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Abstract
Background: The neuropeptide vasoactive intestinal peptide (VIP) is widely distributed in the
adult central nervous system where this peptide functions to regulate synaptic transmission and
neural excitability. The expression of VIP and its receptors in brain regions implicated in learning
and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that
this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has
a profound effect on circadian timing and may specifically influence the temporal regulation of
learning and memory functions.

Results: In the present study, we utilized transgenic VIP-deficient mice and the contextual fear
conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We
found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in
corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the
fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a
significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found
that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even
in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic
explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2
continue in the hippocampus of VIP-deficient mice.

Conclusion: Together these data suggest that the neuropeptide VIP regulates the recall of at least
one learned behavior but does not impact the circadian regulation of this behavior.

Background
The neuropeptide vasoactive intestinal peptide (VIP) is
expressed in specific subpopulations of neurons in the
central and peripheral nervous system. Two receptors,
encoded by distinct genes, bind VIP with high affinity:

VPAC1R and VPAC2R [1-3]. VIP and its receptors are
expressed in those brains regions thought to be involved
in learned behaviors, including the hippocampus, cortex,
amygdala and hypothalamus e.g. [4-6]. While the physio-
logical actions of this neuropeptide have not been exten-
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sively studied, VIP regulates synaptic transmission [e.g.
[7,8]] and intrinsic membrane currents [e.g. [9-12]]. Thus,
this neuropeptide can be a potent modulator of neural
activity and function in specific circuits in the adult nerv-
ous system.

Previous pharmacological studies have raised the possibil-
ity that VIP modulates learning and memory processes.
The central administration of VIP causes marked impair-
ment in passive avoidance and spatial memory [13-17].
Inhibition of VIP by use of antagonists also affects spatial
learning [18]. Removal of VIP-producing cells by expres-
sion of a chimeric VIP-diptheria toxin gene caused learn-
ing deficits [19]. Furthermore, VIP agonists protect against
the impaired spatial learning observed in experimental
Alzheimer mouse models [20,21]. Mechanistically, VIP
regulates the secretion and expression of neurotrophic fac-
tors [22-26] and VPAC receptors are potent activators of
the adenylyl cyclase/protein kinase A cascade [27] that has
been implicated in the regulation of long-term memory
formation [e.g. [28,29]]. Interestingly, recent work found
that treatment of pregnant mice with a VIP antagonist
caused cognitive deficits in the male offspring and lead to
the suggestion that these mice may serve as a model of
autism [30]. Together, this literature is consistent with
hypothesis that VIP signaling could regulate learned
behavior in the adult.

There is strong evidence that VIP and the VPAC2R are crit-
ical for the normal functioning of the circadian system.
Early studies on young rats showed breakdown in loco-
motor rhythms following application of VIP antagonists
[31]. More recent studies come via the development of
transgenic mice lacking VIP [32] or VPAC2R [33]. All of
the VIP- and VPAC2R-deficient mice exhibit disruptions in
their ability to express a coherent circadian rhythm in con-
stant conditions although the extent of the arrhythmic
phenotype varies from animal to animal. At a cellular
level, VIP- and VPAC2R-deficient mice fail to exhibit the
midday peak in electrical activity that is characteristic of
impulse rhythms from suprachiasmatic nuclei (SCN)
brain slices [34-36]. Together, these data indicate that VIP
and VPAC2R are critical for the generation of behavioral
rhythmicity in mice and that the deficit occurs at the level
of the SCN. This data also serves to point out the utility of
transgenic models in the exploration of the role of VIP in
behavior.

In the present study, we used VIP-deficient mice to deter-
mine the role of this peptide in the regulation of contex-
tual fear conditioning. We first determined whether VIP-
deficient mice exhibited deficits in shock-evoked freezing
behavior or corticosterone response. Next, we determined
whether these mice exhibited deficits in acquisition or
recall of contextual fear response. Furthermore, we exam-

ined whether the loss of VIP influenced the daily and cir-
cadian rhythms in the recall of the conditioned fear
response. Finally, we determined whether daily rhythms
in the expression of the clock gene Period 2 could be meas-
ured in the hippocampus of VIP-deficient mice.

Results
Acute freezing behavior in WT and VIP-deficient mice
We first determined if VIP-deficient mice exhibited defi-
cits in sensitivity to foot-shock by testing the direct shock-
evoked fear response at ZT3 (day). WT and VIP-deficient
mice were exposed to shocks of a range of intensities (0.1
to 1 mA, duration) and the freezing response measured
(Fig. 1A). Overall, the freezing response to the shock were
higher in the VIP-deficient mice (RM-ANOVA: P < 0.05)
compared to WT controls. The VIP-deficient mice exhib-
ited significantly (t-test: t = 3, P < 0.01) more freezing at
the lowest intensity (0.1 mA). For the remainder of the
study, we used the lowest intensity of shock (0.2 mA) that
did not produce any significant differences between the
genotypes. Thus, the VIP-deficient mice do not exhibit
defects in shock-evoked freezing behavior.

Acute corticosterone response in WT and VIP-deficient 
mice
The concentration of circulating corticosterone is actively
regulated as part of the stress response exhibited by mice.
We sought to determine whether the endocrine response
to foot-shock (0.2 mA) was altered in VIP-deficient mice.
For these experiments, we examined corticosterone
response to a mild foot-shock in WT and VIP-deficient
mice in early day (ZT 3, n = 3 per group). WT mice sub-
jected to foot-shock exhibited significantly higher concen-
trations (t-test: t = -4.0, P < 0.05) of serum corticosterone
than unstressed mice (Fig. 1B), and VIP-deficient mice
showed a similar increase in corticosterone concentration
upon exposure to acute stress (t-test: t = -3.3, P < 0.05).
There were no significant differences in the baseline or
stress-evoked serum corticosterone concentrations
between WT and VIP-deficient mice, suggesting the induc-
tion of corticosterone in response to stress is intact in VIP-
deficient mice.

Acquisition in VIP KO mice following contextual fear 
training
Given that VIP is expressed in brain regions implicated in
learning, including the hippocampus, we sought to deter-
mine if learning was altered in VIP-deficient mice. For
these experiments, we examined the acquisition of con-
textual fear conditioning in WT and VIP-deficient mice at
ZT 3 using 2 CS-US pairing with 0.2 mA shock (n = 8 per
group). Both WT and VIP-deficient mice learned the task
(Fig. 2) and there were no significant differences in the
acquisition between the two genotypes (t-test: CS-US-1: t
= 0.5, P = 0.63; CS-US-2: t = -0.4, P = 0.73). With a second
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(page number not for citation purposes)



BMC Neuroscience 2008, 9:63 http://www.biomedcentral.com/1471-2202/9/63
set of animals, we examined the performance of the two
genotypes with a stronger training protocol that consisted
of 3 CS-US pairings with 0.2 mA shock (n = 10 per group).
Again, statistical analysis did not show any significant dif-
ference in the degree of acquisition between VIP-deficient
and WT mice (t-test: CS-US-1: t = -0.8, P = 0.43; CS-US-2:
t = -0.4, P = 0.68; CS-US-3: t = 1.1, P = 0.32). Thus, the loss
of VIP does not influence the ability of mice to acquire
contextual fear conditioning.

Contextual recall 24, 48, 72-hrs following training
Next, we examined if the recall of the contextual fear con-
ditioning is altered in VIP-deficient mice. Groups of VIP-
deficient and WT mice (n = 7–8 per group) were trained
on the weak version of contextual fear conditioning (2CS-
US pairings) at ZT 3. Mice were then tested for the recall
of fear conditions at either 24-, 48-, or 72-hrs after training
(Fig. 3A) with each animal being tested only once. There
was no difference in  the acquisition of the conditioned
fear response, with the group means  all between 64 and
70% freezing. All of the groups (24-, 48-, 72-hr time
points) exhibited a robust recall of context as measured by
freezing behavior (Fig. 3A). Overall, the VIP-deficient
mice exhibited significant reductions in recall compared
to WT controls (ANOVA: F = 9.2, P < 0.001). Post-hoc
analysis (t-tests) indicated that VIP-deficient mice exhib-
ited significant reductions in recall compared to WT mice
when measured at 48- (t = 2.6, P < 0.05) and 72-hrs (t =
5.4, P < 0.001) post-training. At 24-hrs post training, there
was no significant difference in contextual recall between
the genotypes. To further explore this deficit in longer-
term recall, additional groups of WT and mutant mice (n
= 8 per group) were trained on contextual fear condition-
ing at ZT 3 and then tested once per day for 7 days (Fig.
3B). Overall, the VIP-deficient mice exhibited significant
reductions in recall compared to WT controls (RM
ANOVA: F = 12.6, P < 0.01). Post-hoc analysis (t-tests)
indicated significant differences between the genotypes
when measured at 48- (t = 2.6, P = 0.020), 72- (t = 8.0, P
< 0.001), 96- (t = 9.3, P < 0.001) and 120-hrs (t = 6.2, P <

The loss of VIP does not impact shock-evoked freezing or corticosterone responseFigure 1
The loss of VIP does not impact shock-evoked freez-
ing or corticosterone response. A) WT and VIP-defi-
cient mice were directly shocked with progressively 
increasing stimulus intensities and the freezing response 
measured. The measurement of these acute fear responses 
were conducted in the early day (ZT 3). The VIP-deficient 
mice exhibited more freezing in response to the lowest 
intensity shock (0.1 mA) but there were no differences 
between the genotypes at the other shock intensities. B) 
Corticosterone response to acute stress evoked by foot-
shock (0.2 mA applied twice) in the early day (ZT3). Both 
WT and VIP-deficient mice displayed a significant induction of 
corticosterone in response to acute stress (P < 0.05). There 
were no significant differences between the two genotypes in 
the baseline or the evoked corticosterone levels.

The loss of VIP does not impact acquisition of contextual fear conditioningFigure 2
The loss of VIP does not impact acquisition of con-
textual fear conditioning. WT and VIP-deficient mice 
were trained in the day (ZT 3). Conditioning consisted of 
two context (CS) and foot shock (US) pairings. Percent 
freezing following each context-shock pairing was compared 
between WT (black circles) and VIP-deficient (grey circles) 
mice (n = 8 per group). There was no difference between the 
two genotypes in the acquisition of the conditioned fear 
response.
Page 3 of 12
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0.001) post-training. At 24-hrs post training, there was no
significant difference in contextual recall between the WT
and VIP-deficient mice. By 144 hrs, the conditioned fear
response had extinguished in both groups. Together, this
data indicates that the VIP-deficient mice exhibited defi-
cits in the recall of contextual fear conditioning when
tested at least 48-hrs after training.

Rhythm in contextual recall under LD conditions
We previously demonstrated that the recall of contextual
recall expresses robust circadian variation [37] and that
the circadian system of VIP-deficient mice is compro-
mised [32]. Therefore, we first sought to determine if VIP-
deficient mice exhibit a diurnal rhythm in the recall of
contextual fear conditioning. Groups of WT and VIP-defi-
cient mice (n = 8 per group) were trained at ZT3. The mice
were then tested at several intervals after training: 24-, 36-
, 48-, 60-hrs (Fig. 4). While there was no difference in the
acquisition between the genotypes (WT: 66 ± 5% freezing;
VIP KO: 69 ± 7% freezing), the VIP-deficient mice exhib-
ited significant reductions in recall compared to WT mice
(RM ANOVA: F = 12.6, P < 0.01). Compared to WT, VIP-
deficient mice exhibited significantly less freezing at 36-hr
(t = 2.1, P < 0.05), 48-hr (t = 2.6, P < 0.01), and 60-hr (t =
2.5, P < 0.01) after training. For both genotypes, the recall
varied with time (RM-ANOVA: P < 0.001) with post-hoc

The loss of VIP impaired recall of contextual fear condition-ingFigure 3
The loss of VIP impaired recall of contextual fear 
conditioning. A) Groups of VIP-deficient and WT mice (n 
= 7–8 per group) were trained on the contextual fear condi-
tioning (2 CS-US pairings) at ZT 3. Mice were then tested for 
the recall of fear conditions one, two, or three days after 
training with each animal only being tested once. There was 
no difference the acquisition of the conditioned fear 
response during training and all of the groups (24-, 48-, 72-hr 
time points) exhibited a robust recall of context as measured 
by freezing behavior. VIP-deficient mice (grey bars) exhibited 
significant reductions in recall compared to WT mice (black 
bars) when measured at 48- (P < 0.05) and 72-hrs (P < 0.001) 
post-training. At one day after training, there was no signifi-
cant difference in the percent freezing between the geno-
types. B) In another experiment, VIP-deficient (grey circles) 
and WT (black circles) mice were trained and then tested for 
recall once per day for 7 days (n = 8 per group). Training and 
testing were conducted at ZT 3. The VIP-deficient mice 
exhibited significant reductions in recall compared to WT 
controls (P < 0.01). Post-hoc analysis (t-tests) indicated sig-
nificant differences between the genotypes when measured 
at 48- (P = 0.02), 72- (P < 0.001), 96- (P < 0.001) and 120-hrs 
(P < 0.001) post-training.

VIP-deficient mice exhibit a daily rhythm in the recall of con-textual fear conditioningFigure 4
VIP-deficient mice exhibit a daily rhythm in the recall 
of contextual fear conditioning. Groups of WT (black 
circles) and VIP-deficient (grey circles) mice were trained at 
ZT 3 and then tested 24-, 36-, 48- and 60-hrs after training (n 
= 8 per group). There was no difference in the acquisition 
between the genotypes (WT: 66 ± 5% freezing; VIP KO: 69 ± 
7% freezing). Both genotypes showed evidence for diurnal 
rhythmicity in recall with significant (P < 0.05) peaks 
observed at 24- and 48-hrs after training. However, com-
pared to WT mice, the VIP-deficient mice exhibited signifi-
cantly (P < 0.05) lower recall when measured 36-, 48-, or 60-
hrs after training.
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analysis (Tukey test) indicating that freezing at 24- and
48-hrs after training was significantly (P < 0.05) higher
than the freezing at 36- and 60-hrs for both strains of
mice. Thus, in LD conditions, both WT and VIP-deficient
mice exhibited a diurnal rhythm in recall.

Rhythm in contextual recall in behaviorally rhythmic and 
arrhythmic VIP KO mice
The next set of experiments was designed to determine
whether VIP-deficient mice exhibit circadian rhythms in
recall. For these experiments, WT and VIP-deficient mice
were held in constant conditions in cages with running
wheels. WT mice all exhibited clear circadian rhythms in
wheel-running activity. While all of the VIP-deficient mice
exhibited disrupted rhythms [32], some of the mutant
mice are arrhythmic while others continue to express cir-
cadian rhythms in locomotor activity (Fig. 5A,B). For
these experiments, groups of rhythmic and arrhythmic
VIP-deficient mice (n = 8 per group) were trained at CT3.
For the rhythmic VIP-deficient mice, CT3 (subjective day)
was estimated based on wheel running activity. For the
arrhythmic VIP-deficient mice, CT 3 was estimated based
on the activity projected from the prior LD cycle. Due to
the lack of regular activity onset in these mice, a 6 hr phase
advance was assumed and tau was also assumed to be
around 22 hr based on the activity patterns of the rhyth-
mic VIP-/- mice. Both groups of mice were trained in con-
stant darkness at CT3 using a stronger training protocol
consisting of 3 CS-US pairings. There was no difference in
the acquisition of conditioning between the 2 groups
(Rhythmic: 94 ± 4%; Arrhythmic: 91 ± 5%). The mice
were then tested for recall 24-hrs after training and every
6-hrs subsequently for a total of 2 days (Fig. 5C). For both
rhythmic and arrhythmic groups, the recall varied with
time (RM ANOVA: P < 0.001) with post-hoc analysis
(Tukey test) indicating that freezing at 24-, 48- and 72-hrs
after training was significantly (P < 0.05) higher than the
freezing at the other intervals. Thus, VIP-deficient mice
that exhibited arrhythmic wheel-running activity still
express circadian rhythms in the recall of contextual fear
conditioning.

Period2 message is rhythmically expressed in the 
hippocampus of VIP-deficient mice
The genes responsible for the generation of circadian
oscillations are expressed in brain regions outside of the
suprachiasmatic nucleus, including the hippocampus
[38,39]. This rhythm in gene expression in the hippocam-
pus may be critical for the rhythms in recall that we and
others have observed under various contextual memory
tasks. In order to determine if the message coding for
Period2 is rhythmic in the hippocampus of VIP-deficient
mice, we used in situ hybridization (ISH) to measure
Period2 message in the hippocampus of mice at subjective
day and night (CT 10 and 23; Fig. 6A). Expression of

Period2 mRNA was observed throughout the rostrocaudal
extent of the hippocampus and was largely restricted to
the pyramidal cell layers and the Dentate Gyrus. In the
hippocampus of the VIP-deficient mice, the mean optical
density (OD) of Period2 labeling was significantly higher
at subjective day than in the subjective night (Fig. 6B; t-
test: t = -2.5, P = 0.03). The Period2 expression did not sig-
nificantly vary between VIP-deficient and WT mice.
Among the hippocampal subregions, the CA3 pyramidal
cell layers showed the most robust circadian variation in
labeling (CA3 CT 10: 1.3 ± 0.2 OD, n = 9; CA3 CT 23: 2.2
± 0.2 OD, n = 6; t-test: t = -2.92, P < 0.01). The Period2
sense probe did not exhibit labeling in the brain under
identical hybridization conditions (data not shown).
These data demonstrate at least one clock gene is rhythmi-
cally expressed in the hippocampus of VIP-deficient mice
and raise the possibility that extra-SCN circadian oscilla-
tors may drive the rhythms in recall in these mice.

Discussion
The neuropeptide VIP and its receptors are expressed in
regions of the brain implicated in the control of learned
behaviors including the hippocampus, cortex, amygdala
and hypothalamus [e.g. [4-6]]. In these regions, VIP is
most commonly expressed in GABAergic interneurons
[e.g. [40-43]] that may use this peptide to communicate
with specific post-synaptic targets. However, it is equally
plausible that VIP functions more as a paracrine signal act-
ing at sites more distant than just the adjacent postsynap-
tic neurons. While the physiological actions of this
neuropeptide have not been extensively studied, VIP reg-
ulates synaptic transmission [e.g. [7,8]] and intrinsic
membrane currents [e.g. [9-12]]. Thus, this neuropeptide
can be a potent modulator of neural activity and function
in specific circuits in the adult nervous system. Given this
anatomical distribution and potential physiological func-
tions in both the developing and mature nervous system,
the loss of VIP may well have been expected to have global
influences on learning and memory. However, the present
study found that the deficits in the VIP-deficient mice
were quite selective. Deficits were not observed in foot
shock-evoked fear behavior. This demonstrates that the
basic sensory and motor processes controlling this behav-
ior are intact in the VIP-deficient mice. Similarly, the
shock-evoked corticosterone response was intact in these
mutant mice. Given that VIP is expressed in the adrenals
and the circadian system that regulate corticosterone
secretion, we felt that it was important to confirm that this
aspect of the stress response was functioning in the VIP-
deficient mice. Finally, we observed no deficits in the VIP-
deficient mice in the acquisition of fear conditioning or in
the recall measured at 24-hrs after training. Clearly, the
circuitry involved in the acquisition of contextual fear
conditioning is either not regulated by VIP or there is
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VIP-deficient mice that have arrhythmic patterns of wheel-running activity exhibit a circadian rhythm in the recall of contextual fear conditioningFigure 5
VIP-deficient mice that have arrhythmic patterns of wheel-running activity exhibit a circadian rhythm in the 
recall of contextual fear conditioning. A) Example of wheel-running activity from a VIP-deficient mouse that maintained a 
circadian rhythm in wheel-running activity. Bars at top of panel indicate the LD cycle. The locomotor activity is double-plotted 
as an aid to visual analysis. The mouse was placed into DD on the day indicted by the arrow on the right. B) Example of wheel-
running activity from a VIP-deficient mouse that was judged to by arrhythmic on a circadian time-scale by visual analysis and 
periodogram. C) Both rhythmic and arrhythmic VIP-deficient mice were trained at CT 3 and then tested every 6-hrs between 
24- and 72-hrs after training. These experiments were conducted in constant darkness to measure the endogenous rhythmic-
ity. For the rhythmic mice (dark grey circles), the onset of locomotor activity was used to estimate phase while, for the 
arrhythmic mice (grey diamonds), the time of the prior LD cycle was used. Both groups of VIP-deficient mice exhibited circa-
dian rhythms in the recall of fear conditioning with significant (P < 0.05) peaks 24-, 48-, and 72-hrs post training.
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compensation for the loss of this neuropeptide in these
transgenic mice.

The recall of the contextual fear conditioning was affected
by the loss of VIP. These recall deficits were seen in three
independent experiments including those mice only
tested for recall a single time (Fig. 3A), those tested daily
(Fig. 3B), and those tested every 12-hrs (Fig. 4). These

results fit with previous pharmacological studies that have
raised the possibility that VIP plays a physiological role in
the modulation of learning and memory. For example,
administration of VIP into rat hippocampus following
training on a passive avoidance task induced recall in rats
tested 24-hrs later, while administration of a VIP antago-
nist enhanced retention [14]. Other studies have also
found evidence that the central administration of VIP

A circadian rhythm in Period2 mRNA in the hippocampus of VIP-deficient mice as measured by ISHFigure 6
A circadian rhythm in Period2 mRNA in the hippocampus of VIP-deficient mice as measured by ISH. A) Film 
images of ISH for Period2 on tissue sections taken from WT and VIP-deficient mice sacrificed during the subjective day (CT10; 
a, b) and subjective night (CT 23; c, d). The scale bar equals 0.5 mm. B) Optical density measurements of Period2 labeling in 
the hippocampus of WT and VIP-deficient mice during the subjective day (CT 10, white bars) and subjective night (CT 23, 
black bars). The Period2 hybridization signal was significantly (P < 0.05) higher in the subjective night in the hippocampus of 
both lines of mice.
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impairs recall in passive avoidance learning [13,17]. Spa-
tial learning as measured by the water maze was also
impaired by the ventricular administration of this neu-
ropeptide [15,16]. In contrast, one study reported that the
intracerebral administration of a VIP receptor antagonist,
but not VIP itself, inhibited performance on the Morris
water maze [18]. In addition, learning deficits in mice car-
rying a chimeric VIP-diptheria toxin gene have been
reported [19]. These transgenic mice lost about 20% of
VIP content as measured by radioimmunoassay and
exhibited learning deficits as measured by the Morris
water maze. Taken together, these studies suggest that
abnormally high or low levels of VIP can interfere with the
acquisition and recall of specific learned behaviors.

The VIP-deficient mice used in the present study are a tra-
ditional transgenic model in which the gene coding for
VIP has been inactive throughout development. VIP is
expressed early in the fetal brain [44] with VIP binding
sites abundant on the floor plate of the neural tube [45].
While not extensively studied in central neurons, VIP is a
neurotrophic factor that can regulate neural growth,
migration, and process formation [reviewed by [46-48]]
and, through these developmental mechanisms, influence
the neural circuits involved in learning and memory func-
tions. A recent study examined the consequences of phar-
macologically blocking VPAC receptors during
embryogenesis and examining potential cognitive deficits
in the adult offspring [30]. Male, but not female, treated
mice exhibited deficits in contextual fear conditioning
and social behavior. The selective set of behavioral deficits
coupled with the gender difference led these authors to
propose these mice as a model for the behavioral deficits
of autism. Like the VIP-deficient mice, these mice treated
developmentally with the VPAC antagonist did not show
deficits in acquisition or in recall measured 24-hrs after
training. The male offspring did show recall deficits when
measured 48-hrs after training. Thus, the memory deficits
observed in the transgenic animals in the present study
could well be due to a loss of VIP early in development.

As described before, there is strong evidence that VIP and
the VPAC2R are critical for the normal functioning of the
circadian system [reviewed by [49]]. Together, these data
indicate that VIP and VPAC2R are critical for the genera-
tion of behavioral rhythms in mice and that the deficit
occurs at the level of the SCN. Furthermore, the VPAC2R-
deficient mice even lose the daily rhythms in clock gene
expression that are thought to lie at the heart of the
machinery for the generation of daily rhythms [33,50].
Given the overwhelming data that the loss of VIP influ-
ences the generation of circadian oscillations, the finding
that these mutants showed no apparent deficiency in the
diurnal and circadian regulation in recall was unexpected.
This disassociation was particularly striking in the case of

VIP-deficient mice that exhibited arrhythmic locomotor
activity. The 6 hr interval in testing may have occluded
small changes in peak recall time, which most likely tracks
with the intrinsic free-running period of the animals.
However, the frequency of testing was sufficient to show
that there remains an optimal time of day, which tracks
with the same time of day as the initial training exercise,
even in mice with arrhythmic wheel-running activity. This
is consistent with the phenomenon of "time-stamping" of
learned behavior as observed in hamsters [51,52] and by
us in mice [37]. What's more, this time-stamp phenome-
non may be independent of the SCN. Lesioning the SCN
of rats does not affect the time-stamped training of a T-
maze reward task [53]. Previous work has found that these
behaviorally arrhythmic VIP-deficient mice also exhibit
arrhythmic electrical activity rhythms when measured at
the level of the SCN [35]. We now show that these
arrhythmic mice exhibited clear rhythms in recall and
these rhythms were extremely similar to those exhibited
by the behaviorally rhythmic mice. Thus, the loss of circa-
dian function in these arrhythmic VIP-deficient mice had
no obvious impact on the rhythms in recall suggesting
that a rhythmic SCN may not be necessary for the circa-
dian rhythm in recall. In recent years, it has become clear
that many of the "clock genes" are expressed outside of the
SCN [e.g. [54,55]]. This raises the possibility that oscilla-
tors outside of the SCN may drive the rhythms in recall of
learned behaviors. While we did not directly address this
possibility in the present study, we did examine the
expression of one clock gene, Period2, in the hippocam-
pus. We found that levels of this gene continue to show
circadian differences in the hippocampus of VIP-deficient
mice (Fig. 6). This type of rhythmic expression is at least
consistent with the possibility that extra-SCN rhythms in
gene expression may be directly tied to the rhythms in
recall observed in fear-conditioned mice.

In mammals, neurons in the hippocampus [[38,39],
present data], olfactory bulb [56], SCN [e.g. [55]], and
other brain regions [54] have now been shown to generate
oscillations in circadian gene expression. This pool of data
contributes to the view that the circadian system is com-
prised of multiple oscillatory components, with the role
of the SCN being a master timer synchronizing these dis-
parate cell populations [e.g. [57]]. With this new view of
clock genes and circadian organization, it becomes critical
to determine the tissue-specific function of these genes.
Logically, local rhythms in clock gene expression could
serve to control the temporal program of gene expression
and physiology specific to the hippocampus, as recently
demonstrated in liver [58]. However, unfortunately, we
still do not know much about the functional significance
of clock gene expression outside of the SCN. The VIP-defi-
cient mice with weakened rhythms in SCN electrical activ-
ity may represent an advantageous model to explore
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coupling between different circadian oscillators. Our data
with contextual fear conditioning raise the possibility that
these rhythms in recall or memory are only weakly cou-
pled to core time-keeping mechanisms in the SCN.

Conclusion
We found that VIP-deficient mice exhibited normal
shock-evoked freezing behavior and increases in corticos-
terone. Similarly, these mutant mice exhibited no deficits
in the acquisition or recall of the fear-conditioned behav-
ior when tested 24-hours after training. The VIP-deficient
mice exhibited a significant reduction in recall when
tested 48-hours or longer after training. Surprisingly, we
found that the VIP-deficient mice continued to express cir-
cadian rhythms in the recall of the training even in those
individual mice whose wheel running wheel activity was
arrhythmic. One mechanistic explanation is suggested by
the finding that daily rhythms in the expression of the
clock gene Period2 continue in the hippocampus of VIP-
deficient mice. Together these data suggest that the neu-
ropeptide VIP regulates the recall of at least one learned
behavior but does not impact the circadian regulation of
this behavior.

Methods
Experimental animals
We obtained two-month old male mice lacking the gene
encoding for the neuropeptides VIP and PHI that had
been backcrossed to the C57BL/6J strain for 12 genera-
tions [32]. Wild type (WT) littermates were used when
available, but age-matched controls were obtained when
necessary. All mice were housed in cages within light-tight
chambers with controlled lighting conditions. The experi-
mental protocols used in this study were approved by the
UCLA Animal Research Committee and all recommenda-
tions for animal use and welfare, as dictated by the UCLA
Division of Laboratory Animals and the guidelines from
the National Institutes of Health, were followed.

Training and testing procedure
Contextual fear conditioning was performed using previ-
ously published protocols [37]. Mice were entrained to a
12:12 light-dark cycle (LD) for at least one week prior to
the start of all experiments (light intensity 36 μW/cm2 ≅
120 lux). Zeitgeber Time 0 (ZT0) corresponds to the start
of the light period with experiments typically done at ZT3
(early day). Mice were individually handled for approxi-
mately 1 min a day, a week prior to the start of the exper-
iment to reduce the arousal associated with handling.
Each day, animals were handled at different times of the
day or night to ensure that they did not entrain to han-
dling by the experimenter at a specific time. Animals were
handled by taking individuals out of their home cages and
placing them on the experimenter's arm. Following
entrainment, the animals were trained in separate contex-

tual conditioning cages (28 × 21 × 22 cm: Lafayette Instru-
ments). The chambers were constructed from aluminum
(sidewalls) and Plexiglas (rear wall, ceiling, and hinged
front door). A total of 4 identical conditioning cages were
used that allowed 4 mice to be trained and tested per ses-
sion. The floor of each cage consisted of 33 stainless steel
rods (4 mm diameter, 4 mm apart) connected to a shock
scrambler and generator (Master Shock, Lafayette Instru-
ments). To remove any variability in olfactory learning,
the inside of each cage was wiped with 0.01% benzalde-
hyde before the start of each experiment. On the day of
training, mice were placed individually into cages and
allowed to acclimatize to the new environment (condi-
tioned stimulus, CS) for 3 min after which time animals
received a 2 sec footshock (unconditioned stimulus, US).

Depending on whether the animals were trained on a
strong or weak training task, the number of CS-US pairing
and US intensity was varied. The training protocol nor-
mally consisted of 2 CS-US pairings with a 0.2 mA US. In
some cases, a stronger training protocol consisting of 3
CS-US pairings with a 0.2 mA US was used. The inter-trial
interval was 64 seconds in all protocols. At the end of the
last context-shock pairing the mice were left in the cage for
a further 64 sec, after which they were returned to the
home cages. Animals were placed individually into the
same conditioning chamber and left there for 8 min. The
behavior of the mice, whether it was freezing or mobile
was noted. The training procedures were automatically
controlled by a computer using the ABET behavioral soft-
ware (ABET systems, Lafayette Instruments). Control
experiments were also carried out where animals were
placed in context cages at times points corresponding to
those in experiments of animals tested every 6 or 12 hrs.
This 'baseline' freezing level was subtracted from freezing
in animals following training and subsequent repeated
testing.

Freezing was defined as the complete absence of somatic
and motility movements with the exception of respiratory
movements. For acquisition and context recall, an 8 sec
time sampling procedure was used in which each animal
was observed 8 times per min interval (in this case a
minute refers to a 64 sec block) and these were averaged
to yield an estimate of percentage time freezing. During
training, freezing was measured 64 sec before the first CS-
US pairing (baseline) and during the 64 sec inter-trial
interval immediately after each CS-US pairing, giving 8
observations per mice for baseline and for each subse-
quent CS-US pairing respectively. For context testing, each
animal was observed a total of 64 times. To determine the
degree of learning during training, percent freezing was
calculated as the number of times each animal was
observed to be immobile over 8 observations. For context
testing, percent freezing was calculated as the number of
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times each animal was observed to be immobile over 64
observations

Wheel-running behavior analysis
The mice were housed individually and their wheel-run-
ning activity was recorded as revolutions per 3 min inter-
val as previously described [32]. The running wheels and
data acquisition system were obtained from Mini Mitter
Co. (Bend, OR). The mice were first exposed to a 12:12 LD
cycle for 2–3 weeks (light intensity 36 μW/cm2 ≅ 120 lux).
The mice were then placed into constant darkness (DD) to
assess their free-running activity pattern. Circadian time
(CT) was determined by activity records with activity
onset denoted as CT12. Training in DD was performed
after 2–4 days in constant darkness. In the dark portion of
LD conditions, as well as under DD conditions, handling
of mice was carried out with the aid of an infrared viewer
(FJW Industries, Ohio). Behavior during acquisition and
recall was recorded with the aid of a video camera that had
an in-built infrared system, which enabled us to record the
animals in both light and dark conditions.

Corticosterone measurements
Circulating corticosterone concentrations were deter-
mined 20 min after initiation of the weak training proto-
col. Trunk blood was collected by decapitation after
isoflurane treatment. To obtain serum, blood samples
were allowed to clot at room temperature for 30 min prior
to centrifugation at 1000 × g. The supernatant was stored
at -20°C until assayed. Samples were typically diluted
100-fold prior to assay. Serum corticosterone concentra-
tion was measured by competitive enzyme immunoassay
(Correlate-EIA Corticosterone kit, Assay Designs, Michi-
gan). The intra-assay CV was <8%, the inter-assay CV was
<13.1% and the sensitivity was 27 pg/ml.

In Situ Hybridization
A plasmid (pCRII, Invitrogen) containing the cDNA for
mPer2 (9–489 nt, accession number AF035830) was gen-
erously provided by Dr. D. Weaver (Univ. Mass.) and
insert identity was confirmed by sequencing using the
M13R primer. To generate antisense and sense templates
for ISH, plasmids were linearized overnight, phenol:chlo-
roform extracted, ethanol precipitated and resuspended in
DEPC-treated water. Riboprobes were synthesized from 1
μg of template cDNA in a reaction mixture containing 100
microCi of UTP 35S (1,250 Ci/mmol, Perkin Elmer, Welle-
sley, MA), 5× transcription buffer (Promega, Madison,
WI), 0.1 M DTT (Promega, Madison, WI), 10 mM of each
rATP, rCTP, rGTP, 40 U RNase Inhibitor, and the appro-
priate RNA transcriptase (SP6, or T7) for 3 hrs at 37°C.
The in vitro transcription reaction was DNase I treated,
then unincorporated nucleotides were removed using the
RNase-free microfuge spin columns (Bio-Spin 30, Biorad,
Hercules, CA) and probe yields were calculated by scintil-

lation counting. ISH on tissue sections was done using
previously described procedures (Lambert et al., 2005).
Briefly, tissue sections were fixed in 4% paraformalde-
hyde, air-dried and blocked by acetylation with acetic
anhydride, followed by a series of dehydration steps. After
air drying, slides were placed in prehybridization buffer
(50% formamide, 3 M NaCl, 20 mM EDTA, 400 mM Tris,
pH 7.8, 0.4% SDS, 2× Denhardt's, 500 mg/mL tRNA, and
50 mg/mL polyA RNA) for 1 hr at 55°C. Sections were
hybridized overnight at 55°C in humidified chambers in
hybridization buffer (50% formamide, 10% dextran sul-
fate, 3 M NaCl, 20 mM EDTA, 400 mM Tris, pH 7.8, 0.4%
SDS, 2× Denhardt's, 500 mg/mL tRNA, and 50 mg/mL
polyA RNA, 40 mM DTT), where each slide was incubated
with 1–4 million cpm/70 mL of a riboprobe. All post-
hybridization washes contain 1 mM sodium thiosulfate,
except in the RNase A and ethanol washes. Following
hybridization, the slides were washed for 15 min in 4×
SSC, at their respective hybridization temperatures, in 2×
SSC for 1 hr at room temperature, then RNase A (20
micrograms/mL) treated at 37°C for 30 min to remove
unbound probe. To further reduce non-specific hybridiza-
tion, the slides were washed twice in 2× SSC at 37°C, and
for 1 hr in 0.1× SSC at 62–67°C. Slides were serially dehy-
drated in ethanol containing 0.3 M ammonium acetate
and exposed to Kodak Biomax MR film (Kodak, Roches-
ter, NY) along with a 14C slide standard (American Radi-
olabeled Chemicals, St. Louis, MO). The slides were
counterstained with 0.04% thionin dye to serve as a refer-
ence. Densitometric analysis of hybridization intensity
was done as described using NIH image software [59].

Statistical Analysis
To make simple comparisons between groups, t-tests were
used. To compare recall for animals tested once at 24-, 48-
or 72-hrs following training, one-way analysis of variance
(ANOVA) was used followed by t-tests for pair-wise com-
parisons. In the cases in which repeated measurements
were made from single animals, the data was analyzed
using a one-way repeated measure (RM) ANOVA followed
by Tukey's test for multiple comparisons. For all tests, val-
ues were considered significantly different at P < 0.05.

Abbreviations
CS: conditioned stimulus; CT: circadian time; ISH: in situ
hybridization; LD: light-dark; OD: optical density; SCN:
suprachiasmatic nuclei; US: unconditioned stimulus; VIP:
vasoactive intestinal peptide; WT: wild type; ZT: zeitgeber
time.
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