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Abstract
Background: Enumeration of circulating peripheral blood dendritic cells (DCs) is complicated by the
absence of a unique cell surface marker expressed on all DC subsets and by the use of various biological
adjuvants to modulate the DC compartment, including granulocyte macrophage colony stimulating factor
(GM-CSF). Common methods employ a cocktail of antibodies, typically including anti-CD14, to define a
lineage negative, MHC class II positive, putative DC population. Reported flow cytometry protocols
include highly variable gating strategies and DC identification criteria. Increasing appreciation of DC
pleiomorphism, GM-CSF biology, and recognition of CD14 expression in some DC subsets led us to
consider an alternative lineage cocktail to improve identification of the circulating DC pool.

Methods: Standard whole blood staining with appropriate fluorochrome conjugated antibodies to MHC
class II and either standard CD14 containing, or an alternate CD66acde containing, lineage cocktail was
performed on samples obtained from normal donors and breast cancer patients before and after
administration of dose-dense, cytotoxic chemotherapy with daily GM-CSF hematopoetic growth factor
support. Putative DCs were enumerated by standard flow cytometry. Data set differences were evaluated
using two tailed Mann-Whitney or Wilcoxon signed rank tests. Cellular morphology was examined in cell-
sorted populations from post GM-CSF samples.

Results: Use of either antibody cocktail defined comparably sized lineage negative, MHC class II positive
populations in normal donors and at baseline in cancer patients. However, selection of lineage negative
subsets with increasing MHC class II expression levels yielded larger putative DC populations identified
with the alternate cocktail. Both cocktails yielded highly reproducible data. Use of the alternate cocktail:
1) yielded a putative DC population, post GM-CSF that was more homogenous and consistent with DCs,
2) resulted in less data variation across gating strategies, and 3) resulted in more uniform and concordant
longitudinal data, consistent with established GM-CSF biological activity.

Conclusion: An alternative lineage negative cocktail substituting anti-CD66 antibody for anti-CD14 is a
viable option for enumerating the circulating DC population, potentially more accurately defining the
circulating DC pool by including CD14 positive immature DCs, and thus, may give more reliable data,
particularly in the setting of sustained GM-CSF administration.
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Background
The recognition of dendritic cells (DCs) as the most
potent antigen-presenting and immunostimulatory cell
[1] has led to their incorporation into various immuno-
therapeutic and immunomodulatory strategies and has
prompted the development of flow cytometry strategies
for monitoring DCs. Monitoring of longitudinal changes
in human DC populations necessitates evaluation of
peripheral blood circulating DCs, as repeated lymph node
biopsies are impractical. This ability to accurately monitor
potential modulations of DCs is challenged by DC pheno-
typic pleiomorphism. DCs can manifest several pheno-
types, including immature and mature [1-4], myeloid or
type 1 (DC1) and lymphoid or type 2 (DC2). However, as
there is no one marker that uniquely identifies DCs, anal-
ysis of DC populations and their modulations must be
carefully interpreted.

Granulocyte macrophage colony stimulating factor (GM-
CSF), a glycoprotein hematopoetic growth factor with
diverse effects [5-12], Table 1, a known trophic factor for
DCs, and one of the major biological adjuvants being
employed to modulate DC numbers and activity, prima-
rily targets myeloid DCs or the DC1 subset. The ability of
GM-CSF to increase the bone marrow production of both
granulocytes and monocytes is well documented, but it
also has been consistently reported to activate various cell
populations and induce MHC class II expression [13-25].
This raises concerns regarding the accuracy of flow cytom-
etry evaluations of DCs in the peripheral blood compart-
ment using classic lineage negative, MHC class II positive
criteria, particularly in the setting of GM-CSF administra-
tion.

The cytometric evaluation of DCs is complicated because
unlike other leukocytes, there is no single cell surface or
cytoplasmic marker for all DC subsets [2,3] and there is
no consensus on the most appropriate flow cytometry
protocol. Although several commercially available DC-
specific antibodies have been used to select or enumerate
DC subsets, each identifies only a limited subset of DCs.
The most widely used criteria for defining circulating DCs
is lineage negative (neither lymphocytes nor monocytes
nor NK cells) and MHC class II positive. The classic line-
age negative antibody cocktails incorporate antibodies to
T lymphocytes (anti-CD3), B lymphocytes (anti CD19

and/or anti-CD20), NK cells (anti-CD16 and/or anti-
CD56) and monocytes (anti-CD14). However, low level
CD14 expression by immature DCs and type 1 DC precur-
sors (pDC1) [2] and the expression of CD16 by a subset
of DCs [3,39,40] can lead to the potential incorrect assign-
ment of cells. Additionally, various disease states, recovery
from myelosuppressive chemotherapy, and/or repetitive
GM-CSF administration can increase the number of circu-
lating MHC class II positive cells complicating the use of
these cocktails [14,41-47] and imparting further error to
the methodology. We postulated that an antibody cocktail
that would identify granulocytes, NK cells, lymphocyte
lineages, and activated monocytes in whole blood analy-
ses would potentially provide a more accurate enumera-
tion of circulating DCs. Members of the CD66 family,
recognized by commercially available monoclonal anti-
bodies, are widely expressed on granulocytes, NK cells,
lymphocytes, and activated monocytes/macrophages [48-
55] and provide candidate antibodies for a lineage nega-
tive cocktail that would permit more consistent identifica-
tion of the circulating DC population, even in the setting
of repeated administration of the biological adjuvant,
GM-CSF.

Methods
Blood samples
All human blood samples were collected in accordance
with IRB reviewed and approved research protocols.
Anonymous normal donor samples from adult subjects,
23 to 55 years of age, were obtained through the normal
blood donor program administered and run by the UCI
GCRC. Subjects receiving dose-dense chemotherapy for a
diagnosis of breast adenocarcinoma consisting of doxoru-
bicin (Adriamycin) 60 mg/m2 d1 followed by cyclophos-
phamide (Cytoxan) 600 mg/m2 d1, administered in a 14
day cycle received 10 days of GM-CSF at the standard
hematopoetic support dose of 250 ug/m2 administered by
subcutaneous (SC) injection starting on day 3, under an
IRB approved protocol. GM-CSF administration termi-
nated ≥ 24 hours before the next administration of cyto-
toxic drugs. Samples from these subjects constitute the
"patient" cohort. Standard phlebotomy was performed
using EDTA containing collection tubes prior to initiation
of chemotherapy, "baseline" and after the 10 days of GM-
CSF.

Table 1: Diverse biological activities of GM-CSF.

In vitro activation of macrophages, monocytes, and dendritic cells [26–30].
In vivo administration activates monocyte at low doses in clinical studies [31–33].
Increases antigen processing and presentation by Macrophages [34–36].
Enhanced in vitro tumoricidal activity of PBMC for human melanoma cells [26].
Induces macrophage production of an angiogenesis inhibitor [37, 38].
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Whole blood staining
Two hundred microliters of well-mixed whole blood was
used for each analysis. All elements of the procedure were
carried out at room temperature unless otherwise noted.
Antibodies were added to these samples and incubated for
60 minutes in the dark, with frequent agitation. After the
addition of red cell lysis media ACK (MP Biomedical,
Irvine, CA) the mixture was incubated for an additional
15 minutes. Cells were collected by centrifugation at 1000
RPM × 5 minutes, the supernatant was discarded, and the
cell pellet resuspended in staining media consisting of
phosphate buffered saline, pH 7.4, containing 3% Fetal
Clone III (Hyclone, Logan, UT) and 0.1% sodium azide as
a wash step. After this wash, the cell pellet was resus-
pended in 500 µl of staining media containing 1% fresh
paraformaldehyde. Samples were stored at 4 C in the dark
for no more than 48 hours before flow cytometry analysis.

Flow cytometry, FACS, and antibodies
Evaluation of nucleated cells from whole blood speci-
mens was performed by standard flow cytometry on a
FACScalibur (Becton Dickinson, Franklin Lakes, NJ)
instrument with identical set up parameters between sam-
ples, using appropriate primary or fluorochrome conju-
gated monoclonal antibodies against cell surface markers
to CD3, CD14, CD20, CD56, CD66acde, CD80, CD83
CD86, appropriate isotype control, and secondary anti-
bodies (Caltag Laboratories, Burlingame, CA), CD11c,
(BD Biosciences, San Diego, CA), and MHC II (Ancell
Bayport, MN) as noted in Table 2. Flow cytometry data
was analyzed using FlowJo software (Tree Star, Ashland,
OR).

There is no consensus for the most appropriate gating
strategy for circulating DC enumeration. Classic quadrant
gates [56-58], more restricted MHC class II high express-
ing gates [59,60], and even more inclusive gates [61] have
been employed for DC enumeration with and without
restriction of the examined cellular subset by side scatter
& forward scatter gating, complicating direct comparison
of results from different groups. Thus, we evaluated three
different gating profiles in two color analyses of lineage
negative, MHC class II positive putative DC populations.
We set standard quadrant gates from isotype control sam-
ples with less than 0.2% background in all positive gates,
"Gate A". DCs generally have high-level expression of
MHC class II, thus we also examined various levels of
higher MHC class II expression within this gate. In our
experience with whole blood staining and analyses, dis-
crete populations with different levels of MHC class II
expression are rarely observed. Thus, these gates were arbi-
trarily set at ≥ 102 log FL-2 fluorescence, "Gate B", or ≥ 103

log FL-2 fluorescence, "Gate C", see Figure 1. Although
there are certainly other gating strategies, these three strat-
egies represent a range of restriction for the level of MHC

class II expression in the lineage negative, MHC II posi-
tive, putative DC population.

Cells for photomicrography were obtained by fluorescent
activated cell sorting (FACS) collecting MHC class II posi-
tive, lineage negative and lineage positive populations
using "Gate B" settings. These samples were used to gener-
ate cytospin preparations. Cytospin preparations were air
dried and stained with standard Wright-Giemsa. Photom-
icrographs were obtained using a cooled color CCD cam-
era (Diagnostic Instruments, Sterling Heights, MI).

Statistical methods
The two-tailed Wilcoxon signed rank tests were used to
test for significant differences between comparisons con-
ducted within individual sample sets, e.g., normal or
patient sets. The two-tailed Mann-Whitney tests were used
to test for significant differences in intergroup compari-
sons. Pearson's R was calculated to assess the degree of
correlation between replicate analyses from given samples
as a measure of reproducibility in this whole blood ana-
lytical strategy. Figures were generated using Graph Pad
Prism (Graph Pad Software, San Diego CA) and Microsoft
Excel (Microsoft Corp., Redmond, WA) software pro-
grams with statistical analyses performed using SAS soft-
ware (SAS Institute Inc., Cary NC).

Results
DC enumeration by CD14 and CD66 lineage cocktails in 
the absence of GM-CSF
It is widely believed that the proportion of the circulating
leukocyte pool that constitutes the circulating dendritic
cell population is a small percentage. We evaluated the
effect of alternate gating strategies on the number of enu-
merated DCs from whole blood samples: Gate A repre-
sents the classic quadrant gate, Gate B and Gate C employ
increasing restrictions on high level MHC class II expres-
sion in the lineage negative population, Figure 1. The
boundaries for Gates B & C were arbitrarily set at > 102 and
> 103 on the log FL-2 fluorescence scale within Gate A,
respectively. The isotype control background for these
gate settings were 0.09 %, 0.00%, 0.00 %, respectively.
Enumeration of putative DCs, in the respective gates,
yielded values of; 2.6%, 1.17%, and 0.54%, using the
CD14 containing lineage cocktail and using the
CD66acde containing lineage cocktail; 4.65%, 4.15%,
1.03%. The absence of discrete populations of cells with
different levels of MHC class II expression and the arbi-
trary nature of setting these alternate gates accentuate the
difficulties of comparing data between groups in the
absence of detailed gating strategy descriptions.

The basis for considering alternative DC enumeration
flow cytometry strategies is the potential for incorrect clas-
sification of leukocytes, either as DCs or as non-DCs, par-
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ticularly in the setting of GM-CSF administration. To gain
insight into the extent of this potential error, we examined
several specimens with three-color, flow cytometric anal-
ysis to determine the distribution of cells expressing
CD11c, CD14, CD80, CD83, or CD86, in the various pop-
ulations delineated by lineage cocktail and MHC class II
reactivity. Table 3 summarizes a representative set of anal-
yses from a subject sample after receiving GM-CSF. The
vast majority of the CD14 expressing population resided
in the lineage positive, MHC class II positive cell subset
for both lineage cocktails, 82% and 76%, respectively.
Increasing restriction on high MHC class II expression led
to an enrichment of the percentage of cells expressing
CD14 for both cocktails, although to a greater extent in
the CD66acde cocktail. This accounted for the increase in
identified putative DC in the CD66acde cocktail analyses
vs. the CD14 cocktail analyses. CD11c expression has
been associated with DCs in the presence of MHC class II
expression. Slightly less than half of the MHC class II pos-
itive, CD11c positive cells resided in the lineage positive
population for samples analyzed with the CD14 lineage
cocktail, while this percentage was much higher in the
CD66acde lineage cocktail analysis. Increasing restriction
on high MHC class II expression led to an enrichment of
the percentage of cells residing within the gated popula-
tion expressing either CD11c or CD14 with the CD66acde
cocktail, whereas in the CD14 cocktail analyses the pro-
portion of CD11c positive cells varied little across the
three gates. Interestingly, approximately identical propor-
tions of CD66acde lineage negative, MHC class II positive
putative DCs enumerated by the CD66acde cocktail
expressed CD14 or CD11c, supporting their appropriate
classification as circulating DCs. Although the proportion
of nucleated cells expressing CD80, CD83, or CD86
resided solely in the MHC class II positive pool, there were
slightly higher proportions identified in the lineage nega-
tive, MHC class II positive populations from the
CD66acde cocktail analyses. Nearly identical trends to
those depicted in Table 3 were seen in samples from sub-
jects not receiving GM-CSF. Together, these data suggest
that monocytes are classified similarly by both cocktails

and support the under classification of DCs by analyses
using the CD14 cocktail.

Given the fact that immature DCs can have low level
CD14 expression, we predicted that even in the absence of
GM-CSF administration the alternate cocktail would yield
a higher proportion of circulating leukocytes identified as
DCs. Thus, we evaluated 18 samples from both normal
donors and pre-chemotherapy baseline samples from
subjects that would go on to receive GM-CSF. The DC
populations were initially enumerated using the criteria of
lineage negative, MHC class II positive defined by isotype
control quadrant gating at ≤ 0.2 % thresholds, Gate A.
There was a trend toward the CD66acde lineage cocktail
identifying a larger population of putative DCs, although
it did not reach statistical significance, Figure 2. The over-
lapping box and whisker plots from all samples suggests
that these two cocktails identify comparable numbers of
circulating DCs when employed in a commonly accepted
gating strategy, Gate A, in the absence of the biological
adjuvant GM-CSF.

Alternate gating strategies with the CD14 lineage cocktail 
impart greater variability in enumerated DCs than with 
the CD66 lineage cocktail
The three gating strategies for each lineage cocktail were
applied to the normal donor samples, Figure 3, panels A
& B, and baseline patient samples, Figure 3, panels C & D,
sets described above. The proportion of circulating leuko-
cytes identified as DCs decreased with restriction to higher
level MHC class II expression, Gates B & C. Within each
sample, the identified DC population varied to a greater
extent, relative to the employed gating strategy, using the
CD14 containing lineage negative cocktail relative to the
CD66 containing lineage negative cocktail. In the setting
of the arbitrarily set MHC class II high gates, the number
of DCs enumerated in analyses using the CD66 lineage
were, as predicted, significantly higher than the popula-
tion identified by identical analyses using the CD14 line-
age cocktail, in the normal sample set p = 0.0156 and p =
0.0781 for Gate B, Figure 3E, and Gate C, Figure 3F,

Table 2: Antibodies employed in these studies

Antigen Fluorochrome Clone Isotype Vendor Volume

CD3 FITC S4.1 IgG2a Caltag 5 ul
CD11c PE/Cy5 B-ly6 IgG1 BD Biosciences 10 ul
CD14 FITC TüK4 IgG2a Caltag 5 ul
CD20 FITC HI47 IgG3 Caltag 5 ul
CD56 FITC MEM-188 IgG2a Caltag 5 ul
CD66acde FITC CLB-gran/10 IgG1 Caltag 5 ul
CD80 Tricolor MEM-233 IgG1 Caltag 5 ul
CD83 Tricolor HB15e IgG1 Caltag 5 ul
CD86 Tricolor BU63 IgG1 Caltag 5 ul
MHC II PE TDR31.1 IgG1 Ancell 4 ul
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respectively and in the experimental sample set p < 0.001
and p = 0.001 for Gate B, Figure 3E, and Gate C, Figure 3F,
respectively. This result is not unexpected given the low
level CD14 expression on immature DCs and the predic-
tion that a large proportion of circulating DCs are likely to
have the immature phenotype.

Longitudinal change in putative DC populations in the 
setting of repeated GM-CSF dosage
Individuals receiving dose-dense chemotherapy sup-
ported by the growth factor GM-CSF were evaluated pre-
chemotherapy and after 10 days of daily GM-CSF admin-
istration. The administration of GM-CSF was generally
accompanied by a longitudinal increase in number of cir-
culating nucleated cells identified as DCs, Figure 4. The
degree of increase was variable as was the baseline propor-
tion of DCs, though the CD66acde containing cocktail
analyses generally identified a larger DC population than
the CD14 containing lineage cocktail. Although with
restriction to higher levels of MHC class II expression in
the CD14 cocktail analyses, there was a dramatic shift in
the longitudinal profile; from all but three individuals
having an increase in circulating DCs after GM-CSF
administration in Gate A, to only three having an increase
identified using Gate C, Figure 4, panel C. This inconsist-
ency was not seen across the three gates for analyses using
the CD66acde lineage cocktail. It is reassuring that in gen-
eral, longitudinal changes were concordant between com-
parable analyses using the different cocktails. Given the

wide range of GM-CSF effects and the widely held belief
that circulating DCs represent a small percentage of circu-
lating nucleated cells, the substantial populations of puta-
tive DCs identified by employing Gate A, > 10% of
circulating nucleated cells in some individuals, seem
likely to be an over estimation of the DC population. It is
difficult to reconcile the near global longitudinal decrease
in circulating DCs using the CD14 lineage cocktail and
Gate C, Figure 4, panel C, with the biological activity of
GM-CSF and the general agreement between the other
analyses, Figure 4, panels A, B, D, E, & F. The discordance
between longitudinal analyses using the CD14 and
CD66acde lineage cocktails, accentuate the difficulties
inherent in these analyses in the setting of repetitive GM-
CSF administration.

Reproducibility of DC enumeration
As noted above, all whole blood samples were evaluated
prior to PBMC isolation and/or cryopreservation. Thus, to
assess reproducibility of determinations using either line-
age cocktail, replicate aliquots from individual samples
were stained and analyzed. Scatter plots of these replicate
determinations are depicted in Figure 5. Data derived
from CD14 containing lineage cocktail determinations
employing all three gates, Figure 5, panel A, and from
CD66acde containing lineage cocktail determinations,
Figure 5, panel B, reveal a very high level of concordance
with the best fit lines as follows: y = 1.036x (Pearson's R =
0.9968) and y = 0.9417x (Pearson's R = 0.9740), respec-

Table 3: Expression of select markers on populations categorized by lineage cocktail reactivity and MHC class II expression. This table 
lists the percentage of nucleated cells residing in each designated gate for each of the two lineage (Lin) cocktails. The first data 
column, "Total", represents the total percentage of cells within the designated gates described in the far left hand column. Subsequent 
data columns denote the percentage of cells residing within the designated gate expressing the designated cell surface molecule 
designated in the top row. Numbers in parentheses represent the percentage molecule expressing cells in the sample; the "ungated" 
value represents the total percentage.

Lineage cocktail & 
gate

Percentage of cells in designated FL-1 Fl-2 gate (portion of ungated marker + population)

Total CD11c + CD14 + CD80 + CD83 + CD86 +

CD14 cocktail
Ungated (25) (11.4) (3.9) (3.4) (5.3)

Lin – MHC II - 50.2 2.9 (1.4) 2.5 (1.3) 0 (0) 0 (0) 0 (0)
Lin + MHC II - 13.5 0.6 (0.1) 2.0 (0.3) 0 (0) 0 (0) 0 (0)
Lin + MHC II + 12.9 82.7 (10.6) 72.0 (9.3) 30.5 (3.9) 25.6 (3.3) 39.1 (5.0)
Lin – MHC II + 23.4 52.8 (12.3) 2.5 (0.6) 0.04 (0.01) 0.4 (0.1) 0.9 (0.3)

Gate "B" 6.9 67.9 (4.7) 4.6 (0.3) 0.1 (0.01) 0 (0) 0.15 (0.01)
Gate "C" 0.11 66.7 (0.1) 18.2 (0.02) 10 (0.01) 0 (0) 0.06 (0)

CD66 cocktail
Ungated (23.8) (12.3) (3.1) (2.8) (5.8)

Lin – MHC II- 12.9 1.7 (0.2) 0.2 (0.02) 0.08 (0.01) 0 (0) 0 (0)
Lin + MHC II - 52 3 (1.6) 1.1 (0.6) 0 (0) 0.02 (0.01) 0 (0)
Lin + MHC II + 28.7 66.8 (19.2) 32.5 (9.3) 10.4 (3.0) 9.9 (2.8) 18.3 (5.3)
Lin – MHC II + 6.4 44 (2.8) 36.9 (2.4) 1.58 (0.1) 1.25 (0.01) 8.5 (0.5)

Gate "B" 3.8 68.8 (2.6) 61.3 (2.3) 2.7 (0.1) 1.9 (0.01) 14.4 (0.5)
Gate "C" 1.4 95 (1.3) 89.9 (1.3) 7 (0.1) 5.7 (0.01) 27.4 (0.4)
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tively. Restricting the data set to Gate C, the most stringent
criteria for identifying putative DCs, results in comparable
levels of concordance for the analyses using the CD14 lin-
eage cocktail, y = 1.012x (Pearson's R = 0.9367), Figure 5,
panel C, and for the analyses using the CD66acde lineage

cocktail, y = 0.9463x (Pearson's R = 0.9703), Figure 5,
panel D. These data support the comparable reproducibil-
ity of analyses using either of these two lineage cocktails.

Alternate "gates" for flow cytometric enumeration of circulating dendritic cellsFigure 1
Alternate "gates" for flow cytometric enumeration of circulating dendritic cells. Representative dot plots of two 
color flow cytometric evaluations from one of the six anonymous "normal" donor samples. All plots depict log fluorescence of 
FL-1 (Lineage – FITC) on the "Y axis" and FL-2 on the "X" axis (MHC II – PE) with collection of a minimum of 50,000 events. 
The left hand column depicts "Gate A", classic quadrant gates. The middle column depicts the least restrictive of the arbitrarily 
set MHC class II high expression subset "Gate B". The right hand column depicts the most restrictive MHC class II high 
expressing population, "Gate C". The first row represents isotype control analyses and gate settings that have 0.09 %, 0.00%, 
0.00 % ≥ background, respectively.

Isotype
control
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The CD66 lineage cocktail identifies a more homogenous 
population in the setting of repeated GM-CSF 
administration
MHC class II positive, lineage negative and lineage posi-

tive populations obtained by standard fluorescent acti-
vated cell sorting (FACS) using Gate B were used for
generating cytospin preparations from three post-GM-CSF
patient samples. The limited numbers of cells present in

Comparison of CD14 and CD66acde containing lineage cocktails for flow cytometry DC enumeration in the absence of repeated GM-CSF administrationFigure 2
Comparison of CD14 and CD66acde containing lineage cocktails for flow cytometry DC enumeration in the 
absence of repeated GM-CSF administration. Each set of percent DC determinations for the designated samples and lin-
eage cocktail formulation are depicted as box and whisker plots depicting the median, bold line within the box, the bounds of 
the 25th and 75th percentile, the box, and the data set range, the whisker.
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the most restricted gate, Gate C, precluded collection and
morphologic analysis of this population from these whole
blood stained specimens, even in the setting of repeated
GM-CSF administration. Representative photomicro-
graphs from cytospins obtained from one sample are
shown in Figure 6. Lineage negative, MHC class II positive
populations isolated using the CD14 containing cocktail,
Figure 6, panels A & B, and using the CD66acde contain-
ing cocktail, Figure 6, panels C & D, reveal that the lineage
negative, MHC class II positive, putative DC populations
isolated with the CD14 cocktail constitutes a pleiomor-
phic population including granulocytes and immature
myeloid cells, best seen at higher power (400 × original
magnification) Figure 6, panel B. In contrast, the
CD66acde containing lineage negative, MHC class II pos-
itive population is more homogenous and has cells with
the morphology of immature DCs, Figure 6, panel D.

Discussion
Various strategies to modulate elements of the DC com-
partment are being developed and tested. Rigorous meth-
ods for evaluating the impact of these strategies on the DC
compartment are critical for efficient development and
evaluation of individual strategies and for gaining mecha-
nistic understandings of various immunomodulatory
strategies. Methods for enumerating DCs should take into
account our evolving understanding of the complexity of
the DC compartment and the biology of putative immu-
nomodulatory biological adjuvants.

The optimal flow cytometry strategy for enumerating DCs
is not known. This is a direct consequence of the absence
of a single defining cell surface marker and the phenotypic
pleiomorphism of the DC compartment. All of the pub-
lished and commercially available strategies have poten-
tial drawbacks, Table 4; however, different methods may
be more applicable in some situations than others. Exam-
ination and careful characterization of DC subsets by
multi-channel flow cytometry will facilitate increased
understanding of the complicated biology of DCs. The
alternative cocktail described herein is as compatible as

the existing lineage cocktails, with such DC1 subset eval-
uations.

In pursuing our objective of developing an alternative
strategy to provide enumeration of the broader circulating
myeloid DC pool than reported lineage cocktails that
would be applicable to whole blood flow cytometry anal-
ysis and retain the ability to evaluate functional capacity,
we investigated several potential substitute cell surface
antigens that are not expressed on monocytes. CD66
proved to be the most attractive candidate marker due to
its expression on granulocytes, NK cells, lymphocytes, and
macrophages and absence of reported expression on DCs
[48-55]. The report of reactivity in macrophages and mac-
rophage-like myelomonocytic cell lines raised concerns
for as yet unrecognized expression on myeloid DCs. Our
data and recent reports that DCs do not express CD66
[65,66], however, do not justify this concern. The low
level expression of CD66 family members on the more
immature compartments of myelocyte development
could complicate the use of this alternative cocktail in the
evaluation of bone marrow or enriched progenitor cell
preparations. We evaluated the two commercially availa-
ble antibodies; anti-CD66acde, clone CLB-gran/10
(Caltag) and anti-CD66abce, clone Kat4c (Dako) and
found both to yield similar if not identical results (data
not shown).

Our analyses using both the standard CD14 and the
CD66 containing lineage cocktails to enumerate DCs in
normal donors and cancer patients prior to receiving cyto-
toxic chemotherapy and GM-CSF reveal a slightly higher
DC percentage of circulating DCs in nucleated leukocytes
than has generally been reported, particularly in Gates A
and B. Our data is comparable to reports evaluating DC
populations in cord blood. The arbitrary restriction to a
high MHC class II expressing population brings our
results more in line with preceding reports. Although use
of the CD14 lineage cocktail sporadically yielded a sugges-
tion of a discrete population with higher MHC class II
expression, such as in Figure 1, careful examination failed

Table 4: 

Antibody cocktails Complicating factors & potential drawbacks

Lin1 (BD Biosciences®) CD3, CD14, CD16, CD19, CD20, CD56 negative: 
MHC class II positive.

Low-level expression of CD14 by "immature" DCs or pDC1 [2, 3]
Expression of CD16 by a subset of DCs [3, 39, 40]

CD14, CD16 negative: MHC class II, CD33 positive [56, 57] Low-level expression of CD14 by "immature" DCs or pDC1 [2, 3]
Expression of CD16 by a subset of DCs [3, 39, 40]
Expression pattern of CD33 [62]

Single Antibodies
BDCA1, BDCA3 (Miltenyi Biotech®) Identifies a limited subsets of myeloid DCs, CD1c positive subset 

(BDCA1) or CD141 expressing subset (BDCA3) [3, 63]
CMRF clones [3, 64] Identify limited subsets of circulating DCs [3, 64]
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Effect of alternate gating strategies on DC enumeration by lineage cocktailFigure 3
Effect of alternate gating strategies on DC enumeration by lineage cocktail. Box and whisker plots of compiled data 
for percentage DCs in normal and patient samples using the three alternate gating strategies. Normal samples evaluated using 
the CD14 containing lineage cocktail are depicted in Panel A and evaluated using the CD66 containing lineage cocktail depicted 
in Panel B, using the designated gates on the "X" axis. Patient samples evaluated using the CD14 containing lineage cocktail are 
depicted in Panel C and evaluated using the CD66 containing lineage cocktail depicted in Panel D, using the designated gates on 
the "X" axis. Within each sample set the differences between analyses using each of the three gates are statistically significant at 
p values ≤ 0.0312. Direct comparison of enumerated values for putative DCs in both "Normal and "Patient" baseline samples as 
detected using each lineage cocktail with Gate B, Panel E, and with Gate C, Panel F, reveals consistent and statistically signifi-
cant differences, as noted, between determinations using the different cocktails.
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Longitudinal changes in circulating DCs in the setting of daily GM-CSFFigure 4
Longitudinal changes in circulating DCs in the setting of daily GM-CSF. Individual plots of data derived from patient 
samples using the various gating strategies and the two lineage cocktails. Each line depicts the longitudinal change in the per-
centage of nucleated cells identified as DCs in individual subject's samples at baseline (T1) and after 10 days of daily GM-CSF 
(T2). The left hand column represents determinations using the CD14 containing lineage cocktail and the right hand column 
the determinations using the CD66 containing cocktail. Panels A & D depict Gate A determinations. Panels B & E depict the 
Gate B gated population. Panels C & F depict the Gate C determination, with a change to log scale to accommodate the range 
of values.
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Reproducibility of whole blood flow cytometric enumeration of DCsFigure 5
Reproducibility of whole blood flow cytometric enumeration of DCs. Scatter plots of independent duplicate analyses 
of each individual fresh whole blood sample are presented for the CD14 containing lineage cocktail, Panel A, and the 
CD66acde containing lineage cocktail, Panel B. There is a high degree of concordance between replicate analyses including data 
from all gating strategies, Panel A, (CD14 containing cocktail) with the best fit line constrained by passing through the origin 
and Pearson's R being y = 1.036x R = 0.9968. Panel B depicts the identical data for the CD66acde containing cocktail, y = 
0.9417x R = 0.9740. Data restricted to Gate C yields a similar degree of concordance between replicate analyses with the best 
fit line constrained by passing through the origin and Pearson's R being y = 1.012x R = 0.9367 for CD14 lineage cocktail analy-
ses, Panel C, and for analyses using the CD66acde containing cocktail being y = 0.9463x R = 0.9703, Panel D.
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to convincingly demonstrate a discrete population. We are
concerned that setting arbitrary MHC class II high expres-
sion gates imparts a significant potential for bias, dimin-
ished reproducibility, and accuracy. Interestingly, recent
studies report comparable percentages of circulating DCs
[67,68] to those seen with the CD66 alternative cocktail
employing Gate A or B. We are reassured by the reproduc-
ibility of determinations using both cocktails that is
entirely comparable to similar strategies using various
cocktails [32,56-58,60,61,69-73], even though some of
these studies examined only the "mature", i.e. CD83 pos-
itive, circulating DC populations [32] or specific DC sub-

sets [32,56,57,60,61,69-73]. A similar degree of inter-
patient variability in longitudinal changes of putative cir-
culating DCs was reported in the study of repetitive daily,
x 7d, GM-CSF and concomitant IL-4 administration [60]
and in the study of repetitive daily, x 14d, GM-CSF admin-
istration [32]. Both lineage cocktails may incorrectly clas-
sify activated immature myeloid elements, potentially
myeloid suppressor cells [74-76], as putative DCs. It was
somewhat surprising that the CD66 containing cocktail
yielded group data with less variability across gating strat-
egies and with greater longitudinal concordance, in the
setting of daily GM-CSF administration, than the CD14

Photomicrographs of FACS isolated populationsFigure 6
Photomicrographs of FACS isolated populations. Individual panels depict representative Wright-Geimsa stained cyt-
ospin preparations of MHC class II positive, lineage negative or lineage positive populations isolated by FACS using Gate B 
parameters from samples collected from an individual after ten consecutive days of GM-CSF following cytotoxic chemother-
apy. Panels A & C depict photomicrographs (original magnification 100x) of lineage negative, MHC class II positive populations 
for CD14 and CD66acde containing cocktails, respectively. Panels B & D depict higher magnification (original magnification 
400x) of the boxed regions in Panel A & C, respectively. These data are representative of analyses performed on three sepa-
rate samples.
Page 12 of 15
(page number not for citation purposes)



Journal of Translational Medicine 2006, 4:18 http://www.translational-medicine.com/content/4/1/18
containing cocktail. Under normal circumstances CD66
and CD14 are not necessarily co-expressed on human leu-
kocytes [77] however there is evidence for CD66 expres-
sion on activated monocytes and macrophages [54,77]
suggesting that at least a proportion of CD14 cells also
express CD66. Together with our limited data using three-
color flow cytometry analyses of CD14 expression on lin-
eage positive or lineage negative, MHC class II positive
populations, suggest that activated monocytes or macro-
phages are not being routinely classified as DCs in the
CD66acde cocktail analyses. It is likely that the error
imparted by excluding CD14 expressing immature DCs
with the standard cocktail is at least as large as any error
due to inclusion of CD14 positive monocytes in the puta-
tive DC population using the CD66acde cocktail. This is
supported by the observed cellular morphology of the lin-
eage negative, MHC class II positive population from post
GM-CSF samples that is more uniform and, more impor-
tantly, representative of DCs and DC precursors as previ-
ously reported [56,78] when the CD66 containing lineage
cocktail is employed.

Conclusion
We have demonstrated that substituting an antibody for
CD66acde for an antibody recognizing CD14 within a
cocktail of antibodies to define lineage negative, MHC
class II positive populations, i.e. putative circulating DC
populations, yields population sizes of comparable mag-
nitude across different gating strategies in baseline sam-
ples from normal donors and cancer patients prior to
initiation of cytotoxic chemotherapy and hematopoetic
growth factor support. The data derived from use of the
alternate CD66 containing cocktail is less subject to
changes in gating strategies. This alternate lineage cocktail
likely classifies CD14 low, MHC class II positive circulat-
ing cells, correctly as putative DCs while classifying the
large majority of CD14 positive cells in the lineage posi-
tive, non-DC, population. In patients receiving cytotoxic
chemotherapy and hematopoetic support with daily GM-
CSF the longitudinal data obtained with the CD66 con-
taining cocktail is more uniform and concordant across
gating strategies than that obtained with the CD14 con-
taining lineage cocktail. Finally, in representative FACS
isolated lineage negative, MHC class II positive popula-
tions from such patients the putative DC population is
more homogenous and representative of DCs. Together,
these data support the use of this alternative lineage nega-
tive cocktail, particularly in the setting of sustained
hematopoetic growth factor, e.g. GM-CSF, use.
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