performed by over 65,000 open HTTP Proxies [114], finding around 5% of tested proxies

performing unwanted or malicious modification or injection such as ad injection, redirection, as

well as JavaScript injection for tracking and user fingerprinting purposes. Though our dataset is

smaller, and VPN service providers operate under different incentives, our results are largely in

line with these results.

4.6 Discussion & Conclusions

The results of prior studies of Android VPNs [51] and open web proxies [114] suggest that

the VPN ecosystem might contain a substantial fraction of providers looking to take advantage of
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their privileged position between the Internet and their customers. In particular, prior work shows

that significant numbers of vantage points intercepted and/or manipulated traffic. In this respect,

our findings are broadly similar with these adjacent ecosystems—we find around 10% of VPN

providers manipulating or monitoring traffic. Despite this, there are two significant differences

between the broad commercial VPN ecosystem and the other two that we might expect would

make commercial VPNs less malicious. Firstly, there are fewer mechanisms available to VPN

providers to intercept or manipulate traffic than are available to, for instance, mobile VPN

providers—many of the VPN services we consider rely on standardized protocols and client

software. This standardization prevents providers from as easily performing some forms of

malicious activity (e.g., TLS interception or surreptitious routing of client traffic through other

clients). Perhaps more importantly, the vast majority of the VPNs we measure are paid services.

These services therefor have less incentive to monetize their customers’ traffic directly when

compared to free services.

The greatest incentives for paid VPN services are not to manipulate customer traffic,

but rather to attract new customers. One of the few user-visible ways VPN services have to

differentiate themselves to potential customers is through the set of countries in which they

provide vantage points. As a result, VPN providers are incentivized to inflate this set of vantage

points as much as possible. It is this observation that leads us to search for, and ultimately

identify, providers misleading users on what vantage points the services offer. Our measurement

technique is unique in that evading it is hard—shy of placing each vantage point in the claimed

country, it is very difficult to avoid latency-based artifacts that betray the provider’s deception.

Consistent with the theory, we see clear evidence of around 10% of providers artificially inflating

their numbers by using ‘virtual’ vantage points rather than a physical presence in a given country.

These ‘virtual’ vantage points are drastically cheaper for providers, and likely go unnoticed by

many users, especially given that most VPN providers are not upfront about their use.

VPNs are positioned to not only observe, but modify traffic as it passes through their

services, and decisions VPN providers make (such as vantage point placement) can have real
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consequences for users who rely on those services. As the VPN popularity continues to grow,

the ability for users to verify the claims made by providers only becomes more vital. Techniques

like those presented in this chapter provide a critical tool to keep providers honest in the large

unregulated ecosystem of modern commercial VPNs. Though we have evaluated a large sample

of VPN providers, we have not evaluated every VPN provider—our techniques can, however,

be used by anyone wishing to evaluate the integrity of their own provider’s claims. Especially

given that our analysis is necessarily an underestimate, we have found substantial evidence that

VPN providers are not always honest, and that caution before providing them with trust is well

deserved.

Acknowledgments

This chapter is part of work that has been accepted for publication in Proceedings of the

ACM Internet Measurement Conference, 2018. Khan, Mohammad Taha; DeBlasio, Joe; Voelker,

Geoffrey M.; Snoeren, Alex C.; Kanich, Chris; Vallina-Rodriguez, Narseo. The dissertation

author was a primary investigator and author of this paper.

98



Chapter 5

Conclusion

Abuse, attacks and fraud are a reality of the modern Internet. With no reason to expect

this dynamic to go away, developing common tools and methods for finding fraud and abuse can

help make the task of countering these actors more tractable. While problem areas and abuse

mechanisms are constantly evolving, attackers’ motives thankfully stay mostly static. It is these

invariants that give us a mechanism on which to base our common defensive strategies.

This dissertation focuses on detecting activity of financially motivated attackers, permit-

ting us to leverage the constraints of these actors: they must make money. These actors have

to make choices—invest more money in better defenses to stay undetected, or pocket that cash.

When faced with these options, these actors understandably invest only where, and only as much,

as they think they have to to stay under the radar. By limiting their investment, they leave cracks

in their armor—opportunities for defenders to take advantage. As attackers methods’ evolve,

defenders can use this approach again and again—the fundamental trade-offs on which it relies

do not go away. Each successive iteration increases the costs to the malicious actor, slowly but

surely decreasing their interest in attacking at all.

Throughout this dissertation, I demonstrate that this approach can help guide defenders

to detect and mitigate financially-motivated attacks, even in substantially different problem

spaces. In Chapter 2, we apply this technique to identify when web services are compromised by

external attackers by looking for password re-use attacks. Password re-use provides an attractive
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mechanism for attackers to monetize their initial compromises, but evading our detection requires

leaving password re-use gains unrealized. In Chapter 3, we suggest using targeted policy changes

to shut down search advertising fraud. In particular, the method suggests targeting the verticals

that fraudulent search advertisers are forced into. Fraudsters can evade these policy changes by

targeting less profitable verticals, or by trying to hide what they are advertising but in so doing,

they battle an algorithm that demotes such behavior, reducing profit. Finally, in Chapter 4, we use

this technique to identify when VPN service providers are misleading their users by lying about

vantage point locations. We detect this deception by inferring when vantage points are co-located

based on similar round-trip times to other hosts. Evading this detection would mean either trying

to spoof RTTs (which we could detect), or upsetting their paying customers by adding latency to

all users. In each case, our framework provides guidance on finding mechanisms that can detect

attacks, fraud, and abuse despite considerable differences in problem domain. Few tools offer

such wide applicability.

This approach has a few substantial shortcomings that are left for future work. Firstly,

this dissertation frames problems by looking at the malicious actors’ incentives, but it does not

provide guidance on where to look for weak illusions to leverage. Poor illusions seem to occur

frequently at the interface between malicious actors and other non-victim actors, but future work

is needed to investigate this idea or provide other guidance on where to look for weak illusions.

This framework also offers no guidance for non-financially-driven malicious actors.

While nation-state and socially-motivated attackers operate under incentive-based constraints,

their incentive structures are somewhat harder to influence. Despite this, there may yet be room

to extend this work to address these diverse actors.

While work remains, this dissertation provides promising direction towards detecting

and mitigating financially motivated malicious activity. Further, it demonstrates these techniques

in new, timely and interesting domains, further contributing to the growing body of work

undermining financially motivated attacks, fraud, and abuse.
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Appendix A

Tripwire Disclosure Emails

Below are examples of email messages sent to each site. We modified a common template

as needed to accommodate details for each site, and for clarity. Subsequent messages in a thread

were written as-needed.

A.1 Initial Email Message

Hello,

We’re contacting you because of your affiliation with SITE X, and

because we believe that usernames and passwords on that site have been

compromised at some point. Our earliest evidence of this compromise is from

around DATE, though the actual compromise may have occurred earlier.

We are researchers at UC San Diego conducting research on detecting

compromised websites, and your site is among several thousand that we have been

studying for more than a year.

We would be happy to share more details of our monitoring and discovery

with the appropriate party. Please have them contact us by replying to this

email.
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A.2 Follow-up Email Message

Our detection technique works by registering for an account on your site

with a fresh email address uniquely associated with that account. Accounts

we create share their passwords with the corresponding email addresses, but

nowhere else. The accounts created are never used, and the email address is

only ever used on that one site, and never exposed to any other site.

With the assistance of a major email provider, we monitor the email

accounts for successful logins to the email accounts. Any successful login

indicates a password reuse attack on the associated account on the monitored

site, and thus a compromise to the service. Our study allows us to monitor

any site with a login system without requiring any knowledge of the site’s

implementation.

In this case, we registered for two accounts on SITE X. One account

had an eight-character password in the form of a capitalized word followed

by one number (e.g. ‘Website1’). The other account has a password that

was a randomly generated ten character mixed-case alphanumeric string (e.g.

‘i5Nss87yf’).

These differing passwords allow us to differentiate between attacks

where the attacker received only well-hashed passwords or whether the attacker

received plain-text (or poorly hashed) passwords.

On your site, we witnessed successful logins to both accounts, implying

that the attacker had access to full passwords from the accounts.

We registered for the accounts on your site in MONTH, YEAR. We have

seen accesses to the corresponding email addresses starting on DATE, so the

compromise occurred between those dates.

Unfortunately, due to our agreement with our email provider, we’re

unable to disclose the exact accounts that were accessed (as this would expose

who our email provider is).
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We wanted to let you know of our findings in case the compromise

timeframe is useful to you. We’d be interested to know if you were aware of

any compromise in that timeframe, or any other details you’d be willing to

share. I’m also happy to try to answer any questions you have, insofar as I’m

able.

Best,

A.3 Disclosure Responses

Below are a few highlights from emails received in response to our disclosures. These are

included to highlight the wide variety of sites vulnerable to Tripwire-detectable compromises.

A.4 Response from Site C

joe your system is simple and amazing :)

i can share the following information with you. January 2016 I noticed that

somebody found a vulnerability on the site and downloaded mysql database. I

notcied it because attacjer created a clone site in some days. Later hacker

confirmed that he downloaded database and I found vulnerability and closed it.

But vulnerability expisted before and somebody else could have our db but use

it in private (your case).

Then I must add that passwords are hashed, and until January 2016 it was

just an md5 so easy passwords could be bruteforced.

Conclusion:

Useful information from you for me: vulenrability has been used only

only in 2016 but in 2015 as well. Sad :( Useful information from me to you:

your system works and realy effecient to track data leaks ;) Excellent :)

If you have any interesting information to add please let me know.
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A.5 Response from Sites E/F

We’ve been unable to correlate the compromise of the canary from your

study with any other findings. It’s unfortunate that we weren’t able to

begin this investigation last fall when the canary was found to have been

compromised but I do very much appreciate your disclosure and we are continuing

to investigate.

Would your mail provider be willing to bring us into the know on your

relationship and the identity of the canary accounts on a TLP Amber or Red

basis? I’m a member of the Operations Security Trust information sharing

group, if that helps them broker a trust relationship through their peers of

mine. Can you or they share any other indicators that you observed in your

work? We’re interested in any threat actor observables or details like the

datetime of access, source IP, source Geo, source reputation, TTPs, intent,

profiles, etc.

SITE E and SITE F expose usernames on a very discoverable page (e.g.,

URL ON SITE E) and do not have sophisticated checker or credential brute force

controls: might that have exposed your 8 character password canary account to

attack against our infrastructure? Do your methods account for the existence

of bruters and checkers?

Do these IP addresses we found having had logged into more than one

account mean anything to you:

- [3 IPs in the same /16 belonging to DigitalOcean, Inc.]

Also: many sites only retain the current email address associated

with an account. You may be able to further obscure your mail provider by

returning to the sites you registered on and changing the addresses to be one

you control, perhaps using subaddresses?
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A.6 Response from Site G

I spent some time looking for signs of how it might have been

compromised. I did not find any thing that indicated access. I did find a

couple of sql commands that were not properly protected/escaped. I also made

sure the server was up to date. The server was moved from a dedicated host to

an AWS ec2 about a year ago. It might have been on the old server that it was

compromised.

I see, and have seen for a very long time indication of people trying

to access the server. Both in ssh password guessing and in sql injection

attempts. I did not see anything that made me think either was successful.

I’m not 100% sure I would though.

My plan is to force a password reset when users login. I need to do

some more development for that. I also need to update wordpress. I don’t

believe it is up to date.

Thoughts?

Thanks,

A.7 Responses from Site L

Your work sounds fascinating, certainly a very low level way of

detecting without giving the game away.

If I give you a little history of he sites you’ll get the idea of how it

works. I started it in 2007 with a low level of IT knowledge. Most of the php

orriginates from around 2008 with various add ons over time, the fact we are

limited to php 5.3 gives that away. We did used to employ sysadmins who cost

a lot of money and made it their purpose in life to frustrate every possible

upgrade I tried to complete so I threw them out in April 2015 and took over the

sites myself, being thrown in the deep end is an understatement.
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Our previous setup was 60 servers, 30 for media streaming and 30 for

back end made up mostly of database and web servers. These servers used the

public network to communicate and were pretty exposed, the fact we hadn’t been

compromised over that 8-9 year period surprises me. I’ve since been moving

stuff to cloud and only in the last few months have back end servers been taken

to a private network. Believe it or not the passwords were only encrpyted

since I took over the sites, they were plain text before. I had plans to add

salt to the encryptiion, I will now accelerate that. After that code such as

php will need updating as well as some XSS vulnerabilites we have.

In terms of the likely time, I’m trying to find my notes but we suffered

a huge DDos around March, it went on for days. It seemed to be a linux

vulnerability checker and the traffic was coming through TOR nodes. When I

blocked the TOR network they moved to digitalocean etc Leaseweb also suffered

from a very high number of DDos at the time, they are not normally affected by

them, here is a email from aroud that time:

Between 01:10 and 01:25 CEST we experienced a large DDoS attack in part

of our network. You might have noticed packet loss or increased latency during

that time. We mitigated the attack and traffic levels are now fully restored.

I know what I’ve provided isn’t a massive help but let me know if there

is anything specific you would like, I’m happy to help in return for your help

alerting me :)

Thanks,

We subsequently inquired whether he would be notifying users and/or taking any technical

countermeasures. In response, we received the following email.

Not planning to say anything at the moment, we are currently salting

the passwords, test script is being run tomorrow. in the meantime we’ve been
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adding as much protection as we can, the obvious elephant in the room is our

version of php/httpd, both are old.

Thanks,
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