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ABSTRACT

When working with large, multidimensional and multivariate data,
science users are frequently interested in understanding variation in
data, as opposed to the actual data values. Our work focuses on
exploring how a simple statistical metric, the Coefficient of Varia-
tion (or Cv), can be used in several different ways to faciliate un-
derstanding variation in data. As a statistical measure, it offers a
key advantage over more widely accepted measures like standard
deviation, namely to its ability to capture local variation properties.
As a multidimensional projection operator, Cv is an effective way of
reducing data size while preserving the key variational signal. Visu-
alizations produced from Cv that target conveying variation in data
are highly informative, especially compared to those produced with
more widely known methods. We demonstrate these ideas within
the context of a two-part application case study focusing on under-
standing long-term trends in the the changes in precipitation and
winds in large-scale climate model ensemble output.

Index Terms: G.3 [Statistics]: nonparametric statistics—
visualizing data variation,H.5.m [Information Systems]: Infor-
mation Interfaces and Presentation—miscellaneous: multi-variate,
multi-resolution projection, I.6.6 [Computing Methodologies]:
Simulation and Modeling—Simulation Output Analysis

1 INTRODUCTION

To facilitate knowledge discovery in the visual exploration and
analysis of large, complex, multidimensional data, we examine the
question of how to present meaningful information through a com-
bination of data projections and summarization. Specifically, we
focus on the use of a statistical measure, Coefficient of Variation
(or Cv), which reflects the amount of variation in data. Here, the
objective for the visual data analysis and exploration process is to
gain deeper insight into data by studying its variation, as opposed
to studying absolute data values.

In data exploration and analysis, there are often instances where
understanding variation in data, is of greater interest than the study
of the absolute data values. For example, in analysis of ensemble
collections of data, identifying regions in the domain that exhibit
variability across ensemble members is often a primary objective.

Existing methods for visual exploration of ensemble collections
of data often rely on measures like standard deviation, which is
measure of global population variation. However, as a global mea-
sure, it can be impossible to interpret without additional informa-
tion, such as the population mean. Such global measures can be less
informative and useful than local measures. For example, variabil-
ity in the climate system consists primarily of transfers of energy,
mass, and moisture between locations, rather than variations in the

∗e-mail: hoanguyen@sci.utah.edu
†e-mail: dstone@lbl.gov
‡e-mail: ewbethel@lbl.gov

total energy, mass, or moisture globally. Therefore, a metric sensi-
tive to local variation in these transfers could be a more informative
descriptor of how the climate is varying through time or space than
a metric that focuses on global variation.

Using a two-part application case study focusing on understand-
ing long-term trends in precipitation and wind in large-scale climate
model ensemble output, we explore two interesting properties of Cv
in this paper within the context of complex multidimensional vi-
sual data exploration and analysis. The first is to show that Cv does
a more effective job in capturing variation than x̄ or σ . And that Cv
is, as a derived scalar field, a more effective way to visually present
variation than other commonly used methods. Second, we demon-
strate the use of Cv as the basis for performing projection-based
data reduction, where different views of a dataset are the result of
projection from a higher-dimensional to lower-dimensional space.
Together, these two properties facilitate understanding of variation
in complex, multidimensional data. Collectively, these elements are
a useful collection of properties in working with large, complex,
multidimensional data.

The main contributions of this work are:
• A simple and widely applicable methodology of using a sta-

tistical measure of variation, Cv, for the purpose of visually
conveying variational signal within large, complex, multidi-
mensional data to identify variation of data.

• Demonstration of visual encodings and multidimensional pro-
jections that use Cv, which can help users quickly interact with
data and efficiently perform visual data analysis and explo-
ration tasks.

• A two-part case study that shows these methods in use to
study long-term trends in precipitation and winds from large-
scale climate model ensemble output.

2 BACKGROUND AND RELATED WORK

2.1 Computing and Visualizing Variation
There are several different approaches to computing and display-
ing variation in data. One of the earliest methods for displaying
data population characteristics, including variation, is the box plot.
The box plot is a glyph-based method for displaying variation in
data (Chambers, 1983 [2]). The box size reflects the distribution
range in data in terms of quartiles, and the box glyph may include
additional annotations to indicate the location of the median, and
box “whiskers” indicate the full range of data to help show outliers.
Whitaker et al., 2013 [17] extended this idea to depict variation in
data features. One limitation of box plots is they are useful for
presenting a small number of samples, and attempts to use this, or
other glyph-based methods, on large collections of data will result
in excessive visual clutter.

Another approach is to compute a scalar field that is represen-
tative of variation in a dataset, then use traditional techniques for
display. Potter et al., 2009 [10] present a system, Ensemble-Vis,
that uses this idea; it computes and displays variation in data, with
a particular focus on ensemble collections of climate model output.
While Ensemble-Vis uses several different linked views and inter-
action methods to facilitate user exploration, at the core of their
approach is the use of mean and standard deviation as statistical

1



metrics. More recently, Demir et al., 2014 [5] use traditional scalar
color mapping techniques in conjunction with brushing and linking
to enable visual exploration of variation in ensemble collections of
simulation output.

Pfaffelmoser also proposed method to visualize contour distri-
butions in 2D ensemble data [9]. This paper makes no assump-
tion about a stochastic uncertainty model, rendering it suitable for
arbitrary ensemble distributions. It computes a statistical sum-
mary (probability density) of the ensemble over the spatial domain,
including probability density values for arbitrary domain points.
From this information, the uncertainty and topology of iso-contours
can be determined, as well as the variations in gradient magnitude
around these contours.

Previous use of Cv in the visualization community is quite lim-
ited. Shen et al., 1999 [12] use Cv within the context of creating a
data structure to accelerate volume rendering. The idea is to use Cv
as a measure of spatial and temporal regularity.

The approach we are taking our work is to focus on using Cv,
rather than standard deviation, as the measure of variation in a col-
lection of data for the purposes of visualizing data variation, as
well as the basis of multi-variate data projection. After comput-
ing Cv measure of variation in a dataset, we have a scalar field,
which is suitable for use with any traditional scalar field visualiza-
tion method.

2.2 Projection and Data Reduction Methods

The issue of how to reduce large-sized datasets to ones that are more
manageable is a topic that has been studied in many different forms
over the years, though primarily within the context of focusing on
data values, rather than data variation.

For image-based data, Williams, 1983 [19] introduced the con-
cept of mip maps, which are multi-resolution forms of images. The
process of constructing each successively coarser resolution of im-
age involves a process by which four pixels are ”filtered,” or av-
eraged together, into a single pixel. This approach, and those like
it that use pixel-averaging, produces coarse-resolution datasets that
appear “blurred”; in effect, the high frequency component of the
underlying original signal is lost through the repeated averaging
process. Here, the average, or x̄ operator serves as the data reduc-
tion operator.

Wavelet-based representations of data, such as the Discrete Haar
Wavelet Transformation [4], represent data as a combination of base
values (averages) and differences. This approach has proven useful
for addressing several problems of large-data visualization, includ-
ing progressive data access and multi-resolution rendering (Clyne,
2012 [3]). Visually, the difference between a rendering of full-
and reduced-resolution version of data appears as a loss of high-
frequency detail.

Conceptually, a reduced-resolution, wavelet-encoded dataset
represents averages (and differences) of data samples. At coarser
and coarser resolutions, the effect is similar as for mip-map repre-
sentations of images: the processing of averaging more and more
data “washes out” the variational signal inherent in the underlying
data. While methods that rely on computing data averages at multi-
ple levels of resolution may be useful for representing data values,
they are not promising for representing variation in data.

Other approaches for reducing the size multidimensional data
center around the idea of projections. Simply stated, a projection is
one that reduces a dataset from Rn dimensions to Rm dimensions,
where m < n. One approach to performing a projection is to ex-
tract a spatially constrained subsampling of data, like an orthogo-
nal or arbitrary slice. Other approaches, like Principal Component
Analysis (PCA) [1] or Isomap [13], both examples of linear and
non-linear dimension reduction, respectively, are essentially opti-
mizations aimed at discovering lower-dimensional embeddings of
higher-dimensional data that take into account the underlying char-

acteristics of multidimensional data distributions. For example,
PCA finds the projection that captures the most variance in data.
See Maaten et al., 2009 [15], for a comparative review of these
methods. We are interested in different problems, namely presen-
tation of variation and preserving variation across multiple scales
and through different data-reducing projection operators. Whether
or not methods like PCA or Isomap are useful when doing projec-
tions where the signal of interest is variation is an interesting one,
but outside the scope of this paper.

In our work, we use the term projection to refer to the process
of converting a dataset of Rn dimensions to Rm dimensions, where
m < n. Unlike subsampling approaches, such as those described
above, we use one of several different projection operators—mean
(x̄), standard deviation (σ ), and Coefficient of Variation (Cv)—to go
from Rn to Rm.

3 COMPUTING VARIATION

The concepts of variance, and variation, have deep roots in statis-
tics. At its core, variance is a measure the of dispersion of data
values in a population. It is computed as and is a measure of the
degree to which individual data values, x, deviate from the pop-
ulation mean, x̄. Closely related to variance, the standard devia-
tion (σ ) is a metric that also indicates the amount of dispersion.
For datasets that follow a normal distribution, the size of the stan-
dard deviation indicates how tightly clustered the population data is
about the mean. When the examples are tightly bunched together
and the bell-shaped curve is steep, σ is small. When the examples
are spread apart and the bell curve is relatively flat, the σ will be
quite large.

The σ and Coefficient of Variation (Cv) (Eq. 1) quantities are
also related; the Cv is essentially a normalized form of σ :

V = ∑(x− x̄)2 and σ =

√
∑(x− x̄)2

n−1
and Cv =

σ
x̄

(1)

In Eq. 1, n is the number of data points, and x̄ is the mean, or
average, of the set of n data points. Cv represents the ratio of σ to
x̄, and it is a useful statistic for comparing the degree of variation
from one data series to another, even if the means are drastically
different from each other.

With these three measures—V , σ , and Cv—what are the advan-
tages and disadvantages of each as a measure of variation in data?

While both V and σ are numerically stable, they also require
some knowledge about the underlying data to be useful. For exam-
ple, if someone tells you σ = 100, is that a large or small value? To
know the answer, you’d have to know x̄. If, for example, x̄ = 106,
then σ = 100 is a very small amount of variation. On the other
hand, if x̄ = 200, then σ = 100 is a huge amount of variation.

On the other hand, Cv, being a normalized form of σ , does not re-
quire any knowledge of x̄ to understand. Using the examples above,
where x̄ = 106 and σ = 100, then Cv = 0.0001; and where x̄ = 200
and σ = 100, then Cv = 0.5. This example illustrates why simply
knowing σ by itself is only of limited use.

Despite its advantages, Cv does have a clear disadvantage: it be-
comes increasingly large as x̄ goes to 0.0, and is undefined when x̄
is 0.0. Among various workarounds one might consider would be
detecting this condition and then adding some constant C to all data
values, which would shift the mean away from 0.0 and also would
cause any change to σ . That approach would have the effect of
eliminating the effects resulting from a small, or zero, denominator,
while leaving the underlying variation present in data unaffected.

4 CASE STUDIES

This case study focuses on exploring how the Cv can reveal features
and characteristics that would otherwise not be visible using only x̄
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(a) x̄, lat/lon projection through all ensemble members across all years.

(b) σ , lat/lon projection through all ensemble members across all years.

(c) Cv, lat/lon projection through all ensemble members across all years.

Figure 1: Comparison of x̄, σ , and Cv as the basis of a spatial projection of climate model output, where we go from 4D to 2D. The Cv
projection shows specific features not visible in either the x̄ or σ projections, which are both similar in appearance.

or σ in large-scale, complex climate model output. The case study
consists of two parts, one focusing on precipitation (§4.1) and one
focusing on winds (§4.2).

We use precipitation and wind speed data generated by the
CAM5.1 global atmospheric climate model [7] run at approxi-
mately 1◦×1◦ longitude-latitude resolution under observed bound-
ary conditions from the period 1959-2014 [6]. Output from this run
consists of multivariate, four-dimensional data: latitude, longitude,
time, ensemble member. The size of precipitation data over 50 runs
is 7.4 GBytes and the size of wind speed data is 122 GBytes.

The model was run 50 times with different initial states, thus
producing an ensemble of 50 realizations of how the weather might
have evolved. While the large number of simulations is unusual,
the generation of multiple simulations in this manner is a stan-

dard approach for characterizing uncertainty in the climate system.
Here we examine monthly mean precipitation output on the model’s
longitude-latitude grid.

For both precipitation and wind studies, we are using the same
general approach: produce different types of projections (spatial,
temporal) using different projection operators (x̄, σ , Cv), and make
observations about the differences in science that emerge from each
type of projection. In both cases, it turns out that Cv is able to reveal
specific scientific features that are not present in the other two types
of images, suggesting that Cv is quite useful in helping facilitate
scientific knowledge discovery.
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4.1 Precipitation

Precipitation is one of the more visible and influential aspects of
the climate system for society and ecological systems, and thus is a
frequent topic of analysis. It represents one branch of the planet’s
hydrological cycle, wherein moisture evaporates over the ocean, is
transported over ocean and land, precipitates out of the air, and then
(if over land) returns to the ocean through rivers and groundwater.

Because precipitation amounts vary strongly across space (e.g.
deserts versus rainforests) and in some places across seasons, com-
parisons often require some form of normalization. A common way
of doing this is by dividing by the mean, usually multiplying by
100 to get a percentage deviation from the historical mean. For in-
stance, when generating gridded observational products of precip-
itation variations, point measurements at weather stations are con-
verted to fractional anomalies, which are then interpolated; after
the interpolation the fractional anomalies are multiplied with a spa-
tially interpolated field of mean precipitation [8]. The Cv is closely
related to the calculation of these fractional values.

This case study focusing on precipitation has two lines of explo-
ration: space and time. The key idea in both investigations is that
Cv reveals information that is not apparent using either x̄ or σ .

4.1.1 Spatial Projections

To begin, we compare spatial projections of x̄, σ , and Cv, shown in
Fig. 1. Here, we are projecting climate data from a 4D space (lat-
itude, longitude, time, ensemble member) to a 2D space (latitude,
longitude). For each lat/lon point, we compute the projected value
as p = f (T,E) across all times T and ensemble members E, where
f ∈ [x̄,σ ,Cv].

The images of x̄ and σ precipitation (Figs 1a and 1b) show the
band of rainfall that straddles the equator, known as the Intertropical
Convergence Zone (ITCZ), along with the mid-latitude storm tracks
that branch off from the ITCZ from the western sides of the major
ocean basins; much less precipitation falls in higher latitude areas
where the air is too cold to hold much water. The σ simply shows
that areas with large precipitation amounts have freedom for large
variability.

The image of Cv (Fig. 1c) looks rather different. Generally it
is highlighting the deserts in the subtropical areas to the north and
south of the ITCZ. The air that has dried through precipitation while
rising in the ITCZ moves poleward and descends here, leading to
hot and dry conditions. The low mean precipitation means that
the denominator of Cv is small, and the infrequent but substantial
storms lead to a comparatively high numerator. The exception to
this subtropical focus is the area of higher Cv over the eastern trop-
ical Pacific (i.e. against South America). Because the trade winds
blowing from the east pull up cool water from the deep ocean here,
the water at the surface is usually quite cool, does not evaporate
much, and thus does not provide much moisture for subsequent
rainfall. However, during El Niño years, the winds reverse and tem-
perature rises markedly, driving major thunderstorms.

4.1.2 Temporal Projections

The primary focus of this part of the case study is to facilitate visual
comparison of the variability in climate model precipitation calcu-
lations with an observed measure of climate variability, the Oceanic
Niño Index (ONI). The ONI is a metric of the shift between El Niño
(warm) and La Niña (cool) events in the tropical Pacific [11]. This
phenomenon is a well-documented driver of year-to-year variability
in climate worldwide, representing a major shift of winds around
the globe and providing the primary basis for forecasting on sea-
sonal time scales.

There were major El Niño events during the years 1983 and
1998. Those major weather events resulted in substantial increases
in precipitation in parts of the world, and are represented through

exceptionally high ONI values during those years. We use this in-
formation in the examples that follow to look for visual correlation
between precipitation variability as represented in different types of
temporal projections and known major weather events.

We begin with temporal projections from a 4D space (latitude,
longitude, time, ensemble) to a 1D space (time), shown in Fig 2. For
each time value T , we compute p= f (Slat ,Slon,E) across all spatial
locations (Slat ,Slon) and ensemble members E, where f ∈ [x̄,σ ,Cv].
Since the data is computed and stored at monthly temporal resolu-
tion, our computations produce a yearly value from monthly values.

In the plot of x̄ (blue bars in Fig. 2a), there is relatively little vari-
ation visible in the mean from year-to-year, with the main feature
being a gradual long-term trend of increasing precipitation levels.
Comparing these mean yearly values with the ONI and the the ma-
jor El Niño events of 1983 and 1998, which are reflected with ex-
ceptionally high ONI values during those years, there is no visible
correlation between yearly x̄ and those high ONI values. Similar to
the x̄ plot, the σ plot (purple bars Fig. 2b) shows the little variation
in the σ from year-to-year, and there is nothing remarkable about
the σ during the major events of 1983 and 1998.

In contrast, looking at the Cv projection in Fig. 2c, these two
major events correspond to the two years with the highest Cv val-
ues. The correspondence does not seem to hold for more moderate
El Niño events, however (e.g. 1972).

For the sake of completeness, we present a boxplot presenta-
tion of yearly precipitation values in Fig. 2d, along with annotation
showing the major El Niño events of 1983 and 1998. Here, the
box attributes are computed as yearly mean, min, max, and quar-
tiles from the monthly precipitation model data, across all ensemble
members. From this image, there is no visible evidence of anything
remarkable happening in terms of precipitation variability associ-
ated with the major events of 1983 and 1998. The conclusion here
is that visualization method, i.e., bar chart vs. boxplot, is not the
key issue. The key issue is that Cv reflects data characteristics in a
way not possible with either x̄ or σ .

The properties of the Cv map in Fig. 1c help to explain the be-
havior of the yearly bar plots of Cv in Fig. 2c. In essence, Cv is
acting as a combined index of the occurrence of El Niño events and
of anomalous rainfall over subtropical regions. If data were only
retained over the ocean, the Cv projection onto time would likely
improve as an index of El Niño variability. On the other hand, if
data were only retained over land (to mask out the El Niño aspect)
then it would provide a metric of variations in subtropical deserts,
without any parametric definition of what constitutes a subtropical
desert. In contrast, the yearly bar plots of the mean and standard
deviation are mostly reflecting activity in the ITCZ.

4.2 Winds

We now explore these projections for wind speed data from the cli-
mate model simulations. The data is the monthly average wind
speed on the 500 hPa surface, the pressure surface that is about
half the pressure at sea level and which lies approximately 5.5 km
above sea level. The images in Fig. 3 are spatial projections, from a
four-dimensional space—two spatial dimensions, time, and ensem-
ble members—down to a two-dimensional latitude/longitude pro-
jection.

The most prominent features in the map of the mean winds are
the mid-latitude jet streams. These winds are strongest over the
ocean, flow from west to east in the 40◦–50◦ latitude range, and
extend down to the surface (hence named the “Roaring 40s” in the
Southern Hemisphere). These appear as horizontally oriented re-
gions of red in Fig. 3a, the projection of mean wind speed, x̄.

The map of σ (Fig. 3b) appears to show that the jets over the
North Pacific and North Atlantic are variable, while the southern
jet is instead quite steady except in the South Pacific. However,
the Cv map (Fig. 3c) indicates that the spatial alignment of fea-
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(a) x̄.

(b) σ .

(c) Cv.

(d) Box plots for precipitation from year 1980 to 1994

Figure 2: Comparison of x̄, σ , and Cv as the basis for temporal projection operators, where we project from all spatial locations and ensemble
members to yearly values. We show these temporal projections in comparison with the ONI. Of these projections, the Cv projection shows
the strongest correlation with ONI, which is a known measure of climate variability.
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(a) x̄

(b) σ

(c) Cv

Figure 3: 2D spatial projections of 500 hPa wind speed from a 4D space. Comparison of the Cv map against the x̄ map reveals that the strong
mid latitude winds have a tendency to expand equatorward but not poleward, some thing that is harder to distinguish in the σ map.
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tures is not perfect. In fact the jet cores over the North Pacific,
North Atlantic, and Antarctic Oceans are all very steady. The vari-
ation instead comes from a tendency of the winds to expand toward
the equator: there is little or no power on the poleward side of the
jets. It is well known that the jets vary in their north-south posi-
tion, with those variations so prominent that they form the lead-
ing Principal Components of extratropical variability, often termed
the “Southern Annual Mode” (Antarctic), the “Pacific/North Amer-
ica Pattern” (North Pacific), and the “North Atlantic Oscillation”
(North Atlantic); the northern two PCs are sometimes merged into
the “Northern Annular Mode” [16, 14]. However, the point that
these variations are manifest through an equatorward expansion of
the winds, and not through a poleward expansion or through north-
south shifts of the jet core, is not something that is readily apparent
in the patterns associated with the PCs, which are themselves igno-
rant of the context of the mean base flow. Comparison of the σ and
x̄ maps can reveal the equatorward tendency, but it requires careful
scrutiny. On the other hand, by stressing the differences between
the x̄ and σ maps, the high-value regions in the Cv map are more
clearly displaced from those in x̄ map, meaning that the asymmetry
in the north-south movement of the jets is apparent even in just a
casual comparison.

5 CONCLUSION

In working with large, complex data, one key issue is how to effec-
tively produce smaller-sized representations in a way that convey
useful information. When looking at a science problem that focuses
on studying variation in data, our approach is to focus on use of Co-
efficient of Variation (Cv) as a measure of variation, and show that
it is capable of revealing information in data in a way not possible
with the more commonly used standard deviation. Specifically, our
case studies show that Cv reveals features in two different fields that
are not visible using standard deviation or x̄ as the basis for com-
puting variation or the basis for dimension-reducing projections.

This idea, using Cv as the basis for computing variation and as
the basis for doing multi-dimensional projection, is a simple one,
but highly effective. Of the visual examples, the winds data results
shown in Fig. 3 were produced by our climate science collaborator
using the CDAT toolkit [18] and a small amount of custom Python
code. We hope that this method will be useful to many other science
applications, and that due to its simplicity, can be adopted and used
by many different existing visualization tools.

While Cv does have some known shortcomings, these can be
avoided or worked around. And Cv, as a normalized measure of
variation, does hold promise as a vehicle for comparing variation
in datasets having as the basis for seeing and comparing variation
across datasets having vastly different ranges and scales. There are
many potential applications and uses of this technique, from phys-
ical to social sciences. This approach lends itself to use of field-
based visualization and analysis methods; it is easily incorporated
into existing visualization tools and methodologies. A promising
avenue for future work would be to explore this idea, comparison
of variation across datasets having vastly different properties.

ACKNOWLEDGEMENTS

This work was supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, of the U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231,
through the grant “Towards Exascale: High Performance Visual-
ization and Analytics,” program manager Dr. Lucy Nowell. This
research used resources of the National Energy Research Scien-
tific Computing Center, a DOE Office of Science User Facility sup-
ported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Sto-
ica. Blinkdb: Queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 29–42, New
York, NY, USA, 2013. ACM.

[2] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graph-
ical Methods for Data Analysis. Wadsworth, 1983.

[3] J. Clyne. Progressive Data Access for Regular Grids. In E. W. Bethel,
H. Childs, and C. Hansen, editors, High Performance Visualization—
Enabling Extreme-Scale Scientific Insight, Chapman & Hall, CRC
Computational Science. CRC Press/Francis–Taylor Group, Boca Ra-
ton, FL, USA, Nov. 2012. http://www.crcpress.com/
product/isbn/9781439875728, LBNL-6466E.

[4] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and
Applied Mathematics, June 1992.

[5] I. Demir, C. Dick, and R. Westermann. Multi-charts for comparative
3d ensemble visualization. IEEE TVCG, 20(12):2694–2703, 2014.

[6] C. Folland, D. Stone, C. Frederiksen, D. Karoly, and J. Kinter. The In-
ternational CLIVAR Climate of the 20th Century plus (C20C+). CLI-
VAR Exchanges, 19:57–59, 2014.

[7] R. B. Neale, C. Chen, A. Gettelman, P. H. Lauritzen, S. Park, D. L.
Williamson, A. J. Conley, R. Garcia, D. Kinnison, J. Lamarque, et al.
Description of the NCAR community atmosphere model (CAM 5.0).
NCAR Tech. Note NCAR/TN-486+ STR, 2010.

[8] M. New, M. Hulme, and P. Jones. Representing twentieth-century
space-time climate variability. Part II: Development of 1901-96
monthly grids of terrestrial surface climate. J. Climate, 13:2217–2238,
2000.

[9] T. Pfaffelmoser and R. Westermann. Visualizing contour distributions
in 2d ensemble data. In EuroVis-Short Papers, pages 55–59. The Eu-
rographics Association, 2013.

[10] K. Potter, A. Wilson, P. T. Bremer, D. Williams, C. Doutriaux, V. Pas-
cucci, and C. R. Johnson. Ensemble-vis: A framework for the sta-
tistical visualization of ensemble data. In 2009 IEEE International
Conference on Data Mining Workshops, pages 233–240, Dec 2009.

[11] G. G. W. Services. El Niño and La Niña Years and Intensities.
http://ggweather.com/enso/oni.htm, last accessed De-
cember 2015.

[12] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume rendering
algorithm for time-varying fields using a time-space partitioning (tsp)
tree. In Proceedings of the Conference on Visualization ’99: Cele-
brating Ten Years, VIS ’99, pages 371–377, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

[13] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geo-
metric Framework for Nonlinear Dimensionality Reduction. Science,
290:2319–2323, Dec. 2000.

[14] D. W. J. Thompson and J. M. Wallace. Annular modes in the extra-
tropical circulation. Part I: Month-to-month variability. J. Climate,
13:1000–1016, 2000.

[15] L. van der Maaten, E. Postma, and H. van den Herik. Dimensionality
Reduction: A Comparative Review. Technical report, Tilburg Univer-
sity Technical Report, 2009. TiCC-TR 2009-005.

[16] J. M. Wallace and D. S. Gutzler. Teleconnections in the geopotential
height field during the Northern Hemisphere winter. Mon. Wea. Rev.,
109:784–812, 1981.

[17] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour Boxplots:
A Method for Characterizing Uncertainty in Feature Sets from Simu-
lation Ensembles. IEEE Transactions on Graphics and Visualization,
19(12):2713–2722, 2013.

[18] D. Williams, C. Doutriaux, J. Patchett, S. Williams, G. Shipman,
R. Miller, C. Steed, H. Krishnan, C. Silva, A. Chaudhary, P.-T. Bre-
mer, D. Pugmire, E. W. Bethel, H. Childs, M. Prabhat, B. Geveci,
A. Bauer, A. Pletzer, J. Poco, T. Ellqvist, E. Santos, G. Potter,
B. Smith, T. Maxwell, D. Kindig, and D. Koop. Ultrascale Visual-
ization of Climate Data. IEEE Computer, 46(9):68–76, Sept. 2013.

[19] L. Williams. Pyramidal parametrics. In Proceedings of the 10th An-
nual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’83, pages 1–11, New York, NY, USA, 1983. ACM.

7




