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Ultrastructure and growth factor content of 
equine platelet-rich fibrin gels 

Jamie A. Textor, DVM, PhD; Kaitlin C. Murphy, BS; J. Kent Leach, PhD; Fern Tablin, VMD, PhD

Objective—To compare fiber diameter, pore area, compressive stiffness, gelation proper-
ties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional 
fibrin gels (FGs).
Sample—PRFGs and conventional FGs prepared from the blood of 10 healthy horses.
Procedures—Autologous fibrinogen was used to form conventional FGs. The PRFGs were 
formed from autologous platelet-rich plasma of various platelet concentrations (100 X 103 
platelets/µL, 250 X 103 platelets/µL, 500 X 103 platelets/µL, and 1,000 X 103 platelets/µL). 
All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and 
pore area were evaluated with scanning electron microscopy. Maximum gelation rate was 
assessed with spectrophotometry, and gel stiffness was determined by measuring the 
compressive modulus. Gel weights were measured serially over 14 days as an index of con-
traction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1

 
concentrations were quantified with ELISAs.
Results—Fiber diameters were significantly larger and mean pore areas were significantly 
smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, dif-
fered significantly between PRFGs and conventional FGs, and was significantly correlated with 
platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1

 
concentrations were highest in gels and releasates derived from 1,000 X 103 platelets/µL.
Conclusions and Clinical Relevance—The inclusion of platelets in FGs altered the archi-
tecture and increased the growth factor content of the resulting scaffold. Platelets may 
represent a useful means of modifying these gels for applications in veterinary and human 
regenerative medicine. (Am J Vet Res 2014;75:392–401)
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Combined cell-matrix grafts have promise as a 
means of regenerative treatment for tissue defects 

of critical size or poor healing capacity. Fibrin has 
been used as a scaffold for cardiovascular,1 musculo-
skeletal,2,3 respiratory,4 neural,5 and cutaneous6 tissues. 
Cells are typically injected into the lesion site in a so-
lution of fibrinogen, which is then polymerized with 
thrombin to create a custom-fit graft. Because it is a 
natural vertebrate protein that is autologously avail-
able and completely degradable, fibrin has advantages 
over nonbiological synthetic hydrogels. It contains na-
tive peptide sequences that engage cellular integrins,7 
which provide sites for adhesion, physical support to 
grafted cells, and instructive mechanical cues. Fibrin 

gels have predictable material properties that can be ad-
justed to create specific graft characteristics by chang-
ing factors such as fibrinogen concentration, pH, and 
ionic strength.8–11 These features make fibrin a useful 
substrate for bioengineering purposes and one of the 
most popular hydrogels in the field of tissue engineer-
ing and regenerative medicine.

Grafted cells require specific signals from the 
extracellular matrix to survive. Anoikis is a term used to 
describe the premature death of cells that do not receive 
these mechanical and chemical cues from the matrix, 
and this phenomenon is considered to be a major cause 
of cellular graft failure.3,12,13 Matrix stiffness is a major 
determinant of cellular phenotype and behavior,5,10,14 
and cells that are exposed to mechanical cues and 
growth factor gradients are more likely to proliferate, 
differentiate, migrate, and orient correctly within a 
nascent tissue.14–17 Fibrin creates a provisional matrix in 
a graft bed, but its fibers lack directionality and tension, 
and fibrin has little associated growth factor content. In 

ABBREVIATIONS
FG Fibrin gel
PDGF Platelet-derived growth factor
PRFG Platelet-rich fibrin gel
PRP Platelet-rich plasma
TGF Transforming growth factor
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some musculoskeletal and cardiovascular applications, 
FGs may be too soft to perform as desired.18–20 Soft gels 
may be adequate for the restoration of certain tissues 
such as nerves,5,21 but stiffer hydrogel substrates are 
required to support processes such as osteogenesis,22 
cardiac fibroblast orientation,23 and cardiomyocyte 
contractility24 in constituent cells intended for grafting.

Platelet-rich plasma is an autologous, therapeutic 
biomaterial favored for use because of its high growth-
factor content and scaffold properties.25 When activat-
ed by thrombin, PRP forms a PRFG that can provide a 
provisional matrix for ingress and support of migrating 
cells. After anchoring to fibrinogen through the inte- 
grin receptor α

IIb
β

IIIa
,26–28 platelets contract gels by vir-

tue of their actomyosin motors. In this way, platelets 
generate tension in a matrix and provide preliminary 
orientation to the scaffold as they maintain attach-
ment to the lesion walls. Whereas conventional FGs 
are isotropic and must be remodeled by resident cells,15 
PRFGs are anisotropic because of the ability of plate-
lets to generate tension8,29 against the tissue margins to 
which they are anchored. Platelet-rich fibrin gels are in 
use clinically in people and experimentally in other ani-
mals,30–32 but the authors are not aware of any reports 
on direct comparisons of PRFGs and conventional FGs 
in any species. 

The purpose of the study reported here was to 
compare biomechanical and structural characteristics 
of PRFGs with characteristics for the more traditionally 
used tissue engineering substrate, conventional FGs. 
We hypothesized that the inclusion of platelets would 
increase gel stiffness by virtue of an increase in fibrin 
fiber diameter and decrease in pore area (on the basis 
of known effects of platelets, thrombin, and the rate of 
polymerization on FG structure33–35 and clot stiffness29 
as well as the inherent contractility of platelets29). We 
further hypothesized that PRFGs would contain more 
PDGF-BB and TGF-β

1
 (on the basis of the known 

growth factor content of platelets36,37) than would con-
ventional FGs.

Materials and Methods

Sample—Blood samples were obtained from each 
of 10 horses of various breeds (4 Quarter Horses, 4 
Thoroughbreds, 1 Hanoverian, and 1 Paint) and ages 
(mean ± SD, 10 ± 4.1 years; range, 4 to 17 years). Five 
of the horses were mares and 5 were geldings. Animal 
use was conducted in accordance with institutional 
animal care and use requirements of the University of 
California-Davis. Blood samples from each horse were 
collected into evacuated tubes containing acid citrate 
dextrose (ratio of blood to acid citrate dextrose solu-
tion A, 9:1) for preparation of PRP (14 tubes) and fi-
brinogen precipitate (4 tubes). One blood sample was 
also collected from each horse into a sodium citrate– 
containing evacuated tube for determination of the 
whole blood fibrinogen concentration.

Fibrinogen preparation—Fibrinogen was pre-
pared by use of ethanol precipitation.38 Whole blood in 
glass tubes was centrifuged (200 X g for 15 minutes), 
and plasma was harvested and transferred to new poly-
propylene tubes. Then 95% ethanol was added to the 

plasma in each polypropylene tube (0.88 mL/5 mL of 
plasma), and tubes were inverted several times to en-
sure proper mixing. Tubes were incubated on ice for 
30 minutes and then centrifuged at 1,500 X g for 15 
minutes. The fibrinogen precipitate was apparent at 
the bottom of each tube. Supernatant plasma was dis-
carded, and precipitates were warmed in a 37°C water 
bath before being resuspended in PBS solution. The 
resuspended samples and the sodium citrate–contain-
ing whole blood samples were submitted for fibrinogen 
quantification.a 

PRP preparation—Whole blood was centrifuged 
at 200 X g for 15 minutes. Plasma was harvested and 
placed in new polypropylene tubes, and prostaglandin 
E

1
39,40 was added (final concentration, 10 µg/mL) to 

prevent premature aggregation and activation of plate-
lets during processing. The tubes were again centri-
fuged at 400 X g for 15 minutes, which created a plate-
let pellet and a supernatant of platelet-poor plasma. 
Platelet-poor plasma was removed, and each platelet 
pellet was resuspended in the smallest possible volume 
of platelet-poor plasma to create PRP. Platelet concen-
trations were determined,b and dilution was performed 
with platelet-poor plasma to achieve concentrations of 
100 X 103 platelets/µL, 250 X 103 platelets/µL, 500 X 
103 platelets/µL, and 1,000 X 103 platelets/µL. The con-
centrations spanned a 10-fold dilution that ranged from 
the approximate systemic concentration of platelets in 
horses to the concentration often cited as desirable for 
clinical PRP use in humans.25 

Gel preparation—For each horse, 25 gels (5 sets, 
with each set consisting of 5 types of gels) were gen-
erated as described elsewhere.10 Four gel types were 
PRFGs with each of the various platelet concentrations 
(100 X 103 platelets/µL, 250 X 103 platelets/µL, 500 X 
103 platelets/µL, and 1,000 X 103 platelets/µL), and the 
fifth gel type was a conventional FG with no platelets. 
For each gel type, 1 set was created for compression 
testing, 2 sets (10 gels; 2 replicates/horse) were created 
for measuring gelation time and subsequently used for 
growth factor analysis, 1 set was created for ultrastruc-
ture determination, and 1 set was created for monitor-
ing gel weight over a 14-day incubation period and 
growth factor analysis in spent medium.

Fibrinogen concentrate was diluted with PBS solu-
tion to achieve a final fibrinogen concentration of 20 
mg/mL. The PRP was diluted with PBS solution or sup-
plemented with fibrinogen concentrate, as required, to 
achieve a fibrinogen concentration of 20 mg/mL. One-
milliliter aliquots of PRP (containing 1 of the 4 platelet 
concentrations) or fibrinogen solution were placed into 
separate wells of a 48-well plate. Aprotininc (50 µg) was 
added to each well to reduce proteolytic degradation of 
the gels.5,10 Gel formation was induced by the addition 
of bovine thrombind (final concentration, 2.5 U/mL) 
and calcium chlorided (final concentration, 20mM), 
which was followed by incubation at 37°C for 1 hour.

Gelation over time—Solutions of PRP or fibrino-
gen were added to separate wells of a 96-well plate and 
measured with a microplate reader-spectrophotometer.e 
Thrombin-calcium solution (30°C) was added, and gel- 
ation time was determined by measuring the rate of 
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change of absorbance (optical density) at 550 nm, on 
the basis that gels become more turbid as they polymer-
ize.10,41 Measurements were obtained every 51 seconds 
(the minimum interval possible for this microplate 
reader) for 20 minutes (total time period for complete 
gel polymerization10). Control wells, without the addi-
tion of thrombin-calcium solution, were included for 
each gel type. The optical density of the corresponding 
control well was subtracted from that of the test wells 
at each time point to correct for differences in the base-
line turbidity of PRP and fibrinogen solutions as well as 
differences among 96-well plates. The maximum slope 
of the curve generated for each set of optical densities 
over time was recorded as the maximum gel-ation rate 
for a given sample.

Gel ultrastructure—Gels were placed in PBS so-
lution for 1 hour, incubated overnight in 3% glutaral-
dehyde for fixation, and then returned to PBS solution 
until dehydration prior to scanning electron micros-
copy. Samples were dehydrated with a graded series of 
alcohol, critical point dried, and sputter-coated with 
gold.f Fibrin fiber diameter and percentage porosity 
were measured on scanning electron microscopic im-
agesg with image analysis software.42,43,h Briefly, analysis 
(3 transverse images/gel) was performed with the de-
fault thresholding algorithm, which highlighted areas 
of space (no fibers). The analysis was also performed 
with the cross-entropy thresholding algorithm de-
scribed in another study.44 The black (space) portion 
of the image was quantified with the area fraction op-
tion to determine the 2-D percentage porosity. Pore area 
was determined by the particle analysis function in the 
image analysis software.h Fiber diameter was measured 
on 3 images of each gel’s horizontal surface; diameters 
of each of 3 randomly selected fibers/image were mea-
sured with the tool, which yielded 9 data points/gel.

Compressive moduli—Gel stiffness was quantified 
with a compressive testing system.i Gels were allowed 
to polymerize for 24 hours. Gels then were incubated in 
PBS solution for 1 hour to allow swelling before quan-
tification of gel stiffness. Compression (unconfined) 
was performed at a rate of 1 mm/min for 1 minute. The 
linear region of the stress-strain curve was determined 
within strains that ranged from 0% to 5%, and the slope 
was determined as Young’s modulus (compressive  
stiffness).10,45

Gel weight over 14 days—After polymeriza-
tion, gels were removed from the plates, blotted, and 
weighed. Gels were placed in wells containing Dul-
becco modified Eagle medium (high-glucose medium, 
with 4.5 g of D-glucose/L, 584 mg of L-glutamine, and 
110 mg of sodium pyruvate/L)j with penicillin-strepto-
mycin (100 U/mL) and gentamicin (0.1 mg/mL). Plates 
were incubated at 37°C; they were serially weighed on 
days 1, 3, 5, 7, 9, 11, and 14 (day 0 was the day the gels 
were created and the first day of incubation).

Growth factor analysis—One hour after polymer-
ization was completed, 1 set of gels was liquefied by 
sonication (ten 1-second pulses at 60 W), placed briefly 
on ice, and centrifuged at 21,000 X g for 10 minutes. 
After gels were released from the wells 1 hour after po-

lymerization was completed, extruded fluid was col-
lected as the gel releasate sample for day 0. Gels were 
placed in wells containing Dulbecco modified Eagle 
medium with penicillin-streptomycin (100 U/mL) and 
gentamicin (0.1 mg/mL); plates then were incubated at 
37°C. Medium was collected and completely replaced 
on days 1, 3, 5, 7, 9, 11, and 14 (day 0 was the day the 
gels were created and the first day of incubation). All 
samples were collected and frozen at –20°C until analy-
sis. Quantification of PDGF-BB and TGF-β

1
 was per-

formed on sonicated gels, initial releasates, and spent 
medium samples with ELISAsk,l previously validated for 
use in horses.46 

Statistical analysis—Prior to the study, a power 
analysism was performed with data on FGs previously 
obtained by our laboratory group. The analysis revealed 
that for detection of a 25% difference in compressive 
stiffness among gel types, 10 subjects would provide a 
power of 99.7%. 

All analyses were performed with statistical 
software.n Logarithmic transformation was performed 
prior to testing whenever data were not normally 
distributed. A repeated-measures 1-way ANOVA with 
post hoc Tukey testing was used to compare compressive 
moduli, maximum gelation rate, maximum optical 
density, and growth factor concentrations of gels 
and gel releasates among gel types. A 2-way ANOVA 
(factors were gel type and time) was used to analyze 
growth factor concentrations in samples of medium 
obtained on days 1, 5, 9, and 13 and also gel weight loss 
over time. Post hoc Tukey multiple comparisons among 
time points and gel types were performed. A Spearman 
correlation test was performed to determine whether 
a significant linear relationship existed between mean 
gel weight and platelet concentration. A 2-way ANOVA 
(factors were gel type and horse) with a post hoc Tukey 
multiple comparison was used to compare pore area 
and fiber diameter among gel types. Significance for all 
analyses was set at P < 0.05.

Results

Ultrastructural features—The appearance of 
PRFGs was qualitatively different from that of conven-
tional FGs. In general, conventional FGs had a regu-
lar, lattice-like arrangement of pores, which were de-
marcated by clumps of short, fine fibers (Figure 1). In 
contrast, PRFGs consisted of discrete, separate, larger 
fibers arranged in a more random and often extremely 
dense meshwork. Conventional FGs were not entirely 
acellular; a few platelets and leukocytes were observed 
on scanning electron micrographs.

Quantitatively, fiber diameter was largest for 
PRFGs containing 100 X 103 platelets/µL (mean ± SD, 
117.7 ± 10.53 nm) and smallest for conventional FGs 
(56.8 ± 5.11 nm; Figure 2). The fiber diameters of all 
PRFGs were significantly (P < 0.001) greater than those 
of conventional FGs. Percentage porosity ranged from 
40.8% to 51.7% for all gels; there were no significant 
differences in percentage porosity on the basis of the 
thresholding algorithm used for analysis, despite the 
subjective appearance of a larger pore diameter in con-
ventional FGs. Pore area then was assessed by specify-
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ing a range for pore size (0.16 to 36 µm2), which was 
selected on the basis of the diameters of the smallest 

and largest identifiable pores in representative images 
of each gel type. Image analysis software automatically 
identified pores within this range and determined their 
area. For all gel types, there was a mean ± SD of 977 ± 
503.2 pores evaluated/gel by use of this method. Mean 
pore areas of all PRFGs were significantly (P < 0.01) 
smaller (range, 1.203 to 1.292 µm2) than the mean pore 
area of conventional FGs (1.592 µm2; Figure 3). There 
was also a significant (P < 0.001) effect of horse for 
both fiber diameter and pore area.

Compression testing—Results of the ANOVA in-
dicated that compressive modulus was significantly af-
fected by horse (P < 0.001) and gel type (P = 0.047). 
However, post hoc multiple comparisons among gels 
with various platelet concentrations did not identify 
significant differences (Figure 4).

Maximum gelation rate—Gelation occurred rap-
idly, despite a subphysiologic test temperature that was 
intended to slow the enzymatic cleavage of fibrinogen 

Figure 2—Mean ± SD fiber diameter of a conventional FG and 
PRFGs with various platelet concentrations (100 X 103 platelets/
µL, 250 X 103 platelets/µL, 500 X 103 platelets/µL, and 1,000 X 
103 platelets/µL) formed from autologous PRP obtained from 
10 healthy horses. *,†Values differ significantly (*P < 0.01; †P < 
0.001) between the indicated gels. ‡Value differs significantly (P 
< 0.001) from the value for each of the PRFGs.

Figure 1—Representative scanning electron micrographs of a 
conventional FG (A) and a PRFG (B) prepared from autologous 
fibrinogen obtained from a healthy horse. Notice that the con-
ventional FG has larger pores and fibers with a smaller diameter, 
compared with those of the PRFG. Sputter coated with gold. Bar 
= 10 µm.

Figure 3—Mean ± SD pore area of a conventional FG and PRFGs 
with various platelet concentrations formed from autologous 
PRP obtained from 10 healthy horses. Values did not differ sig-
nificantly (P ≥ 0.05) among PRFGs. *,†Value differs significantly 
(*P < 0.001; †P < 0.01) from the value for the conventional FG. 

Figure 4—Mean ± SD compressive modulus of a conventional 
FG and PRFGs with various platelet concentrations formed from 
autologous PRP obtained from 10 healthy horses. Values did not 
differ significantly (P ≥ 0.05) among gels.
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by thrombin. A significant (P < 0.001) effect of horse 
was identified for maximum gelation rate, but there was 
not a significant (P = 0.161) difference in maximum gel- 
ation rate among gel types (Figure 5).

Figure 5—Optical density measured over time at 550 nm  
(OD 550 nm) for polymerization of a conventional FG and PRFGs 
formed from authologous PRP obtained from 10 horses (A) and 
mean ± SD maximum gelation rate for the conventional FG and 
PRFGs (B). In panel B, values did not differ significantly (P ≥ 0.05) 
among gels. ∆OD 550 nm = Change in OD 550 nm.

Figure 6—Photographs obtained on day 0 (top row) and day 1 
(bottom row) of conventional FGs and PRFGs with various plate-
let concentrations formed from autologous PRP obtained from 
10 healthy horses. Day 0 was the day the gels were created and 
the first day of incubation. Notice that the PRFGs contracted sub-
stantially within the first 24 hours after polymerization. The pink 
color in day 1 gels is the result of incubation in culture medium 
containing phenol red.

Figure 7—Weight of a conventional FG and PRFGs with various 
platelet concentrations, measured over 14 days (A), mean ± 
SD weights for the conventional FG and PRFGs over a 14-day 
period (B), and the correlation between gel weight and platelet 
concentration (C). Gels were formed from autologous PRP 
obtained from 10 healthy horses. In panel C, gel weight was 
significantly correlated (r 2  = 0.986; P < 0.001) with platelet 
concentration in the gels. *Value differs significantly (P < 0.001) 
from the value for the PRFG with 100 X 103 platelets/µL and the 
conventional FG. †Value differs significantly (P < 0.01) from the 
value for the PRFG with 250 X 103 platelets/µL. ‡Value differs 
significantly (P < 0.05) from the value for the PRFG with 500 X 103 
platelets/µL. §Value differs significantly (P < 0.01) from the value 
for the conventional FG.
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Changes in gel weight—Most gel weight loss was 
within the first 24 hours after polymerization (Fig-
ures 6 and 7). Gel weight differed significantly (P < 
0.001) on the basis of time. Baseline gel weights were 
not significantly different among gel types, but over 
the 14-day incubation period, mean gel weights dif-
fered significantly (P < 0.001) among gel types and 
were significantly (P < 0.001) correlated with platelet  
concentration.

Growth factor concentration of gels and releas-
ates—There was no detectable PDGF-BB or TGF-β

1
 in 

control samples of the medium used for gel incubation. 
Growth factor concentrations of the gels and the initial 
releasates differed in proportion to platelet concentra-
tion for both PDGF-BB (P < 0.001) and TGF-β

1
 (P = 

0.007; Figure 8). Most growth factor release from gels 
occurred within the first 24 hours after polymerization 
and diminished thereafter. There was a significant ef-
fect of gel type on release of PDGF-BB (P = 0.008) and 
TGF-β

1
 (P = 0.005). Similarly, there was a significant 

(P < 0.001) effect of time on release of both PDGF-BB 
and TGF-β

1
.

Discussion

The structural (and resulting functional) proper-
ties of fibrin can be modified by altering polymeriza-
tion factors, such as fibrinogen concentration, pH, salt 
concentration, or temperature.10,47 The incorporation of 
platelets into FGs results in structural alterations and in-

creases in growth factor concentrations and 
may ultimately improve the performance 
of cell-scaffold grafts after transplantation. 
However, in the present study, the inclusion 
of platelets did not confer an increase in gel 
stiffness over that for gels prepared from an 
ethanol precipitate of fibrinogen.

Fibrin gels are desirable as tissue- 
engineering scaffolds for several reasons. 
The most important reason is fibrin’s inher-
ent compatibility with cell viability, which is 
in contrast to that for many of the compo-
nents and processes involved in fabrication 
of synthetic scaffolds.10,20 Fibrin is a natural 
substance, is completely biodegradable, and 
facilitates the transition to a new extracel-
lular matrix.10 Graft cells can be incorpo-
rated into a gel at the time of polymeriza-
tion, which ensures a uniform distribution, 
rather than having to be seeded into the 
scaffold after the fabrication process (as for 
some synthetic scaffolds).1,20 The main dis-
advantage of FGs is their relative softness 
as a substrate, which, unless there is some 
modification, makes them unsuitable for 
certain applications.18,20 

The process of fibrin polymerization con-
sists of several steps, beginning with thrombin 
cleavage of fibrinopeptide A from a fibrinogen 
molecule to form a fibrin monomer. This 
cleavage results in exposure of a molecular 
knob, which engages a hole in the γ-nodule of 
another fibrinogen molecule and results in a 

half-staggered arrangement of fibrin monomers. This ear-
ly form of fibrin is referred to as an oligomer or protofibril, 
and these then assemble laterally in a helical manner to 
create a fibrin fiber.48 Fibers may also aggregate laterally to 
produce thicker fiber bundles, depending on the polymer-
ization conditions.47

At the culmination of fibrin clot formation in vivo, 
platelets bind fibrin via β

3 
integrins28,35,49,50 and contract 

the clot. In so doing, they also contract against the mar-
gins of the wound bed, which generates tension and 
orients the new, provisional matrix.29 By virtue of their 
growth factor content, platelets directly contribute to 
the growth, development, and restoration of tissue.51–54 
Platelet-derived growth factor and TGF-β

1
 are the most 

plentiful growth factors contained within the α gran-
ules of platelets36,37 and are released to the extracellular 
space after platelet activation. These factors direct cell 
proliferation, cell differentiation, matrix production, 
angiogenesis, and wound contraction.55–60 Growth fac-
tor supplementation improves the survival and differ-
entiation of transplanted cells in a number of scaffold 
materials and tissue environments.61–64 Data for the 
present study confirmed that PRFGs contain substan-
tial amounts of growth factors and, on this basis, may 
be better able to support grafted cells than are conven-
tional FGs.

The mechanical properties of FGs reflect a highly 
complex interaction of individual structural character-
istics of each fibrin network, including fiber diameter 
and pore area. In the study reported here, the addi-

Figure 8—Mean ± SD concentrations of growth factors (PDGF-BB and TGF-β
1
) 

contained in a conventional FG and PRFGs with various platelet concentrations 
(A and C) and in fluid released from the gels on day 0 (B and D). *Value differs 
significantly (P < 0.001) from the value for each of the other gels. †Value differs 
significantly (P < 0.01) from the value for the PRFG with 100 X 103 platelets/µL and 
the conventional FG. ‡Value differs significantly (P < 0.01) from the value for the 
PRFGs with 250 X 103 platelets/µL and 100 X 103 platelets/µL and the conventional 
FG. §Value differs significantly (P < 0.05) from the value for the PRFG with 100 
X 103 platelets/µL and the conventional FG. IIValue differs significantly (P < 0.05) 
from the value for the PRFGs with 250 X 103 platelets/µL and 100 X 103 platelets/
µL and the conventional FG. ¶Value differs significantly (P < 0.01) from the value 
for the conventional FG. #Value differs significantly (P < 0.05) from the value for 
the conventional FG. **Value differs significantly (P < 0.01) from the value for the 
PRFG with 250 X 103 platelets/µL.
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tion of platelets to FGs resulted in increased fiber di-
ameter and decreased pore area. Large fiber diameter47 
and small pore area5,20,65 have historically been con-
sidered the major determinants of FG stiffness, but in 
the present study, significant differences in compres-
sive stiffness were not detected. Other variables such 
as fibrin assembly rate, fiber density, and branch point 
density are also key contributors to ultimate gel stiff-
ness,66 but the definitive determinant of clot stiffness 
is unknown.67 Fibrin clots with intermediate fiber di-
ameter and branch point density are stiffer than clots 
with large fibers and low branch point density or small 
fibers and high branch point density, which indicates 
that the combined effect of ultrastructural features is 
greater than the sum of the parts.66 In the present study, 
the range of measured fiber diameter was small (50 to 
66 nm) in conventional FGs but varied considerably 
(range, 55 to 187 nm) in PRFGs. As measured in this 
study, fiber diameter for PRFGs likely reflected the de-
gree of lateral aggregation of individual fibers because 
the diameter of individual fibrin fibers in humans is 
surprisingly consistent (85 nm), whereas larger fibers 
represent lateral aggregation of some number of indi-
vidual fibers.47 Interestingly, the largest fiber diameter 
measurements were associated with the lowest platelet 
concentration (100 X 103 platelets/µL), which approxi-
mated the systemic platelet concentration of clinically 
normal horses. Although we cannot offer a definitive 
explanation for this observation, it may be that less ten-
sion was applied to these fibers by the lower number 
of platelets, such that the fiber diameter was effectively 
larger than the fiber diameter for those stretched more 
tautly by a higher number of platelets. In addition, gels 
with lower platelet concentrations likely contained less 
thrombin, which is produced on the surface of activated 
platelets.68 Fibrin fiber diameter increases as thrombin 
concentration decreases.69 Finally, PRFGs in the present 
study contained a full complement of plasma proteins, 
whereas the conventional FGs contained predominant-
ly fibrinogen. The impact of various plasma proteins 
on gel mechanics is not completely defined,70,71 but 
gels prepared from plasma have larger fiber diameters 
than the fiber diameters of gels prepared from purified 
fibrinogen alone.72 Interestingly, all gels in the study re-
ported here were approximately 5 times as stiff (approx 
50 kPa) as FGs formed from purified human fibrinogen 
(approx 10 kPa) and tested on the same equipment,10 
which may have been a result of their greater plasma 
protein content.70,71

Pore area and percentage porosity are important 
structural indices of any biological scaffold. In general, 
larger pores favor cellular ingrowth and proliferation, 
whereas smaller pores favor cell attachment (especial-
ly early cell attachment), owing to the greater overall 
surface area they provide.73 More porous scaffolds rep-
resent softer constructs overall.74 Compared with scaf-
folds with other pore sizes and percentage porosities 
reported in the literature,74–77 the gels in the present 
study (both PRFGs and conventional FGs) were of in-
termediate porosity and had extremely small pore ar-
eas. Although the mean pore areas differed significantly 
between PRFGs and conventional FGs, this difference 
was small relative to the range of reported pore sizes 

and may therefore be inconsequential in terms of clini-
cal use.

Concentrations of thrombin, calcium, and sodium 
chloride can also dramatically affect the rate of gel- 
ation and ultimate structure of FGs.9,10,70 We expected 
that platelets would accelerate the polymerization pro-
cess, compared with the process for conventional FGs. 
Therefore, we were surprised that no significant differ-
ences in gelation time were detected between gels with 
and without platelets. We suspect this failure to detect a 
difference was most likely attributable to technical limi-
tations: namely, the minimum interval between optical 
density measurements was 51 seconds. The fibrin po-
lymerization process is quite rapid even in the absence 
of platelets; the steepest portion of the optical density–
time curves (the slope of which is the maximum gel- 
ation rate) lasts only approximately 100 seconds (Fig-
ure 5). During that time, we would have collected only 
1 or 2 data points, and this likely explains our failure to 
detect a difference in maximum gelation rate between 
conventional FGs and PRFGs. Unfortunately, we did 
not realize this technical limitation at the outset of the 
study. In addition, the use of a lower concentration of 
thrombin (ie, 0.1 to 1 U/mL) than that used in the pres-
ent study may slow the polymerization process enough 
to allow the detection of differences in gelation rate. 
To maintain consistency in methods and facilitate the 
comparison of results, we chose thrombin, calcium 
chloride, and fibrinogen concentrations reported in a 
previous study10 conducted by the laboratory group of 
one of the authors. 

The desired concentration of leukocytes in PRP and 
PRFGs is a contentious topic.78,79 Neutrophils affect fibri-
nolysis when present in a thrombus80,81; however, to the 
authors’ knowledge, the specific effect of leukocyte con-
centration on clot formation, FG formation, or clot stiff-
ness has not been reported. We did not control for and 
did not examine the effect of leukocyte concentration in 
the present study. The PRP used for PRFG formation was 
of intermediate WBC concentration (mean, 9.34 X 103 
WBCs/µL; range, 3.2 X 103 WBCs/µL to 16.0 X 103 WBCs/
µL). Investigators in a recent study82 concluded that the 
inclusion of DNA and histones (as found in leukocytes 
but not platelets) increased clot stiffness and resulted in 
fibrin fibers with a larger diameter, so it is conceivable that 
leukocytes affected gel ultrastructure and compressive 
modulus in the present study.

There is significant variation in PRP composition 
between and within individuals, even when the same 
preparation method is used.83 In the present study, we 
used samples obtained from 10 horses and prepared 25 
gels/horse, but because we tested several variables, we 
were able to test only 1 replicate gel/horse for compres-
sive modulus, ultrastructure, and weight loss over time. 
The inclusion of multiple replicates for each horse and 
each test would have resulted in a more robust data 
set that is less subject to the effects of intraindividual 
variability. However, given that the key compositional 
variables investigated (ie, fibrinogen concentration and 
platelet concentration) were controlled as fixed values 
in these experiments, we suspect that the effect of intra-
individual variability was much less than that typically 
encountered in a clinical setting.
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This study illustrated the substantial effects of 
platelets on gel contraction, once gels were physically 
removed from culture wells. During contraction, fluid 
is extruded from the gels, similar to the process for a 
clot in vivo, and weight is lost because of this dehy-
dration.84 Conventional FGs lost some weight during 
the first 24 hours after polymerization, but PRFGs lost 
50% to 60% of their weight in that interval. The clini-
cal use of PRFGs requires that gels be formed in situ 
(ie, in the lesion), where they will remain attached to 
lesion walls and thus prevent graft shrinkage. If a gel 
is instead produced in a laboratory prior to clinical ap-
plication, substantial contraction must be anticipated, 
and thus the gel should be larger than the lesion size 
when fabricated.

Platelet-rich fibrin gels have been widely used in 
human mandibular and periodontal reconstructions 
since the mid 1990s31,85,86 as well as in orthopedic sur-
gical applications such as repair of avascular necrosis 
of the hip,87 rotator cuff,30 and Achilles tendon.32 The 
main use of PRP products in regenerative medicine has 
been to deliver high concentrations of growth factors, 
as indicated by the results of the present study. In ad-
dition, results of this study confirmed that platelets al-
tered the structural properties of FGs, although these 
alterations did not affect overall gel stiffness. Nonethe-
less, these findings suggest that the particular growth 
factor and structural requirements of transplanted cells 
or recipient tissues may be more specifically addressed 
by changing the platelet concentration in PRFGs. Fur-
ther studies are required to determine the platelet con-
centrations best suited for a specific tissue or lesion 
type, whether the porosity of PRFGs can be manipu-
lated to enhance cellular support, and whether PRFGs 
will improve the survival and site-specific differentia-
tion of grafted cells, compared with results for conven-
tional FGs.
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