
UC Santa Cruz
Journal of Systems Research

Title
[Solution] Matchmaker Paxos: A Reconfigurable Consensus Protocol

Permalink
https://escholarship.org/uc/item/8wk3343k

Journal
Journal of Systems Research, 1(1)

Authors
Whittaker, Michael
Giridharan, Neil
Szekeres, Adriana
et al.

Publication Date
2021

DOI
10.5070/SR31154842

Copyright Information
Copyright 2021 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8wk3343k
https://escholarship.org/uc/item/8wk3343k#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Systems Research (JSys) Volume 1, Issue 1, Sep 2021

[SOLUTION] MATCHMAKER PAXOS: A RECONFIGURABLE CONSENSUS PROTOCOL

MICHAEL WHITTAKER

UC Berkeley

mjwhittaker@berkeley.edu

NEIL GIRIDHARAN

UC Berkeley

giridhn@berkeley.edu

ADRIANA SZEKERES

VMware Research

aszekeres@vmware.com

JOSEPH M. HELLERSTEIN

UC Berkeley

hellerstein@berkeley.edu

HEIDI HOWARD

University of Cambridge

heidi.howard@cl.cam.ac.uk

FAISAL NAWAB

UC Irvine

nawabf@uci.edu

ION STOICA

UC Berkeley

istoica@berkeley.edu

Foreword by the Area Chair

The paper presents Matchmaker Paxos/Multi-Paxos, a crash fault-tolerant consensus implementation and state machine

replication system with vertical reconfiguration. The main contribution is the reconfiguration protocol, a critical component

of Consensus implementations that is often overlooked by the research community, but that is critical in practice. Reviewers

share the same common feedback, the paper is relevant and represents a valuable addition to the literature of high-performance

reconfiguration techniques for consensus.

- Roberto Palmieri, Lehigh University

Reviewers

- Ahmed Alquraan, University of Waterloo

- Seo Jin Park, MIT

- Denis Rystsov, Vectorized, Inc

- Ling Ren, UIUC

Artifacts

The artifact associated with this paper is an implementation of Matchmaker Paxos and Matchmaker MultiPaxos. The artifact was

independently evaluated by the Artifact Evaluation Board (AEB) led by Eric Eide. The AEB determined that the artifact was

usable by a third party and that it could be used to reproduce the main results presented in the paper. The artifact is available at

https://github.com/mwhittaker/frankenpaxos/.

Reviews

Anonymized reviews are publicly available at: https://openreview.net/forum?id=bXe1agiq9LN

Copyright and License

Licensed under Creative Common License CC-BY-NC. Copyright retained by the authors.

https://orcid.org/0000-0002-7712-4306
https://orcid.org/0000-0001-5256-7664
https://orcid.org/0000-0003-2264-4600
https://escholarship.org/uc/jsys/aeb
https://github.com/mwhittaker/frankenpaxos/
https://openreview.net/forum?id=bXe1agiq9LN
https://creativecommons.org/licenses/by-nc/4.0/

[SOLUTION] MATCHMAKER PAXOS: A RECONFIGURABLE CONSENSUS PROTOCOL

Michael Whittaker

University of California, Berkeley

Neil Giridharan

University of California, Berkeley

Adriana Szekeres

University of Washington

Joseph M. Hellerstein

University of California, Berkeley

Heidi Howard

University of Cambridge

Faisal Nawab

University of California, Irvine

Ion Stoica

University of California, Berkeley

Abstract
State machine replication protocols, like MultiPaxos and Raft,

are at the heart of numerous distributed systems. To tol-

erate machine failures, these protocols must replace failed

machines with new machines, a process known as reconfigu-

ration. Reconfiguration has become increasingly important

over time as the need for frequent reconfiguration has grown.

Despite this, reconfiguration has largely been neglected in

the literature. In this paper, we present Matchmaker Paxos

and Matchmaker MultiPaxos, a reconfigurable consensus and

state machine replication protocol respectively. Our protocols

can perform a reconfiguration with little to no impact on the

latency or throughput of command processing; they can per-

form a reconfiguration in a few milliseconds; and they present

a framework that can be generalized to other replication pro-

tocols in a way that previous reconfiguration techniques can

not. We provide proofs of correctness for the protocols and

optimizations, and present empirical results from an open

source implementation showing that throughput and latency

do not change significantly during a reconfiguration.

1 Introduction

Many distributed systems [4, 6, 7, 14, 16] rely on a state ma-

chine replication protocol, like MultiPaxos [17] or Raft [34],

to keep multiple replicas of their data in sync. Over time,

machines fail, and if too many machines in a state machine

replication protocol fail, the protocol grinds to a halt. Thus,

state machine replication protocols have to replace failed ma-

chines with new machines as the protocol runs, a process

known as reconfiguration.

Reconfiguration is an essential component of state ma-

chine replication. It is not an optimization or an afterthought.

Without a reconfiguration protocol in place, a state machine

replication protocol will inevitably stop working; it’s just a

matter of when. Despite this, reconfiguration has largely been

neglected by current academic literature. Researchers have

invented dozens of state machine replication protocols, yet

many papers either discuss reconfiguration briefly with no

evaluation [31, 36–38], propose theoretically safe but inef-

ficient reconfiguration protocols [18, 26], or do not discuss

reconfiguration at all [2, 3, 19, 28, 29].

Ignoring reconfiguration has never been ideal, but we have

largely been able to get away with it. Historically, state ma-

chine replication protocols were deployed on a fixed set of

machines, and reconfiguration was used only to replace failed

machines with new machines – an infrequent occurrence. This

made it easy to leave reconfiguration out of sight, out of mind.

Recently however, systems have become increasingly elastic,

and the need for frequent reconfiguration has grown. These

elastic systems don’t just perform reconfigurations reactively

when machines fail; they reconfigure proactively. For exam-

ple, cloud databases can proactively request more resources

to handle workload spikes, and orchestration tools like Kuber-

netes [15] are making it easier to build these types of elastic

systems. Similarly, in environments with short-lived cloud

instances—as with serverless computing and spot instances—

and in mobile edge and Internet of Things settings, protocols

must adapt to a changing set of machines much more fre-

quently. This frequent need for reconfiguration makes it hard

to ignore reconfiguration any longer.

In this paper, we present a reconfigurable consensus proto-

col and a reconfigurable state machine replication protocol:

Matchmaker Paxos and Matchmaker MultiPaxos. In a nut-

shell, our protocols work by leveraging two key design ideas.

• The first is to decouple reconfiguration from the stan-

dard processing path. Many replication protocols [23,

26, 31, 34] have machines that are responsible for both

processing commands and for orchestrating reconfigura-

tions. By contrast, Matchmaker Paxos introduces a set

of distinguished matchmaker machines that are solely re-

sponsible for managing reconfigurations and operate off

of the critical path. These matchmakers act as a source

of truth; they always know the current configuration.

• The second design point is to reconfigure across rounds,

a technique known as vertical reconfiguration [22]. With

vertical reconfiguration, every round of consensus can

execute using a different configuration.

At the beginning of every round, the Paxos leader queries

the matchmakers to discover the older configurations that

were used in previous rounds, and it simultaneously sends

the matchmakers the configuration it intends to use in the

current round. In this way, the matchmakers act as a registry

for configurations. Leaders simultaneously query the past and

update the present. This matchmaking phase requires a single

round trip of communication and happens rarely. We also

introduce a number of novel protocol optimizations to perform

the matchmaking completely off the critical path to avoid

Journal of Systems Research (JSys) 2021

degrading performance. Moreover, the protocol employs

a garbage collection protocol to delete old configurations

stored on the matchmakers. Our protocols have the following

desirable properties.

Little to No Performance Degradation. Matchmaker

MultiPaxos can perform a reconfiguration without signif-

icantly degrading the throughput or latency of processing

client commands. For example, we show that reconfiguration

has less than a 4% effect on the median of throughput and

latency measurements (Section 7). Note that Matchmaker

MultiPaxos is not the first protocol to achieve this [27].

Quick Reconfiguration. Matchmaker MultiPaxos can per-

form a reconfiguration quickly. Reconfiguring to a new set

of machines takes one round trip of communication in the

normal case (Section 4). Empirically, this requires only a

few milliseconds within a single data center (Section 7). It

takes slightly longer to shut down the old machines, but em-

pirically this takes only five milliseconds within a data center

(Section 7).

Generality Replication protocols based on classical Multi-

Paxos assume a totally ordered log of chosen commands and

reconfigure across log entries, known as horizontal reconfigu-

ration. However, many state machine replication protocols

do not replicate a log [2, 18, 31, 38, 39, 41]. These protocols

cannot use horizontal reconfiguration. However, while none

of these protocols have logs, they all have rounds and can

implement vertical reconfiguration. This allows Matchmaker

Paxos and Matchmaker MultiPaxos to serve as a foundation

on top of which reconfiguration protocols can be built for

these other non-log based protocols.

Theoretical Insights. Matchmaker Paxos generalizes Ver-

tical Paxos [22], it is the first protocol to achieve the theo-

retical lower bound on Fast Paxos [19] quorum sizes, and it

corrects errors in DPaxos [33] (Section 6).

Proven Safe. We describe Matchmaker Paxos and Match-

maker MultiPaxos precisely and prove that both are safe (Sec-

tions 3, 4, 5, A, B). Unfortunately, this is not often done for

all reconfiguration protocols [30, 36–38].

2 Background

2.1 System Model

Throughout the paper, we assume an asynchronous network

model in which messages can be arbitrarily dropped, delayed,

and reordered. We assume machines can fail by crashing but

do not act maliciously. We assume that machines operate at

arbitrary speeds, and we do not assume clock synchroniza-

tion. We assume a discovery service that nodes can use to

find each other, but do not require that this service be strongly

consistent. A node can safely communicate with outdated

nodes. A system like DNS would suffice. Every protocol

discussed in this paper assumes (for liveness) that at most f

machines will fail for some configurable f . All the protocols

discussed in this paper are safe, but due to the FLP impossi-

bility result [10], none of the protocols are guaranteed to be

fully live (unless the network is synchronous).

2.2 Paxos

A consensus protocol is a protocol that selects a single value

from a set of proposed values. Paxos [17, 20] is one of the

oldest and most popular consensus protocols. A Paxos deploy-

ment that tolerates f faults consists of an arbitrary number

of clients, at least f +1 nodes called proposers, and 2 f +1

nodes called acceptors, as illustrated in Figure 1. To reach

consensus on a value, an execution of Paxos is divided into

a number of rounds, each round having two phases: Phase

1 and Phase 2. Every round is orchestrated by a single pre-

determined proposer. The set of rounds can be any unbounded,

totally ordered set. It is common to let the set of rounds be the

set of lexicographically ordered integer pairs (r, id) where r

is an integer and id is a unique proposer id, where a proposer

is responsible for executing every round that contains its id.

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f +1

Proposers

2 f +1

Acceptors

1 2
2

3

3

(a) Phase 1

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f +1

Proposers

2 f +1

Acceptors

4
4

5

5

6

(b) Phase 2

Figure 1: Paxos communication diagram (f = 1).

When a proposer executes a round, say round i, it attempts

to get some value x chosen in that round. Paxos is a consensus

protocol, so it must only choose a single value. Thus, Paxos

must ensure that if a value x is chosen in round i, then no

other value besides x can ever be chosen in any round less

than i. This is the purpose of Paxos’ two phases. In Phase 1

of round i, the proposer contacts the acceptors to (a) learn of

any value that may have already been chosen in any round

less than i and (b) prevent any new values from being chosen

in any round less than i. In Phase 2, the proposer proposes a

value to the acceptors, and the acceptors vote on whether or

not to choose it. In Phase 2, the proposer will only propose a

value x if it ensured through Phase 1 that no other value has

been or will be chosen in a previous round.

More concretely, Paxos executes as follows, as illustrated

in Figure 1. When a client wants to propose a value x, it sends

x to a proposer p. Upon receiving x, p begins executing one

round of Paxos, say round i. First, it executes Phase 1. It sends

PHASE1A〈i〉 messages to the acceptors. An acceptor ignores

a PHASE1A〈i〉message if it has already received a message in

a larger round. Otherwise, it replies with a PHASE1B〈i,vr,vv〉
message containing the largest round vr in which the acceptor

2

Journal of Systems Research (JSys) 2021

voted and the value it voted for, vv. If the acceptor hasn’t

voted yet, then vr = −1 and vv = null. When the proposer

receives PHASE1B messages from a majority of the acceptors,

Phase 1 ends and Phase 2 begins.

At the start of Phase 2, the proposer uses the PHASE1B

messages that it received in Phase 1 to select a value x such

that no value other than x has been or will be chosen in any

round less than i. Specifically x is the vote value associated

with the largest received vote round, or any value if no ac-

ceptor had voted (see [20] for details). Then, the proposer

sends PHASE2A〈i,x〉 messages to the acceptors. An acceptor

ignores a PHASE2A〈i,x〉 message if it has already received

a message in a larger round. Otherwise, it votes for x and

sends back a PHASE2B〈i〉 message to the proposer. If a ma-

jority of acceptors vote for the value, then the value is chosen,

and the proposer informs the client. Proposer and acceptor

pseudocode (with modifications for Matchmaker Paxos) are

shown in Algorithm 3 and Algorithm 2.

2.3 Flexible Paxos

Paxos deploys a set of 2 f +1 acceptors, and proposers com-

municate with at least a majority of the acceptors in Phase 1

and in Phase 2. Flexible Paxos [13] is a Paxos variant that

eschews the notion of a majority for that of an arbitrary quo-

rum. Specifically, Flexible Paxos introduces the notion of a

configuration C = (A;P1;P2). A is a set of acceptors. P1

and P2 are sets of quorums, where each quorum is a subset

of A. A configuration satisfies the property that every quorum

in P1 (known as a Phase 1 quorum) intersects every quorum

in P2 (known as a Phase 2 quorum). For a configuration

to tolerate f failures, there must exist some Phase 1 quorum

and some Phase 2 quorum of non-failed machines despite an

arbitrary set of f failures.

Flexible Paxos is identical to Paxos with the exception

that proposers now communicate with an arbitrary Phase 1

quorum in Phase 1 and an arbitrary Phase 2 quorum in Phase

2. In the remainder of this paper, we assume that all protocols

operate using quorums from an arbitrary configuration rather

than majorities from a fixed set of 2 f +1 acceptors.

3 Matchmaker Paxos

We now present Matchmaker Paxos. To ease understanding,

we first describe a simplified version of Matchmaker Paxos

that is easy to understand but is also naively inefficient. We

then upgrade the protocol to the complete, efficient version

by way of a number of optimizations.

3.1 Overview and Intuition

Matchmaker Paxos is largely identical to Paxos. Like Paxos, a

Matchmaker Paxos deployment includes an arbitrary number

of clients, a set of at least f + 1 proposers, and some set

of acceptors, as illustrated in Figure 2. Paxos assumes that

a single, fixed configuration of acceptors is used for every

round. The big difference between Paxos and Matchmaker

Paxos is that Matchmaker Paxos allows every round to have a

different configuration of acceptors. Round 0 may use some

configuration C0, while round 1 may use some completely

different configuration C1. This idea was first introduced by

Vertical Paxos [22].

c1

c2

c3

p1

p2

m1
m2

m3

a1

a2

a3

b1

b2

b3

Clients
f +1

Proposers
2 f +1

Matchmakers

C0 Acceptors

C1 Acceptors

1

8

2
23
3

4

4
5

5

6
6

7
7

2/3 Matchmaking Phase

4/5 Phase 1 6/7 Phase 2

Figure 2: Matchmaker Paxos (f = 1).

Recall from Section 2 that a Paxos proposer in round i

executes Phase 1 in order to (1) learn of any value that may

have been chosen in a round less than i and (2) prevent any

new values from being chosen in any round less than i. To

do so, the proposer contacts the fixed set of acceptors. A

Matchmaker Paxos proposer must also execute Phase 1 to

establish that these two properties hold. The difference is that

there is no longer a single fixed configuration of acceptors to

contact. Instead, a Matchmaker Paxos proposer has to contact

all of the configurations used in rounds less than i.

However, every round can use a different configuration of

acceptors, so how does the proposer of round i know which

acceptors to contact in Phase 1? To resolve this question, a

Matchmaker Paxos deployment also includes a set of 2 f +1

matchmakers. The protocol executes as follows, as illus-

trated in Figure 2.

(1) A client proposes a value x by sending it to a proposer

(p1 in Figure 2).

(2,3) When a proposer receives a value x, it begins executing

the protocol in some round i. It selects a configuration

Ci and sends Ci to the matchmakers. The matchmakers

reply with the configurations used in previous rounds.

We call this the Matchmaking phase. In Figure 2, the

3

Journal of Systems Research (JSys) 2021

proposer executes in round 1 and selects configuration C1

consisting of acceptors b1, b2, and b3. The matchmakers

reply with the configuration C0 consisting of acceptors

a1, a2, and a3.

(4,5) The proposer then executes Phase 1 of Paxos with the

prior configurations that it received during the Match-

making Phase. In Figure 2, the proposer executes Phase

1 with configuration C0.

(6,7) The proposer then executes Phase 2 with the configu-

ration Ci to get the value x chosen. In Figure 2, the

proposer executes Phase 2 with configuration C1.

(8) Finally, the proposer informs the client that x was chosen.

At first, the extra round trip of communication with the

matchmakers and the large number of configurations in Phase

1 make Matchmaker Paxos look slow. This is for ease of

explanation. Later, we will eliminate these costs (Section 3.4

– Section 3.6).

3.2 Details

Every matchmaker maintains a log L of configurations in-

dexed by round. That is, L[i] stores the configuration of round

i. When a proposer receives a request x from a client and

begins executing round i, it first selects a configuration Ci to

use in round i. It then sends a MATCHA〈i,Ci〉 message to all

of the matchmakers.

When a matchmaker receives a MATCHA〈i,Ci〉message, it

checks to see if it had previously received a MATCHA〈 j,C j〉
message for some round j ≥ i. If so, the matchmaker ignores

the MATCHA〈i,Ci〉 message. Otherwise, it inserts Ci in log

entry i and computes the set Hi of previous configurations

in the log: Hi = {(j,C j) | j < i,C j ∈ L}. It then replies to

the proposer with a MATCHB〈i,Hi〉 message. Matchmaker

pseudocode is given in Algorithm 1. An example execution

of a matchmaker is illustrated in Figure 3.

Algorithm 1 Matchmaker Pseudocode

State: a log L indexed by round, initially empty

1: upon receiving MATCHA〈i,Ci〉 from proposer p do

2: if ∃ a configuration C j in round j ≥ i in L then

3: ignore the MATCHA〈i,Ci〉 message

4: else

5: Hi←{(j,C j) |C j ∈ L}
6: L[i]←Ci

7: send MATCHB〈i,Hi〉 to p

When the proposer in round i receives MATCHB〈i,H1
i 〉,

. . ., MATCHB〈i,H
f+1

i 〉 from f + 1 matchmakers, it com-

putes Hi = ∪
f+1
j=1 H

j
i . For example, with f = 1 and i = 2, if

the proposer in round 2 receives MATCHB〈2,{(0,C0)}〉 and

0

1

2

3

(a)

C00

1

2

3

(b)

C00

1

C22

3

(c)

C00

1

C22

C33

(d)

Figure 3: A matchmaker’s log over time. (a) Initially, the

matchmaker’s log is empty. (b) Then, the matchmaker re-

ceives MATCHA〈0,C0〉. It inserts C0 in log entry 0 and

returns MATCHB〈0, /0〉 since the log does not contain any

configuration in any round less than 0. (c) The match-

maker then receives MATCHA〈2,C2〉. It inserts C2 in log

entry 2 and returns MATCHB〈2,{(0,C0)}〉. (d) It then re-

ceives MATCHA〈3,C3〉, inserts C3 in log entry 3, and returns

MATCHB〈3,{(0,C0),(2,C2)}〉. At this point, if the match-

maker were to receive MATCHA〈1,C1〉, it would ignore it.

Algorithm 2 Acceptor Pseudocode

State: the largest seen round r, initially −1

State: the largest round vr voted in, initially −1

State: the value vv voted for in round vr, initially null

1: upon receiving PHASE1A〈i〉 from p with i > r do

2: r← i

3: send PHASE1B〈i,vr,vv〉 to p

4: upon receiving PHASE2A〈i,x〉 from p with i≥ r do

5: r,vr,vv← i, i,x

6: send PHASE2B〈i〉 to p

MATCHB〈2,{(1,C1)}〉, it computes H2 = {(0,C0),(1,C1)}.
Note that every round is statically assigned to a single pro-

poser and that a proposer selects a single configuration for a

round, so if two matchmakers return configurations for the

same round, they are guaranteed to be the same.

The proposer then ends the Matchmaking phase and begins

Phase 1. It sends PHASE1A messages to every acceptor in

every configuration in Hi and waits to receive PHASE1B mes-

sages from a Phase 1 quorum from every configuration. Using

the previous example, the proposer sends PHASE1A mes-

sages to every acceptor in C0 and C1 and waits for PHASE1B

messages from a Phase 1 quorum of C0 and a Phase 1 quorum

of C1. The proposer then runs Phase 2 with Ci.

Acceptor and proposer pseudocode are shown in Algo-

rithm 2 and Algorithm 3 respectively. To keep things simple,

we assume that round numbers are integers, but generaliz-

ing to an arbitrary totally ordered set is straightforward. A

Matchmaker Paxos acceptor is identical to a Paxos acceptor.

A Matchmaker Paxos proposer is nearly identical to a Flexible

Paxos proposer with the exception of the Matchmaking phase

and the configurations used in Phase 1 and Phase 2. For clar-

ity of exposition, we omit straightforward details surrounding

re-sending dropped messages and nacking ignored messages.

4

Journal of Systems Research (JSys) 2021

Algorithm 3 Proposer Pseudocode. Modifications to a Paxos

proposer are underlined and shown in blue.

State: a value x, initially null

State: a round i, initially −1

State: the configuration Ci for round i, initially null

State: the prior configurations Hi for round i, initially null

1: upon receiving value y from a client do

2: i← next largest round owned by this proposer

3: x← y

4: Ci← an arbitrary configuration

5: send MATCHA〈i,Ci〉 to all of the matchmakers

6: upon receiving MATCHB〈i,H1
i 〉, . . . ,MATCHB〈i,H

f+1
i 〉

from f +1 matchmakers do

7: Hi←
⋃ f+1

j=1 H
j

i

8: send PHASE1A〈i〉 to every acceptor in Hi

9: upon receiving PHASE1B〈i,−,−〉 from a Phase 1 quo-

rum from every configuration in Hi do

10: k← the largest vr in any PHASE1B〈i,vr,vv〉
11: if k 6=−1 then

12: x← the corresponding vv in round k

13: send PHASE2A〈i,x〉 to every acceptor in Ci

14: upon receiving PHASE2B〈i〉 from a Phase 2 quorum do

15: x is chosen, inform the client

3.3 Proof of Safety

We now prove that Matchmaker Paxos is safe; i.e. every

execution of Matchmaker Paxos chooses at most one value.

Proof. Our proof is based on the Paxos safety proof in [19].

We prove, for every round i, the statement P(i): “if a proposer

proposes a value v in round i (i.e. sends a PHASE2A message

for value v in round i), then no value other than v has been or

will be chosen in any round less than i.” At most one value is

ever proposed in a given round, so at most one value is ever

chosen in a given round. Thus, P(i) suffices to prove that

Matchmaker Paxos is safe for the following reason. Assume

for contradiction that Matchmaker Paxos chooses distinct

values x and y in rounds j and i with j < i. Some proposer

must have proposed y in round i, so P(i) ensures us that no

value other than y could have been chosen in round j. But, x

was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous

because there are no rounds less than 0. For the general

case P(i), we assume P(0), . . . ,P(i−1). We perform a case

analysis on the proposer’s pseudocode (Algorithm 3). Either

k is −1 or it is not (line 11). First, assume it is not. In this

case, the proposer proposes x, the value proposed in round k

(line 12). We perform a case analysis on round j to show that

no value other than x has been or will be chosen in any round

j < i. That is, we show P(i).
Case 1: j > k. We show that no value has been or will be

chosen in round j. Recall that at the end of the Matchmaking

phase, the proposer computed the set Hi of prior configura-

tions using responses from a set Mi of f + 1 matchmakers.

Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent

PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase

1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every

acceptor in Q set its round r to i, and in doing so, promised

to never vote in any round less than i. Moreover, none of

the acceptors in Q had voted in any round greater than k. So,

every acceptor in Q has not voted and never will vote in round

j. For a value v′ to be chosen in round j, it must receive votes

from some Phase 2 quorum Q′ of round j acceptors. But, Q

and Q′ necessarily intersect, so this is impossible. Thus, no

value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for

round j. Hi is the union of f +1 MATCHB messages from the

f +1 matchmakers in Mi. Thus, if Hi does not contain a con-

figuration for round j, then none of the MATCHB messages

did either. This means that for every matchmaker m ∈ Mi,

when m received MATCHA〈i,Ci〉, it did not contain a con-

figuration for round j in its log. Moreover, by processing

the MATCHA〈i,Ci〉 request, the matchmaker is guaranteed to

never process a MATCHA〈 j,C j〉 request in the future. Thus,

every matchmaker in Mi has not processed a MATCHA re-

quest in round j and never will. For a value to be chosen

in round j, the proposer executing round j must first receive

replies from f +1 matchmakers, say M j, in round j. But, Mi

and M j necessarily intersect, so this is impossible. Thus, no

value has been or will be chosen in round j.

Case 2: j = k. In a given round, at most one value is pro-

posed, let alone chosen. x is the value proposed in round k,

so no other value could be chosen in round k.

Case 3: j < k. By induction, P(k) states that no value other

than x has been or will be chosen in any round less than k.

This includes round j.

Finally, if k is −1, then we are in the same situation as in

Case 1. No value has or will be chosen in a round j < i.

3.4 Garbage Collection (How)

We’ve discussed how a proposer can change its round and

introduce a new configuration. Now, we explain how to shut

down old configurations. At the beginning of round i, a pro-

poser p executes the Matchmaking phase and computes a set

Hi of configurations in rounds less than i. The proposer then

executes Phase 1 with the acceptors in these configurations.

Assume Hi contains a configuration C j for a round j < i. If

we prematurely shut down the acceptors in C j, then proposer

p will get stuck in Phase 1, waiting for PHASE1B messages

from a quorum of nodes that have been shut down. Therefore,

we cannot shut down the acceptors in a configuration C j until

we are sure that the matchmakers will never again return C j

5

Journal of Systems Research (JSys) 2021

during the Matchmaking phase.

Thus, we extend Matchmaker Paxos to allow matchmakers

to garbage collect configurations from their logs, ensuring

that the garbage collected configurations will not be returned

during any future Matchmaking phase. More concretely, a

proposer p can now send a GARBAGEA〈i〉 command to the

matchmakers informing them to garbage collect all configu-

rations in rounds less than i. When a matchmaker receives

a GARBAGEA〈i〉 message, it deletes log entry L[j] for every

round j < i. It then updates a garbage collection watermark w

to the maximum of w and i and sends back a GARBAGEB〈i〉
message to the proposer. See Algorithm 4.

Algorithm 4 Matchmaker Pseudocode (with GC). Changes

to Algorithm 1 are underlined and shown in blue.

State: a log L indexed by round, initially empty

State: a garbage collection watermark w, initially 0

1: upon receiving GARBAGEA〈i〉 from proposer p do

2: delete L[j] for all j < i.

3: w←max(w, i)
4: send GARBAGEB〈i〉 to p

5: upon receiving MATCHA〈i,Ci〉 from proposer p do

6: if i < w or ∃C j in round j ≥ i in L then

7: ignore the MATCHA〈i,Ci〉 message

8: else

9: Hi←{(j,C j) |C j ∈ L}
10: L[i]←Ci

11: send MATCHB〈i,w,Hi〉 to p

We also update the Matchmaking phase in three ways.

First, a matchmaker ignores a MATCHA〈i,Ci〉 message if

i has been garbage collected (i.e. if i < w). Second, a

matchmaker returns its garbage collection watermark w in

every MATCHB that it sends. Third, when a proposer

receives MATCHB〈i,w1,H
1
i 〉, . . ., MATCHB〈i,w f+1,H

f+1
i 〉

from f +1 matchmakers, it again computes Hi = ∪
f+1
j=1 H

j
i . It

then computes w = max
f+1
j=1 w j and prunes every configura-

tion in Hi in a round less than w. In other words, if any of the

f +1 matchmakers have garbage collected round j, then the

proposer also garbage collects round j.

Once a proposer receives GARBAGEB〈i〉 messages from

at least f +1 matchmakers M, it is guaranteed that all future

Matchmaking phases will not include any configuration in

any round less than i. Why? Consider a future Matchmaking

phase run with f +1 matchmakers M′. M and M′ intersect, so

some matchmaker in the intersection has a garbage collection

watermark at least as large as i. Thus, once a configuration

has been garbage collected by f + 1 matchmakers, we can

shut down the acceptors in the configuration.

3.5 Garbage Collection (When)

Once a configuration has been garbage collected, it is safe to

shut it down, but when is it safe to garbage collect a configu-

ration? It is not always safe. For example, if we prematurely

garbage collect configuration C j in round j, a future proposer

in round i > j may not learn about a value v chosen in round j

and then erroneously get a value other than v chosen in round

i. There are three situations in which it is safe for a proposer

pi in round i to issue a GARBAGEA〈i〉 command. We explain

the three situations and provide intuition on why they are

safe. Later, we’ll see that all three scenarios are important for

Matchmaker MultiPaxos. See Section A for a safety proof.

Scenario 1. If the proposer pi gets a value x chosen in

round i, then it can safely issue a GARBAGEA〈i〉 command.

Why? When a proposer p j in round j > i executes Phase

1, it will learn about the value x and propose x in Phase 2.

But first, it must establish that no value other than x has been

or will be chosen in any round less than j. This is P(j)
from the safety proof in Section 3.3. The proposer pi already

established this fact for all rounds less than i (this is P(i)), so

any communication with the configurations in these rounds is

redundant. Thus, we can garbage collect them.

Scenario 2. If the proposer pi executes Phase 1 in round i

and finds k =−1 (see Algorithm 3), then it can safely issue

a GARBAGEA〈i〉 command. Recall that if k = −1, then no

value has been or will be chosen in any round less than i.

This situation is similar to Scenario 1. Any future proposer

p j in round j > i does not have to redundantly communicate

with the configurations in rounds less than i since pi already

established that no value has been chosen in these rounds.

Scenario 3. If the proposer pi learns that a value x has al-

ready been chosen and has been stored on f +1 non-acceptor

machines (e.g., f +1 proposers), then the proposer can safely

issue a GARBAGEA〈i〉 command after it informs a Phase 2

quorum of acceptors in Ci of this fact. Any future proposer

p j in round j > i will contact a Phase 1 quorum of Ci and

encounter at least one acceptor that knows the value x has

already been chosen. When this acceptor informs p j that

a value x has already been chosen, p j stops executing the

protocol entirely and simply fetches the value x from one of

the f +1 machines that store the value. Note that storing the

value on f +1 machines ensures that some machine will store

the value despite f failures. The decision of exactly which

f +1 machines is not important.

Later, we’ll extend this garbage collection protocol to

Matchmaker MultiPaxos (Section 4) and see empirically that

matchmakers usually return just a single configuration (Sec-

tion 7).

3.6 Optimizations

We now present a couple of protocol optimizations. First,

note that a proposer can proactively run the Matchmaking

6

Journal of Systems Research (JSys) 2021

phase in round i before it hears from a client. This is similar

to proactively executing Phase 1, a standard optimization [12].

We call this optimization proactive matchmaking.

Second, assume that the proposer in round i has executed

the Matchmaking phase and Phase 1. Through Phase 1, it

finds that k=−1 and thus learns that no value has been chosen

in any round less than i (see the safety proof above). Assume

that before executing Phase 2 in round i, the proposer decides

to perform a reconfiguration. To perform the reconfiguration,

the proposer stops executing round i and begins executing the

next round i+11. Typically to perform the reconfiguration,

the proposer would have to execute the Matchmaking phase,

Phase 1, and Phase 2 in round i+ 1. However, in this case,

after executing the Matchmaking phase in round i+ 1, the

proposer can skip Phase 1 and proceed directly to Phase 2.

Why? The proposer established in round i that no value has

been or will be chosen in any round less than i. Moreover,

because it did not run Phase 2 in round i, it also knows that no

value has been or will be chosen in round i. Together, these

imply that no value has been or will be chosen in any round

less than i+ 1. Normally, the proposer would run Phase 1

in round i+ 1 to establish this fact, but since it has already

established it, it can instead proceed directly to Phase 2. We

call this optimization Phase 1 bypassing.

Phase 1 Bypassing depends on a proposer being the leader

of round i and the leader of the next round i+ 1. We can

construct a set of rounds such that this is always the case. Let

the set of rounds be the set of lexicographically ordered tuples

(r, id,s) where r and s are both integers and id is a proposer

id. A proposer is responsible for all the rounds that contain

its id. With this set of rounds, the proposer p in round (r, p,s)
always owns the next round (r, p,s+1). For example given

two proposers a and b, we have the following ordering on

rounds:

(0,a,0)< (0,a,1)< (0,a,2)< (0,a,3)< · · ·

(0,b,0)< (0,b,1)< (0,b,2)< (0,b,3)< · · ·

(1,a,0)< (1,a,1)< (1,a,2)< (1,a,3)< · · ·

We assume this round scheme throughout the rest of the paper.

In the next section, we’ll see that this optimization is essential

for implementing Matchmaker MultiPaxos with good perfor-

mance. Also note that this optimization is not particular to

Matchmaker Paxos. Paxos and MultiPaxos can both take

advantage of this optimization.

4 Matchmaker MultiPaxos

4.1 MultiPaxos

First, we summarize MultiPaxos. Whereas Paxos is a consen-

sus protocol that agrees on a single value, MultiPaxos [17,40]

1Note that given a round i, we denote the next largest round in the total

ordered set of rounds i+1. We call this the “next round”.

is a state machine replication protocol that agrees on a se-

quence, or “log” of values. MultiPaxos manages multiple

replicas of a state machine. Clients send state machine com-

mands to MultiPaxos, MultiPaxos places the commands in

a totally ordered log, and state machine replicas execute the

commands in log order. By beginning in the same initial

state and executing the same commands in the same order, all

deterministic state machine replicas are kept in sync.

c1

c2

c3

p1

p2

a1

a2

a3

r1

r2

Clients
f +1

Proposers

Configuration C

of Acceptors

f +1

Replicas

1 2

2
3

3
4

4

5

Figure 4: An example execution of MultiPaxos (f = 1). The

leader is adorned with a crown.

To agree on a log of commands, MultiPaxos implements

one instance of Paxos for every log entry. The ith instance of

Paxos chooses the command in log entry i. More concretely,

a MultiPaxos deployment that tolerates f faults consists of

an arbitrary number of clients, at least f + 1 proposers, a

configuration C of acceptors which can tolerate f failures,

and at least f +1 replicas, as illustrated in Figure 4.

One of the proposers is elected leader in some round, say

round i. We assume the leader knows that log entries up to

and including log entry kc have already been chosen (e.g.,

by communicating with the replicas). We call this log entry

the commit index. The leader then runs Phase 1 of Paxos

in round i for every log entry. Note that even though there

are an infinite number of log entries larger than kc, the leader

can execute Phase 1 using a finite amount of information. In

particular, the leader sends a single PHASE1A〈i〉 message

that acts as the PHASE1A message for every log entry larger

than kc. Also, an acceptor replies with a PHASE1B〈i,vr,vv〉
message only for log entries in which the acceptor has voted.

The infinitely many log entries in which the acceptor has not

yet voted do not yield an explicit PHASE1B message.

a

0

b

1

c

kc

d?

3 4

e?

kp 6 7 8

· · ·

Region 1:

(already chosen)

Region 2:

(maybe chosen)

Region 3:

(not chosen)

Figure 5: A leader’s knowledge of the log after Phase 1.

The leader’s knowledge about the log after Phase 1 can be

characterized by the commit index kc and a pending index

7

Journal of Systems Research (JSys) 2021

kp with kc ≤ kp, as shown in Figure 5. The commit index

and pending index divide the log into three regions: a prefix

of chosen log entries (Region 1), a suffix of unchosen log

entries (Region 3), and a middle region of pending log entries

(Region 2). More specifically:

• Region 1 [0,kc]: The leader knows that a command has

been chosen in every log entry less than or equal to kc.

• Region 3 [kp +1,∞): The leader knows that no command

has been chosen (in any round less than i) in any log entry

larger than kp.

• Region 2 [kc +1,kp]: If there is a command that may have

already been chosen, then it appears between kc and kp.

Region 2 may also contain some log entries in which the

leader knows (from executing a previous round) that a

value has already been chosen, and it may contain some

log entries in which the leader knows (from counting votes

in Phase 1) that no value has been chosen (we call these

“holes”).

After Phase 1, the leader sends a PHASE2A message for

every unchosen log entry in Region 2, proposing a “no-op”

command for the holes. Simultaneously, the leader begins

accepting client requests. When a client wants to propose a

state machine command, it sends the command to the leader.

The leader assigns log entries to commands in increasing

order, beginning at kp+1. It then runs Phase 2 of Paxos to get

the command chosen in that entry in round i. Once the leader

learns that a command has been chosen in a given log entry,

it informs the replicas. Replicas insert chosen commands

into their logs and execute the logs in prefix order, sending

the results of execution back to the clients. This execution is

illustrated in Figure 4.

It is critical to note that a leader performs Phase 1 of Paxos

only once per round, not once per command. In other words,

Phase 1 is not performed during normal operation. It is per-

formed only when the leader fails and a new leader is elected

in a larger round, an uncommon occurrence.

4.2 Matchmaker MultiPaxos

We first extend Matchmaker Paxos to Matchmaker Multi-

Paxos with proactive matchmaking but without Phase 1 by-

passing or garbage collection. We’ll see how to incorporate

these two momentarily in Section 4.4. The extension from

Matchmaker Paxos to Matchmaker MultiPaxos is analogous

to the extension of Paxos to MultiPaxos. Matchmaker Mul-

tiPaxos reaches consensus on a totally ordered log of state

machine commands, one log entry at a time, using one in-

stance of Matchmaker Paxos for every log entry.

More concretely, a Matchmaker MultiPaxos deployment

consists of an arbitrary number of clients, at least f +1 pro-

posers, a set of 2 f + 1 matchmakers, a dynamic set of ac-

ceptors (one configuration per round which can tolerate f

failures), and a set of at least f + 1 state machine replicas.

We assume, as is standard, that a leader election algorithm

is used to select one of the proposers as a stable leader in

some round, say round i. The leader selects a configuration

Ci of acceptors that it will use for every log entry. The mecha-

nism by which the configuration is chosen is an orthogonal

concern. A system administrator, for example, could send

the configuration to the leader, or the configuration could be

read from an external service. Throughout the paper, we do

not depend any specific mechanism by which a configuration

is chosen. We assume that proposers use some unspecified

abstract process to select configurations.

The leader then executes the Matchmaking phase in

the same way as in Matchmaker Paxos (i.e. it sends

MATCHA〈i,Ci〉 messages to the matchmakers and awaits

MATCHB〈i,Hi〉 responses). After the Matchmaking phase

completes, the leader executes Phase 1 for every log entry.

This is identical to MultiPaxos, except that the leader uses

the configurations returned by the matchmakers rather than

assuming a fixed configuration. Note that proactive match-

making allows the leader to execute the Matchmaking phase

and Phase 1 before receiving any client requests.

The leader then enters Phase 2 and operates exactly as it

would in MultiPaxos. It executes Phase 2 with Ci for the

log entries in Region 2. Moreover, when it receives a state

machine command from a client, it assigns the command a

log entry in Region 3, runs Phase 2 with the acceptors in

Ci, and informs the replicas when the command is chosen.

Replicas execute commands in log order and send the results

of executing commands back to the clients.

4.3 Discussion

To reconfigure from some old configuration Cold in round i to

some new configuration Cnew, the Matchmaker MultiPaxos

leader of round i simply advances to round i+1 and selects

the new configuration Cnew. The new configuration is active

immediately after the Matchmaking phase, a one round trip

delay. Note that the acceptors in the new configuration Cnew

do not have to undergo any sort of warm up or bootstrapping

and do not have to contact any other acceptors in any other

configuration.

The new configuration is active immediately, but it is not

safe to deactivate the acceptors in the old configuration im-

mediately, as we saw in Section 3.5. We extend Matchmaker

Paxos’s garbage collection to Matchmaker MultiPaxos mo-

mentarily.

Also note that Matchmaker MultiPaxos does not perform

the Matchmaking phase or Phase 1 on the critical path of

normal execution. Similar to how MultiPaxos executes Phase

1 only once per leader change (and not once per command),

Matchmaker MultiPaxos runs the Matchmaking phase and

Phase 1 only when a new leader is elected or when a leader

changes its round (e.g., when a leader transitions from round

8

Journal of Systems Research (JSys) 2021

c1

c2

c3

p1

p2

m1
m2

m3

a1

a2

a3

b1

b2

b3

1
12
2

a

b

b

c

c

d

(a) Matchmaking

c1

c2

c3

p1

p2

m1
m2

m3

a1

a2

a3

b1

b2

b3

3

3
4

4

a

(b) Phase 1

c1

c2

c3

p1

p2

m1
m2

m3

a1

a2

a3

b1

b2

b3

5
5

6
6

a

b

b

c

c

d

(c) Phase 2

Figure 6: An example Matchmaker MultiPaxos reconfiguration without Phase 1 bypassing. The leader p1 reconfigures from

the acceptors a1, a2, a3 to the acceptors b1, b2, b3. Client commands are drawn as gray dashed lines. Note that every subfigure

shows one phase of a reconfiguration using solid colored lines, but the dashed lines show the complete execution of a client

request that runs concurrently with the reconfiguration. For simplicity, we assume that every proposer also serves as a replica.

i to round i+ 1 as part of a reconfiguration). In the normal

case (i.e. during Phase 2), Matchmaker MultiPaxos and Mul-

tiPaxos are identical, and Matchmaker MultiPaxos does not

introduce any overheads. In the normal case, Matchmaker

MultiPaxos deploys a single stable leader that changes rounds

only to perform a reconfiguration. Changing from one leader

to another only happens after a leader has failed.

Furthermore, configurations do not have to be unique

across rounds. The leader in round i is free to re-use a config-

uration C j that was used in some round j < i.

Finally, because Matchmaker MultiPaxos deploys more

nodes than MultiPaxos, the mean time to failure is decreased,

and it will take less time to reach f failures. However, this

mean time to failure is many orders of magnitude larger than

the time required to perform a reconfiguration. As long as

failed machines are replaced via reconfiguration in a reason-

able amount of time, it is unlikely to experience f or more

failures.

4.4 Optimization

Ideally, Matchmaker MultiPaxos’ performance would be un-

affected by a reconfiguration. The latency of every client

request and the protocol’s overall throughput would remain

constant throughout a reconfiguration. Matchmaker Multi-

Paxos as we’ve described it so far, however, does not meet

this ideal. During a reconfiguration, a leader must temporarily

stop processing client commands and wait for the reconfigu-

ration to finish before resuming normal operation.

This is illustrated in Figure 6. Figure 6 shows a leader p1 re-

configuring from a configuration of acceptors Cold consisting

of acceptors a1, a2, and a3 in round i to a new configuration

of acceptors Cnew consisting of acceptors b1, b2, and b3 in

round i+ 1. While the leader performs the reconfiguration,

clients continue to send state machine commands to the leader.

We consider such a command and perform a case analysis on

when the command arrives at the leader to see whether or not

the command has to be stalled.

Case 1: Matchmaking (Figure 6a). If the leader receives

a command during the Matchmaking phase, then the leader

can process the command as normal in round i using the

acceptors in Cold. Even though the leader is executing the

Matchmaking phase in round i+1 and is communicating with

the matchmakers, the acceptors in Cold are oblivious to this

and can process commands in Phase 2 in round i.

Case 2: Phase 1 (Figure 6b). If the leader receives a

command during Phase 1, then the leader cannot process the

command. It must delay the processing of the command

until Phase 1 finishes. Here’s why. Once an acceptor in Cold

receives a PHASE1A〈i+1〉 message, it will reject any future

commands in rounds less than i+1, so the leader is unable

to send the command to Cold. The leader also cannot send

the command to Cnew in round i+ 1 because it has not yet

finished executing Phase 1.

Case 3: Phase 2 (Figure 6c). If the leader receives a com-

mand during Phase 2, then the leader can send the command

to the new acceptors in Cnew in round i+1. This is the normal

case of execution.

In summary, any commands received during Phase 1 of a

reconfiguration are delayed. Fortunately, we can eliminate

this problem by using Phase 1 bypassing. Consider a leader

performing a reconfiguration from Ci in round i to Ci+1 in

round i+1. At the end of the Matchmaking phase and at the

beginning of Phase 1 (in round i+1), let k be the largest log

entry that the leader has assigned to a command. That is, all

log entries after entry k are empty. These log entries satisfy

the preconditions of Phase 1 bypassing, so it is safe for the

leader to bypass Phase 1 in round i+1 for these log entries in

the following way. When a leader receives a command after

the Matchmaking phase, it assigns the command a log entry

9

Journal of Systems Research (JSys) 2021

larger than k, skips Phase 1, and executes Phase 2 in round

i+1 with Cnew immediately.

With this optimization and the round scheme described in

Section 3.6, no state machine commands are delayed. Com-

mands received during the Matchmaking phase or earlier are

chosen in round i by Cold in log entries up to and including

k. Commands received during Phase 1, Phase 2, or later are

chosen in round i+1 by Cnew in log entries k+1, k+2, k+3,

and so on. With this optimization Matchmaker MultiPaxos

can be reconfigured with minimal performance degradation.

4.5 Garbage Collection

Recall that the Matchmaker MultiPaxos leader pi in round i

uses a single configuration Ci for every log entry. The leader

pi can safely issue a GARBAGEA〈i〉 command to the match-

makers once it ensures that every log entry satisfies one of the

three scenarios described in Section 3.5. Recall from Figure 5

that at the end of Phase 1 and at the beginning of Phase 2,

the log can be divided into three regions. Each of the three

garbage collection scenarios applies to one of the regions.

Scenario 2 applies to Region 3. These are the log entries

for which k =−1. Scenario 1 applies to Region 2, once the

leader has successfully chosen commands in all of the log

entries in Region 2. Scenario 3 applies to Region 1 if we make

the following adjustments. First, we deploy 2 f +1 replicas

instead of f + 1. Second, the leader ensures that the prefix

of previously chosen log entries is stored on at least f + 1

of the 2 f + 1 replicas. Third, the leader informs a Phase 2

quorum of Ci acceptors that these commands have been stored

on the replicas. Every replica maintains a copy of the log

of state machine commands and cannot discard a command

after execution. The log must also be garbage collected over

time, for example, by using snapshots [34]. Note that garbage

collecting the log is an orthogonal (but also complicated)

issue from garbage collecting old configurations. It must be

done regardless of reconfigurations and is outside of the scope

of this paper.

In summary, the leader pi of round i executes as follows.

It executes the Matchmaking phase to get the prior configu-

rations Hi. It executes Phase 1 with the configurations in Hi.

It enters Phase 2 and chooses commands in Region 2. It in-

forms a Phase 2 quorum of Ci acceptors once the commands

in Region 1 have been stored on f + 1 replicas. It issues

a GARBAGEA〈i〉 command to the matchmakers and awaits

f + 1 GARBAGEB〈i〉 responses. At this point, all previous

configurations can be shut down.

Note that the leader can begin processing state machine

commands from clients as soon as it enters Phase 2. It does

not have to stall commands during garbage collection. Note

also that during normal operation, old configurations are

garbage collected very quickly. In Section 7, we show that Hi

almost always contains a single configuration (i.e. Ci−1).

5 Reconfiguring Matchmakers

We’ve discussed how Matchmaker MultiPaxos allows us to

reconfigure the set of acceptors. In this section, we discuss

how to reconfigure proposers, replicas, and matchmakers

(themselves).

Reconfiguring proposers and replicas is straightforward.

In fact, Matchmaker MultiPaxos reconfigures proposers and

replicas in exactly the same way as MultiPaxos [40], so we

do not discuss it at length. In short, a proposer can be safely

added or removed at any time. Replicas can also be safely

added or removed at any time so long as we ensure that com-

mands replicated on f +1 replicas remain replicated on f +1

replicas. This is a difficult, yet orthogonal challenge. Existing

approaches can be adopted by Matchmaker MultiPaxos [35].

For performance, a newly introduced proposer should contact

an existing proposer or replica to learn about the prefix of

already chosen commands, and a newly introduced replica

should copy the log from an existing replica.

Reconfiguring matchmakers is a bit more involved, but still

relatively straightforward. Recall that proposers perform the

Matchmaking phase only during a change in round. Thus, for

the vast majority of the time—specifically, when there is a

single, stable leader—the matchmakers are completely idle.

This means that the way we reconfigure the matchmakers has

to be safe, but it doesn’t have to be efficient. The matchmak-

ers can be reconfigured at any time between round changes

without any impact on the performance.

Thus, we use the simplest approach to reconfiguration:

we shut down the old matchmakers and replace them with

new ones, making sure that the new matchmakers’ initial

state is the same as the old matchmakers’ final state. More

concretely, we reconfigure from a set Mold of matchmakers

to a new set Mnew as follows. First, a proposer (or any other

node) sends a STOPA〈〉 message to the matchmakers in Mold.

When a matchmaker mi receives a STOPA〈〉 message, it stops

processing messages (except for other STOPA〈〉 messages)

and replies with STOPB〈Li,wi〉 where Li is mi’s log and wi is

its garbage collection watermark. When the proposer receives

STOPB messages from f +1 matchmakers, it knows that the

matchmakers have effectively been shut down. It computes

w as the maximum of every returned wi. It computes L as

the union of the returned logs, and removes all entries of L

that appear in a round less than w. An example of this log

merging is illustrated in Figure 7.

The proposer then sends L and w to all of the matchmakers

in Mnew. Each matchmaker adopts these values as its initial

state. At this point, the matchmakers in Mnew cannot begin

processing commands yet. Naively, it is possible that two

different nodes could simultaneously attempt to reconfigure

to two disjoint sets of matchmakers, say Mnew and M′new.

To avoid this, every matchmaker in Mold doubles as a Paxos

acceptor. A proposer attempting to reconfigure to Mnew acts

as a Paxos proposer and gets the value Mnew chosen by the

10

Journal of Systems Research (JSys) 2021

C0(w) 0

C11

2

3

C44

L0

×0

×1

C2(w) 2

3

4

L1

×0

C1(w) 1

C22

3

4

L2

×0

×1

C2(w) 2

3

C44

Figure 7: An example of merging three matchmaker logs (L0,

L1, and L2) during a matchmaker reconfiguration. Garbage

collected log entries are shown in red.

matchmakers (which are acting as Paxos acceptors). Once

Mnew is chosen, the proposer notifies the matchmakers in

Mnew that the reconfiguration is complete and that they are

free to start processing commands.

If a proposer contacts a stale set of matchmakers (e.g.,

Mold), the matchmakers inform the proposer of their succes-

sors (e.g., Mnew). This newer set of matchmakers may also

be stale, so the proposer repeatedly polls stale matchmakers

until it finds the active set of matchmakers. In this way, the

matchmakers form a chain, with each set of matchmakers

pointing to its successor.

Before a set of matchmakers can be shut down, the identity

of its successors must be persisted in some name service

(e.g., DNS). Ideally for performance, the name service would

always point to the active set of matchmakers, but this is not

required for safety.

6 Theoretical Insights

MultiPaxos To reconfigure from a set of nodes N to a new

set of nodes N′, a MultiPaxos leader gets the value N′ chosen

in the log at some index i. All commands in the log starting

at position i+α are chosen using the nodes in N′ instead of

the nodes in N, where α is some configurable parameter. This

protocol is called Horizontal MultiPaxos.

a

0

b

1

c

2

N′

3

d

4

no-
op

5

no-
op

6

e

7

f

8

· · ·

α

chosen with N chosen with N′

Figure 8: A MultiPaxos log during reconfiguration (α = 4).

Matchmaker MultiPaxos has the following advantages over

Horizontal MultiPaxos. First, the core idea behind Horizontal

MultiPaxos seems simple, but the protocol has a number of

hidden subtleties [27]. For example, a newly elected Horizon-

tal MultiPaxos leader with a stale log may not know the latest

configuration of nodes. It may not even know which config-

uration of nodes to contact to learn the latest configuration

of nodes. This makes it unclear when it is safe to shut down

old configurations because a newly elected Horizontal Multi-

Paxos leader can be arbitrarily out of date. These subtleties

and the many others described in [27] makes Horizontal Mul-

tiPaxos significantly more complicated than it initially seems.

Matchmaker Paxos addresses these subtleties directly. The

matchmakers can always be used to learn the latest configura-

tion, and our garbage collection protocol details exactly when

and how to shut down old configurations safely.

Second, horizontal reconfiguration is not generally ap-

plicable. It is fundamentally incompatible with replica-

tion protocols that do not replicate a log. Moreover, re-

searchers are finding that avoiding a log can often be ad-

vantageous [2, 8, 18, 31, 38, 39, 41]. For example, protocols

like Generalized Paxos [18], EPaxos [31], Atlas [8], and Cae-

sar [2] arrange commands in a partially ordered graph instead

of a totally ordered log to exploit commutativity between com-

mands. CASPaxos [38] maintains a single value, instead of a

log or graph, for simplicity. Databases like TAPIR [41] avoid

ordering transactions in a log for improved performance, and

databases like Meerkat [39] do the same to improve scala-

bility. Even some protocols with logs cannot use the ideas

behind Horizontal MultiPaxos. For example, Raft cannot

safely perform Horizontal MultiPaxos’ reconfiguration [34].

Because these protocols do not replicate logs, they cannot

use MultiPaxos’ horizontal reconfiguration protocol. How-

ever, while none of the protocols replicate logs, all of them

have rounds. This means that the protocols can either use

Matchmaker Paxos directly, or at least borrow ideas from

Matchmaker Paxos for reconfiguration. For example, we are

developing a protocol called BPaxos that is an EPaxos [31]

variant which partially orders commands into a graph. BPaxos

is a modular protocol that uses Paxos as a black box subrou-

tine. Due to this modularity, we can directly replace Paxos

with Matchmaker Paxos to support reconfiguration. The same

idea can also be applied to EPaxos. CASPaxos [38] is simi-

lar to Paxos and can be extended to Matchmaker CASPaxos

in the same way we extended Paxos to Matchmaker Paxos.

These are two simple examples, and we don’t claim that

extending Matchmaker Paxos to some of the other more com-

plicated protocols is always easy. But, the universality of

rounds makes Matchmaker Paxos an attractive foundation on

top of which other non-log based protocols can build their

own reconfiguration protocols.

One could argue that these other protocols are not used as

much in industry, so it’s not that important for them to have

reconfiguration protocols, but we think the causation is in the

reverse direction! Without reconfiguration, these protocols

cannot be used in industry.

Third, optimizing Horizontal MultiPaxos is not easy. A

MultiPaxos leader can process at most α unchosen commands

at a time. This makes α an important parameter to tune. If we

11

Journal of Systems Research (JSys) 2021

set α too low, then we limit the protocol’s pipeline parallelism

and the throughput suffers. Note that a small α reduces the

normal case throughput of Horizontal MultiPaxos, not just the

throughput during reconfiguration. If we set α too high, then

we have to wait a long time for a reconfiguration to complete.

If we are reconfiguring because of a failed node, then we

might have to endure a long reconfiguration with reduced

throughput. Matchmaker MultiPaxos has no α parameter to

tune. Note that Horizontal MultiPaxos can be implemented

with an optimization in which we select a very large α and

then get a sequence of α noops in the log to force a quick

reconfiguration. This optimization helps avoid the difficulties

of finding a good value of α, but the optimization introduces a

new set of subtleties into the protocol. For example, the leader

cannot process client requests while it is executing Phase 2

for the α noops. The protocol has to implement additional

mechanisms to avoid this one round trip stall.

Fourth, Horizontal MultiPaxos requires a Phase 1 and

Phase 2 quorum of acceptors from an old configuration in

order to perform a reconfiguration after a leader failure, but

Matchmaker MultiPaxos only requires a Phase 1 quorum.

Some read optimized MultiPaxos variants perform reads

against Phase 1 quorums [5]. These protocols benefit from

having very small Phase 1 quorums and very large Phase 2

quorums, requiring Horizontal MultiPaxos to contact far more

nodes than Matchmaker MultiPaxos during a reconfiguration.

Finally, we clarify that if Horizontal MultiPaxos is imple-

mented with all of its subtleties ironed out, is deployed with a

good choice of α, and is run with small Phase 2 quorums, then

it can perform a reconfiguration without performance degra-

dation. In this case, Horizontal MultiPaxos and Matchmaker

MultiPaxos both reconfigure, in some sense, “optimally”.

Horizontal MultiPaxos also has some advantages over

Matchmaker MultiPaxos. For example, reconfiguring the

set of matchmakers is simple, but it is still another recon-

figuration protocol that has to be implemented which adds

complexity to the system.

Vertical Paxos Matchmaker MultiPaxos significantly im-

proves the practicality of Vertical Paxos [22] in a number

of ways. First, Vertical Paxos is a consensus protocol, not a

state machine replication protocol, and it’s not easy to extend

Vertical Paxos’ garbage collection protocol to a state machine

replication protocol. Vertical Paxos garbage collects old con-

figurations in situations similar to Scenario 1 and Scenario

2 from Section 3.5. It does not include Scenario 3. Without

this, old configurations cannot be garbage collected, which

means that it is never safe to shut down old configurations.

Second, Vertical Paxos requires an external master but

does not describe how to implement the master in an efficient

way. We could implement the master using another state

machine replication protocol like MultiPaxos, but this would

be both slow and overly complex. Plus, we would have to

implement a reconfiguration protocol for the master as well.

Our matchmakers are analogous to the external master but

show that such a master does not require a nested invocation

of state machine replication.

Third, Vertical Paxos requires that a proposer execute Phase

1 in order to perform a reconfiguration. Thus, Vertical Paxos

cannot be extended to MultiPaxos without causing perfor-

mance degradation during reconfiguration. This is not the

case for matchmakers thanks to Phase 1 bypassing.

Fourth, Vertical Paxos does not describe how proposers

learn the configurations used in previous rounds and instead

assumes that configurations are fixed in advance by an or-

acle. Matchmaker Paxos shows that this assumption is not

necessary, as the matchmakers store every configuration.

Fast Paxos Fast Paxos [19] is a Paxos variant that shaves off

one network delay from Paxos in the best case, but can have

higher delays if concurrently proposed commands conflict.

While Paxos quorums consist of f +1 out of 2 f +1 acceptors,

Fast Paxos requires larger quorums. Many protocols have

reduced Fast Paxos quorum sizes a bit, but to date, Fast Paxos

quorum sizes have remained larger than classic Paxos quorum

sizes [8, 31]. Using matchmakers, we can implement Fast

Paxos with a fixed set of f +1 acceptors (and hence with f +1-

sized quorums). Specifically, we deploy Fast Paxos with f +1

acceptors, with a single unanimous Phase 2 quorum, and with

singleton Phase 1 quorums. A full description of the protocol

and a proof of correctness is given in Section C.

DPaxos DPaxos is a Paxos variant that allows every round

to use a different subset of acceptors from some fixed set of

acceptors. Matchmaker Paxos obviates the need for a fixed

set of nodes. DPaxos’ scope is limited to a single instance of

consensus, whereas Matchmaker MultiPaxos shows how to

efficiently reconfigure across multiple instances of consensus

simultaneously. We also discovered that DPaxos’ garbage

collection algorithm is unsafe. Matchmaker MultiPaxos fixes

the bug. See Section D for details.

7 Evaluation

We now evaluate Matchmaker MultiPaxos. Matchmaker Mul-

tiPaxos is implemented in Scala using the Netty networking

library. We deployed Matchmaker MultiPaxos on m5.xlarge

AWS EC2 instances within a single availability zone. We

deploy Matchmaker MultiPaxos with f = 1, f +1 proposers,

2 f +1 acceptors, 2 f +1 matchmakers, and 2 f +1 replicas.

For simplicity, every node is deployed on its own machine,

but in practice, nodes can be physically co-located. In particu-

lar, any two logical roles can be placed on the same machine,

so long as the two roles are not the same. For example, we

can co-locate a leader, an acceptor, a replica, and a match-

maker, but we can’t co-locate two acceptors (without reducing

the fault tolerance of the system). For simplicity, we deploy

12

Journal of Systems Research (JSys) 2021

Table 1: Figure 9 median, interquartile range, and standard

deviation of latency and throughput.

Latency (ms)

1 Client 4 Clients 8 Clients

0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 0.292 0.287 0.317 0.321 0.398 0.410

IQR 0.040 0.026 0.029 0.036 0.036 0.039

stdev 0.114 0.085 0.076 0.081 0.089 0.305

Throughput (commands/second)

1 Client 4 Clients 8 Clients

0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 2,995 3,177 11,874 11,478 19,146 18,446

IQR 152 53 175 145 140 373

stdev 157 111 298 307 358 520

Matchmaker MultiPaxos with a trivial no-op state machine in

which every state machine command is a one byte no-op. All

of our results generalize to more complex state machines as

well (the choice of state machine is orthogonal to reconfigu-

ration).

7.1 Reconfiguration

Experiment Description. We run a benchmark with 1, 4, and

8 clients. Every client executes in a closed loop. It repeat-

edly proposes a state machine command, waits to receive a

response, and then immediately proposes another command.

This model is standard for state machine replication proto-

cols [25, 31, 36] and aligns with the definitions surrounding

linearizability [11]. Every benchmark runs for 35 seconds.

During the first 10 seconds, we perform no reconfigurations.

From 10 seconds to 20 seconds, the leader reconfigures the

set of acceptors once every second. In practice, we would

reconfigure much less often. This is a worst case stress test

for Matchmaker MultiPaxos. For each of the ten reconfigu-

rations, the leader selects a random set of 2 f + 1 acceptors

from a pool of 2× (2 f +1) acceptors. At 25 seconds, we fail

one of the acceptors. 5 seconds later, the leader performs a

reconfiguration to replace the failed acceptor. The delay of 5

seconds is completely arbitrary. The leader can reconfigure

sooner if desired.

We also perform this experiment with an implementation of

MultiPaxos with horizontal reconfiguration. As with Match-

maker MultiPaxos, we deploy MultiPaxos with f + 1 pro-

posers, 2 f + 1 acceptors, and 2 f + 1 replicas. We set α to

8. Because α is equal to the number of clients, MultiPaxos

never stalls because of an insufficiently large α. We do not

implement the noop optimization.

Results. The latency and throughput of Matchmaker Multi-

Paxos are shown in Figure 9. Throughput and latency are both

computed using sliding one second windows. Median latency

1

2

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35
Time

0

10000

20000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 9: Matchmaker MultiPaxos’ latency and throughput

(f = 1). Median latency is shown using solid lines, while the

95% latency is shown as a shaded region above the median

latency. The vertical black lines show reconfigurations. The

vertical dashed red line shows an acceptor failure.

is shown using solid lines, while the 95% latency is shown as

a shaded region above the median latency. The black vertical

lines denote reconfigurations, and the red dashed vertical line

denotes the acceptor failure.

The medians, interquartile ranges (IQR), and standard de-

viations of the latency and throughput (a) during the first 10

seconds and (b) between 10 and 20 seconds are shown in

Table 1. Figure 12 includes violin plots of the same data. The

white circles show the median values, while the thick black

rectangles show the 25th and 75th percentiles. For latency, re-

configuration has little to no impact (roughly 2% changes) on

the medians, IQRs, or standard deviations. The one exception

is that the 8 client standard deviation is significantly larger.

This is due to a small number of outliers. Reconfiguration has

little impact on median throughput, with all differences being

statistically insignificant. The IQRs and standard deviations

sometimes increase and sometimes decrease. The IQR is al-

ways less than 1% of the median throughput, and the standard

deviation is always less than 4%.

For every reconfiguration, the new acceptors become active

within a millisecond. The old acceptors are garbage collected

within five milliseconds. This means that only one configu-

ration is ever returned by the matchmakers. We implement

Matchmaker MultiPaxos with an optimization called thrifti-

ness [31]—where PHASE2A messages are sent to a randomly

selected Phase 2 quorum—so the throughput and latency ex-

pectedly degrade after we fail an acceptor. After we replace

the failed acceptor, throughput and latency return to normal

within two seconds.

The latency and throughput of MultiPaxos is shown in Fig-

13

Journal of Systems Research (JSys) 2021

1

2

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40
Time

0

5000

10000

15000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 10: The latency and throughput of MultiPaxos with

horizontal reconfiguration (f = 1).

ure 10. As with Matchmaker MultiPaxos, MultiPaxos can

perform a horizontal reconfiguration without any performance

degradation. The difference in absolute throughput between

the two protocols is due to minor implementation differences,

but the variance in throughput (rather than the throughput

itself) is what is important for this evaluation. We include

the comparison to MultiPaxos for the sake of having some

baseline against which we can compare Matchmaker Multi-

Paxos, but the comparison is shallow. For this reason, we do

not elaborate on the results much.

While Matchmaker MultiPaxos does provide performance

benefits over MultiPaxos’ and Raft’s reconfiguration proto-

cols, our goal is not to replace these protocols. Rather, there

are dozens of other state machine replication protocols (e.g.,

EPaxos [31], CASPaxos [38], Caesar [2], Atlas [8]) and

distributed databases (e.g., TAPIR [41], Janus [32], Ocean

Vista [9]) that do not have any reconfiguration protocol and

cannot use the existing reconfiguration protocols from Mul-

tiPaxos or Raft. Our hope is that the ideas in Matchmaker

MultiPaxos can be used to implement reconfiguration proto-

cols for these other systems. For this reason, it is difficult

to compare Matchmaker MultiPaxos against some existing

baseline because they simply do not exist.

Summary. This experiment confirms that Matchmaker

MultiPaxos’s throughput and latency remain steady even dur-

ing abnormally frequent reconfiguration. Moreover, it con-

firms that Matchmaker MultiPaxos can reconfigure to a new

set of acceptors and retire the old set of acceptors on the order

of milliseconds.

0s-10s 10s-20s

0.3

0.4

0.5

0.6

0.7

La
te

nc
y

(m
s)

1 client

0s-10s 10s-20s

0.3

0.4

0.5

0.6

4 clients

0s-10s 10s-20s

0.3

0.4

0.5

0.6

0.7
8 clients

0s-10s 10s-20s

2800

3000

3200

Th
ro

ug
hp

ut
 (c

om
m

an
ds

/s
ec

on
d) 1 client

0s-10s 10s-20s

11000

11500

12000

4 clients

0s-10s 10s-20s
17500

18000

18500

19000

19500

8 clients

Figure 11: Violin plots of Figure 9 latency and throughput

during the first 10 seconds and between 10 and 20 seconds.

7.2 Leader Failure

Experiment Description. We deploy Matchmaker Multi-

Paxos exactly as before. Now, each benchmark runs for 20

seconds. During the first 7 seconds, there are no reconfigu-

rations and no failures. At 7 seconds, we fail the leader. 5

seconds later, a new leader is elected and resumes normal

operation. The 5 second delay is arbitrary; a new leader could

be elected quicker if desired.

Results. The latency and throughput of the benchmarks

are shown in Figure 13. During the first 7 seconds, through-

put and latency are both stable. When the leader fails, the

throughput expectedly drops to zero. The throughput and la-

tency return to normal within two seconds after a new leader

is elected. The results for the same experiment, repeated with

Horizontal MultiPaxos, are shown in Figure 14.

Summary. This experiment confirms that the extra latency

of the Matchmaker phase during a leader change is negligible.

7.3 Matchmaker Reconfiguration

Experiment Description. We deploy Matchmaker Multi-

Paxos as above. We again run three benchmarks with 1, 4, and

8 clients. Each benchmark runs for 40 seconds. During the

first 10 seconds, there are no reconfigurations and no failures.

Between 10 and 20 seconds, the leader reconfigures the set of

matchmakers once every second. Every reconfiguration ran-

domly selects 2 f +1 matchmakers from a set of 2× (2 f +1)
matchmakers. At 25 seconds, we fail a matchmaker. At 30 we

perform a matchmaker reconfiguration to replace the failed

matchmaker. At 35 seconds, we reconfigure the acceptors.

14

Journal of Systems Research (JSys) 2021

0s-10s 10s-20s
0.18

0.20

0.22

0.24

0.26

0.28

La
te

nc
y

(m
s)

1 client

0s-10s 10s-20s

0.20

0.25

0.30

0.35

4 clients

0s-10s 10s-20s
0.2

0.3

0.4

0.5

0.6

0.7 8 clients

0s-10s 10s-20s

4200

4300

4400

4500

Th
ro

ug
hp

ut
 (c

om
m

an
ds

/s
ec

on
d) 1 client

0s-10s 10s-20s

13000

13500

14000

4 clients

0s-10s 10s-20s
14000

15000

16000

17000

18000
8 clients

Figure 12: Violin plots of Figure 10 latency and throughput

during the first 10 seconds and between 10 and 20 seconds.

Results. The latency and throughput of Matchmaker Mul-

tiPaxos are shown in Figure 15. The latency and throughput

of the protocol remain steady through the first ten match-

maker reconfigurations, through the matchmaker failure and

recovery, and through the acceptor reconfiguration. This is

confirmed by the medians, IQRs, and standard deviations of

the latency and throughput during the first 10 seconds and

between 10 and 20 seconds, which are shown in Table 2.

Summary. This benchmark confirms that matchmakers are

off the critical path. The latency and throughput of Match-

maker MultiPaxos remains steady during a matchmaker recon-

figuration and matchmaker failure. Moreover, a matchmaker

reconfiguration does not affect the performance of subsequent

acceptor reconfigurations.

8 Related Work

SMART. SMART [27] is a reconfiguration protocol that re-

solves many ambiguities in MultiPaxos’ horizontal approach

(e.g., when it is safe to retire old configurations). Like Mul-

tiPaxos’ horizontal reconfiguration protocol, SMART can

reconfigure a protocol with minimal performance degrada-

tion. SMART differs from Matchmaker Paxos in a number

of ways. First, like MultiPaxos’ horizontal reconfiguration

protocol, SMART is fundamentally log based and is therefore

incompatible with many sophisticated state machine repli-

cation protocols. Second, SMART assumes that acceptors

and replicas are always co-located. This prevents us from

reconfiguring the acceptors without reconfiguring the replicas.

This is not ideal since we can reconfigure an acceptor without

copying any state, but must transfer logs from an old replica

0.0
0.5
1.0
1.5
2.0

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20
Time

5000

10000

15000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 13: Matchmaker MultiPaxos’ latency and throughput

(f = 1). The dashed red line denotes a leader failure.

Table 2: Figure 15 median, interquartile range, and standard

deviation of latency and throughput.

Latency (ms)

1 Client 4 Clients 8 Clients

0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 0.297 0.292 0.314 0.313 0.404 0.398

IQR 0.032 0.024 0.031 0.030 0.035 0.028

stdev 0.077 0.061 0.093 0.098 0.383 0.067

Throughput (commands/second)

1 Client 4 Clients 8 Clients

0s-10s 10s-20s 0s-10s 10s-20s 0s-10s 10s-20s

median 3019 3147 11631 11726 18569 19248

IQR 41 51 140 145 391 71

stdev 66 72 250 231 478 159

to a new replica. SMART’s garbage collection also has higher

latency that Matchmaker Paxos’ garbage collection. For Sce-

nario 3, Matchmaker Paxos proposers wait until a prefix of the

log is stored on f +1 replicas. SMART waits for the prefix

of the log to be executed and snapshotted by f +1 replicas.

Cheap Paxos. Cheap Paxos [24] is a MultiPaxos variant

that consists of a fixed set of f +1 main acceptors and f aux-

iliary acceptors. During failure-free execution (the normal

case), only the main acceptors are contacted. The auxiliary

acceptors perform MultiPaxos’ horizontal reconfiguration pro-

tocol to replace failed main acceptors. As with Fast Paxos,

we can deploy Matchmaker MultiPaxos with only f +1 ac-

ceptors, f fewer than Cheap Paxos. Matchmaker Paxos does

require 2 f +1 matchmakers, but matchmakers do not act as

acceptors and have to process only a single message (i.e. a

MATCHA message) to perform a reconfiguration.

15

Journal of Systems Research (JSys) 2021

0.0
0.5
1.0
1.5
2.0

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20
Time

5000

10000

15000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 14: The latency and throughput of Horizontal Multi-

Paxos with f = 1.

Raft. Raft [35] uses a reconfiguration protocol called joint

consensus. Like MultiPaxos’ horizontal reconfiguration, joint

consensus is log-based and therefore incompatible with many

existing replication protocols. A simpler reconfiguration pro-

tocol for Raft was proposed in [34] but requires more rounds

of communication.

Viewstamped Replication (VR). VR [26] uses a stop-

the-world approach to reconfiguration. During a recon-

figuration, the entire protocol stops processing commands.

Thus, while the reconfiguration is quite simple, it is ineffi-

cient. Stoppable Paxos [21] is similar to MultiPaxos’ hor-

izontal reconfiguration, but also uses a stop-the-world ap-

proach. VR’s stop-the-world approach to reconfiguration is

also adopted by databases built on VR, including TAPIR [41]

and Meerkat [39]. We use a similar approach to reconfigure

matchmakers, but because matchmakers are off the critical

path, the performance overheads are invisible.

Fast Paxos Coordinated Recovery. Fast Paxos has an op-

timization called coordinated recovery that is similar to Phase

1 Bypassing. The main difference is that in coordinated re-

covery, a leader uses Phase 2 information in round i to skip

Phase 1 in round i+1, whereas with Phase 1 Bypassing, the

leader instead uses Phase 1 information. Note that coordi-

nated recovery is not useful for Matchmaker MultiPaxos. It

is subsumed by Phase 1 Bypassing. Coordinated recovery

is only needed for Fast Paxos because the leader may not

know which values were proposed in a round it owns. Phase

1 Bypassing cannot be applied to Fast Paxos for pretty much

the same reason.

DynaStore. Vertical Paxos assumes its external master is

implemented using state machine replication. MultiPaxos’

horizontal reconfiguration also depends on consensus. Match-

maker Paxos does not require consensus to implement match-

0.4

0.6

La
te

nc
y

(m
s)

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35
Time

5000

10000

15000

20000

Th
ro

ug
hp

ut
(c

m
ds

/s
ec

on
d)

1 client 4 clients 8 clients

Figure 15: The latency and throughput of Matchmaker Mul-

tiPaxos (f = 1). The dotted blue, dashed red, and vertical

black lines show matchmaker reconfigurations, a matchmaker

failure, and an acceptor reconfiguration respectively.

makers, but we are not the first to notice this. DynaStore [1]

showed that reconfiguring atomic storage does not require

consensus.

ZooKeeper. ZooKeeper, a distributed coordinated service,

which uses ZooKeeper Atomic Broadcast [14] is a protocol

similar to MultiPaxos that can also reconfigure quickly after

leader failures.

9 Conclusion

We presented Matchmaker Paxos and Matchmaker Multi-

Paxos to address the lack of research on the increasingly

important topic of reconfiguration. Our protocols achieve a

number of desirable properties, both theoretical and prac-

tical: they can reconfigure without performance degrada-

tion, they provide insights into existing protocols, and they

generalize better than existing techniques. Our implemen-

tations of Matchmaker Paxos and Matchmaker MultiPaxos

can be found online at https://github.com/mwhittaker/

frankenpaxos.

Acknowledgement

This research is supported in part by DHS Award HSHQDC-

16-3-00083, NSF CISE Expeditions Award CCF-1139158,

NSF Award CNS-1815212, and gifts from Alibaba, Ama-

zon Web Services, Ant Financial, CapitalOne, Ericsson, GE,

Google, Huawei, Intel, IBM, Microsoft, Scotiabank, Splunk

and VMware.

16

https://github.com/mwhittaker/frankenpaxos
https://github.com/mwhittaker/frankenpaxos

Journal of Systems Research (JSys) 2021

References

[1] Marcos K Aguilera, Idit Keidar, Dahlia Malkhi, and

Alexander Shraer. Dynamic atomic storage without

consensus. Journal of the ACM (JACM), 58(2):1–32,

2011.

[2] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giu-

liano Losa, and Binoy Ravindran. Speeding up con-

sensus by chasing fast decisions. In 2017 47th An-

nual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN), pages 49–60. IEEE,

2017.

[3] Martin Biely, Zarko Milosevic, Nuno Santos, and An-

dre Schiper. S-paxos: Offloading the leader for high

throughput state machine replication. In 2012 IEEE

31st Symposium on Reliable Distributed Systems, pages

111–120. IEEE, 2012.

[4] Mike Burrows. The chubby lock service for loosely-

coupled distributed systems. In Proceedings of the

7th Symposium on Operating Systems Design and Im-

plementation, OSDI ’06, page 335–350, USA, 2006.

USENIX Association.

[5] Aleksey Charapko, Ailidani Ailijiang, and Murat Demir-

bas. Linearizable quorum reads in paxos. In 11th

USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 19), 2019.

[6] Christos Chrysafis, Ben Collins, Scott Dugas, Jay

Dunkelberger, Moussa Ehsan, Scott Gray, Alec Grieser,

Ori Herrnstadt, Kfir Lev-Ari, Tao Lin, et al. Founda-

tiondb record layer: A multi-tenant structured datastore.

In Proceedings of the 2019 International Conference on

Management of Data, pages 1787–1802, 2019.

[7] James C Corbett, Jeffrey Dean, Michael Epstein, An-

drew Fikes, Christopher Frost, Jeffrey John Furman,

Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. Spanner: Google’s globally dis-

tributed database. ACM Transactions on Computer

Systems (TOCS), 31(3):1–22, 2013.

[8] Vitor Enes, Carlos Baquero, Tuanir França Rezende,

Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.

State-machine replication for planet-scale systems. In

Proceedings of the Fifteenth European Conference on

Computer Systems, pages 1–15, 2020.

[9] Hua Fan and Wojciech Golab. Ocean vista: gossip-

based visibility control for speedy geo-distributed trans-

actions. Proceedings of the VLDB Endowment,

12(11):1471–1484, 2019.

[10] Michael J Fischer, Nancy A Lynch, and Michael S Pa-

terson. Impossibility of distributed consensus with one

faulty process. Journal of the ACM (JACM), 32(2):374–

382, 1985.

[11] Maurice P Herlihy and Jeannette M Wing. Lineariz-

ability: A correctness condition for concurrent objects.

ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 12(3):463–492, 1990.

[12] Heidi Howard. Distributed consensus revised. PhD

thesis, University of Cambridge, 2019.

[13] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-

man. Flexible paxos: Quorum intersection revisited.

In 20th International Conference on Principles of Dis-

tributed Systems (OPODIS 2016). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2017.

[14] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-

afini. Zab: High-performance broadcast for primary-

backup systems. In 2011 IEEE/IFIP 41st International

Conference on Dependable Systems & Networks (DSN),

pages 245–256. IEEE, 2011.

[15] Kubernetes. Kubernetes. https://kubernetes.io.

accessed: 2020-03-01.

[16] Cockroach Labs. CockroachDB. https://www.

cockroachlabs.com/. accessed: 2020-03-01.

[17] Leslie Lamport. The part-time parliament. ACM Trans-

actions on Computer Systems (TOCS), 16(2):133–169,

1998.

[18] Leslie Lamport. Generalized consensus and paxos.

Technical Report MSR-TR-2005-33, Microsoft Research,

2005.

[19] Leslie Lamport. Fast paxos. Distributed Computing,

19(2):79–103, 2006.

[20] Leslie Lamport et al. Paxos made simple. ACM Sigact

News, 32(4):18–25, 2001.

[21] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Stop-

pable paxos. TechReport, Microsoft Research, 2008.

[22] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-

tical paxos and primary-backup replication. In Pro-

ceedings of the 28th ACM symposium on Principles of

distributed computing, pages 312–313, 2009.

[23] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Re-

configuring a state machine. SIGACT News, 41(1):63–

73, 2010.

[24] Leslie Lamport and Mike Massa. Cheap paxos. In

International Conference on Dependable Systems and

Networks, 2004, pages 307–314. IEEE, 2004.

17

https://kubernetes.io
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/

Journal of Systems Research (JSys) 2021

[25] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana

Szekeres, and Dan RK Ports. Just say NO to paxos over-

head: Replacing consensus with network ordering. In

12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), pages 467–483, 2016.

[26] Barbara Liskov and James Cowling. Viewstamped

replication revisited. MIT-CSAIL-TR-2012-021, 2012.

[27] Jacob R Lorch, Atul Adya, William J Bolosky, Ron-

nie Chaiken, John R Douceur, and Jon Howell. The

smart way to migrate replicated stateful services. In

Proceedings of the 1st ACM SIGOPS/EuroSys European

Conference on Computer Systems 2006, pages 103–115,

2006.

[28] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo.

Mencius: Building efficient replicated state machines

for wans. In Proceedings of the 8th USENIX Confer-

ence on Operating Systems Design and Implementation,

OSDI’08, page 369–384, USA, 2008. USENIX Associ-

ation.

[29] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper,

and Fernando Pedone. Ring paxos: A high-throughput

atomic broadcast protocol. In 2010 IEEE/IFIP Interna-

tional Conference on Dependable Systems & Networks

(DSN), pages 527–536. IEEE, 2010.

[30] Iulian Moraru, David G Andersen, and Michael Kamin-

sky. A proof of correctness for egalitarian paxos. Tech-

nical report, Technical report, Parallel Data Laboratory,

Carnegie Mellon University, 2013.

[31] Iulian Moraru, David G Andersen, and Michael Kamin-

sky. There is more consensus in egalitarian parliaments.

In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, pages 358–372, 2013.

[32] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang

Li. Consolidating concurrency control and consensus

for commits under conflicts. In 12th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI 16), pages 517–532, 2016.

[33] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi.

Dpaxos: Managing data closer to users for low-latency

and mobile applications. In Proceedings of the 2018 In-

ternational Conference on Management of Data, pages

1221–1236. ACM, 2018.

[34] Diego Ongaro. Consensus: Bridging theory and prac-

tice. PhD thesis, Stanford University, 2014.

[35] Diego Ongaro and John Ousterhout. In search of an

understandable consensus algorithm. In 2014 USENIX

Annual Technical Conference (USENIX ATC 14), pages

305–319, 2014.

[36] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr

Sharma, and Arvind Krishnamurthy. Designing dis-

tributed systems using approximate synchrony in data

center networks. In 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 15),

pages 43–57, 2015.

[37] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav.

Canopus: A scalable and massively parallel consensus

protocol. In Proceedings of the 13th International

Conference on emerging Networking EXperiments and

Technologies, pages 426–438, 2017.

[38] Denis Rystsov. Caspaxos: Replicated state machines

without logs. arXiv preprint arXiv:1802.07000, 2018.

[39] Adriana Szekeres, Michael Whittaker, Jialin Li, Sharma

Naveen, Arvind Krishnamurthy, Dan Ports, and Irene

Zhang. Meerkat: Multicore-scalable replicated trans-

actions following the zero-coordination principle. In

Proceedings of the Fourteenth EuroSys Conference 2020,

2020.

[40] Robbert Van Renesse and Deniz Altinbuken. Paxos

made moderately complex. ACM Computing Surveys

(CSUR), 47(3):1–36, 2015.

[41] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,

Arvind Krishnamurthy, and Dan RK Ports. Build-

ing consistent transactions with inconsistent replica-

tion. ACM Transactions on Computer Systems (TOCS),

35(4):1–37, 2018.

A Garbage Collection Safety

To prove that the three scenarios from Section 3.5 are safe,

we repeat the safety proof from Section 3. The new bits are

shown in blue.

Proof. We prove, for every round i, the statement P(i): “if a

proposer proposes a value v in round i (i.e. sends a PHASE2A

message for value v in round i), then no value other than v

has been or will be chosen in any round less than i.” At most

one value is ever proposed in a given round, so at most one

value is ever chosen in a given round. Thus, P(i) suffices to

prove that Matchmaker Paxos is safe for the following reason.

Assume for contradiction that Matchmaker Paxos chooses

distinct values x and y in rounds j and i with j < i. Some

proposer must have proposed y in round i, so P(i) ensures us

that no value other than y could have been chosen in round j.

But, x was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous

because there are no rounds less than 0. For the general

case P(i), we assume P(0), . . . ,P(i−1). We perform a case

analysis on the proposer’s pseudocode (Algorithm 3). Either

k is −1 or it is not (line 11). First, assume it is not. In this

18

Journal of Systems Research (JSys) 2021

case, the proposer proposes x, the value proposed in round k

(line 12). We perform a case analysis on round j to show that

no value other than x has been or will be chosen in any round

j < i.

Case 1: j > k. We show that no value has been or will be

chosen in round j. Recall that at the end of the Matchmaking

phase, the proposer computed the set Hi of prior configura-

tions using responses from a set Mi of f + 1 matchmakers.

Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent

PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase

1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every

acceptor in Q set its round r to i, and in doing so, promised

to never vote in any round less than i. Moreover, none of

the acceptors in Q had voted in any round greater than k. So,

every acceptor in Q has not voted and never will vote in round

j. For a value v′ to be chosen in round j, it must receive votes

from some Phase 2 quorum Q′ of round j acceptors. But, Q

and Q′ necessarily intersect, so this is impossible. Thus, no

value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for

round j. Either a configuration C j was garbage collected

from Hi or it wasn’t. First, assume it wasn’t. Then, Hi is the

union of f + 1 MATCHB messages from the f + 1 match-

makers in Mi. Thus, if Hi does not contain a configuration

for round j, then none of the MATCHB messages did either.

This means that for every matchmaker m ∈Mi, when m re-

ceived MATCHA〈i,Ci〉, it did not contain a configuration for

round j in its log and never did. Moreover, by processing

the MATCHA〈i,Ci〉 request and inserting Ci in log entry i, the

matchmaker is guaranteed to never process a MATCHA〈 j,C j〉
request in the future. Thus, every matchmaker in Mi has not

processed a MATCHA request in round j and never will. For

a value to be chosen in round j, the proposer executing round

j must first receive replies from f +1 matchmakers, say M j,

in round j. But, Mi and M j necessarily intersect, so this is

impossible. Thus, no value has been or will be chosen in

round j.

Otherwise, a configuration C j was garbage collected from

Hi. Note that none of the matchmakers in Mi had received

a GARBAGEA〈i′〉 command for a round i′ > i when they re-

sponded with their MATCHB messages. If they had, they

would have ignored our MATCHA〈i,Ci〉 message. Let i′ be

the largest round j < i′ < i such that a matchmaker in Mi had

received a GARBAGEA〈i′〉 message before responding to our

MATCHA〈i,Ci〉 message.

If i′ was garbage collected because of Scenario 1, then k

would be at least as large as i′ since we would have intersected

the Phase 2 quorum of Ci′ used in round i′ to get a value

chosen. But k < j < i′, a contradiction. If i′ was garbage

collected because of Scenario 2, then we know no value has

been or will be chosen in round j. If i′ was garbage collected

because of Scenario 3, then we would have intersected the

Phase 2 quorum of Ci′ that knows a value was already chosen,

and we would have not proposed a value in the first place.

But, we proposed x, a contradiction.

Case 2: j = k. In a given round, at most one value is pro-

posed, let alone chosen. x is the value proposed in round k,

so no other value could be chosen in round k.

Case 3: j < k. By induction, P(k) states that no value other

than x has been or will be chosen in any round less than k.

This includes round j.

Finally, if k is −1, then we are in the same situation as in

Case 1. No value has or will be chosen in a round j < i.

B Matchmaker Reconfiguration Safety

We repeat the safety proof from Section A. The new bits are

shown in blue.

Proof. We prove, for every round i, the statement P(i): “if a

proposer proposes a value v in round i (i.e. sends a PHASE2A

message for value v in round i), then no value other than v

has been or will be chosen in any round less than i.” At most

one value is ever proposed in a given round, so at most one

value is ever chosen in a given round. Thus, P(i) suffices to

prove that Matchmaker Paxos is safe for the following reason.

Assume for contradiction that Matchmaker Paxos chooses

distinct values x and y in rounds j and i with j < i. Some

proposer must have proposed y in round i, so P(i) ensures us

that no value other than y could have been chosen in round j.

But, x was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous

because there are no rounds less than 0. For the general

case P(i), we assume P(0), . . . ,P(i−1). We perform a case

analysis on the proposer’s pseudocode (Algorithm 3). Either

k is −1 or it is not (line 11). First, assume it is not. In this

case, the proposer proposes x, the value proposed in round k

(line 12). We perform a case analysis on round j to show that

no value other than x has been or will be chosen in any round

j < i.

Case 1: j > k. We show that no value has been or will be

chosen in round j. Recall that at the end of the Matchmaking

phase, the proposer computed the set Hi of prior configura-

tions using responses from a set Mi of f + 1 matchmakers.

Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent

PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase

1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every

acceptor in Q set its round r to i, and in doing so, promised

to never vote in any round less than i. Moreover, none of

the acceptors in Q had voted in any round greater than k. So,

every acceptor in Q has not voted and never will vote in round

j. For a value v′ to be chosen in round j, it must receive votes

from some Phase 2 quorum Q′ of round j acceptors. But, Q

19

Journal of Systems Research (JSys) 2021

and Q′ necessarily intersect, so this is impossible. Thus, no

value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for

round j. Either a configuration C j was garbage collected

from Hi or it wasn’t. First, assume it wasn’t. Then, Hi is

the union of f +1 MATCHB messages from the f +1 match-

makers in Mi. Thus, if Hi does not contain a configuration

for round j, then none of the MATCHB messages did either.

This means that for every matchmaker m ∈Mi, when m re-

ceived MATCHA〈i,Ci〉, it did not contain a configuration for

round j in its log and never did. Moreover, no majority in

any previous set of matchmakers contained a configuration

in round j. If any majority did have a configuration in round

j, then all subsequent matchmakers would as well since a set

of matchmakers is initialized from a majority of the previous

matchmakers. Moreover, by processing the MATCHA〈i,Ci〉
request and inserting Ci in log entry i, the matchmaker is

guaranteed to never process a MATCHA〈 j,C j〉 request in the

future. Moreover, no future set of matchmakers will either.

A majority of matchmakers have a configuration in entry i,

so all subsequent configurations will as well. Therefore, they

will all reject a configuration in round j. Thus, every match-

maker in Mi has not processed a MATCHA request in round

j and never will. For a value to be chosen in round j, the

proposer executing round j must first receive replies from

f +1 matchmakers, say M j, in round j. But, Mi and M j nec-

essarily intersect, so this is impossible. This argument holds

for every set of matchmakers. Thus, no value has been or will

be chosen in round j.

Otherwise, a configuration C j was garbage collected from

Hi. Note that none of the matchmakers in Mi had received

a GARBAGEA〈i′〉 command for a round i′ > i when they re-

sponded with their MATCHB messages. If they had, they

would have ignored our MATCHA〈i,Ci〉 message. Simi-

larly, none of the matchmakers in Mi were initialized with

a garbage collection watermark w > i. Let i′ be the largest

round j < i′ < i that a matchmaker in Mi garbage collected

before responding to our MATCHA〈i,Ci〉 message.

If i′ was garbage collected because of Scenario 1, then k

would be at least as large as i′ since we would have intersected

the Phase 2 quorum of Ci′ used in round i′ to get a value

chosen. But k < j < i′, a contradiction. If i′ was garbage

collected because of Scenario 2, then we know no value has

been or will be chosen in round j. If i′ was garbage collected

because of Scenario 3, then we would have intersected the

Phase 2 quorum of Ci′ that knows a value was already chosen,

and we would have not proposed a value in the first place.

But, we proposed x, a contradiction.

Case 2: j = k. In a given round, at most one value is pro-

posed, let alone chosen. x is the value proposed in round k,

so no other value could be chosen in round k.

Case 3: j < k. We can apply the inductive hypothesis to

get P(k) which states that no value other than x has been or

will be chosen in any round less than k. This includes round

Algorithm 5 Fast Paxos Proposer Pseudocode

State: a round i, initially −1

State: the configuration Ci for round i, initially null

State: the prior configurations Hi for round i, initially null

1: i← next largest round owned by this proposer

2: Ci← an arbitrary configuration

3: send MATCHA〈i,Ci〉 to all of the matchmakers

4: upon receiving MATCHB〈i,H1
i 〉, . . . ,MATCHB〈i,H

f+1
i 〉

from f +1 matchmakers do

5: Hi←
⋃ f+1

j=1 H
j

i

6: send PHASE1A〈i〉 to every acceptor in Hi

7: upon receiving PHASE1B〈i,−,−〉 from a Phase 1 quo-

rum from every configuration in Hi do

8: k← the largest vr in any PHASE1B〈i,vr,vv〉
9: V ← the corresponding vv’s in round k

10: if k =−1 then

11: send PHASE2A〈i,any〉 to every acceptor in Ci

12: else if V = {v} then

13: send PHASE2A〈i,v〉 to every acceptor in Ci

14: else

15: send PHASE2A〈i,any〉 to every acceptor in Ci

j, which is exactly what we’re trying to prove.

Finally, if k is −1, then we are in the same situation as in

Case 1.

C Fast Paxos

Fast Paxos proposer pseudocode is given in Algorithm 5. We

do not modify the Fast Paxos acceptor or the matchmakers.

For simplicity, we assume that we deploy Fast Paxos with

f + 1 acceptors, with a single unanimous Phase 2 quorum,

and with singleton Phase 1 quorums. Generalizing to arbitrary

configurations that satisfy Fast Paxos’ quorum intersection

requirements is straightforward. Note that Fast Paxos cannot

leverage Phase 1 Bypassing. Also note while both MultiPaxos

and our Fast Paxos variant both have quorums of size f +1,

our Fast Paxos variant has a fixed set of f +1 acceptors, while

MultiPaxos can choose any set of f + 1 acceptors from all

2 f + 1 acceptors. This has some disadvantages in terms of

tail latency and fault tolerance.

We now prove that our modifications to Fast Paxos are safe.

For simplicity, we ignore garbage collection and matchmaker

reconfiguration. Introducing those two features and proving

them correct is pretty much identical to what we did with

Matchmaker Paxos.

Proof. We prove, for every round i, the statement P(i) which

states that if an acceptor votes for a value v in round i (i.e.

sends a PHASE2B message for value v in round i), then no

value other than v has been or will be chosen in any round

less than i. P(i) suffices to prove that Matchmaker Paxos is

20

Journal of Systems Research (JSys) 2021

safe. Why? Well, assume for contradiction that Matchmaker

Paxos chooses distinct values x and y in rounds i and j with

i < j. Some acceptor must have voted for y in round j, so

P(j) ensures us that no value other than y could have been

chosen in round i. But, x was chosen, a contradiction.

We prove P(i) by strong induction on i. P(0) is vacuous

because there are no rounds less than 0. For the general

case P(i), we assume P(0), . . . ,P(i−1). We perform a case

analysis on the proposer’s pseudocode. Either k is −1 or it

is not (line 8). First, assume it is not. We perform a case

analysis on rounds j < i.

Case 1: j > k. Recall that at the end of the Matchmaking

phase, the proposer computed the set Hi of prior configura-

tions using responses from a set M of f + 1 matchmakers.

Either Hi contains a configuration C j in round j or it doesn’t.

First, suppose it does. Then, the proposer sent

PHASE1A〈i〉 messages to all of the acceptors in C j. A Phase

1 quorum of these acceptors, say Q, all received PHASE1A〈i〉
messages and replied with PHASE1B messages. Thus, every

acceptor in Q set its round r to i, and in doing so, promised

to never vote in any round less than i. Moreover, none of

the acceptors in Q had voted in any round greater than k. So,

every acceptor in Q has not voted and never will vote in round

j. For a value v′ to be chosen in round j, it must receive votes

from some Phase 2 quorum Q′ of round j acceptors. But, Q

and Q′ necessarily intersect, so this is impossible. Thus, no

value has been or will be chosen in round j.

Now suppose that Hi does not contain a configuration for

round j. Hi is the union of f +1 MATCHB messages from the

f +1 matchmakers in M. Thus, if Hi does not contain a con-

figuration for round j, then none of the MATCHB messages

did either. This means that for every matchmaker m ∈ M,

when m received MATCHA〈i,Ci〉, it did not contain a con-

figuration for round j in its log. Moreover, by processing

the MATCHA〈i,Ci〉 request and inserting Ci in log entry i, the

matchmaker is guaranteed to never process a MATCHA〈 j,C j〉
request in the future. Thus, every matchmaker in M has not

processed a MATCHA request in round j and never will. For

a value to be chosen in round j, the proposer executing round

j must first receive replies from f +1 matchmakers, say M′,

in round j. But, M and M′ necessarily intersect, so this is

impossible. Thus, no value has been or will be chosen in

round j.

Case 2: j = k. If V = {v}, then the proposer proposes v.

We must prove that no value other than v has been or will be

chosen in round k. For a value to be chosen in round k, every

acceptor must vote for it in round k. Some acceptor voted

for v in round k, so it is the only value with the possibility of

receiving a unanimous vote.

Otherwise V contains multiple distinct elements, and the

proposer proposes any. We must prove that no value has been

or will be chosen in round k. This is immediate since no value

can receive a unanimous vote in round k, if two different

values have received votes in round k.

Case 3: j < k. If V = {v}, then the proposer proposes v,

and we must prove that no value other than v has been or will

be chosen in any round less than k. This is immediate from

P(k). Otherwise, V = {v1,v2, . . .}, and the proposer proposes

any. We must prove that no value has been or will be chosen

in any round less than k. P(k) tells us that no value other than

v1 has been or will be chosen in any round less than k. P(k)
also tells us that no value other than v2 has been or will be

chosen in any round less than k. Thus, no value has been or

will be chosen in any round less than k.

Finally, if k is −1, then we are in the same situation as in

Case 1. No value has been or will be chosen in any round less

than i.

D DPaxos Bug

Consider a DPaxos deployment with fd = 1, fz = 0, three

zones, three nodes per zone, and delegate quorums. Thus, a

replication quorum consists of two nodes in one zone, and a

leader election quorum consists of two nodes in two zones.

We name the nodes A through I. Beside each node, we display

its ballot, vote ballot, vote value, and intents [20].

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

Proposer 1 initiates the leader election phase in ballot 0

for value x. It selects {A,B,D,E} as its leader election quo-

rum and {B,C} as its intent. It sends prepare messages to

the leader election quorum, and the leader election quorum

replies. Proposer 1 doesn’t receive any intents, so it does not

expand its leader election quorum. It also learns that no value

has been chosen yet, so it proposes value x to B and C. Both

accept the value.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥,{0 : {B,C}}

0,0,x,{0 : {B,C}}

0,0,x, /0

0,−1,⊥,{0 : {B,C}}

0,−1,⊥,{0 : {B,C}}

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

−1,−1,⊥, /0

Next, proposer 2 initiates the leader election phase in ballot

1 for value y. It selects {E,F,H, I} as its leader election

21

Journal of Systems Research (JSys) 2021

quorum and {G,H} as its intent. It sends prepare messages

to the leader election quorum, and the leader election quorum

replies. Proposer 2 receives the intent {B,C} in ballot 0 from

E, so it expands its leader election quorum and sends a prepare

message to C. Proposer 2 learns that value x was chosen in

ballot 0, so it ditches y and proposes x to G and H. G accepts,

but the propose message to H is dropped.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥,{0 : {B,C}}

0,0,x,{0 : {B,C}}

0,0,x,{1 : {G,H}}

0,−1,⊥,{0 : {B,C}}

1,−1,⊥,{0 : {B,C},1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

1,1,x, /0

1,−1,⊥,{1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

Next, garbage collection is run. The garbage collector

contacts G and sees that it has accepted a value in ballot 1. It

informs all the nodes to discard intents in ballots less than 1.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, /0

0,0,x, /0

0,0,x,{1 : {G,H}}

0,−1,⊥, /0

1,−1,⊥,{1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

1,1,x, /0

1,−1,⊥,{1 : {G,H}}

1,−1,⊥,{1 : {G,H}}

Next, proposer 3 initiates the leader election phase in bal-

lot 2 for value z It selects {D,E,H, I} as its leader election

quorum and {E,F} as its intent. It sends prepare messages to

the leader election quorum, and the leader election quorum

replies. Proposer 3 receives intent {G,H} in ballot 1, but has

already included H in its leader election quorum, so it does

not send any additional prepares. It learns that no value has

been chosen (this is a bug, x was chosen), so it proposes value

z to E and G. Both accept the value, and z is chosen. This is

a bug since x was already chosen.

Zone 1

A

B

C

Zone 2

D

E

F

Zone 3

G

H

I

0,−1,⊥, /0

0,0,x, /0

0,0,x,{1 : {G,H}}

2,−1,⊥, /02 : {E,F}

2,2,z,{1 : {G,H},2 : {E,F}}

2,2,z,{1 : {G,H}}

1,1,x, /0

2,−1,⊥,{1 : {G,H},2 : {E,F}}

2,−1,⊥,{1 : {G,H},2 : {E,F}}

22

	Introduction
	Background
	System Model
	Paxos
	Flexible Paxos

	Matchmaker Paxos
	Overview and Intuition
	Details
	Proof of Safety
	Garbage Collection (How)
	Garbage Collection (When)
	Optimizations

	Matchmaker MultiPaxos
	MultiPaxos
	Matchmaker MultiPaxos
	Discussion
	Optimization
	Garbage Collection

	Reconfiguring Matchmakers
	Theoretical Insights
	Evaluation
	Reconfiguration
	Leader Failure
	Matchmaker Reconfiguration

	Related Work
	Conclusion
	Garbage Collection Safety
	Matchmaker Reconfiguration Safety
	Fast Paxos
	DPaxos Bug

