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Abstract 

We introduce a systematic approach for analyzing the energy consumption of four control policies (i.e.,               
zone level daily optimal control, zone level annual optimal control, building level daily optimal control,               
building level annual optimal control), which differed based on their temporal and spatial control scales.               
In order to integrate occupant thermal comfort requirements, we defined uniformly distributed random             
constraint functions on the setpoints. We used the DOE reference small office building in three U.S.                
climate zones for simulating the performances of control policies, using EnergyPlus. Among the four              
control policies, the building level annual control policy showed close to the highest energy efficiency               
(27.76% to 50.91% (average of 39.81%) savings depending on the climate) with comparatively small              
training data requirements. In addition, the building level daily optimal setpoint selection, subject to              
thermal comfort constraints, leads to 17.64 – 38.37% (average of 26.61%) energy savings depending on               
the climate. We also demonstrate that temporal scale of the policies have a statistically significant impact                
on the small office building’s energy consumption while spatial scale’s impact is insignificant. 

 

Keywords: HVAC system; setpoint control; building energy optimization; spatiotemporal scale; occupant           
comfort; optimal control 

1. Introduction 
Commercial and residential buildings account for approximately 30% of the total energy consumption             

in the world and contribute substantially to the climate change, i.e., 30% of the global greenhouse gas                 
emissions [1]. This share is larger (about 40% of the total energy consumption [2] in the developed                 
countries. The growth in the population, the increasing demand for better building services and improved               
comfort, in addition to the rise in the time spent in buildings, result in an ever increasing building energy                   
consumption [3]. HVAC systems, which are responsible for providing comfortable thermal conditions            
and acceptable air quality in buildings, account for the largest share in energy usage and gas emissions                 
(about 50% of the consumption in the developed countries [3] 

Majority of the HVAC system controllers work with a negative feedback control loop based on               
indoor air temperature [4, 5]. In this control logic, the error between a target state (i.e., a temperature                  
setpoint) and the feedback (i.e., a thermostat reading) should not exceed a threshold (i.e., deadband).               
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HVAC systems often use fixed control parameters in compliance with the standards (e.g., ASHRAE              
Standard 55 [6], ASHRAE Standard 62.1 [7]), which assume thermal comfort is static over time.               
However, it has been shown that dynamic environmental variables (e.g., outside temperature [8]) and              
user related variables (e.g., physical acclimation [9]) influence thermal comfort, making it dynamic over              
time [10-13]. For example, occupants prefer higher setpoints in the summer compared to the winter [11],                
and buildings also consume less energy at higher setpoints in the summer compared to the winter.                
Therefore, smart selection of higher setpoints in the summer and lower setpoints in the winter provide an                 
opportunity to not only conserve energy, but also improve thermal comfort. However, it is important to                
note that the highest or lowest setpoints are not always the most energy efficient setpoints [14, 15].  

In a previous study, we demonstrated that a control policy that selects optimal setpoints on a daily                 
basis with a fixed spatial scale (i.e., one setpoint for the entire building) considerably reduces the energy                 
consumption compared to a control policy that selects an optimal setpoint on an annual scale [14]. The                 
savings ranged from 6.78 to 37.03% depending on the climate and building size with an average of                 
16.4%. However, consideration of the impact of other factors on HVAC performance, such as the               
internal heat exchange between the zones, might provide opportunities to optimally select zone level              
optimal control parameters to improve the energy efficiency at the building level. Therefore, a control               
policy that optimizes the HVAC performance on a daily basis at the zone level could potentially improve                 
the overall building energy efficiency. In addition, imposing thermal comfort constraints on the selection              
of the optimal control parameter selection impacts the effectiveness of the control policies. Understanding              
the impacts of spatial (i.e., building level and zone level) and temporal (i.e., annual and daily) scales of                  
the controllers on the overall HVAC system energy consumption under thermal comfort constraints is the               
primary gap explored in this paper.  

Thus, we introduce a systematic approach for analyzing four control policies, which differ based on               
their temporal and spatial scales: (1) building level annual optimal control policy, (2) zone level annual                
optimal control policy, (3) building level daily optimal control policy (introduced and validated in a               
previous study [14]), and (4) zone level daily optimal control policy. The first and the third control                 
policies assign optimal control parameters at the building level, while the second and fourth operate at the                 
zone level. Therefore, the focus of this study is to compare optimization of a single value for a cluster of                    
setpoints with multiple values for setpoints. The first and second control policies select optimal              
parameters on an annual basis, while the third and fourth policies select optimal parameters on a daily                 
basis. In order to represent the impact of personal comfort on these control policies, we used a uniformly                  
distributed noise generating function to simulate occupants comfort and constraint the optimal control             
parameters and compared the energy consumption of these control policies with each other. We used the                
small size office building reference simulation model developed by the Department of Energy (DOE) [16]               
for comparing the four control policies in three United States climate zones. 

The paper is organized as follows. A review of the recent studies on optimal controllers and control                 
policies for comfort driven HVAC operations is presented in Section 2. We explain the design and                
implementation of the four control policies, discretization of the simulation factors, and data analysis in               
Section 3. We present the energy simulation models and procedures in Section 4. Section 5 provides the                 
results of the comparison of the four control policies. Limitations on the generalization of the findings and                 
future steps of the research are presented in Section 6. Finally, Section 7 provides a summary of the                  
results and conclusions of the paper. 
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2. Literature review 

An HVAC thermal zone level controller operates based on two control parameters defined as a               
setpoint (target value) and deadband (performance relaxation range around the setpoint). The higher value              
on the deadband is referred to as the cooling setpoint and the lower value on the deadband is referred to as                     
the heating setpoint. Extending both heating and cooling setpoints increases the deadband. Since it is well                
known that maximizing the deadband always results in energy efficiency because it increases the              
no-operation margin around the setpoint, this paper focuses on the smart selection of setpoints rather than                
the impact of increasing the deadband.  

Control policies for optimizing HVAC setpoints can be divided into two categories: (1) control              
policies that are complementary to the existing HVAC control logic and that influence the performance of                
HVAC systems by solely adjusting the indoor air temperature setpoints [14, 17, 18], and (2) operational                
policies that intervene existing HVAC control logics (e.g., order, condition, and loop) and that require the                
dynamic control of local subsystems [19]. In this paper, we focus on the techniques in the first category                  
due to the fact that these techniques could be easily generalized, they work for any type of HVAC system                   
and do not require a model of an HVAC system (making them model free). However, optimizing the                 
operation of HVAC systems solely for setpoints might result in thermally uncomfortable conditions for              
building occupants. For example, an occupant might prefer a cool environment while the optimal control               
parameters result in a much warmer thermal environment than the desired level. Therefore, we also               
narrowed down our review to the techniques that allow for integration of dynamic personal thermal               
comfort requirements into HVAC control loop.  

Researchers have proposed various personalized and real-time comfort sensing approaches, which can            
potentially be used in existing buildings. A model predictive control (MPC) optimization environment,             
introduced in [20], couples the environment to a building automation system, allowing real-time             
optimization, considering operator overrides and updated weather forecasts to predict optimal building            
control strategies. Through determining hourly HVAC cooling setpoints and supply water temperature for             
minimizing the daily energy cost, 5 to 54% energy savings and improvement in occupants’ comfort were                
achieved. The setpoints were fixed across the building systems and only varied over time (i.e., temporal                
scale). Authors of [17] developed a multi-objective genetic algorithm for optimizing a building's             
mechanical systems performance. The optimization algorithm operates complementary to a building's           
central control system. The optimization process strives to maximize energy efficiency and thermal             
comfort by searching the supervisory control strategy setpoints, such as supply air temperature, supply              
duct static pressure, chilled water supply temperature, minimum outdoor ventilation, reheat (or zone             
supply air temperature). HVAC system steady-state models, developed and validated against the            
monitored data of the existing VAV system, were used for energy use and thermal comfort calculations.                
Comparing actual and optimal energy use, the authors demonstrated that the proposed control strategy              
could save energy by 16% for two summer months while satisfying minimum zone airflow rates and zone                 
thermal comfort. It was then concluded that the proposed control strategy with required constraints could               
improve the operating performance of the existing HVAC system. Similar to the previous study, the               
setpoints were uniform across building for each subsystem and it solely varied over time (i.e., temporal                
scale). A methodology for optimizing building supervisory control in simulation has been introduced in              
[21]. Their stochastic model predictive control (SMPC) architecture is capable of incorporating different             
levels of variability in building performance due to occupant behavior and provided control setpoints              
which lead to more conservative building performance. A set of time windows enabled the use of                
complex building models in energy simulations. The case study results showed that stochastic             
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optimization led to a more conservative and more reliable 33% performance improvement compared to              
the 50% performance improvement of deterministic optimization. Similar to two previous studies, the             
setpoints were uniform across the building for each subsystem and it solely varied over time (i.e.,                
temporal scale). Authors in [22], applied computational intelligence algorithms to solve the            
non-parametric model for minimization of HVAC energy consumption and room temperature ramp rate             
Through real-world implementation of the methods, their results indicated that particle swarm            
optimization and harmony search algorithms are suitable for solving the proposed optimization model.             
The computational results demonstrated that energy savings could be achieved by optimizing the settings              
for the supply air static pressure set point and discharged air temperature set point on a temporal scale.                  
Authors in [23] applied a novel control method using multi-dimensional interpolation between optimized             
control configurations for various steady-state load distributions on a system with arbitrary steady-state             
and transient load distributions. Applying the method on a two-room HVAC system predicts power              
savings for an arbitrary steady load that is nearly equivalent to that using a Variable-Air-Volume air                
condition system with chiller modulation. However, the new method provides 19% energy savings over              
an uncontrolled system compared to energy savings of 6% for a VAV with chiller modulation for                
arbitrary transient loads. This method applied the control strategy mainly on a spatial scale and did not                 
consider the implications of temporal scale. 

Although extensive research has been conducted to improve HVAC system energy efficiency through             
customizing the control of setpoints based on comfort requirements, all of the above mentioned studies               
have focused either on the temporal control scale or on the spatial control scale-- not on both temporal                  
and spatial control scales simultaneously [24]. Understanding the impacts of both temporal and spatial              
scales in an integrated control policy would shed light on the type of overall architecture of control                 
policies that provide higher efficiencies as it helps clarifying the trade-off between a controller              
complexity in terms of control nodes on a spatial scale and commands per unit time on a temporal scale.                   
Optimizing the energy efficiency of HVAC systems, by finding the optimal control parameters, could be               
studied via hourly, daily, seasonal, or annual (i.e., temporal scale) or at the zone level and at the building                   
level (i.e., spatial scale). In this paper, we focused two extreme temporal scales (i.e., daily and annual) and                  
assessed the energy implications of spatiotemporal scales of an optimal HVAC control policy briefly              
described in an earlier effort [14] under dynamic factors, such as weather variations and the simulated                
occupants thermal comfort constraints.  

3. Methodology 
To address the above mentioned gap, we first define the control policies based on temporal and                

spatial control scales. For the temporal scale, we selected two levels for the comparison: annual scale and                 
daily scale. In the annual scale, the setpoint that minimizes the energy consumption for the entire year is                  
selected. In the daily scale, the setpoints, which minimize the energy consumption on a daily basis, are                 
selected and may vary over time due to the impact of dynamic factors. For the spatial scale, we selected                   
two levels for the comparison: building level and zone level. At the building level, a single setpoint that                  
minimizes the energy consumption for the entire building is selected, while at the zone level, a vector of                  
zone setpoints that minimizes the total building energy consumption is selected. Consequently, four             
control policies are formulated as: (1) building level annual optimal control policy, (2) zone level annual                
optimal control policy, (3) building level daily optimal control policy, and (4) zone level daily optimal                
control policy. We followed a systematic approach for quantifying the energy consumption of these              
control policies. We then compared these control policies to a baseline control policy where the setpoint                
and the deadband are fixed to 22.5 °C and 3K, respectively, for the entire year during the on-hour mode                   
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for all of the zones in a building. Accordingly, for the baseline control policy, the heating and cooling                  
setpoints were established as 21 °C and 24 °C, respectively. These control parameters are also the default                 
values on the reference building models provided by the DOE.  

As previously mentioned, the previous research has shown extending the deadband would in all cases               
reduce the energy consumption as it relaxes the system operations [14, 25]. Consequently, we only study                
the zone level air temperature setpoints as the control parameters to find the optimal settings. Since                
setpoint is a continuous variable, we need to first discretize it. Although the granularity of the setpoint as                  
a variable improves the control performance and savings, it also increases the computational costs. For               
our investigations, we selected 1 °C as the granularity for the setpoints. The setpoints space range was                 
selected as 19.5 to 25.5 °C. These setpoints span a wider range than the ranges studied in existing studies                   
[26, 27].  

We specifically focus on the office buildings due to the fact that office buildings have the largest                 
share of commercial building stock in the United States both in terms of number (18%) and the floor                  
space (18%) [28]. In addition, office buildings accommodate 38% of total occupants in commercial              
buildings [28]. The small office buildings, provided by the DOE as one type of reference buildings, has                 
five zones. Therefore, we have 7 (number of setpoints)^5(number of zones) (i.e., 16,807) cases of               
zones/setpoints combinations for a small size office building. In order to reduce the number of               
simulations to be carried out we narrowed down the climates from 16 to 3 (i.e., a hot climate (Miami,                   
Florida (1A)), a mild climate (Chicago, Illinois (5A)), and a cold climate (Fairbanks, Alaska (8)). We                
focused on the buildings that were built after 2004, as they are in compliance with the new building                  
control standards, which allow for the technology for autonomous zone level setpoints selection to be               
implemented. In other words, the control policies, studied in this paper, require building management              
systems to allow for dynamic assignment of temperature setpoints. The reference building model was              
assigned with different schedules, based on weekdays (HVAC system operations from 6:00 AM to 10:00               
PM), Saturdays (HVAC system operations from 9:00 AM to 5:00 PM), and Sundays and holidays               
(HVAC system is off the entire day). Due to the influence of occupancy on the system performance [29],                  
we only used the weekdays in this analysis. 

Simulation duration also plays an important role on validity and generalizability of the results. The               
DOE has provided a 1 year simulation period built in their simulation models. However, simulation               
models can be used for a shorter duration (e.g., daily, monthly, and seasonal) depending on the desired                 
functionalities, which are determined based on the building stakeholder priorities. Since we are interested              
in the whole building energy consumption comparison, one-year duration was assigned on the simulation              
models for all conditions to eliminate the bias to a hot season or cold season. We run the energy                   
simulations via MATLAB programming language for all combinations of factors. We located the factors              
in the building energy simulation model file (.idf file) and replaced them with the target values for each                  
combination. The simulation outputs included energy consumption, internal and external variables for the             
entire simulation period on an hourly basis. We excluded the first 28 days of the simulations due to the                   
effects of warm-up days [30], which is the period EnergyPlus uses to tune and calibrate the internal model                  
parameters.  

The next step after running the simulations and storing the results is the comparison of the energy                 
usage for the four mentioned policies to the baseline. Simulations provide daily energy consumption as a                
function of the setpoint. In each control policy, the setpoints that minimize the energy consumption based                
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on the objective function (Table 1), were selected and the associated value of the objective functions were                 
stored in a database. 

 

 

 

 

Table 1.​ Optimal setpoint calculation for control policies  

Control Policy Spatial Temporal Optimal setpoint calculation 

1 Building level Annual (sp) ∑
n

i=1
Ei  

2 Zone level Annual (sp) ∑
n

i=1
Ei  

3 Building level Daily (sp) ∑
n

i=1
Ei  

4 Zone level Daily (sp) ∑
n

i=1
Ei  

 

Where, is energy consumption of building for day i and it is either a function of a scalar setpoint ( Ei                    
) for building level control policies or vector setpoint ( ) for zone level control policies. n is theps          ps          

number of days. In all of the control policies, the optimal setpoints were calculated through an exhaustive                 
search of the setpoint-building energy space, which was derived via extensive simulations. 

As mentioned before, it is necessary to explore the sensitivity of these four policies to comfort                
requirements. Here, we construct our constraint-generating method based on two facts: (1) humans adapt              
to weather variations over seasons and consequently they prefer higher setpoints in the summer compared               
to the winter [11], and (2) buildings also consume less energy at higher setpoints in the summer compared                  
to the winter [27]. These facts suggest that we can model potential comfort preferences using a deviation                 
from the optimal setpoints of the building. In other words, if the optimal setpoint for a certain day in the                    
summer is high (a value in the acceptable range is defined), the occupants thermal comfort can be                 
modeled as a deviation from that optimal setpoint. We define a uniformly distributed distribution as a                
deviation level (​σ​) for representing the amount of deviation of occupant preferences from the optimal               
setpoints. Accordingly, we studied the impact of varying ​σ for 0, 1, 2, 3, and 4 °C. 0 °C represents no                     
integration of personal comfort requirements into the control loop. 4 °C is the highest value and since it is                   
symmetrical around the setpoint, it covers a range of 8 °C. We chose to limit our investigations to 4 °C as                     
occupants are less likely to perceive comfort beyond 8 °C range around the setpoint. The constraint                
function follows a uniformly distributed probability distribution function. This distribution is           
conservative, as it assigns similar probabilities to any deviation values. In order to calculate the energy                
consequences of enforced constraints, we used the optimal setpoints (Table 1) and applied the constraints               
in terms of uniformly distributed deviations from the optimal setpoints. Table 2 demonstrates the              
formulation of the energy metrics for the comparison of the control policies. Since the comfort constraints                
are at the zone level, we used the same optimal setpoint in the case of control policies 1 and 3 for all of                       
the zones. Consequently, we applied the zone level comfort constraints for all of the control policies.  
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Table 2.​ Energy metrics for the comparison of the control policies 

Control Policy Spatial Temporal Energy Metric 

1 Building level Annual (sp )∑
n

i=1
Ei

opt + σ  

2 Zone level Annual (sp )∑
n

i=1
Ei

opt + σ  

3 Building level Daily (sp )∑
n

i=1
Ei i

opt + σ  

4 Zone level Daily (sp )∑
n

i=1
Ei i

opt + σ  

 

Next, we studied the impacts of four potentially influential factors (i.e., control policy spatial scale,               
control policy temporal scale, thermal comfort constraints, and the climate) on the annual energy              
consumption. Control policy spatial scale is a categorical variable with two states (i.e., building level and                
zone level). Control policy temporal scale is also a categorical variable with two states (i.e., annual and                 
daily). Thermal comfort constraints can be modeled as an integer variable holding five states associated               
with different values of ​σ​: 0, 1, 2, 3, and 4 °C. Climate is a categorical variable holding 3 states (i.e.,                     
Miami, Chicago, and Fairbanks). We used an n-way analysis of variance (ANOVA) to statistically              
quantify and compare the impacts of the factors. The p-value from an ANOVA analysis varies between 0                 
and 1 and tests the null hypothesis that the data from all the factors (variables dimension) have a                  
statistically significant impact on the energy consumption. The F-values (ratio of the mean squares of the                
factors) and the degrees of freedom from the ANOVA analysis are used to calculate the P values. The                  
larger the F value, the higher probability that the variation among factor means could not have happened                 
by chance, and consequently the greater the importance of the factor on the energy consumption. Standard                
deviations of energy consumption based on the factors and percentages of deviation with respect to the                
average energy consumption were calculated to better understand the impact of the factors. The larger the                
deviation, the higher the impact of the factor have on the energy consumption. 

4. Simulation models 
The small office building is a single floor building with five thermal zones. The temperature in each                 

zone is controlled by a thermostat. The total floor area of the building is 511 m​2 with an aspect ratio of 1.5                      
and the floor-to-floor height is 3.05 m. The windows glazing fraction ratio is 0.21. The roof of the                  
building is completely insulated above the deck and the roof insulation and 1.6cm gypsum board made                
up the attic roof with wood joist. While steel frame was used for the wall construction, exterior walls have                   
wood-frame with 2.5cm stucco and 1.6cm gypsum board. The wall insulation is 1.6cm gypsum board.               
The cooling equipment is Packaged Air Conditioning Unit and a furnace was the heating equipment in                
the building. The building’s air Distribution equipment is Single-Zone Constant Air Volume (SZ CAV).              
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The occupancy density used in the simulation model is 18.6 m​2​/person [16]. Figure 1 shows the small                 
office building model used in this study. 

 

 

Fig 1.​ Small office building simulation model 

 

The cities studied are Miami, FL, Chicago, IL, and Fairbanks, AL, representing 1A, 5A and 8 climate                 
zones, respectively. The cities are the most populated cities in each climate zone presented in Figure 2.                 
Climate 1A represents the hottest, and climate 8 represents the coldest. We chose climate 5A Chicago                
because the climate experience both cold and hot conditions during a year.  

 

Fig 2.​ Climate zone classification ([31]) 
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The outputs of the simulations were stored in a CSV file. The data were then processed to calculate                  

the energy consumption over a single day and a year via summing the hourly energy consumptions. The                 
stored internal and external variables included the simulation settings (e.g., setpoint, city, and occupancy              
schedule) and outside temperature associated with daily simulation results.  

5. Results  
For the optimal control policy 1 (building level annual), we present the annual optimal setpoints in                

each climate and the annual energy savings compared to the baseline in Table 3. For the optimal control                  
policy 2 (zone level annual), the setpoints for different zones were allowed to vary, but they were fixed                  
for the entire year. The vector of the optimal setpoints and the associated annual energy savings for                 
control policy 2 are also shown in Table 3. In the optimal control policy 3 (building level daily), the                   
setpoints were selected at the building level (one setpoint for all zones), but they varied on a daily basis.                   
Figure 3 shows the setpoint variations over time based on the control policy 3 for all three climates. In the                    
optimal control policy 4 (zone level daily), the setpoints for different zones were allowed to vary (each                 
zone had their own setpoint) and they also varied on a daily basis. In addition, the energy consumption of                   
all control policies were compared to the baseline control policy (i.e., setpoint of 22.5 °C) in order to                  
understand how temporal and spatial control policy scales impact the energy consumption (Table 3).  

Table 3. ​Setpoint selections and energy savings compared to the baseline policy 

  Miami, 
Florida (1A) 

Chicago, 
Illinois (5A) 

Fairbanks, 
Alaska (8) 

Baseline policy Setpoint (°C) 22.5 22.5 22.5 

Control policy 1 

(building level annual) 

Optimal setpoint 
(°C) 25.5 21.5 19.5 

Savings (%) 50.67 1.56 19.81 

Control policy 2 

(zone level annual) 

Optimal setpoints 
(°C) 

[25.5 25.5 25.5 
25.5 25.5] 

[22.5 21.5 22.5 
21.5 21.5] 

[19.5 19.5 19.5 
19.5 19.5] 

Savings (%) 50.67 1.84 19.81 

Control policy 3 

(building level daily) 
Savings (%) 50.83 40.06 27.63 

Control policy 4 

(zone level daily) 
Savings (%) 50.91 40.76 27.76 

 

 ​Journal of Building Engineering​, September 2018, Volume 19​                      ​9                     ​https://doi.org/10.1016/j.jobe.2018.06.012 
https://escholarship.org/uc/item/8wq4s5wm  

 

https://doi.org/10.1016/j.jobe.2018.06.012
https://escholarship.org/uc/item/8wq4s5wm


 

   

a) Miami, Florida (1A) b) Chicago, Illinois (5A) c) Fairbanks, Alaska (8) 

Fig 3.​ Optimal building level setpoints based on control policy 3 

 

As it can be seen in Table 3, for the climate zone 1A (the hottest climate) for control policy 1, the                     
highest setpoint (25.5°C) in the searched setpoint space, was selected for the entire year. Similarly, the set                 
of highest zone setpoints was selected in control policy 2. As it can be seen in Figure 3a, the daily optimal                     
setpoints in control policy 3 did not vary considerably (standard deviation of 0.17 °C) over the year for                  
the climate zone 1A due to the fact that the outside thermal environment in this climate consistently                 
results in a heat gain. Consequently, the energy consumption of the control policies 1 and 2, in zone 1A,                   
were only slightly (~ 0.2%) worse than the control policies 3 and 4, but was considerably (50.67%) better                  
than the baseline (Table 3).  

In the climate zone 5A for control policy 1, 21.5 °C was selected as the optimal setpoint for the entire                    
year. The set of optimal zone setpoints were around 21.5 and 22.5 °C with minor deviations in control                  
policy 2 (Table 3). As it can be seen in Figure 3b, the daily optimal setpoints in control policy 3 varied                     
considerably over the year due to the fact that outside thermal environment results in heat gain for cases                  
of positive temperature gradient of indoor versus outdoor and heat loss in cases of negative temperature                
gradient of indoor versus outdoor. Consequently, the energy consumption of control policy 1 was              
considerably (around 40%) worse than the control policies 3 and 4, and was only slightly (1.56 %) better                  
than the baseline. This finding points to the fact that the selection of optimal daily setpoints (zone level or                   
building level) in climates that experience both cold and hot conditions during a year brings about                
substantial savings.  

In the climate zone 8 (the coldest climate) for control policy 1, the lowest setpoint 19.5 °C was                  
selected as the optimal setpoint for the entire year in the control policy 1. In this climate zone, the set of                     
optimal zone setpoints was also 19.5 °C in the control policy 2. As it can be seen in Figure 3c, the daily                      
optimal setpoints in control policy 3 slightly varied over the year (standard deviation of 1.80 °C) due to                  
the fact that outside thermal environment resulted in a heat loss for majority of cases where a positive                  
temperature gradient of indoor versus outdoor existed. Consequently, the energy consumption of control             
policies 1 and 2 were (~7.8%) worse than control policies 3 and 4, and were considerably (19.81%) better                  
than the baseline.  

An interesting finding is, in none of the climate zones, control policies 3 and 4 did not have                  
considerable differences in terms of energy efficiency (maximum of 0.7% for climate 5A). Considering              
the fact that the highest or lowest setpoints are most often the optimal daily setpoints in very hot or cold                    
climates, respectively, daily selection of optimal setpoints in extreme climates did not considerably             
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improve the energy efficiency. On the other hand, the daily selection of the optimal setpoints for milder                 
climate considerably improved the energy efficiency, demonstrating the fact that the highest and lowest              
setpoints are not often the optimal setpoints in milder climates. The savings come from lowering the heat                 
transfer between the building’s interior and the outdoor environment as an HVAC controller strives to               
minimize the error between the temperature measurements and setpoints. Another interesting observation            
is that the zone based selection of the optimal setpoints only slightly reduced the energy consumption in                 
both annual and daily optimal control policies. A reason contributing to this finding could be the fact that                  
the size of the building was small and therefore it was impacted by outdoor environment conditions rather                 
than heat exchange between the zones. To the best of our knowledge, this is the first time a trade-off                   
analysis for spatial (i.e., zone based) optimization has been quantitatively studied according to the DOE               
reference energy simulation models. The daily energy consumption for all control policies are             
demonstrated in Figure 4 for three climates.  

Miami, Florida (1A) Chicago, Illinois (5A) Fairbanks, Alaska (8) 

Fig 4.​ Daily energy consumption based on different control policies 

Table 4 shows the energy savings for each control policy with different levels of thermal comfort                
enforcements (σ), as explained in Section 3. Thermal comfort requirements might result in deviations of               
zone setpoints from the optimal setpoints. Consequently, we quantified the sensitivity of the control              
policies when thermal comfort requirements were enforced. In addition, the energy consumption for each              
case was compared to the baseline control policy, which did not integrate any comfort requirements. 

Table 4.​ Energy savings of the control policies with different levels of thermal comfort requirements  

  Energy savings compared to the baseline (%) 

 σ 
(​°C) 

Miami, 
Florida (1A) 

Chicago, 
Illinois (5A) 

Fairbanks, 
Alaska (8) Average 

Control policy 1 

(building level 
annual) 

0 50.67 1.56 19.81 24.01 

1 46.95 -0.56 18.77 21.72 

2 42.95 -5.91 17.21 18.08 

3 38.48 -10.52 15.15 14.37 

4 33.62 -16.12 12.31 9.94 

Control policy 2 0 50.67 1.84 19.81 24.11 
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(zone level 

annual) 
1 46.95 -0.16 18.77 21.85 

2 42.95 -5.17 17.21 18.33 

3 38.48 -11.05 15.15 14.19 

4 33.62 -16.53 12.31 9.73 

Control policy 3 

(building level 
daily) 

0 50.83 40.06 27.63 39.51 

1 46.98 36.48 24.89 36.12 

2 42.88 30.63 21.34 31.62 

3 38.37 23.82 17.64 26.61 

4 33.48 16.31 13.42 21.07 

Control policy 4 

(zone level daily) 

0 50.91 40.76 27.76 39.81 

1 47.06 36.92 24.95 36.31 

2 42.94 30.87 21.41 31.74 

3 38.42 23.97 17.72 26.7 

4 33.5 16.42 13.53 21.15 

 

As it can be seen in Table 4, the energy savings for all control policies reduce with the increase in ​σ                     
representing the applied comfort constraints. The reduction in the savings follow a non-linear relation              
with a monotonically increasing gradient based on the ​σ​. This points out the fact that the impact of the                   
variations in the optimal setpoints results in higher inefficiencies due to the imbalanced heat exchange               
between the zones. In addition, we can observe that annual control policies for milder climates result in                 
negative savings under occupants thermal comfort constraints. This also demonstrates that solely            
optimizing the setpoints for thermal comfort when the controller does not have a temporal scale for                
setpoint selection results in energy inefficiency. However, controllers with a temporal scale, such as daily               
setpoint selection in our case, could meet occupants comfort requirements while still saving energy – an                
important observation.  

 In average, the increase rates in the energy consumption for control policy 1 were 2.29% for the ​σ                  
=1 ​°C (24.01 - 21.72), 5.93 % for the ​σ =2 ​°C, 9.64% for the ​σ =3 ​°C, and 14.08% for the ​σ =4 ​°C.                         
Somewhat similar variations were observed for the control policy 2: 2.29 % for the ​σ =1 ​°C, 5.78% for                   
the ​σ =2 ​°C, 9.91% for the ​σ =3 ​°C, and 14.38% for the ​σ =4 ​°C. It is interesting to point that for                        
smaller values of comfort constraints (σ), the savings for control policy 2 for the milder climate was                 
larger, but it was below control policy 1 for σ greater than 2 °C. A larger increase was observed for                    
control policy 3 as 3.39 % for the ​σ =1 ​°C, 7.89 % for the ​σ =2 ​°C, 12.90. % for the ​σ =3 ​°C, and                          
18.44 % for the ​σ =4 ​°C. A similar behavior to control policy 2 was observed for control policy 4. 3.5 %                      
decrease in savings for the ​σ =1 ​°C, 8.07 % for the ​σ =2 ​°C, 13.11 % for the ​σ =3 ​°C, and 18.66 % for                          
the ​σ =4 ​°C were observed as depicted in Table 4. 

In this study, the setpoints space range was selected as 19.5 to 25.5 °C, which represents a variation                  
of 3 °C around the baseline setpoint and resulted in energy savings ranged between 27.76 – 50.91%                 
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(average of 39.81%). It is important to note that when σ was 3 °C, the energy usage only increased by                    
9.64 – 13.11% in all of the control policies. It demonstrates that a control strategy utilizing a temporal                  
scale for selecting temperature setpoints subjected to a uniformly distributed comfort constraints would             
results in a considerable energy saving.  

We also studied the impacts of the control policies at the spatial and temporal scales, under the                 
thermal comfort constraints, and based on the climate for the annual energy consumption. In Table 5, we                 
present the F and ​p values of the ANOVA analysis. The factors are sorted based on the level of influence                    
on the target variable (i.e., energy consumption). 

 

 

 

 

Table 5.​ Results of ANOVA analysis for the potentially influential factors 

Potential Influential Factors States F-value p​-value 

Climate 1A, 5A, 8 921.78 9.26e-41 

Control policy temporal scale Annual, Daily 38.83 8.88e-08 

Thermal comfort constraints (σ) 0 °C, 1 °C, 2 °C, 3 °C, 4 °C 10.75 2.15e-06 

Control policy spatial scale Building level,  Zone level 0.05 0.82 

 

The climate has the largest and statistically significant (p-value below 0.05) impact on the energy               
consumption with an F-value of 921.78. Meaning, different choices of control policies can be selected               
depending on the climate. For example, the annual setpoint selection would result in considerable energy               
efficiency in extreme climates (i.e., very hot or cold climates) throughout the year; the highest setpoints in                 
the hot climates and the lowest setpoint in the cold climates. However, in climates where the temperature                 
gradient between the building interior and outdoor environment changes its direction throughout the year              
(i.e., milder climates), more granular temporal scale of control policy would result in higher energy               
efficiency. Climate was followed by the statistically significant factors of temporal scale and thermal              
comfort constraints, and not statistically significant factor of spatial scale. The fact that the temporal scale                
had a greater contribution compared to the thermal comfort constraints was consistent with the              
observation in our previous analysis (i.e., optimal daily selection of setpoints in the space range of 19.5 to                  
25.5 °C which represents a variation of 3 °C around the baseline improve the energy efficiency under all                  
values of the thermal comfort constraints).  

Another important observation was that the spatial scale did not significantly impact the overall              
energy consumption, however, the temporal scale had a significant impact on the overall energy              
consumption. At the same time, the zone level optimal control policies required more training data for                
finding the optimal setpoints compared to the building level control policies, due to the fact that the                 
search space for the zone level optimal setpoints are exponentially larger than the building level control                
policies. For example, the search space for the setpoint space of 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, and                  
25.5 °C is only 7 states for the building level optimal setpoints and 7^5 states for the zone level optimal                    
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setpoints. Considering the fact that the zone level control policies only slightly improved the energy               
efficiency and the fact that their training processes required substantially greater data points, building              
level control policy seem to be a more viable choice. In addition, as pointed out earlier, annual control                  
policies for milder climates result in negative savings under occupants thermal comfort constraints.             
Although the annual control policies performed better for extreme climates, among the four studied              
control policies and across all climate types, the building level daily control policy is the best control                 
policy considering the thermal comfort constraints because this policy has the added efficiency             
improvements and simpler learning requirements. In the case of control policy 3 (building level daily),               
between 17.64 – 38.37% (average of 26.61 %) energy savings were achieved by using a control policy                 
that selects optimal setpoints while maintaining thermal comfort. 

6. Discussion  
This paper used the DOE small office building reference simulation model to investigate the temporal               

and spatial setpoint control policies for individual zones for HVAC system energy efficiency. The              
proposed method is not restricted to the office buildings, VAV HVAC systems or building sizes and can                 
be applied to other building types/sizes and HVAC systems, as the basic idea to optimize heating/cooling                
setpoint control based on occupant comfort remains the same [32, 33]. In this study, we only used the                  
workday results for eliminating the variable of occupancy. The impact of dynamic occupancy on the               
control policies should be investigated in a future study. Having access to real-time information on the                
occupants thermal comfort allows HVAC system controllers to minimize the overall energy consumption             
while providing comfortable thermal conditions [35].  

The daily selection of optimal setpoints in climates with relatively high (i.e., Miami Florida (1A)) or                
low (i.e., Fairbanks, Alaska (8)) outside temperatures does not considerably improve the energy efficiency              
in comparison to the annual selection of the setpoints. However, the daily selection of optimal setpoints                
for a milder climate (i.e., Chicago, Illinois (5A)) considerably influences the energy consumption. These              
findings suggests that energy savings from a more complex control policy highly depends on the dynamic                
variations of the external factors [36, 37].  

Considering the fact that the setpoints were solely selected based on the temporal scale (i.e., daily and                 
annual) and the fact that a finer scale (e.g., hourly) can potentially improve the energy efficiency of                 
HVAC systems, there is a trade-off between the computation costs and complexity of the HVAC               
controller and the associated energy savings, which requires further investigations [36, 38-40]. In cases,              
where there are a large number of permutations of operational settings for finding the optimal parameters                
in real buildings’ HVAC systems, it is often not feasible to search all conditions because of the associated                  
costs and potential occupant discomfort [41]. For example, implementing a zone level strategy in              
real-world via exhaustive search could be very costly. However, this study aimed to use brute-force               
method to compare such cases which are difficult to be validated via a real-world case. To address this                  
issue, we plan to develop techniques that allow for searching and learning optimal setpoints that are                
subject to dynamic influential variables in an online learning paradigm. The presented study on spatial               
and temporal control policies with thermal comfort as a constraint is one strategy, which included an                
analysis of potential energy savings. However, since a generalized model of human thermal comfort is not                
yet established [42-45], thermal comfort constraints were modeled as uniformly distributed random            
variables, which are conservative based on the fact that human thermal preferences change based on               
seasonal weather variations.  
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To integrate such control strategy into control loop of HVAC systems, a stream of the input data (e.g.,                  

building energy usage data and occupancy) needs to be collected in a database. These inputs are used to                  
calculate an optimal setpoint at the building level on a daily basis. Different algorithms could be used to                  
learn optimal daily setpoints such as a hybrid metaheuristic [32]. Given the daily optimal setpoints, a                
control would select a setpoint for each building zone, as close as possible to the optimal setpoint subject                  
to the thermal comfort constraints on the zone setpoints. To integrate personal comfort constraints, recent               
advancements in thermal comfort learning techniques (e.g., participatory sensing of comfort or using             
physiological measurements for learning comfort) [12, 46, 47], which provide real-time access to the              
thermal comfort of occupants, can be used. 

7. Conclusions 
In this study, we followed a systematic approach for analyzing the impact of temporal and spatial                

variations and thermal comfort requirements on HVAC system control policies. The control policies,             
studied in this paper are: (1) building level annual control policy, (2) zone level annual control policy, (3)                  
building level daily control policy, and (4) zone level daily control policy. In all of the control policies,                  
the optimal setpoints were calculated through an exhaustive search of the setpoint-building energy space,              
which was derived via extensive simulations. We used the DOE reference small office building              
simulation model in three climates (1A, 5A, and 8) to compare the four control policies. In order to                  
represent actual building operations, we added occupants’ thermal comfort requirements, as uniformly            
distributed random constraint functions, on the setpoints to model thermal comfort requirements. Through             
our statistical analysis, we demonstrated solely optimizing the setpoints for thermal comfort (without a              
temporal optimization of setpoints for energy) results in energy inefficiencies. Therefore, controllers with             
a temporal scale, such as daily setpoint selection, is needed to meet occupants comfort requirements while                
still saving energy. We also found that in a milder climate, the control policies that have dynamic                 
adjustment of setpoints achieved more energy efficiency, while for extreme climates (hot/cold climates), a              
fixed setpoint for the entire year provided close to highest energy efficiency. Our results demonstrate that                
the optimal building level daily energy control policy result in average savings of 27.76% to 50.91%                
(average of 39.81%) depending on the climate. In addition, if thermal comfort requirements were              
uniformly distributed, the daily optimal setpoint selection, subject to thermal comfort constraints, led to              
17.64 – 38.37% (average of 26.61%) energy savings, depending on the climate. These savings are               
conservative as thermal comfort preferences are often skewed toward energy efficient setpoints. Among             
the four control policies, the building level daily control policy had the highest energy efficiency with                
comparatively small training data rudiments. Finally, we ranked the potentially influential factors on the              
control policies as the climate, temporal scale, and thermal comfort constraints with statistically             
significant impacts, and spatial scale with a statistically not significant impact. The results of this study                
could be used by building stakeholders to define and implement more efficient control policies, depending               
on the accessibility to training data, desired efficiency, and controllability of building systems.  
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