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With a heat capacity 1,000 times larger than that of the 
atmosphere, the ocean plays an important role in reg-
ulating the rate and magnitude of global temperature 

change and represents the largest energy reservoir in the climate 
system1. Ocean heat uptake and warming contribute directly to 
increasing sea level through thermal expansion of seawater and 
may play a role in future sea-level rise through enhanced subshelf 
melting and subsequent mass loss from the Antarctic Ice Sheet2.  
To understand the future role of ocean heat uptake, it is instructive 
to study the ocean temperature change during past warm periods in 
Earth’s history.

During the Last Interglacial (LIG, 129–116 thousand years ago 
(ka)) surface temperatures were warmer than today, but the exist-
ing reconstructions differ substantially on the timing and mag-
nitude of the peak warmth. A global average (land and ocean) 
surface temperature reconstruction3 from a compilation of seasonal 
and annual-average temperature records shows a maximum of 
2 °C warmer temperatures during the middle of the LIG. A global 
annual-average sea surface temperature (SST) reconstruction4 
shows a maximum of only 0.5 °C warmer than the preindustrial 
value that peaks during the earlier LIG, but is up to 1 °C warmer 
in the high latitudes. Climate models show considerable warmth at 
the mid-LIG, especially in high northern latitudes, but in line with 
the lack of global insolation forcing, little warming or even cooler 
conditions on a global scale5. At the same time, global sea level dur-
ing the LIG was 6–9 m higher6. Differences in greenhouse gas and 
orbital forcing over the LIG relative to modern make the spatial and 
temporal patterns of temperature change during this period distinct 
from what might be expected from anthropogenic warming7. As 
a result, the LIG is not an analogue for future warming but offers 
a unique opportunity to assess the validity of Earth system model 

predictions of sea-level rise in response to warming, provided that 
reliable paleoclimate data exist for model validation8.

Sediment cores provide valuable records of changes in ocean 
conditions through the LIG4,9–11 and are critical to understand-
ing the spatiotemporal structure of temperature change. However, 
as most available records document surface ocean conditions, to 
deduce the total ocean heat content and thermosteric sea level from 
these records remains a challenge.

The measurement of atmospheric noble gases trapped in glacial 
ice provides a method to reconstruct changes in mean ocean tem-
perature (MOT) independently from marine records12–14. Changes 
in the relative atmospheric concentrations of krypton, xenon and 
nitrogen trace the total ocean heat content because they are caused 
by temperature-driven changes in gas solubilities in seawater. Here 
we report measurements of the ratios of Kr/N2, Xe/N2 and Xe/Kr 
in ice cores from Taylor Glacier (TG) and the EPICA Dome C  
(EDC) ice cores that cover the LIG and penultimate glacial, 
Marine Isotope Stage 6 (MIS6, 180–136 ka). We assess the tim-
ing and magnitude of ocean temperature change during the LIG 
and quantify the thermosteric component of the elevated sea level  
during this period.

Last Interglacial mean ocean temperature record
The MOT anomalies were calculated relative to the Early Holocene 
(11–10 ka) for each ice core because firn fractionation correc-
tions are more robust when calculating relative MOT change 
compared to absolute MOT values (Supplementary information). 
MOT anomalies relative to the pre-industrial and modern values 
were subsequently calculated using the existing West Antarctic 
Ice Sheet (WAIS) Divide12 and EDC15 Holocene-to-pre-industrial 
MOT records and pre-industrial-to-modern simulations of ocean 
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temperature change16. Based on Monte Carlo simulations that 
account for all the known sources of uncertainty (Methods), we 
constrained peak MOT to 1.1 ± 0.3 °C (1σ) warmer than modern at 
129.0 ± 0.8 ka on the Antarctic Ice Core Chronology (AICC2012)17 
(Fig. 1). Although data for MIS6 and Termination II are relatively 
sparse, the period of maximum MOT is highly resolved (Methods). 
This and the robust age constraints from trace gas measurements 
for the TG record (Methods and Supplementary information) mean 
that the timing of the peak MOT is well-constrained.

The record shows a 3.4 ± 0.5 °C MOT increase from MIS6 to the 
early LIG, compared to the Last Glacial Maximum-to-Holocene 
change of 2.6 ± 0.3 °C (ref. 12). The larger magnitude in glacial–inter-
glacial MOT change over Termination II versus Termination I is 
consistent with previous reconstructions of deep ocean temperature 
during these intervals from stacks of low-resolution marine records11.

Comparison to global surface temperature records
Comparison of our MOT record to stacked SST records from 
marine sediments4 over the LIG reveals distinct differences between 
these fundamental climate parameters (Fig. 2). The maximum in 
MOT occurs earlier and exceeds the magnitude of the global SST 
maximum. The magnitude of the peak extratropical SST anomaly 
agrees well with the peak MOT anomaly, although the temporal 
evolution of each record over the LIG appears distinct. Comparison 
of the timing of the MOT and SST changes is complicated by 
the lack of absolute age constraints for the sediment and ice core 
records that span the LIG, and a 1,000–2,000-year offset between 
the SpeleoAge18 and AICC2012 chronologies that are applied to the 
SST and MOT records, respectively19. However, accounting for the 
offset in chronologies would actually increase the offset in the rela-
tive timing of the MOT and global SST maxima.

While global SST records are good indicators of the ‘skin temper-
ature’ and thus outgoing long-wave radiation for much of the planet, 
MOT is closely related to the subsurface heat content15. MOT repre-
sents the volume-averaged ocean temperature, so changes in inter-
mediate and deep ocean temperatures (as opposed to SST changes) 
play a dominant role in setting the MOT. Much of the intermediate 

and deep ocean’s temperature is set at high latitudes via meridional 
circulation, so the polar regions are probably crucial for the struc-
ture of MOT change, relative to that of global SST20.

MOT and Antarctic surface temperature21 records show strik-
ingly similar features (Figs. 2 and 3). Both records are reported on 
AICC2012, but minor uncertainties in their alignment may result 
from error in the TG chronology, or the EDC gas–ice age difference22.  
The covariation of MOT and Antarctic temperature during the LIG 
follows the pattern recently observed during Termination I12,15 in 
which mean ocean and high southern latitude surface warming pre-
cede the increase in global SST and appear intrinsically linked. We 
thus have strong evidence that changes in MOT outpace and exceed 
low latitude SST changes during the LIG, which suggests that polar 
amplification and intermediate/deep-water formation are key regu-
lators of MOT.

Links of MOT and ocean circulation over Termination II/LIG
Recent studies investigated the role of the bipolar seesaw, the out-
of-phase temperature variations between hemispheres, in the 
evolution of glacial terminations10,18,23,24. Although the exact trig-
gering mechanisms are still debated, it is generally accepted that 
the bipolar pattern of global temperature anomalies is the result of 
variations in the strength of the Atlantic Meridional Overturning 
Circulation (AMOC)25. When AMOC is in a strong mode, as today, 
there is a northward heat transport at all latitudes in the Atlantic. 
When AMOC is weakened, this heat transport is reduced, which 
leads to a net accumulation of heat in the Southern Hemisphere.

A recent synthesis of the available high-resolution records that 
cover Termination II26, which includes sediment records from 
the North Atlantic10, Chinese speleothems24 and Antarctic ice 
cores27,28, suggests that the AMOC was considerably weakened 
during Heinrich Stadial 11 (HS11, ~136–129 ka), a cold period in 
the Northern Hemisphere that covers much of Termination II. At 
~129 ka, these proxy records show a rapid recovery of the AMOC 
and Asian monsoon strength, which coincides with an abrupt shift 
in the source of Antarctic moisture27, methane (CH4) increase28 and 
a peak in our MOT reconstruction (Fig. 3). As CH4 and the noble 
gases are measured on the same ice samples, there is virtually no 
uncertainty in the relative timing of the abrupt rise in CH4 and the 
MOT maximum (Supplementary information). The excellent agree-
ment in the timing of the peak in MOT (129.0 ± 1.9 ka, including 
the AICC2012 uncertainty) and the end of HS11 (128.9 ± 0.06 ka, 
dated from the Sanbao Cave records24) also suggests an important 
connection between MOT and the bipolar seesaw.

Recent modelling studies examined the impact of a reduced 
AMOC on the surface and subsurface temperature change through 
freshwater hosing experiments14,25,29. In these simulations, a reduc-
tion in the AMOC strength results in a globally asymmetric sur-
face pattern of cold Northern Hemisphere SSTs, as the Southern 
Hemisphere SSTs, MOT and Antarctic temperatures gradually 
increase. At the subsequent recovery of the AMOC, the accumulated 
subsurface heat is released, which leads to an abrupt increase in the 
Northern Hemisphere SSTs and gradual decrease in the Southern 
Hemisphere SSTs, Antarctic temperature and MOT25. This spatio-
temporal pattern is consistent with the observed Antarctic tempera-
ture and MOT trends during HS11 and the LIG (Fig. 3). As in the 
hosing simulations, we observe that MOT and Antarctic tempera-
ture increase during the weakened AMOC interval of HS11, reach a 
maximum at ~129 ka synchronous with the AMOC recovery10, and 
then decrease during the several thousand years after the AMOC 
recovery. This mechanism is also consistent with the lead of the 
Southern Hemisphere over the Northern Hemisphere high-latitude 
warming observed at the onset of the LIG4,9.

These observations raise the question30 of how much of the 
warmer-than-modern MOT in the early LIG was due to the weak-
ened AMOC state, and how much can be attributed to the stable 
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interglacial climate. In our record, MOT decreased and eventually 
stabilized by ~127 ka (at the latest by ~124 ka) at a temperature that 
is comparable to that of the Holocene/modern MOT (+0.2 ± 0.3 °C). 
If the observed MOT decrease was due to the release of stored heat 
post-AMOC recovery, then we can attribute most of the MOT 
anomaly at the LIG onset to deglacial changes in ocean circulation.

Although our Termination II record of MOT lacks resolution at 
its onset, the only observed warming occurs during the weakened 
AMOC interval, HS11. Northern Hemisphere insolation forcing 
during Termination II exceeded that of Termination I, which may, in 
part, explain the comparatively rapid disintegration of the Northern 
Hemisphere ice sheets during Termination II, and the long dura-
tion of suppressed AMOC due to strong freshwater forcing of the 
North Atlantic23. During Termination I, the AMOC temporarily 
recovered, possibly due to weaker insolation and reduced freshwa-
ter forcing31. During this time, Antarctic temperatures and MOT 
decreased (Fig. 3). The so-called ‘Antarctic Cold Reversal’ may, in 
many ways, be analogous to the Antarctic and mean ocean cool-
ing observed at the end of Termination II, post-AMOC recovery. 
Although the magnitude of the MOT decrease over the Antarctic 
Cold Reversal was slightly smaller than that observed for the LIG 
onset, the net mean ocean warming during Heinrich Stadial 1  

(ref. 12) and the Younger Dryas32 of 3.4 ± 0.4 °C is remarkably simi-
lar to the net warming found from MIS6 to the LIG peak observed 
in our record (3.4 ± 0.5 °C). In addition, the magnitude of glacial–
interglacial change across Termination II once MOT has stabilized 
is 2.5 ± 0.5 °C, which is comparable to the magnitude of the MOT 
change across Termination I (2.6 ± 0.3 °C). Several studies that 
compare Terminations I and II posit that the larger magnitude of 
changes in Antarctic temperature27 and carbon dioxide (CO2) con-
centration (ref. 10) across Termination II are related to the delayed 
recovery of the AMOC strength. Our record suggests the same is 
true for MOT.

These observations suggest that the AMOC interruptions during 
the past two terminations transiently provided an additional ~1 °C 
of mean ocean warming above the net glacial–interglacial MOT 
change. A recent quantitative assessment of Earth’s radiative imbal-
ance over Termination I15 found positive maxima in the radiative 
imbalance during the Younger Dryas and Heinrich Stadial 1, which 
suggests that a reduced AMOC during these intervals contributed 
energy to the climate system through an increase in ocean heat 
storage. This storage and subsequent release of energy may play a 
critical role in terminations29. As shown in simulations29, when the 
AMOC is reduced, the subsurface ocean works as a ‘capacitor’, stor-
ing heat while the surface (centred on the North Atlantic) remains 
cold. Once the AMOC recovers, the subsurface heat is released, 
which enhances surface warming. Although our MOT record lacks 
the necessary resolution to conduct a similar assessment of the 
radiative imbalance across Termination II, the comparable magni-
tudes of the enhanced mean ocean warming during the weakened 
AMOC intervals over the past two terminations suggest that this 
mechanism was also important for Termination II. Along with the 
potential importance of AMOC interruptions in releasing Southern 
Ocean CO2 (refs 33,34) and in destabilizing the Northern Hemisphere 
ice sheets35,36, their role in providing additional energy to the climate 
system lends support to the hypothesis that AMOC interruptions 
are not merely incidental to terminations, but play a role in driving 
the climate out of glacial conditions18,24.

Implications for WAIS stability
The MOT changes across the LIG have direct and indirect impli-
cations for sea level. Pinning down the sources that contribute to 
the LIG global mean sea-level highstand is crucial to understand 
the vulnerability of modern ice sheets to global warming. From 
CMIP5 estimates of the expansion efficiency of heat (0.12 m YJ−1)  
(ref. 37), we found that the 1.1 ± 0.3 °C MOT anomaly during the 
early stages of the LIG contributed 0.7 ± 0.3 m to the elevated sea 
level. By ~127 ka, MOT had decreased to near-modern values with 
no appreciable thermosteric contribution to sea level. In fact, our 
record implies a trend of thermosteric sea-level lowering in the 
first several thousand years of the LIG. Coral reef records indi-
cate that the sea level was already 5.9 ± 1.7 m higher than modern 
at 128.6 ± 0.8 ka (ref. 38), which requires a substantial ice sheet (in 
addition to thermosteric) contribution early in the LIG to explain 
the magnitude of elevated sea level.

The early maximum in MOT may have played another, more 
indirect role in contributing to sea-level rise during the LIG. In 
recent Antarctic Ice Sheet simulations of the LIG39,40, ocean warm-
ing played an important role in mass loss from the WAIS. Pollard 
and Deconto39 found that if ocean warming occurred shortly after 
the glacial termination, the WAIS was more prone to lose mass 
because of enhanced reverse-sloped beds at the grounding lines. 
By invoking subshelf melting through Southern Ocean warming, 
Sutter et al.40 derived the highest rates of sea-level rise during the 
maximum Antarctic temperatures at the end of Termination II, syn-
chronous to our MOT maximum. The delay in the AMOC recov-
ery and resulting accumulation of heat in the ocean interior and 
Southern Hemisphere at the end of Termination II may, therefore, 
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have played an important role in WAIS mass loss and elevated sea 
level during the LIG.

An important caveat to consider for this hypothesis is that MOT 
is not a proxy for ocean temperatures directly under ice shelves, 
and a higher MOT does not necessarily imply that temperatures 
in vulnerable sub-ice-shelf regions were enhanced. However, MOT 
and the temperature of the circumpolar deep water are intrinsically 
linked because circumpolar deep water is made up of a representa-
tive mixture of waters from all the ocean basins41 and is brought effi-
ciently to the surface by isopycnal mixing in the Southern Ocean. 
If, as today, circumpolar deep water intruded onto the Antarctic  

continental shelf, its ice melting capacity would be enhanced during 
the early stages of the LIG.

Conclusions
The ocean heat anomaly provided from our MOT reconstruction 
is a simple but important metric to evaluate in Earth system mod-
els, which makes it useful for forthcoming simulations of the LIG. 
Comparison with other proxy and model results suggest that peak 
MOT coincided with the abrupt recovery of the AMOC at the end 
of Termination II and was a transient rather than stable feature of 
the LIG. An enhanced MOT contributed to elevated thermosteric 
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sea level during the early stages of the LIG and may have played 
a more indirect role in the sea-level highstand through amplified 
melting of ice sheets and shelves from below. The temporal evo-
lution of the AMOC and MOT over the past two terminations  
suggests that the ocean’s overturning circulation plays a dominant 
role in controlling the timing and magnitude of MOT change across 
terminations; studying the LIG in the context of the termination 
that preceded it provides a more complete view of the climate evolu-
tion that occurred over this interval.
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Methods
Taylor Glacier sampling and site description. TG is an outlet glacier of the East 
Antarctic Ice Sheet with a >80 km long ablation zone that exposes easily accessible 
old ice at the surface. Its accumulation zone is located on the northern flank of 
Taylor Dome and it terminates in Taylor Valley. Extensive work on mapping the 
stratigraphy of the glacier identified ice from the LIG located near the terminus of 
the glacier53–55.

For this study, four large-diameter ice cores were collected during the 
2014/2015 and 2015/2016 Antarctic field seasons (Supplementary Fig. 1). Two 
cores that span approximately 155–120 ka were collected approximately 4 km 
from the glacier terminus. Additionally, two cores were drilled along a previously 
established across-flow transect53 from the early Holocene (10.6 ka) and Last 
Glacial Maximum (19.9 ka) to serve as a comparison to the LIG and MIS6 MOT 
samples. Cores were drilled with the Blue Ice Drill56 and are 24.1 cm in diameter. 
Cores were processed and subdivided in the field and analysed in the lab for noble 
gases for the MOT reconstruction as well as for other atmospheric gases used to 
establish the chronology of the record.

Taylor Glacier core chronology. A major challenge in sampling a blue ice area is 
to establish the ages of the samples57. Ice from TG has travelled tens of kilometres 
from its deposition site and has probably undergone non-uniform thinning and 
folding. Although the dynamics of the glacier have been studied in detail58,59, not 
enough is known about the basal topography or subsurface ice flow to build a 
chronology for the glacier from a glaciological model.

We therefore used alternative methods to construct the chronology for 
our samples. Previous work in blue ice areas53,60–62 demonstrated success in 
establishing ice sample chronologies through value and/or inflection point 
matching of well-mixed atmospheric gases to well-dated ice-core records63. 
For this study, the chronology was constructed using a least-squares fitting 
method with measurements of CH4 concentrations, molecular oxygen isotopic 
composition (δ18Oatm) and CO2 concentrations, tied to EDC reference records28,43,64 
on AICC201217,65. This method allows for a construction of an age probability 
distribution for each noble gas sample that can be used to assess the sample age 
uncertainty (Supplementary information).

Taylor Glacier noble gas measurements. TG measurements of noble gases for 
the MOT reconstruction were made at SIO. A total of 45 ice samples from the 
2014/2015 and 2015/2016 cores were analysed, which included 8 replicate samples 
to give 37 unique MOT samples. Of the 45 samples, 3 were rejected due to sample 
age uncertainty (Supplementary information). In addition, five samples from 
the Holocene (10.6 ka) and five from the Last Glacial Maximum (19.9 ka) were 
measured (Fig. 3) at both SIO and Bern. The motivation for this analysis was 
to verify the quality of the noble gas records by comparison to published MOT 
records12, and to verify that any offsets in the EDC and TG MOT results were 
unrelated to lab offsets (Supplementary information).

The analytical methods for the noble gas measurements are described in 
detail by Bereiter et al.66. In short, ~800 g of ice were melted under vacuum and 
the liberated gases (~80 ml at standard temperature and pressure (STP)) were 
cryogenically trapped in stainless-steel dip tubes. After gas extraction, the samples 
were split into two aliquots. The larger aliquot (~78 ml STP) was exposed to a  
Zr/Al alloy at 900 °C to remove all the non-noble gases and measured on a 
Thermo-Finnigan MAT-253 isotope ratio mass spectrometer via a dual inlet 
method for 40Ar/38Ar (δ40/38Ar), 40Ar/36Ar (δ40/36Ar), 86Kr/84Kr (δ86/84Kr), 86Kr/83Kr 
(δ86/83Kr), 86Kr/82Kr (δ86/82Kr), 84Kr/40Ar (δKr/Ar) and 132Xe/40Ar (δXe/Ar). The 
smaller aliquot (~2 ml STP) was passed through a cryotrap (−196 °C) to remove 
CO2 and measured on a Thermo-Finnigan MAT Delta V isotope ratio mass 
spectrometer via a dual inlet method for 29N2/28N2 (δ15N), 34O2/32O2 (δ18O), 32O2/28N2 
(δO2/N2) and 40Ar/28N2 (δAr/N2). Measurements were corrected for pressure 
imbalance and chemical slope according to established procedures67.

All data are reported in delta notation relative to a modern atmosphere 
standard. As argon is preferentially lost relative to xenon and krypton during ice 
bubble formation68, we mathematically combine δXe/Ar, δKr/Ar and δAr/N2 to 
obtain δKr/N2, δXe/N2 and δXe/Kr.

Taylor Glacier fractionation corrections. To reconstruct ocean temperatures 
from Kr/N2, Xe/N2 and Xe/Kr, it is necessary to correct for fractionation during 
firnification, the process by which fresh snow compacts, transitioning to denser 
firn and eventually to glacial ice containing air trapped in bubbles. Although the 
free troposphere is well-mixed through convective processes, the low permeability 
of the firn restricts bulk flow; gases within the firn column are transported 
primarily via molecular diffusion69. This allows gravitational settling and thermal 
diffusion to alter the firn air from its atmospheric composition before it is occluded 
in glacial ice70,71. As such, Kr/N2, Xe/N2 and Xe/Kr must be corrected for the 
fractionating processes to derive the palaeoatmospheric composition for  
inferring MOT.

As suggested by Bereiter et al.12, under- or overcorrection of the fractionation 
may lead to systematic offsets in MOT, but the effect primarily impacts the 
absolute MOT anomaly (relative to modern) and has little impact on the relative 
MOT change within a record. We investigated the influence of the choice in the 

methods of fractionation correction on the MOT record and found that different 
methods shifted the absolute MOT record up or down but had little effect on the 
relative MOT change in the TG record (Supplementary information). We thus 
computed the MOT anomalies relative to the TG Holocene (10.6 ka) samples, and 
then estimated the Holocene–modern MOT difference (and uncertainties) from 
the WAIS Divide MOT record and model simulations of ocean heat content over 
the past 2,000 yr (ref. 16). A detailed description and assessment of the fractionation 
corrections is included in the Supplementary information.

EDC ice-core noble gas analysis. Four EDC ice-core samples from the LIG and 
four from MIS6 were analysed at the University of Bern and included in this 
study. The measurement and data processing for these samples are similar to the 
analysis of TG samples with a few important distinctions (Baggenstos et al.15 and 
Supplementary information). Chronological uncertainties were not considered 
in this analysis, because the TG chronology is tied to that of EDC through ice-
core synchronization and contribute minimally to the total uncertainty for these 
samples. In addition, the approach to firn fractionation corrections differs slightly 
between TG and EDC (Supplementary Section 4).

Derivation of MOT from noble gas data. To reconstruct the MOT values from 
fractionation-corrected Kr/N2, Xe/N2 and Xe/Kr, we used the ocean–atmosphere 
box model of Bereiter et al.12 with several modifications. We made no assumptions 
about the glacial–interglacial change in the ocean saturation state and used current 
estimates of krypton and xenon undersaturation72 in the box model for the entirety 
of the record. We also did not invoke the glacial–interglacial changes in the relative 
water mass distributions that were applied in Bereiter et al.12 and used the modern 
distributions of Antarctic Bottom Water and North Atlantic Deep Water to derive 
MOT over the full record.

We accounted for the effects of changes in ocean salinity, volume and 
atmospheric pressure on the oceanic inventories of krypton, xenon and nitrogen 
using the sea-level record of Toggweiler et al.34 corrected for isostatic effects 
(Supplementary information). We also included the influence of a large ice shelf 
over the Arctic during MIS6, which holds the equivalent of 15 m of sea level, 
affecting ocean salinity and volume, but not sea level73.

To assess uncertainty in our MOT record, we ran 10,000 Monte Carlo 
simulations of our reconstruction with all the known analytical and dating 
uncertainties in the MOT and sea-level records, as well as the uncertainty in the 
Holocene-to-modern MOT change. We included uncertainties in the measured 
Kr/N2, Xe/N2 and Xe/Kr and the isotope data used to correct for firn processes 
in our simulations, as well as the method used for fractionation corrections 
(Supplementary Section 4). To account for age uncertainties in the MOT record, we 
used an inverse transform method74 to randomly sample from our age probability 
distribution to use in our Monte Carlo simulations. For our final uncertainty 
estimate, we used the average of the three MOT records (and the Monte Carlo 
simulations) from Kr/N2, Xe/N2 and Xe/Kr to minimize the influence of analytical 
noise from any single measurement.

The 1σ confidence envelope shown in Figs. 2 and 3 was constructed using the 
MATLAB cubic smoothing spline function (csaps) with a 2,500 yr cutoff period on 
the 10,000 Monte Carlo MOT reconstructions. Each reconstruction was resampled 
using a bootstrapping method before the spline was produced. The 1σ confidence 
envelope was then calculated from the distribution of the Monte Carlo splines at 
each time interval in the record.

Data availability
The presented data are available online at www.usap-dc.org/view/dataset/601218.
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