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Abstract of the Dissertation

Modeling, Estimation, and Control of Waste

Heat Recovery Systems

by

David Luong

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Tsu-Chin Tsao, Chair

Energy consumption and efficiency continue to be an area of high interest with

the diminishing supply and rising costs of fossil fuels. In the United States, the in-

dustrial and transportation sectors consume a significant portion of the resources

and total energy, accounting for significant fossil-fuel-related environmental im-

pacts such as greenhouse gas pollution and global warming. It has been estimated

that between 20 to 50% of the energy consumed is lost as waste heat in the form

of hot exhaust gases, cooling water, and hot equipment surfaces. By converting

the heat to a more useful energy form, waste heat recovery (WHR) technologies

are capable of creating emission-free, low-cost, and sustainable energy sources.

However, WHR systems, if not properly designed and operated, may not be eco-

nomically and or even feasible, particularly with low-grade and highly-transient

heat sources. The aim of this dissertation is to predict WHR performance and fea-

sibility through physics-based static and dynamic Rankine Cycle (RC) modeling

for low- and medium-grade transient heat sources. The dynamic models provided

are low-order, control-oriented, and suitable for tractable estimation and control

methods that improve operational performance and observability of key process
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variables. Thermoproperties for water and steam are obtained from equations

of state formulations based on Helmholtz and Gibbs free energy. For general

fluids and their mixtures, equations of state can be obtaned from a presented

least squares property fit routine. This dissertation applies the modeling, estima-

tion, and control methods on a WHR application for heavy-duty diesel powertrain

where important RC variables are captured and monitored while satisfying speci-

fied design and operating constraints. An organic working fluid mixture of ethanol

and water is considered for this organic RC (ORC) application. Estimation and

control methods are simulated on a dynamic ORC model of different architectures

and actuator configurations. Power load following is also examined. The simu-

lation results indicate improved ORC operation with feedback controls over the

open-loop case. Multi-input multi-output controllers that rely on state estimation

feedback show better tracking performance than single-input single-output con-

trollers. Finally, a library of static and dynamic component models are provided

as a useful aid for designing general WHR systems.
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CHAPTER 1

Introduction

1.1 Introduction

Increasing energy demands, diminishing fossil fuel resources, and rising environ-

mental impacts are challenges resulting from how society generates and consume

energy. The unwanted byproducts of energy consumpton include production of

greenhouse gases from industrial processes that are believed by many to contribute

to global warming. Vehicle emissions significantly contribute to air pollution in

the form of smog and acid rain. And the use of refrigerants and other ozone-

depleting substances in refrigeration and aerosols are steadily shrinking the total

volume of ozone layer that prevents most of the harmful ultraviolet light entering

Earth’s atmosphere. As population continues to grow, the demand for energy and

their detrimental environmental impacts will grow as well. Figure 1.1 shows the

ever-increasing consumption of energy sources dating back to the formation of the

United States.

Petroleum is currently the largest source of energy in the United States with

the rising demand for it not showing signs of slowing. The transportation and in-

dustrial sectors rely heavily on petroleum-based energy as seen in Figure 1.2. The

footnotes can be found [Adm11]. Other fossil fuel resources are heavily dependent

as well with renewable energy having a small energy contribution. Coupled with

their diminishing supply, the need is growing to switch from an economy heavily
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Figure 1.1: Historical Energy Consumption in the United States

dependent on fossil fuels to one relying on other energy sources are economically

and environmentally advantageous.

To reduce our energy consumption that is highly dependent on fossil fuel re-

sources, seeking alternative energy sources and improving energy efficiency are

becoming increasingly popular solutions. Solar, wind, geothermal, and biomass

energy sources are attractive for their sustainability and low generation of detri-

mental byproducts. Recovering energy from processes generating waste heat has

been expected to bring process efficiencies higher thus requiring less energy con-

sumption. To improve existing energy efficiency, recent research endeavors have

involved dynamic modeling and controlling energy systems to better understand

them in design and performance. Numerous works have been published in power
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Figure 1.2: Energy Supply and Demand in the United States, 2011 [Adm11]

[WLL90][QLL10] and refrigeration cycles [RA04] to recover energy from a heat

source and provide proper space conditioning [QD08][HLA97]. More recently,

power generation from heat recovery using the Rankine Cycle, specifically ones

operating organic working fluids, has been an active area of research and commer-

cialization for a variety of applications with heat sources.

Rankine cycles (RC) have been receiving increasing attention in the market of

power generation, particularly in automotive applications, where there is oppor-

tunity in recovering useful energy from engine heat. The RC seeks to recover the

waste heat in the form of engine exhaust by producing expansion work that can

be converted to mechanical torque for the engine drivetrain or electrical storage

to power vehicle accessories.

Although the cycle has been in existence for some time, the RC has been fos-
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Figure 1.3: Components of the Rankine Cycle

tering renewed interest in small-scale systems characterized with low temperature

heat sources. This characteristic makes it ideal in automotive systems where the

physical space is limited under the hood and the exhaust used for waste heat

recovery is not particularly high in temperature.

In heavy-duty (HD) vehicles, waste heat recovery (WHR) has been identified

as a key technology in improving efficiency. The United States Department of

Energy established the SuperTruck project to improve long-haul Class 8 vehicle

freight efficiency [DOE10]. Among many areas for improvements including aero-

dynamics of tractor skirts or tire compound technology, reducing heat loss has the

most opportunity for efficiency gains [DOE09]. Figure 1.4 highlights the energy

distribution in Class 8 trucks for urban and highway driving with combustion

dissapating the highest energy.

The advantage of a small-system RC is the ease to manufacture the parts

derived from vapour compression systems such as refrigerators. Although such

4



Figure 1.4: Areas for Improving Truck Efficiency [DOE09]

Rankine systems are typically associated with low efficiencies (8-12%) [Ros08],

their feasibility in recovering waste heat in automotive engines has demonstrated

fruition. Research and prototyping from Honda Motors have shown that in 100

kph (62 miles/hour) constant-speed driving, the use of the Rankine cycle improved

the thermal efficiency of the engine by 3.8% [Ros08].

When the heat source is classified as low-grade (60◦ - 220◦C) or medium-

grade (220◦ - 450◦C), the choice of working fluid becomes more important to

achieve power generation and efficiency. Solar and geothermal applications are

increasingly using organic working fluids which are better suited for low-grade

heat sources. Typically refrigerants or hydrocarbon working fluids, these organic

fluids have lower latent heat of vaporization and pinch points that occur at higher

quality so that they can approach the heat sources temperature more closely than

water. RCs with organic working fluids are referred to as organic Rankine cycles

(ORCs.
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Heat sources are often unsteady or transient which can affect power genera-

tion feasibility and performance. Depending on the driving terrain, the engine’s

exhaust can experience large exhaust temperature and flow rate swings. Figure

1.5 shows the exhaust temperature and mass flow rate of a 13 liter heavy-duty

diesel engine for a Rolling Hills driving cycle. The transients creates a challenge

in operating the WHR as a steady-state cycle and introduces concerns of drying

out and flooding components.
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Figure 1.5: Heat Source for Rolling Hills Driving Cycle

Due to the low-grade heat characteristic describing waste heat and other re-

newable energy sources, there is a need for modeling, controlling, and monitoring

ORC WHR systems during unsteady operations. For the given design and equip-

ment operating conditions, the WHR system must be properly controlled to satisfy

constraints in the presence of transient heat sources. To do so, a control-oriented

ORC model is needed that accurately captures the salient trends of the system.

Due to the multiple actuators and process variables found in the ORC, coupling
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between them must be accounted for through the control strategy for constrained

operation. Furthermore, some process variables are difficult to measure and if pos-

sible may add to system complexity and cost. In vehicular applications, the lim-

ited space under the engine hood necessitates minimal, automotive grade sensors

that can adequately infer the system’s current state of health and performance.

Pressure, temperature, and mass flow rate sensors are typically available. Other

process variables are difficult to measure such as wall temperatures and phase

boundaries in two-phase flow. While phase change boundary detectors exist, they

are expensive research grade sensors and thus not suitable for commercialization.

Practically, this boundary cannot be measured directly in automotive and other

applications, but remains an important variable to monitor to avoid flooding and

dryout.

In determining the performance of recovering waste heat via such a cycle, it

is important to understand the operating viability of the RC during an actual

driving cycle and avoid critical conditions with proper control. The amount of

available exhaust heat depends on driving style and terrain and has an impact

on the performance in recovering waste heat and converting it to power. These

are referred to as transient disturbances to the RC. Also important is how they

critically affect the operation of the cycle. A critical condition of interest is when

the proportion of liquid and vapour in the heat exchangers are outside acceptable

ranges, causing stalling or temperature shocks to the components and damaging

the system [WLL90]. In Figure 1.6, the interaction of the turbine blade and

excessively wet steam caused bending damage. To avoid such critical conditions,

property control must ensure an acceptable amount of superheat after the heat

exchanger.

Such problems can be addressed at the design stage by a physical, dynamic
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Figure 1.6: Turbine Blade Damage from Wet Steam (Source: PTG Advisers, Inc.)

model and simulations. Not only can such a model help size a system, but also

forecast the actual system’s operating viability under typical driving conditions.

In this case, we are interested in how often the cycle can run as well as the

power generated. The other advantage of having a control-oriented model is the

ability to design and apply control strategies to optimize the cycle’s performance

in the presence of driving transients. Such optimization includes satisfying the

constraints such as positive net power generated and requiring component inlet

fluid conditions at the appropriate quality.

The rest of this chapter illustrates past and current work performed for mod-

eling, estimation, and control of ORC WHR systems.
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1.2 Dynamic Modeling for Refrigeration and Power Sys-

tems

1.2.1 Heat Exchanger Modeling

Physics-based dynamic modeling of heat exchangers can be based on approaches

with trade-offs between accuracy and computation as shown in Figure 1.7. The

truth model obtained from discretizing partial differential equations (PDEs) de-

scribing energy, mass, and momentum conservation offers high accuracy at the ex-

pense of significant computational load. The design model that removes spatiality

in the PDEs by assuming lumped parameters and properties provides computa-

tional ease by trading away accuracy. The Moving Boundary approach results in

fairly accurate, low-order, and control-oriented models.

Figure 1.7: Heat Exchanger Modeling Approaches [Cra11]

Moving Boundary models have successfully described heat exchanger dynamics

in refrigeration systems. Researchers have developed a control-oriented model for
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transcritical vapor compression systems where the gas cooler and evaporator were

described by one and two-zone Moving Boundary models, respectively [RA04].

The nonlinear heat exchanger models were linearized around an operating point

for linear analysis and model reduction and showed agreement in dynamic trends

with both the nonlinear model and experimental results.

Extensive research has focused on the Moving Boundary heat exchanger mod-

els in HVAC systems for the purpose of control and monitoring. The aim has been

to increase performance and efficiency by exploiting the model’s mathematical

structure. There have been efforts in multivariable control of vapor compression

systems that take advantage of the multi-input multi-output (MIMO) Moving

Boundary models [HLI98]. By designing controllers that incorporate the coupling

between multiple inputs and outputs, the authors showed that MIMO control

could significantly improve the transient behavior of HVAC systems compared

to the conventional single-input single-output (SISO) control scheme. Other re-

searchers investigated a power plant utilizing waste heat and achieved transient

performance and steady-state energy savings using a LQR with PI controller on

a MIMO heat exchanger model [ZZH12].

However, limited research has been conducted on nonlinear Moving Boundary

models that are important in describing WHR dynamics. While linear models

are effective in reducing simulation and model complexity and conducive for lin-

ear control analysis tools, these models only apply to steady-state operating or

equilibrium points. Driving cycles, in particular, rarely operate in steady-state

conditions, typically with large heat source/sink transients. Linear models are no

longer valid in these scenarios. Nonlinear models instead capture a larger state

space and can model transients over a range of operations.

This dissertation adopts the Moving Boundary approach for dynamic heat
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exchanger modeling. Both the nonlinear and linear models are developed for

evaporators and condensers with different number of fluid-phase zones.

1.3 State Estimation

The performance and health of heat exchangers are important in power recovery

and refrigeration systems for their ability to move heat effectively from one lo-

cation to another. Often operated for long durations in a blackbox fashion, the

heat exchanger states of health are important to know from available external

measurements. Their heat transfer effectiveness degrades over time with chemical

deposits and clogging and is known as fouling. Figure 1.8 shows a tube bundle

that has been crusted over with chemical deposits and is in need of cleaning and

maintenance. Without being able to measure every process variable for fouling

checking, model-based estimators are useful mathematical tools to infer unmea-

sured variables from measured ones.

State estimation for these process variables is discussed in the literature and

often required in feedback control and monitoring. Nonlinear observers were ap-

plied on a low-order evaporator model based on sensor measurements of evapo-

rating temperature and used to synthesize feedback control [CHA04]. The fixed

observer gains were obtained for specified operating points and guaranteed state

estimation convergence. An Extended Kalman Filter (EKF) has been applied on

a dynamic heat exchanger model to detect fouling [JLP07]. However, the con-

sidered working fluid does not undergo a phase change. To the knowledge of the

authors, estimation has not been explored for the mathematically richer Moving

Boundary heat exchanger models. Furthermore, state estimation performance us-

ing particular measurements has received little attention. The availability and

cost of these sensors can impact whether feedback control is achievable.
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Figure 1.8: Fouled Heat Exchanger Tube Bundles [Ibr12]

This dissertation examines linear and nonlinear state estimation on the Mov-

ing Boundary model. The linear state estimator is based on the linear Moving

Boundary model while the nonlinear model used an Extended Kalman Filter.

Pressure and temperature measurements are assumed available to infer the model

states. For the EKF, cases for with and without process/measurement noise are

examined. A discussion of relative observability is given for the nonlinear esti-

mator. Finally, estimation performance is examined under the presence of heat

exchanger fouling.

1.4 Working Fluid Selection

The selection of working fluids and operation conditions are important to overall

WHR system efficiency, operation, and environmental impact[LCW04]. As atten-

tion is shifted to designing small WHR systems for low-temperature applications,
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the selected working fluid must be chosen accordingly. The amount of heat avail-

able for heat transfer to the working fluid primarily dictates this choice. In high

temperature applications such as powerplants, these systems typically use water

and steam to take advantage of the large latent heat of vaporization to store heat

and produce a large expansion during power generation. Low heat sources, how-

ever, require a working fluid (typically refrigerants having low flash points) that

can easily flash into vapor from low heat with a compromise of a smaller expan-

sion. Depending on the expected heat source grade, a working fluid is chosen

between these two extremes.

In terms of operation and environmental impact, the selected working fluid

must be compatible with and not cause damage to the system components and

the environment in which they operate. In meeting these considerations, organic

working fluids are receiving attention as as a favorable replacement for water in

low-temperature applications. Some of these working fluids include, but are not

limited to, the following in Table 1.1.

Many working fluids for Rankine cycle power systems are possible. The chosen

fluid aim to have thermodynamic properties resulting in high efficiency and low

cost systems. Desirable characteristics include having low toxicity, explosive ten-

dencies, and controllable flammability behaviors [SM78][PJ77] as well as material

compability and fluid stability limits [SM78][NGL78]. To aid in selection, these

and other working fluids can be classified intro three different categories based on

a metric provided in [LCW04]. As a working fluid undergoes expansion at the

turbine or other expansion devices, its entropy can either decrease, increase, or

remain roughly the same. While the latter case (isentropic expansion) is typically

ideal, working fluids in practice are either wet (entropy decrease) or dry (entropy

increase). Dry and isentropic fluids are guaranteed superheated after expansion,
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Working fluids Calculated by Type

Water -13.1818 Wet

Ethanol -5.4299 Wet

R11 -0.3903 Isentropic

R123 0.1202 Isentropic

HFE7100 1.8252 Dry

n-Pentane 1.2335 Dry

Iso-Pentane 1.1801 Dry

Benzene 0.3316 Isentropic

Toluene 1.0600 Dry

p-Xylene 1.539 Dry

Table 1.1: Working Fluid Types [LCW04]

and eliminates the concern of liquid droplets in the expansion device. Hence, dry

or isentropic fluids are preferred over wet types. [LCW04] suggests examining the

quantity ξ(= ds
dT
), the slope of the saturated vapor curve on a T-s diagram. Dry

type fluids are characterized by ξ > 0, wet types by ξ < 0, and isentropic types

by ξ ∼= 0 where

ξ =
CP

TH

−
nTrH

1−TrH
+ 1

T 2
H

∆HH (1.1)

TH is the temperature at the evaporating condition, TrH is TH normalized to

the critical temperature, the exponent n is 0.38 given by [PPO01], and ∆HH is

the enthalpy of vaporization. Table 1.1 provides acceptable agreement between

thermodynamic data and the predicted types of the working fluids. Notice that

water and ethanol, both with large enthalpies of vaporization, have significant

negative ξ values.

Together with knowledge of the working fluid type, a sensible choice of working
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fluid can be based on the desired operating condition consistent with the avail-

able heat source and heat sink. Knowing the superheat temperature, the selected

working fluid should undergo expansion (dry or isentropic) while ensuring suffi-

cient cooling capacity is available to bring the fluid to a subcooled state. This

provides insight in sizing the cooling capacity for the system. Because the heat

source availability can vary, the working fluid must be appropriately chosen and

cooling capacity must be designed for that range of operation.

The efficiency and power generation capability of the Rankine cycle can also

be improved by the use of mixtures. Pure fluids are typically azeotropes, that

is they exhibit constant boiling temperature. Water is such an azeotropic fluid.

When boiling, the transfered heat acts to break the molecular bonds and does

nothing to increase the fluid temperature until it reaches superheat. This has a

neutral effect on the cycle efficency as the working fluid is not able to converge

closer to the heat source temperature as shown in Figure 1.9. Zeotropic fluids,

however, have non-constant boiling temperatures and can reach closer to the heat

source temperature. This has the effect of increasing both the cycle efficiency and

power. Water-ethanol and water-ammonia mixtures are both zeotropic and are

popular working fluid choices in waste heat recovery applications.

The working fluid must also have a desirable freeze point in applications en-

countering freezing ambient conditions. Pure water is not ideal in many areas of

the world experiencing freezing conditions, so some anti-freeze protection may be

required to lower the freezing point. Water mixtures involving ethanol or ammo-

nia can have a sufficiently low freeze point, and with the help of fluid circulation

can deter freezing.

This dissertation uses water and 52% ethanol-48% water mixture as the work-

ing fluid.
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Figure 1.9: Temperature-entropy diagram for Ethanol-Water Mixture (52%

Ethanol-48% Water Mixture)

1.5 Thermodynamic and Transport Property Models

In constructing thermodynamic models, obtaining fluid properties for the working

fluid can be a challenge needed to solve the RC models. Thermodynamic and

transport properties are often available in tables from reference books or property

software. For well-studied fluids such as water and steam, equations of state

exist and are based on Helmholz and Gibbs free energy principles. However,

not every working fluid, including organic working fluids that has been of recent

research interest, has easily accessible or available equations of state for the desired

operating conditions.

Thermodynamic software are available to retrieve thermodynamic and trans-

port properties given two independent properties. If the thermodynamic software
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does not provide communication to the modeling software environment for prop-

erty retrieval, the properties are often imported and a table look-up scheme is

employed. Transport and thermodynamic tables of properties typically exist for

many studied fluids. Selected ranges of these property tables can be programmed

into the modeling language and 2-D lookup and interpolation methods can be em-

ployed to retrieve desired properties defined by two independent properties. The

latter method’s interpolation may result in significant computational demand over

the course of simulations.

This dissertation obtains equations of state by performing an off-line property

least squares fit [Lim11]. The equations of states are highly accurate, but less so

near the independent properties’ range boundaries. The property evaluations are

often more computationally efficient than interpolation in table look-up.

1.6 Control of Rankine Cycles

RCs are typically used in power applications where a steady heat source and sink

are available. Such cycles operate in steady-state fashion due to the consistent

heat source (constant Q̇in for the heater and Q̇out for the cooler) with little con-

cern of highly transient conditions disturbing the cycle from its normal operating

condition designed with acceptable margins away from critical conditions. Such

include dry-out, flooding, and temperature shocks in heat exchangers. A flow

and temperature-entropy (T-s) diagram describing a steam RC is shown in Figure

1.10.
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Figure 1.10: RC Schematic

HTR1 and CLR1 in Figure 1.10 are respectively synonymous with the evap-

orator and condenser terminology used in this dissertation. TUR1 represents a

generic expansion device, not necessarily a turbine.

With the known constant or steady heat source and sink, an evaporating and

condensing pressure is chosen in accordance with the appropriate mass flow rate

to locate the S1-S4 vertices in the correct phase regions i.e. liquid at pump inlet,

(superheated) vapor at turbine/expander inlet.

Figures 1.11 and 1.12 show cycles with the same evaporating and condensing

pressures. The difference is in the heat sources which causes different superheat

and expansion conditions. The S2 vertex shifts away from the saturation dome

as more heat is added to the evaporator. The S3 vertex falls inside or outside the

dome, indicating wet working fluid phase that the expansion device may not be

able to tolerate. The quality at S3 may need to be sufficiently high to prevent

liquid droplet damaging turbine blades operating at high speeds.
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Figure 1.11: RC T-s Diagram (Single Phase Expansion)

Figure 1.12: RC T-s Diagram (Two-Phase Expansion)
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The goal of control is to optimize the working conditions of the Rankine cycle

corresponding to the heat source and heat sink. The first step is to assume a static

or constant heat source and heat sink defined by average temperature and flow

rate. This provides a baseline performance to comparison to the performance of a

RC with varying heat source/sink properties. Past control effort for optimal con-

trol of a dynamic RC indicated that the following statements should be accounted

for [QAG11]:

1. Condensing pressure maintained as low as possible, usually at atmospheric

pressure to avoid vacuum conditions

2. Superheating at the evaporator outlet should be kept at an acceptable level

to avoid downstream component damage in the expansion device and in

general when using organic fluids with high molecular weights

3. Optimal evaporation temperature should result in high heat recovery effi-

ciency

The last statement, however, has undesired effects on the RC system. When

increasing the evaporation temperature (from a higher pressure), the following

occurs:

1. A higher evaporating temperature results in greater under-expansion losses,

which decreases the expansion efficiency

2. The heat recovery efficiency is also less from the heat source cooling down

to a higher temperature

3. The expander specific work increases with a higher pressure ratio
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These trade-offs are important to quantify when identifying the optimal tem-

perature. The equations to describe these cycle metrics are the following:

Wnet =

∫

(Wexp −Wpump)dt (1.2)

ηcycle =
Wnet

∫
Q̇evapdt

(1.3)

εhr =

∫
Q̇evapdt

∫
ṁwf (hout − hin)dt

(1.4)

For a particular working fluid, the above metrics can be plotted over an operating

range of evaporating temperatures. Figure 1.13 below is for the working fluid

R245fa where the optimal evaporating temperature is about 117 degree Celcius.

Figure 1.13: WHR Effectiveness, Cycle Efficiency, Overall Efficiency[QAG11]

In the RC, the two degrees of freedom to achieve this optimal point are mass

flow rate and pump/expander speed. The pump and expander are controlled in
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such a way to affect the working fluid’s evaporating temperature and degree of

superheat. Throttle valves and their positions set the flow rates in the RC loop.

It should be noted that the mass flow rate and pump/expander speeds have

widely different time constants and do not independently affect evaporating tem-

perature and superheat. A change in the pump flow rate changes the evaporating

temperature and/or amount of superheat, and experiences a delay from the ther-

mal and fluid dynamics of the heat exchanger [QAG11]. A change in the expander

speed, however, produces an almost instantaneous change in the evaporating pres-

sure (and thus temperature). With a constant mass flow rate , the volumetric flow

rate is modified through a change in fluid density and vapor pressure.

The authors in [QAG11] decided that evaporating temperature is more of a

priority condition to control and uses the faster acting expander speed to affect

it. The pump flow rate is used to affect the degree of superheat. The authors

apply proportional-integral (PI) control in a feedback manner for three different

strategies:

1. Constant evaporating temperature

2. Optimized evaporating temperature depending on actual working conditions

3. Correlated pump speed (for working fluid flow rate as an optimized function

of heat source temperature, condensing temperature, and expander speed)

The authors concluded that the best results are obtained with regulation to the

optimal evaporating temperature. Finding the optimal evaporating temperature

from a steady-state model like in Figure 1.13 is needed a priori for the range of

operating temperatures and unsteady heat sources. An offline mapping of some

kind is needed for a variety of working conditions. The correlated pump speed
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strategy tries to achieve a faster acting pump based on actual working conditions,

but was not able to maintain desired superheat in simulation.

The work presented is a step in the direction of Rankine cycle modeling and

control for optimal operation. However, there are some shortcomings, specifically

with a decoupling of the degrees of freedom in affecting evaporating temperature

and superheating. Although the authors mentioned that the time scales is a reason

for choosing expander speed to affect superheat and pump flow for evaporating

temperature, the simultaneous effects of the actuators are not explored rigorously.

Another degree of freedom not mentioned is the inlet enthalpy of the working

fluid, which is a function of cooling ability at the condenser and added energy

from flowing through the pump.

On a grander scheme, lacking in the Rankine cycle literature is advanced con-

trol strategies that takes advantage of multi-input multi-output (MIMO) feature

of the entire system. Hindering the advancement of controls is the fact that single-

input single-output (SISO) strategies such as the ones presented in [QAG11] do

not pay attention to the coupling of the inputs that affect the outputs. While

Rankine models exhibit multiple inputs and multiple outputs, they are treated as

single inputs affecting single outputs in control design.

The authors in [ZZH12] proposed a linear active disturbance rejection con-

troller for a system identified model of a 100 kW WHR system. The authors in

[HLI98] have designed a model-based advanced controller for vapor compression

refrigeration systems. Linear Quadratic Gaussian (LQG) strategy was used for

both evaporator and condenser to achieve better disturbance rejection and tran-

sient response over SISO controllers. However, the literature currently lacks such

advanced control efforts and results for ORCs based on the Moving Boundary

heat exchanger models. What remains ahead in control design is to shed light on
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the benefits of treating the entire system as a multi-input multi-output (MIMO)

model and exploring the trade-offs between selected inputs to affect outputs un-

der transient heat source/sink conditions. Multiple time scale behavior of RC

components will certainly play an important role in the design. Advanced MIMO

controls such as linear quadratic and model predictive control show promise in

achieving an operational objectives such as desired superheat and system pres-

sures during transient operation, which this dissertation explores.
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CHAPTER 2

Application to Heavy-Duty Diesel Powertrain

2.1 Overview

The application considered has the heat source for the Rankine cycle coming from

the exhaust manifold as shown in Figure 2.1. A fraction of the exhaust powers

the boost system and turbo-compounding. The remainder of the exhaust flows

through the exhaust gas recirculation (EGR) evaporator and serves as the heat

source for the Rankine Cycle (RC) before returning to the combustion chamber

for nitrogen oxide (NOx) emissions reduction. During driving cycles, the exhaust

temperature and mass flow rate exhibit highly transient behavior, thus affecting

the Q̇in to the heater i.e. evaporator. A similar statement can be made for the

condensing side for its cooling medium (passing ambient air or radiator coolant).

These transients cause changes of the evaporating and condensing pressures in

the heat exchangers, changing the isobars and vertex locations corresponding to

working fluid states on the T-s diagram.
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Figure 2.1: Rankine Cycle Architecture (Overview)

2.2 Geometry

The EGR cooler i.e. evaporator is shown in Figure 2.2. The overall flow length

from inlet to outlet is 0.7 meters distributed in twelve stainless steel tube bundles.

The current cooler has a complicated flow arrangement resembling shell and tube

with internal flow undergoing multiple passes. The external flow across the tube

bundles is a mix of cross, parallel, and counter flow.

Heat Exchanger (Effective) Length [m] # Tubes Tube Shell

ID [m] ID [m]

EGR Evaporator (2.1) 0.7 12 0.0075 0.009

Condenser (3.5) 0.7 11 0.02 0.03
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The effective length arises from flow in the heat exchangers going through

multiple passes that effectively gives a longer length. The effective lengths are

used in the modeling.

The wall thickness of the shell and tube is 1 mm for both the evaporator and

condenser.
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Figure 2.2: Exhaust Gas Recirculation (EGR) Evaporator Cooler
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2.3 Working Fluid

The selected working fluid is an organic mixture of ethanol (52%) and water (48%)

for its suitability in a vehicular environment. Chemical breakdown of the mixtures

occurs around 300 ◦Celcius, which is an appropriate temperature given the heat

source quality (shown later in this chapter). The mixture has inherent resistance

to freezing, which can be further aided by fluid circulation.

The Temperature-Entropy diagram for the RC using ethanol-water mixture is

shown in Figure 1.9.

Figure 2.3: Temperature-Entropy Diagram for RC

2.4 Modeling

The RC modeling in this dissertation uses the EGR exhaust stream as the heat

addition. The tailpipe exhaust can serve as a pre-heater or parallel heater in other
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RC architectures, but is not studied in this dissertation.

The working fluid is 52% ethanol-48% water whose properties are obtained

from fitted equations of state (EoS) as outlined in Chapter 3. The exhaust is

treated as air whose properties are also obtained from fitted EoS found in [Lim11].

To simplify the dynamic modeling, the evaporator and condenser are assumed

tubular heat exchangers with internal working fluid flow through a single circu-

lar tube subjected to external exhaust gas flow. The external flow arrangement

examined are counter flow in a concentric annulus around the working fluid tube

in Chapter 4. Chapter 5 assumes external cross flow across a single cylindrical

working fluid tube. Different heat transfer correlations corresponding to these

flows are addressed in those chapters. In general, the modeling uses the effective

length as the tubular heat exchanger length and assumes an equivalent circular

cross-section having the equilvalent flow area as the actual heat exchanger.

The simplification and assumptions reduce the accuracy of the model to the

actual heat exchanger and should be noted when reviewing the dissertation’s re-

sults. For example, the heat transfer coefficients are calculated based on a single

tubular geometry and not the more complicated actual geometry that resembles

a tube bundle arrangement. Additional improvements can be made in this area

in future research efforts.

2.5 Disturbances

Depending on the driving cycle, the heat source can exhibit a variety of conditions.

The following figures show these transients for the Flat, Hilly, and Rolling Hills

cycle. The two heat sources are from the Exhaust Gas Recirculation (EGR) and

tailpipe (TP). For the EGR exhaust, its outlet temperature after heat exchange is
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shown to indicate the heat quality of the stream entering the combustion chamber

for emissions control.

2.5.1 Heat Source
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Figure 2.4: Engine Characteristics for Flat Hills Road Cycle
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Figure 2.5: Engine Characteristics for Rolling Hills Road Cycle
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Figure 2.6: Engine Characteristics for Hilly Road Cycle

The average values of each characteristic for the driving cycles are given in Table

2.1.

The other model disturbances are:

1. Engine Crankshaft: coupled to the pump and expander shaft in a 1:1

and 1:1.3 (1.3 expander rotations for every crankshaft rotation) ratio, re-

spectively. This translates to disturbance flow rates through these devices.

The gear ratio for the expander was as a result of a required gear diameter

needed for the expander to mesh with the large gear in the gear train. This
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Table 2.1: Averaged Engine Characteristics

Driving EGR EGR TP TP Engine Engine

Cycle T ṁ T ṁ Brake Power Speed

(◦C) (kg
s
) (◦C) (kg

s
) (kW) (RPM)

Flat 443 0.0685 354 0.204 143 1386

Rolling 421 0.0647 339 0.225 153 1373

Hilly 415 0.049 342 0.227 153 1344

reason was that the expander was originally designed for a Daimler truck

engine, and not a Volvo powertrain.

2. Heat Sink Temperature: depends on the current state of radiator coolant

(assumed to be water in the modeling). The nominal heat sink temperature

and flow rate are 60 ◦Celcius and 1.5 kg
s
.

2.6 Desired Operating Conditions

The objectives that control needs to meet are the following:

1. Evaporator outlet temperature for working fluid should not exceed 300 de-

grees Celcius for long durations to prevent temperature shocks to down-

stream expander

2. Evaporator pressure should be as high as possible, not to exceed 1.5 MPa

to maximize RC work/power

3. Condensing pressure should be as low as possible to maximize RC work/power,

not to dip below 0.1 MPa (atmospheric pressure)
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4. Condenser outlet temperature for working fluid should not exceed 70 de-

grees Celcius to avoid excessive and unnecessary subcooling and aid in oil

separation in the working fluid

5. Expander throttle valve closes when expander swallowing capacity reached

or unavailable engine power

6. Pump throttle valve maintains proper flow into evaporator for pressure and

superheat regulation

7. Exhaust gas temperature should be within an appropriate range for EGR

emissions reduction

2.7 Control Actuators

The following control ’knobs’ for achieving these objectives are:

1. Pump Throttle Valve: determines the evaporator outlet (expander inlet)

conditions by sending in the proper amount of working fluid. If more/less

heat is available, pass more/less working fluid through the evaporator to

achieve (superheated) vapor at a high enough pressure.

2. Heat Sink Cooling Mass Flow Rate cools the working fluid to the

desired liquid condition before travel through the pump. Mass flow rate of

the cooling medium is controlled through a valve or fan while temperature

is treated as a disturbance.

3. Expander Throttle Valve: maintains working fluid flow into expander

when engine power is unavailable or maximum swallowing capacity has been

reached.
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The RC architecture with actuators is shown in Figure 2.7. The heat sink flow

rate is actuated by a valve (not shown).

Figure 2.7: RC with Pump and Expander Throttle Valves
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CHAPTER 3

Thermodynamic and Transport Property

Modeling

This chapter details methods to obtain thermodynamic and transport fluid prop-

erty needed to model Rankine Cycles (RC). As an alternative to table lookup

methods commonly used in analyzing thermodynamic and heat transfer processes,

formulations for equations of states are provided for general fluids. The properties

are assumed to have the form of a power series as a function of two independent

thermodynamic properties. A least squares routine is used to compute a vector of

fit coefficients that minimizes the `2 norm of the estimation error. Fitted proper-

ties for an organic working fluid (52%-ethanol, 48% water mixture) is presented.

Properties for water and steam are provided based on Helmholtz and Gibbs free

energy principles.

3.1 Equations of State for Water

This is based on the International Association for the Properties of Water and

Steam (IAPWS) Industrial Formulation (IF97) in [Int07]. The state equations

are empirically fitted by sums of products of vector variables and independent

thermodynamic variables. The equations are divided into phase regions, of in-

terest are the subcooled, saturated liquid/vapor, and superheated regions. The
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coefficient vectors can be found in [Int07].

3.1.1 Saturated Liquid and Vapor

The basic equation for the saturated liquid and vapor phases is a fundamental

equation for the Gibbs free energy.

g(P, T )

RT
= γ(π, τ) =

34∑

i=1

ni(7.1− π)Ii(τ − 1.222)Ji (3.1)

where π = Psat

P ∗ and τ = T ∗

Tsat
. Note that the pressure and temperature are at

saturated conditions in two-phase flow i.e. T = Tsat and P = Psat. (Obtained from

Saturation phase). In saturation, temperature and pressure are not independent

i.e. T = f(P).

The fundamental equation for the superheated steam phase is given by

g(P, T )

RT
= γ(π, τ) = γo(π, τ) + γr(π, τ) (3.2)

where γo = ln(π) +
9∑

i=1

no
i τ

Jo
i and γr =

43∑

i=1

niπ
Ii(τ − 0.5)Ji

The familiar thermodynamic properties can be determined by partial differenti-

ation; refer to [Int07]. Recall the following derivative terms are needed for this

phase:
d(ρh)

dP

dρ

dP

dh

dP
(3.3)

Special attention is given to the following properties:

d(ρh)

dP
= ρ

dh

dP
+ h

dρ

dP

3.1.1.1 Saturated Liquid and Vapor

The empirical relation between saturation temperature and pressure is given be-

low.
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Tsat =
n10 +D − [(n10 +D)2 − 4(n9 + n10D)]

1
2

2
T ∗, T ∗ = 1K

D =
2G

−F − (F 2 − 4EG)
1
2

E = β2 + n3β + n6

F = n1β
2 + n4β + n+ 7

G = n2β
2 + n5β + n8

β =

(
Psat

P ∗

) 1
4

, P ∗ = 1MPa
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dρ

dP
=

dρ

dπ

dπ

dP
+

dρ

dτ

dτ

dP

dρ

dπ
=

−τP ∗

(

RT ∗

34∑

i=1

niIi(Ii − 1)(7.1− π)Ii−1(τ − 1.222)Ji

)

[

RT ∗

(
34∑

i=1

−niIi(7.1− π)Ii−1(τ − 1.222)Ji

)]2

dπ

dP
=

1

P ∗

dρ

dτ
=

A− τP ∗

(

RT ∗

(
34∑

i=1

−niIi(7.1− π)Ii−1Ji(τ − 1.222)Ji−1

))

[

RT ∗

(
34∑

i=1

−niIi(7.1− π)Ii−1(τ − 1.222)Ji

)]2

A =

(

RT ∗

(
34∑

i=1

−niIi(7.1− π)Ii−1(τ − 1.222)Ji

))

P

dτ

dP
=

dτ

dT

dT

dP
=

(−T ∗

T 2

)
dT

dP

dT

dP
=

T ∗

2

[
dD

dP
− 1

2

(
(n10 +D)2 − 4 (n9 + n10D)

)− 1
2 2 (n10 +D)

dD

dP
− 4n10

dD

dP

]

dD

dP
=

[

−F − (F 2 − 4EG)
1
2 2dG

dP
−B

]

[

−F − (F 2 − 4EG)
1
2

]2

B = 2G

[

−dF

dP
− 1

2

(
F 2 − 4EG

)− 1
2

(

2F
dF

dP
− 4

(

E
dG

dP
+G

dE

dP

))]

dE

dP
= 2β

dβ

dP
+ n3

dβ

dP
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dF

dP
= 2n1β

dβ

dP
+ n4

dβ

dP
dG

dP
= 2n2β

dβ

dP
+ n5

dβ

dP

dβ

dP
=

P ∗

4

(
Psat

P ∗

) 1
4

P ∗ = 1MPa

dh

dP
=

dh

dπ

dπ

dP
+

dh

dτ

dτ

dP

dh

dπ
= RT ∗

34∑

i=1

−niIi(7.1− π)Ii−1Ji(τ − 1.222)Ji−1

dh

dτ
= RT ∗

34∑

i=1

ni(7.1− π)IiJi(Ji − 1)(τ − 1.222)Ji−2

3.1.2 Superheated Steam

The basic equation for the superheated vapor phase is based on a fundamental

equation for the Gibbs free energy g, separated into an idea-gas part γ0 and a

residual part γr.

g(P, T )

RT
= γ(π, τ) = γ0(πτ) + γr(π, τ)

= ln(π) +
9∑

i=1

no
i τ

Jo
i +

43∑

i=1

niπ
Ii(τ − 0.5)Ji

where π = P
P ∗ and τ = T ∗

T
with P ∗ = 1MPa and T ∗ = 540K.

The familiar thermodynamic properties can be determined by partial differenti-

ation; refer to [Int07]. Recall the following derivative terms are needed for this

phase:

∂ρ

∂P

∣
∣
∣
h

∂ρ

∂h

∣
∣
∣
P

(3.4)
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∂ρ

∂P

∣
∣
∣
h
=

∂ρ

∂π

∂π

∂P
+

∂ρ

∂τ

∂τ

∂P

∂τ

∂P
=

∂τ

∂T

∂T

∂P

∣
∣
∣
h
= −T ∗

T 2

∂θ(π, η)

∂P
T ∗

where

T (P, h)

T ∗
= θ(π, η) =

34∑

1

niπ
I
i (η − 2.1)Ji

∂θ

dP
=

∂θ

∂π

∂π

∂P
+

∂θ

∂η

∂η

∂P
︸︷︷︸

0

due to (P, h) independence

=
34∑

1

niIiπ
Ii−1(η − 2.1)Ji

1

P ∗

with

θ =
T

T ∗

π =
P

P ∗

η =
h

h∗

T ∗ = 1K

P ∗ = 1MPa

h∗ = 2000
kJ

kg
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∂ρ

∂τ
=

RT ∗(γo
π + γr

pi)P
∗ − τP ∗(RT ∗(γo

πτ + γr
πτ ))

(RT ∗(γo
π + γr

π))
2

∂ρ

∂π
= −τP ∗(RT ∗(γo

ππ + γr
ππ))

(RT ∗(γo
π + γr

π))
2

dπ

dP
=

1

P ∗

∂ρ

∂h
=

∂ρ

∂π

∂π

∂h
+

∂ρ

∂τ

∂τ

∂h
∂π

∂h
=

∂P

∂h
= 0 due to (P, h) independence.

∂τ

∂h
=

∂τ

∂T

∂T

∂h
= −T ∗

T 2

∂θ(π, η)

∂h
T ∗

= −T ∗

T 2






∂θ

∂π

∂π

∂h
︸︷︷︸

0

+
∂θ

∂η

∂η

∂h




T ∗

= −
(
T ∗

T

)2
[(

34∑

1

niπ
IiJi(η − 2.1)Ji−1

)

1

h∗

]

3.1.3 Transport Equations of State

The interested properties are viscosity, thermoconductivity, and Prandtl number.

[Int08a, Int08b] provide interpolating thermoconductivity and viscosity equations

for general and scientific use as a function of temperature, density, and specific

heat capacity (constant pressure). An equation for industrial water is also given.

The range of validity for the equation is suitable for operating points in this

dissertation. The interpolating equation is given by

λ̄ = λ̄0

(
T̄
)
+ λ̄1

(
T̄ , ρ̄

)
+ λ̄2

(
T̄ , ρ̄

)
(3.5)

where

λ̄0 =

√
T̄

∑3
i=0

Li

T̄ i

(3.6)
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λ̄1 = eρ̄
∑4

i=0

∑5
j=0 Lij( 1

T̄
−1)

i
(ρ̄−1)j (3.7)

λ̄2 =
(55.071)(0.0013848)

µ̄0(T̄ )µ̄1(T̄ , ρ̄)

(
T̄

ρ̄

)2(
∂ρ̄

∂T̄

)2

ρ̄

χ̄0.4678
T

√
ρ̄e−18.66(T̄−1)2−( ¯ρ−1)4 (3.8)

Refer to [Int08a] for the coefficient values and further details.

[Int08b] derives a formula for (liquid) water visocity as a function of temperature

and density:

µ̄ = µ̄0(T̄ )µ̄1(T̄ , ρ̄)µ̄2(T̄ , ρ̄) (3.9)

where

µ̄0(T̄ ) =
100

√
T̄

∑3
i=0

Hi

T̄ i

(3.10)

and

µ̄0(T̄ , ρ̄) = eρ
∑5

i=0( 1
T̄−1)

i ∑6
j=0 Hij( ¯ρ−1)j (3.11)

µ̄2 is referred to as the critical enhancement term and is only significant for a small

region around the critical point. Refer to [Int08b] for details and coefficients.
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3.2 Equations of States for General Fluids

Not every working fluid has easily accessible equations of state, if any exist, for the

desired operating conditions. Transport and thermodynamic tables of properties

typically exist for many studied fluids. Selected ranges of these property tables

can be programmed into software and 2-D lookup and interpolation methods can

be employed to retrieve desired properties defined by two independent properties.

This method may require significant computation time. Another method is to

create a data fit from these property tables which can be completed off-line to

reduce computation demand in simulations. This section describes a fluid property

database created by the National Institute of Standards and Technology (NIST)

and a least squares fitting procedure to generate equations of state for a variety

of working fluids and their mixtures. 52% Ethanol and 48% water mixture will

be examined.

3.2.1 Reference Fluid Thermodynamic and Transport Properties (REF-

PROP) Database

The National Institute of Standards and Technology (NIST) created the database

for thermodynamic and transport properties. Available properties include the

following:

1. Temperature

2. Pressure

3. Density

4. Energy

5. Enthalpy

6. Entropy

7. Cv, Cp

8. Sound Speed

9. Compressibility Factor

10. Joule Thompson Coefficient
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11. Quality

12. 2nd and 3rd Virial Coefficients

13. 2nd and 3rd Acoustic Virial Coef-

ficients

14. Helmholtz/Gibbs Energy

15. Heat of Vaporization

16. Fugacity (Coeffiecient)

17. Chemical Potential

18. K value

19. Molar Mass

20. B12

21. Thermal Conductivity

22. Viscosity

23. Kinematic Viscosity

24. Thermal Diffusivity

25. Prandtl Number

26. Surface Tension

27. Dielectric Constant

28. Gross and Net Heating Values

29. Isothermal Compressibility

30. Volume Expansivity

31. Isentropic Coefficient

32. Adiabatic Compressibility

33. Specific Heat Input

34. Exergy

35. Gruneisen

36. Critical Flow Factor

37. Excess Values

38. dp/dr

39. d2p/dr2

40. dp/dT

41. dr/dT

42. dr/dp

43. and many others.

This dissertation uses properties from REFPROP Database 23, Version 8.0. [LHM07].

46



3.2.2 Thermodynamic Toolbox (ThermoBox) for MATLAB

ThermoBox [Lim11], a MATLAB toolbox for modeling of thermodynamic pro-

cesses, provides a least squares fitting routine. Given a set of dependent property

z with independent properties x and y (each being m × 1 vectors), the routine

finds the best fit ẑ of z by

ẑ = A(x, y)q (3.12)

where A is a m× n matrix whose rows are sets of functions of xi and yi and q is

a n× 1 vector of fit coefficients. The ith row of A has the following form

[
1 xi yi x2

i xiyi y2i · · · xN−1
i xN−2

i yi · · · xiy
N−2
i yN−1

i · · · xN
i xN−1

i yNi
]

(3.13)

The least squares problem is to find the q that minimizes the `2 norm of the error

between z and ẑ. That is,

minimize‖z − Aq‖ (3.14)

The solution is given by

q = A†z (3.15)

where A† is the pseudo-inverse of A.

Note the fit coefficient q is found off-line. The property z is calculated by gener-

ating the row vector of functions of x and y with values of the two independent

properties and performing a vector multiplication with the column vector q.

The routine performs the property fits to order ten and chooses the fit with the

highest R value.
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3.2.3 Property Fitting for Ethanol-Water Mixture

The following figures are selected property fits for ethanol-water mixture in the

vapor phase. The chosen independent properties are density and temperature,

though the user can freely make other choices. Property fits for properties involv-

ing enthalpy and pressure as independent properties are also presented since the

models in this dissertation make those property choices. The pressure range of

the property data is from 0.01 MPa to 10 MPa.

The measure of the closeness of fit is given by R, the coefficient of fit. It is defined

as

R = 1− (
∑

z − ẑ)2

(
∑

z − z̄)2
(3.16)

The fit coefficient is close to 1 in all of the following properties, though the fitting

errors are more pronounced at the low temperature and high density regions.
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3.2.3.1 Property Fits for Density and Temperature as Independent

Properties
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Figure 3.1: ThermoBox Property Fit for Entropy, Ethanol-water (Vapor)
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Figure 3.2: ThermoBox Property Fit for Internal Energy, Ethanol-water (Vapor)
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Figure 3.3: ThermoBox Property Fit for Pressure, Ethanol-water (Vapor)
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Figure 3.4: ThermoBox Property Fit for Enthalpy, Ethanol-water (Vapor)
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Figure 3.5: ThermoBox Property Fit for Specific Heat Capacity at Constant Pres-

sure, Ethanol-water (Vapor)
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Figure 3.6: ThermoBox Property Fit for Specific Heat Capacity at Constant Vol-

ume, Ethanol-water (Vapor)
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Figure 3.7: ThermoBox Property Fit for Speed of Sound, Ethanol-water (Vapor)
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Figure 3.8: ThermoBox Property Fit for Partial Enthalpy Partial Density,

Ethanol-water (Vapor)
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Figure 3.9: ThermoBox Property Fit for Partial Enthalpy Partial Pressure,

Ethanol-water (Vapor)
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Figure 3.10: ThermoBox Property Fit for Partial Density Partial Pressure,

Ethanol-water (Vapor)
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Figure 3.11: ThermoBox Property Fit for Partial Pressure Partial Temperature,

Ethanol-water (Vapor)

3.2.3.2 Property Fits for Pressure and Enthalpy as Independent Prop-

erties

The following plots show the property values calculated during the Flat Road

driving cycle presented in Chapter 2. The retrived properties appear nonlinear

around these highlighted regions and deters linearizing the property functions that

will sacrifice accuracy for faster computation time.
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Figure 3.12: ThermoBox Property Fit for Specific Heat Capacity at Constant

Pressure, Ethanol-water (Vapor)
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Figure 3.13: ThermoBox Property Fit for Specific Heat Capacity at Constant

Volume, Ethanol-water (Vapor)
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Figure 3.14: ThermoBox Property Fit for Partial Density Partial Enthalpy,

Ethanol-water (Vapor)
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Figure 3.15: ThermoBox Property Fit for Partial Density Partial Pressure,

Ethanol-water (Vapor)
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Figure 3.16: ThermoBox Property Fit for Partial Temperature Partial Pressure,

Ethanol-water (Vapor)
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Figure 3.17: ThermoBox Property Fit for Partial Internal Energy Partial Pressure,

Ethanol-water (Vapor)
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Figure 3.18: ThermoBox Property Fit for Density, Ethanol-water (Vapor)
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Figure 3.19: ThermoBox Property Fit for Entropy, Ethanol-water (Vapor)
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Figure 3.20: ThermoBox Property Fit for Temperature, Ethanol-water (Vapor)
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Figure 3.21: ThermoBox Property Fit for Speed of Sound, Ethanol-water (Vapor)

3.2.3.3 Advantages and Disadvantages of Least Squares Fitting

Due to the complexity of the Rankine component models, fast computation speed

is important in their simulations. Speed tests show that the 2-D look-up table

method in MATLAB is up to ten times slower than the Least Squares Routine.

However, the least squares routine is slower than 2-D look-up in Simulink, due

to differences in memory and resources are managed in MATLAB and Simulink.

For fast computation and retrieval of thermodynamic properties, the 2-D table in

Simulink is preferred.

Often times regions of thermodynamic properties are missing, rendering the table

lookup method useless. The Least Squares Routine is useful in these situations

to retrieve properties within the range of these regions for which properties are

missing.
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For quicker computation, the recommendation is to use table look up when sim-

ulating in Simulink and the Least Squares Routine in MATLAB.
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CHAPTER 4

Static Rankine Cycle Modeling

This chapter describes modeling and analysis of Rankine Cycles (RCs) in the

steady or static sense by assuming thermodynamics and component dynamics

have reached equilibrium. The assumption allows fundamental thermodynamic

analysis of static RC models and reveal their operating conditions based on steady

heat sources and sinks. Component models for heat exchangers, valves, pumps,

and expansion devices do not exhibit dynamic behavior in reaching steady-state

operating conditions. The results are useful for establishing nominal RC operating

conditions to validate with dynamic modeling in Chapter 5.

The heat transfer coefficients are based on a heat exchanger arrangement with

internal working fluid flow through a circular tube and external concentric annular

flow around the tube.

4.1 RC Model Design

Traditional thermodynamic analysis of RCs rely on identifying the steady-state

operating points by assuming isentropic, isobaric, and adiabatic processes between

states. Using the heat exchanger geometries and averaged heat source and sink

properties given in Chapter 2, RC model designs are completed at two different

evaporating pressures.

Figures 4.1 and 4.2 are the designed RC cycle for averaged heat source and sink
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temperature for the Rolling Hills driving cycle at different evaporating pressures.

The engine power improvement is based on an averaged engine power of 143 kW.

It is given by

Engine Power Improvement =
Expander Power

Engine Power
(4.1)

. Note that higher evaporating pressure leads to higher expander power and thus

engine power improvement.
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Figure 4.1: Design 1 of Static RC Model for Average Rolling Hills Road Cycle,

T-s Diagram
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Table 4.1: RC Design 1 (Pe = 1.5MPa, Pc = 0.1MPa)

ṁwf 0.0025 [kg
s
]

ṁh, ṁc 0.062, 1.5 [kg
s
]

Th,in, Th,out 430, 87 [◦C]

Tc,in, Tc,out 60, 69 [◦C]

Nexp, Npump 0.85, 0.023[kW]

ηexp, ηexp 0.9, 0.9

Engine Improvement 0.6 [%]
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Figure 4.2: Design 2 of Static RC Model for Average Rolling Hills Road Cycle,

T-s Diagram
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Table 4.2: RC Design 2 (Pe = 4MPa, Pc = 0.1MPa)

ṁwf 0.0025 [kg
s
]

ṁh, ṁc 0.062, 1.5 [kg
s
]

Th,in, Th,out 430, 110 [◦C]

Tc,in, Tc,out 60, 69 [◦C]

Nexp, Npump 1.23, 0.028 [kW]

ηexp, ηexp 0.9, 0.9

Engine Improvement 0.9 [%]

4.2 RC Model Optimization

This section presents an iterative routine that optimizes the steady-state cycle in

the power generation sense by finding the highest working fluid mass flow rate for

given pressures and heat addition and heat rejection. Furthermore, the optimized

operating points satisfy a desired flow configuration temperature distribution of

both working fluid and heat sink/sources. The optimization routine provides a

more detailed approach to cycle design over the approach in the previous section.

The main steps of the routine are as follows:

1. Define evaporator and condenser cross-sectional geometry and the number

of fluid-phase regions. Note the length is intentionally undefined and to be

determined by the routine

2. Iteration Parameters: Initialize evaporator pressure Pe and cold fluid flow

rate ṁc to higher than expected values. Set condenser pressure Pc

(a) Iterate until temperature distribution achieves specified pinch point
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gap

i. Initialize Th,in, ṁ, define desired Th,out

ii. Retrieve thermodynamic properties for working fluid in each zone

iii. Calculate boundary temperatures for each zone by energy balance

of the (c)old and (h)ot fluid

ṁcCpc(Tc,out − Tc,in) = ṁhCph(Th,in − Th,out) (4.2)

iv. Check counter flow temperature distribution of hot and cold flu-

ids make sense e.g. hot and cold fluid temperatures should have

opposite slopes across the heat exchanger length

v. Repeat if temperature distribution not achieved, use lower Pe, reset

ṁc to initial high value

vi. Temperature distribution unachievable if Pe ≤ Pc, end routine

vii. Calculate overall heat transfer coefficients for each zone with in-

ternal tubular flow and either concentric annuluar external flow

(counter/parallel) or external cross flow

U =
1

1
αi

+ 1
αo

(4.3)

viii. Perform Log-mean Temperature Distribution analysis to obtain

lengths of each zone (∆T1 and ∆T2 defined for counter flow)

q = UA∆Tlm ∆Tlm =
∆T2 −∆T1

ln(∆T2

∆T1
)

(4.4)

∆T1 = Th,in − Tc,out ∆T2 = Th,out − Tc,in (4.5)

3. Retrieve thermodynamic properties for working fluid with evaporator outlet

temperature and pressure conditions
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4. Calculate expander outlet temperature conditions and power assuming isen-

tropic expansion to condenser pressure

(a) Set inlet temperature and pressure from expander, define desired Thout.

Set heat sink temperature and mass flow rate.

(b) Retrieve thermodynamic properties for working fluid in each zone

(c) Calculate boundary temperatures for each zone by energy balance

ṁcCpc(Tcout − Tcin) = ṁhCph(Thin − Thout) (4.6)

(d) Calculate heat transfer coefficients for each zone with internal tubular

flow and either concentric annuluar external flow (counter/parallel) or

external cross flow

U =
1

1
αi

+ 1
αo

(4.7)

(e) Perform Log-mean Temperature Distribution analysis to obtain lengths

of each zone (∆T1 and ∆T2 defined for counter flow)

q = UA∆Tlm ∆Tlm =
∆T2 −∆T1

ln(∆T2

∆T1
)

(4.8)

∆T1 = Th,in − Tc,out ∆T2 = Th,out − Tc,in (4.9)

(a) Calculate pump power assuming it brings the fluid’s enthalpy at con-

denser outlet to evaporator inlet in an isentropic compression process.

(a) Retrieve entropy values for temperatures and pressures between each

component

(b) Draw T-s diagram
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4.2.0.4 Assumptions and Limitations

In the Log Mean Temperature Difference (LMTD) method for computing lengths

of fluid-phase zones, it had been assumed that the rates of change for the fluids’

temperatures are proportional to the temperature difference. This assumption

is valid for fluids with constant specific heats. Since the working fluid under-

going phase change and large temperature changes, varying specific heats vary

significantly and make the LMTD approach inaccurate. Furthermore, the heat

transfer coefficients should also be constant as well. To remedy this, averaged

temperatures were assumed in each region to maintain constant specific heats and

heat transfer coefficients. The engineer should keep this limitation in mind when

examining the calculated lengths of the heat exchanger zones.

4.2.1 Simulation Results

4.2.1.1 Optimal RC Design 1

Figure 4.3 shows the design for the optimal static RC a given evaporating and

condensing pressure of 1.5 MPa and 0.1 MPa, respectively. The flow configuration

is counter flow for the evaporator and condenser. The exhaust gas heat source’s

temperature and mass flow rate are 443 ◦C and 0.0685 kg
s
. The water heat sink’s

temperature and mass flow rate are 60 ◦C and 1.5 kg
s
. The working fluid is 52%

ethanol-48% water mixture.
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Figure 4.3: Static RC Model Design 1 for Average Rolling Hills Road Cycle, T-s

Diagram

The counter flow evaporator assumes three fluid-phase zones while the counter

flow condenser assumes two zones (two-phase, subcooled). The expander and

pump power are 4.3 kW and 0.0149 kW, respectively. The thermal efficiency of

the Rankine Cycle is 45.2 percent.

The temperature distributions of the three-zone evaporator and two-zone con-

denser are shown in Figures 4.4 and 4.5. The superheat and subcooled regions

are small compared to the two-phase regions, which is consistent with the T-s

diagram.
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Figure 4.4: Static RC Model Design 1 for Average Rolling Hills Road Cycle,
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Figure 4.5: Static RC Model Design 1 for Average Rolling Hills Road Cycle,

Condenser Temperature Distribution
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4.2.1.2 Optimal RC Design 2

Figure 4.6 shows the design for the optimal static RC a given evaporating and

condensing pressure of 4 MPa and 0.1 MPa, respectively. The flow configuration

is counter flow for the evaporator and condenser. The exhaust gas heat source’s

temperature and mass flow rate are 443 ◦C and 0.0685 kg
s
. The water heat sink’s

temperature and mass flow rate are 60 ◦C and 1.5 kg
s
. The working fluid is 52%

ethanol-48% water mixture.
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Figure 4.6: Static RC Model Design 2 for Average Rolling Hills Road Cycle, T-s

Diagram

The counter flow evaporator assumes three fluid-phase zones while the counter

flow condenser assumes two zones (two-phase, subcooled). The expander and

pump power are 10.5 kW and 0.0402 kW, respectively. The thermal efficiency of

the Rankine Cycle is 45.2 percent.

The temperature distributions of the three-zone evaporator and two-zone con-

denser are shown in Figures 4.7 and 4.8. The superheat and subcooled regions
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are small compared to the two-phase regions, which is consistent with the T-s

diagram.
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Figure 4.7: Static RC Model Design 2 for Average Rolling Hills Road Cycle,

Evaporator Temperature Distribution
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Figure 4.8: Static RC Model Design 2 for Average Rolling Hills Road Cycle,

Condenser Temperature Distribution

4.2.2 Remarks

The optimization routine provides a more detailed approach to static RC model-

ing. Higher working fluid flow rates are achieved while satisfying the temperature

distribution for multi-phase evaporating and condensing flows. As a result, the

designs in the RC Modeling section report a lower expander power than the opti-

mized model for the same heat source/sink conditions. For the set of heat source

and sink conditions, the expander power ranges between 0.8 and 4 kW for Design

1 and between 1 and 10 kW for Design 2. These ranges provide an expected

expander power for the dynamic RC model in Chapter 5 to achieve.
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4.3 Pump Model

Previous work on Rankine cycle modeling and design suggests treatment of the

pump model as a static component; its dynamics are much faster than that of the

heat exchangers in the cycle [WLL90]. A general thermodynamic model given by

[ZZH12] is presented along with a centrifugal pump model.

4.3.1 General Model

The outlet enthalpy hout of the pump can be described by.

hout = hin +
ν̄ (Pout − Pin)

ηpump

(4.10)

where hin is the inlet enthalpy, ν̄ is average specific volume, ηpump is the pump’s

isentropic efficiency, and Pout and Pin are the outlet and inlet pressures, respec-

tively. The flow rate through the pump is given by

ṁpump = µKω (4.11)

where µ is the throttle valve position, K is the pump constant, and ω is the pump

speed.

4.3.2 Centrifugal

Centrifugal pumps are comprised of hydraulic and mechanical subsystems, and

modeled according to the following fundamental equations [Ise03].

The delivery head H(t) measures the energy difference between the inlet and

outlet of pumps. For incompressible fluids such as water, the head is proportional

to the pump pressure difference given by

H(t) =
∆P (t)

ρg
(4.12)
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The pressure difference can be obtained from the following:

∆P = R1ω(t)
2 − 2R2ω(t)

ṁ

ρ
−R3

(
ṁ

ρ

)2

(4.13)

where the R coefficients are obtained from experimental/manufacturer data. The

mass flow rate ṁ is proportional to the pump angular speed ω.

ṁ = kω (4.14)

The mechanical system is described by the torque generated by the motor to

accelerate the overall inertia J :

T (t) = Jω̇(t) + TF (t) + TP (t) (4.15)

The friction losses captured by TF (t) can be modeled by

TF (t) = TFcsign(ω) + TFvω̇ (4.16)

where TFc is the Coulomb friction and Tfv is the viscous friction torque.

The required pump torque TP (t) can be expressed by first equating the required

pump power

Ẇpump =
ṁ

ρ
∆P (4.17)

and

Ẇpump = TPω (4.18)

to get

TP =
ṁ

ωρ
∆P (4.19)

By combining the pump pressure difference expression, we get

TP (t) = R1ω
ṁ

ρ
−R2

(
ṁ

ρ

)2

−R3
ṁ3

ωρ3
(4.20)

The last term is frequently omitted.
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4.4 Expander Models

The components that generate power from steam expansion can be classified into

two categories: turbo-machinery (turbines) and volumetric devices (pistons). Due

to the small steam flow rate inherent of small-scale water steam RCs, the use

of turbo-machinery is typically associated with low efficiencies, high production

costs, and the possibility of rapid erosion of the turbine’s blades from moisture

content of expanding steam[BM09]. Static models for a turbine and a reciprocat-

ing piston expander are presented. A general thermodynamic expansion model

coupled to a throttle valve is also presented.

4.4.1 General

The mass flow rate into the expander is given by

ṁv =
µβPin√

Tin

(4.21)

where β is the valve coefficient, µ is the throttle valve position, and Tin is the inlet

temperature.

The expander outlet enthalpy is given by the rearranged isentropic efficiency def-

inition

hout = hin − η (hin − hout,is) (4.22)

with an assumed isentropic efficiency η.

The power output of the expander is given by

N = ṁv (hin − hout) (4.23)
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4.4.2 Steam Turbine

As with the pump, the turbine is also treated as a static component in its modeling.

The following model is based on a steam turbine model developed in [CG08].

High-pressure steams enters the turbine through a stage nozzle to increase its

velocity[CG08]. Due to the pressure drop at the nozzle, the mass flow through

the turbine is limited. This relationship can be described by

ṁ =
K1√
Tin

√

P 2
in − P 2

out (4.24)

with K1 obtained by data of turbine responses. Pin is from the high-side (evapo-

rator) pressure and Pout is from the low-side (condenser) pressure.

The steam temperature at the outlet depends on the inlet steam pressure and

temperature. Assuming the steam expansion is an adiabatic and isentropic pro-

cess, the outlet steam temperature is obtained by using the ideal gas pressure-

temperature relation:

Tout

Tin

=

(
Pout

Pin

) k−1
k

(4.25)

where k = Cp

Cv
is the polytropic expansion factor.

The turbine power is given by

Ẇ = ηṁ(hin − hout) = ηCpṁ(Tin − Tout) (4.26)

Combining with the previous equations, we get

Ẇ = ηCpṁTin

[

1−
(
Pout

Pin

) k−1
k

]

(4.27)

4.4.3 Piston Expander

The following model is based on an in-line reciprocating piston expander model

developed in [BM09]. From its P-V diagram, the expander’s operation is seen to

86



undergo the following phases [BM09]:

1. Compression stroke (1 → 2): in this phase (from Bottom Dead Center

(BDC) to Top Dead Center (TDC)), the residual steam is compressed in

the cylinder.

2. Admission (2 → 3) and (3 → 4): steam at high pressure is forced into the

cylinder through the intake port.

3. Expansion (4 → 5): the steam at high pressure pushes, the piston towards

the BDC; this phase, along with (3 → 4), is also called the power stroke.

4. Exhaust (5 → 1): the steam flows out of the engine, and the pressure is thus

reduced to the thermodynamic conditions in the condenser.

The area captured by these phases describes the work produced in each cycle. In-

tuitively, this area depends on the thermodynamic conditions seen at the outlet of

the evaporator and the desired condition at the condenser inlet e.g. pressures and

enthalpies of the working fluid. Moreover, the work depends on the compression

ratio ε and the steam cut-off timing φ which determine the vertices at each phase

in the P-V diagram.

ε =
Vmax

Vmin

=
V

Vmin

+ 1 (4.28)

φ =
V4

Vmax

=
V4 − Vmin

V
(4.29)

An analytic expression for the work-per-cycle is given in terms of ε and φ by

Lc = PmaxV

(

φ+
1 + φ(ε− 1)

(k − 1)(ε− 1)

[

1−
(
1 + φ(ε− 1)

ε

)k−1
])

− PminV
ε(εk−1 − 1)

(k − 1)(ε− 1)
(4.30)
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where k is the polytropic expansion factor. The expander’s isentropic efficiency is

defined as the ratio of the internal and ideal power, given by

ηis =
Pi

Pideal

=
niLc

ṁ(hin − hout)
(4.31)

where n is the engine speed and i is the number of cylinders. It is also given by

ηis =

Pmax

(

φ+ 1+φ(ε−1)
(k−1)(ε−1)

[

1−
(

1+φ(ε−1)
ε

)k−1
])

hin−hout

ε−1

[
1+φ(ε−1)

V5
− ε

V2

] −
Pmin

[
ε(εk−1−1)
(k−1)(ε−1)

]

hin−hout

ε−1

[
1+φ(ε−1)

V5
− ε

V2

]

(4.32)

Thus, the outlet enthalpy is calculated as

hout = hin −
niLc

ṁηis
(4.33)
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CHAPTER 5

Dynamic Rankine Cycle Modeling

5.1 Introduction

Dynamic RC modeling focuses on heat exchanger modeling due to their slower

dynamics than that of valves, pumps, and expansion devices. Approaches for dy-

namic heat exchanger modeling span accurate, computational models based on

discretizing partial differential conservation equations to computationally less in-

tensive but also less accurate lumped-parameter models. The trade-off is between

computational complexity and dynamic accuracy. The Moving Boundary model

approach balances these trade-offs and has been an adopted model to describe

power generation and refrigeration applications. Research has been conducted on

the differences between finite-volume distributed-parameter and Moving Bound-

ary technique applied to the heat exchangers [BB02]. Both methods have been

compared for their accuracy to experimental data as well as their simulation com-

plexity. While these two modeling approaches predicted the experimental data

with an accuracy of 4%, the Moving Boundary method was more acceptable for

control design applications for its smaller order and higher computational speed

[WLL90]. The Moving Boundary approach is presented in this section for heat

exchangers. This chapter also presents dynamical piston expander model.

The heat transfer coefficients are based on a heat exchanger arrangement internal

working fluid flow through a circular tube and external cross flow around the tube.
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5.2 Moving Boundary Models for Heat Exchangers

The model captures dynamics for a heat exchanger (HX) undergoing evaporating

and condensing phase changes in a tube. The tube is divided into zones for each

fluid-phase as shown in Figure 5.3. The process inherently has two-phase as well

as single-phase flow. Within each region, the properties are assumed average.

As a result, spatial effects are accounted for while lumping the parameters in

each zone. Working fluid and refrigerant are used interchangeably to describe the

tubular flow.

Figure 5.1: Moving Boundary Model for Evaporator

5.2.1 Assumptions

The following are assumed about the fluid flow in the HX’s [RA04]:

1. HX is a long and thin horizontal tube.

2. Working fluid flow modeled as a one-dimensional fluid flow.
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3. Negligible axial conduction.

4. Pressure drop along HX from momentum change in working fluid and viscous

friction is negligible i.e. pressure is uniform across HX.

5.2.2 Variable Nomenclature

Variable Description Units

Parameter

ρ Density kg
m3

P Pressure MPa

h Enthalpy kg
kJ

T Temperature K

Q̇ Heat Flux kW

α Heat Transfer coefficient kW
m2K

A Area m2

D Diameter m

r Radius m

ṁ Mass flow rate kg
s

CpρA Thermal capacitance kJ
m

per unit length

c =
(

ρg
ρf

) 2
3

Constant used to determine -

Mean Void Fraction
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Variable Description Units

Parameter

x0 Average refrigerant quality -

(vapor mass fraction) at inlet

x State Vector -

u Input Vector -

L Length of Heat Exchanger m

µ Dynamic Viscosity Pa s

k Thermal Conductivity W
mK

Pr Prandtl Number -

Re Reynolds Number -

Cp Specific Heat Capacity at Constant Pressure J
kgK

Cv Specific Heat Capacity at Constant Volume J
kgK

S Slip Ratio -

UA Overall Heat Transfer Coefficient kW
m2K

V Volume m3

w Wall thickness m3

SC, TP, SH Subcooled, Two-phase, Superheat Region −
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Subscript Description

in Inlet

out Outlet

h Hot (heat source)

e Evaporator

c Cold (heat sink), Condenser

rec Receiver

r Refrigerant/Working fluid

1 Region 1 of Heat Exchanger

2 Region 2 of Heat Exchanger

3 Region 3 of Heat Exchanger

f Saturated Liquid

g Saturated Vapor

i Inner Tube

o Outer Tube

a Air

w Wall

cs Cross-sectional

eq Equilibrium

The cross-sectional area for a flow in a tube is given by Acs = πr2i where ri is the

tube inner radius.

The wall material is defined by its thermal capacitance, density, and volume.
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5.2.3 Derivation for Nonlinear Models

Each zone of the Moving Boundary model is described by mass and energy con-

servation equations.

The mass conservation equation for working fluid flow is given by

∂ρA

∂t
+

∂ṁ

∂z
= 0 (5.1)

The energy conservation equation for working fluid flow is given by

∂(ρAh− AP )

∂t
+

∂(ṁh)

∂z
= piαi(Tw − Tr) (5.2)

The energy conservation for the wall is given by

(CpρA)w
∂Tw

∂t
= piαi(Tr − Tw) + poαo(Ta − Tw) (5.3)

The derivation begins by using the Leibniz integral rule to convert the partial

differential equations (PDEs) into ordinary differential equations (ODEs). The

integral rule is given by

∫ z2(t)

z1(t)

∂f(z, t)

∂t
dz =

d

dt

∫ z2(t)

z1(t)

f(z, t)dz − f(z2(t), t)
d(z2(t))

dt
+ f(z1(t), t)

d(z1(t))

dt
(5.4)

The integration removes spatial dependence and divides the heat exchanger into

zones with different phases (SC,TP,SH). Note that the conservation of momentum

equation is not needed due to assumption 4. The (P,h) pair is chosen as the inde-

pendent thermodynamic states in the model derivation though other independent

property variables are valid. The models with different choices of independen

properties are related through a change of variable as detailed in [Ras02].

The form of the model is

Z(x, u)ẋ = f(x, u) (5.5)
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where x is the state vector and u is the input vector. Z is invertible as long as

the phase-change boundary state is non-zero or not equal to the heat exchanger

length.

The general heat exchanger model has three zones as shown in Figure 5.3, each

describing subcooled, two-phase, and superheat flow regions. A two-zone evapo-

rator (condenser) model with two-phase and superheat (subcooled) flows is also of

interest should the incoming working fluid enter as two-phase from the pump (ex-

pander). In any case, the two- and three-zone models rely on the existence of the

zones during simulation. Should any zone disappear in the models, they would no

longer be valid and would indicate the flow does not undergo the expected phase

changes.

A complete derivation can be found in [RA04] for the two-zone evaporator case

with two-phase and superheat regions. A two-zone condenser case with two-phase

and subcooled region follows a similar derivation. Models with receivers and

accumulators can also be derived. The interested reader is referred to [ERA08]

for details. Methods for switching between different Moving Boundary models are

presented in the literature should zones disappear and reappear. The interested

reader is directed to [MA08].

5.2.4 Derivation for Linear Models

Control design and general analysis of nonlinear systems are often difficult. One

common technique is overcome the difficulty is to linearize the nonlinear systems

about an equilbrium operating point to so that linear control design tools and

analysis methods can be applied.

The nonlinear models described can be linearized about an operating point. The
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nonlinear system is given by

Z(x, u)ẋ = f(x, u) (5.6)

The matrix Z is non-singular i.e. invertible as long as none of the modeling

assumptions are violated. The phase change boundaries L1 and L2 in Figure

5.3 are greater than zero and their sum is less than the total length of the heat

exchanger [RA04]. The matrix Z to the right hand side of the equation by finding

its inverse to obtain

ẋ = Z(x, u)−1f(x, u) = g(x, u) (5.7)

Linearization is valid for the pair (xeq, ueq) such that g(xeq, ueq) = f(xeq, ueq) = 0.

(xeq, ueq) is referred to as the equilibrium or operating point. We define

x = xeq + δx (5.8)

and note that ẋ = δẋ as we take the Jacobians with respect to the state x and

input u.

δẋ =

[
∂g

∂x

∣
∣
∣
xe,ue

]

∂x+

[
∂g

∂u

∣
∣
∣
xe,ue

]

∂u (5.9)

The Jacobians are evaluated at the equilibrium point. We expand the Jacobians

as follows:

∂g

∂x

∣
∣
∣
xe,ue

= Z(xe, ue)
−1∂f

∂x

∣
∣
∣
xe,ue

+ Z(xe, ue)
−2∂Z

−1

∂x

∣
∣
∣
xe,ue

f(xe, ue)
︸ ︷︷ ︸

0

(5.10)

∂g

∂u

∣
∣
∣
xe,ue

= Z(xe, ue)
−1∂f

∂u

∣
∣
∣
xe,ue

+ Z(xe, ue)
−2∂Z

−1

∂u

∣
∣
∣
xe,ue

f(xe, ue)
︸ ︷︷ ︸

0

(5.11)

The last terms are eliminated from evaluating the function f at the equilibrium

point. Thus we have the following linearized system:

δẋ =

[

Z
∣
∣
∣
xe,ue

]−1 [
∂f

∂x

∣
∣
∣
xe,ue

]

︸ ︷︷ ︸

A

∂x+

[

Z
∣
∣
∣
xe,ue

]−1 [
∂f

∂u

∣
∣
∣
xe,ue

]

︸ ︷︷ ︸

B

∂u (5.12)
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5.2.5 Single-Phase Flow

Single-phase flow for the evaporator are characterized by the following relations

at the evaporating pressure:

h1 =
hf + hin

2

T1 = T (P, h1)

h3 =
hg + hout

2

T3 = T (P, h3)

Single-phase flow for the condenser are characterized by the following relations at

the condensing pressure:

h1 =
hg + hin

2

T1 = T (P, h1)

h3 =
hg + hout

2

T3 = T (P, h3)

(1) and (3) denote the entrance and exit regions where their properties are aver-

aged.

5.2.6 Two-Phase Flow

This region is characterized by two-phase flow where thermodynamic properties

are at saturation, i.e. T = Tsat and P = Psat. Also important is the temperature-

pressure dependence, Tsat = f(Psat). In other words,

Tr = f(Psat) (5.13)
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5.2.7 Heat Transfer

5.2.7.1 Internal Flow Through a Circular Tube

The internal flow heat transfer coefficient for single-phase flow is calculated from

using the Reynold’s number (Re) to determine laminar or turbulent flow and

the Nusselt number. For laminar single-phase flow through a tube, the Nusselt

number is a constant and can be solved for the heat transfer coefficient αsp as

Nu = 4.36 =
αspD

k
(5.14)

where D is the tube inner diameter and k the thermal conductivity of the working

fluid.

For turbulent flow through a tube, the Dittus-Boelter correlation gives

Nu = 0.023Re0.8Prn =
αspD

k
(5.15)

where Pr is the Prandtl number and the values for n are empirically determined:

n = 0.4 for heating and n = 0.3 for cooling. The Reynold’s number is given by

Re =
4ṁ

πµD
(5.16)

For the two-phase flow heat transfer coefficient αtp, a general correlation is given in

[Kan08] for flow through vertical and horizontal tubes. The proposed correlation

for the two-phase heat transfer coefficient is given by

αtp = αl

[
C1CoC2(25Frlo)

C5 + C3Bo
C4Ffl

]
(5.17)

where αl is the liquid phase heat transfer coefficient, Co is the convection number,

Bo is the boiling number, Frlo is the Froude number with all flow as liquid, and

Ffl is a fluid-dependent parameter (1.0 for water, also assumed for ethanol-water
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Constant Convective Region Nucleate Boiling Region

C1 1.1360 0.6683

C2 -0.9 -0.2

C3 667.2 1058.0

C4 0.7 0.7

C∗
5 0.3 0.3

Table 5.1: Constants in the Kandlikar Correlation C∗
5 = 0 for vertical tubes, and

for horizontal tubes with Frl > 0.04

mixtures). The latter is evaluated for particular fluids from their flow boiling

or pool boiling data. The correlation accounts for convective (first term) and

nucleate boiling (second term). The coefficients C1 − C5 are provided in Table

5.1.

5.2.7.2 External Flow Through a Concentric Tube Annulus

The heat source/sink is assumed to flow externally through a concentric annulus

around a tube where the working fluid flows.

The effective (hydraulic) diameter is given by

Dh =
4Ac

P
(5.18)

where P is the wetted perimeter of the tube, given as P = 2π(ri + ro) for an

annulus. ri and ro are the inner and outer radii of the concentric tubes.

The Reynold’s number is given by

Re =
ṁDh

µA
=

4ṁ

µP
=

2ṁ

πµ(ro + ri)
(5.19)
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where ṁ is the mass flow rate of the heat source/sink.

The Nusselt number is given by

Nu = 0.023Re0.8Pr0.4 (5.20)

where Pr is the Prandtl number and the values for n are empirically determined:

n = 0.4 for heating and n = 0.3 for cooling. Finally, the heat transfer coefficient

for the external flow is given by

αo =
Nu · k
Dh

(5.21)

5.2.7.3 External Cross Flow Over a Single Cylindrical Tube

Correlations for convective heat transfer of smooth circular tube heat exchangers

with external cross flow were chosen.

The Hilpert correlation is selected for cross flow across a tube.

αo =
Nu · k
Di

(5.22)

Nu = CRemPr
1
3 (5.23)

where the properties are calculated at the film temperature. C and m are con-

stants that depend on the Reynold’s number. These values can be found in

[IDB06].

For the circular cylinder the characteristic length is the diameter, and the Reynold’s

number is defined as

ReD ≡ ρV D

µ
(5.24)

. Because the mass flow rate of the flow is known instead of the free-stream

velocity V , the Reynold’s number is difficult to calculate.
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Assuming the external flow has a cross-sectional area the same as the frontal area

of the tube, the mass flow rate can be related to the flow velocity as

V =
ṁ

ρLD
(5.25)

The frontal area seen by the external flow is assumed rectangular with area A =

L ·D.

Choosing the characteristic length as the length of the tube L, the Reynold’s

number is calculated as

ReL =
ṁ

µD
(5.26)

where D is the tube diameter.

It should be noted that the calculation of the Reynold’s number in this fashion—

when only the external mass flow rate is known instead of its free-stream velocity—

is not a traditional nor necessarily an accepted approach. The Reynold’s number

dependence on mass flow rate may be correct, but its resulting magnitude may

not be. Improvement is needed to properly calculate the Reynold’s number in this

situation.

5.2.8 Evaporator Models

5.2.8.1 Two-Zone

The derivation can be found in [RA04]. The resulting model is a set of five

nonlinear differential equations, written in descriptor form given by

Z(x, u)ẋ = f(x, u) (5.27)

x =
[

L1 P hout Tw1 Tw2

]T

(5.28)
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Figure 5.2: Two-Zone Moving Boundary Model for Evaporator

u =
[

ṁin ṁout hin Th,in ṁh

]T

(5.29)

Z(x, u) =














z11 z12 0 0 0

z21 z22 z23 0 0

z31 z32 z33 0 0

0 0 0 z44 0

z51 0 0 0 z55














(5.30)

f(x, u) =














ṁin(hin − hg) + αi1Ai(
L1

L
)(Tw1 − Tr1)

ṁout(hg − hout) + αi2Ai(
L−L1

L
)(Tw2 − Tr2)

ṁin − ṁout

αoAo(Th − Tw1)− αi1Ai(Tw1 − Tr1)

αoAo(Th − Tw2)− αi2Ai(Tw2 − Tr2)














(5.31)

For circular tubes, the inner and outer tube surface areas are given by Ai = 2πriL

and Ao = 2πroL, respectively.
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Entries of Z(x, u) for the Two-Zone Evaporator Model

z11 [ρf (hf − hg)] (1− γ̄)Acs

z12

[(
d(ρfhf )

dP
− dρf

dP
hg

)

(1− γ̄) +
(

d(ρghg)

dP
− dρg

dP
hg

)

γ̄ − 1
]

AcsL1

z21 ρ2(hg − h2)Acs

z22

[(

∂ρ2
dP

∣
∣
∣
h2

+ 1
2
∂ρ2
∂h2

∣
∣
∣
P

dhg

dP

)

(h2 − hg) +
ρ2
2

dhg

dP
− 1

]

Acs(L− L1)

z23

[
1
2
∂ρ2
∂h2

∣
∣
∣
P
(h2 − hg) +

ρ2
2

]

Acs(L− L1)

z31 [(ρg − ρ2) + (ρf − ρg)(1− γ̄)]Acs

z32

{[

∂ρ2
ρP

∣
∣
∣
h2

+ 1
2
∂ρ2
∂h2

∣
∣
∣
h
P dhg

dP

]

(L− L1) +
[
dρf
dP

(1− γ̄) + dρg
dP

γ̄
]

L1

}

Acs

z33
1
2
∂ρ2
∂h2

∣
∣
∣
P
Acs(L− L1)

z44 (CpρV )w

z51 (CpρV )w

(
Tw1−Tw2

L−L1

)

z55 (CpρV )w

Acs π ((ri + w)2 − r2i )

A constant, mean void fraction is assumed to simplify the derivation. This is

empircally calculated as prescribed in [BW81].

γ̄ =
1

1− c
+

c

(1− x0)(1− c)2
ln[c+ (1− c)x0] (5.32)

The Jacobians for the two-zone evaporator model are

∂f

∂x
=














a11 a12 0 a14 0

a21 a22 a23 0 a25

0 0 0 0 0

a41 a42 0 a44 a45

a51 a52 a53 a54 a55














∂f

∂u
=














b11 0 b13 0 0

0 b22 0 0 0

b31 b32 0 0 0

0 0 0 b44 b45

0 0 0 b54 b55














Entries of Jacobian Matrices for the Two-Zone Evaporator Model
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∂f
∂x

a11
αi1Ai

L
(Tw1 − Tr1)

a12 −ṁin
dhg

dP
− αi1Ai

L1

L
dTr1

dP

a14 αiAi
L1

L

a21 −αi2Ai

L
(Tw2 − Tr2)

a22 ṁout
dhg

dP
− αi2Ai(

L2

L
)∂Tr2

∂P

∣
∣
∣
h2

a23 −ṁout − αi2Ai(
L2

L
) ∂Tr2

∂hout

∣
∣
∣
P

a25 αi2Ai(
L2

L
)

a41 αoAo
∂Th

∂L1

a42 αi1Ai
∂Tr1

∂P

a44 −αoAo − αi1Ai + αoAo
∂Th

∂Tw1

a45 αoAo
∂Th

∂Tw2

a51 αoAo
∂Th

∂L1

a52 αi2Ai
∂Tr2

∂P

a53 αi2Ai
∂Tr2

∂hout

a54 αoAo
∂Th

∂Tw1

a55 −αoAo − αi2Ai + αoAo
∂Th

∂Tw2

∂f
∂u

b11 hin − hg

b13 ṁin

b22 hg − hout

b31 1

b32 −1

b44 αoAo
∂Th

∂Th,in

b45 Ao(Th − Tw1)
∂αo

∂ṁh
+ αoAo

∂Th

∂ṁh

b54 αoAo
∂Th

∂Th,in

b55 Ao(Th − Tw2)
∂αo

∂ṁh
+ αoAo

∂Th

∂ṁh
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5.2.8.2 Three-Zone

Figure 5.3: Three-Zone Moving Boundary Model for Evaporator

Formulation of this model is found in [JT02]. The model is a set of seven non-

linear differential equations based on working fluid mass/energy and wall energy

conservation equations, written in descriptor form.

Z(x, u)ẋ = f(x, u) (5.33)

x =
[

L1 L2 P hout Tw1 Tw2 Tw3

]T

(5.34)

u =
[

ṁin ṁout hin ḣin Th,in ṁh

]T

(5.35)
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Z(x, u) =





















z11 0 z13 0 0 0 0

z21 z22 z23 0 0 0 0

z31 z32 z33 z34 0 0 0

z41 z42 z43 z44 0 0 0

z51 0 0 0 z55 0 0

z61 z62 0 0 0 z66 0

0 z72 0 0 0 0 z77





















(5.36)

f(x, u) =
[

f1 f2 f3 f4 f5 f6 f7

]T

(5.37)
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Entries of Z(x, u) for the Three-Zone Evaporator Model

z11
1
2
Acsρ1(hin − hf )

z13
1
2
AcsL1

[

ρ1
dhf

dP
+ (hin + hf )(a− 2)− 2ahf

]

z21 Acs [ρfhf − ρghg − hg(ρ1 − ρg) + hf (ρ1 − ρf )]

z22 Acs [ρf (1− γ̄)(hf − hg)]

z23 Acs

[

L2γ̄
(

d(ρghg)

dP
− hg

dρg
dP

)]

+

AcsL2

[

(1− γ̄)
(

d(ρfhf )

dP
− hg

dρf
dP

)

− 1
]

+ AcsL1a (hf − hg)

z31 Acs

[
ρ3hg − 1

2
ρ3(hg + hout)

]

z32 Acs

[
ρ3hg − 1

2
ρ3(hg + hout)

]

z33 AcsL3

[
1
2
(hg + hout)(

1
2
∂ρ3
∂h3

∣
∣
∣
P

dhg

dP
+ ∂ρ3

∂P

∣
∣
∣
h
)
]

+AcsL3

[
1
2
ρ3

dhg

dP
− 1− 1

2
hg

∂ρ3
∂h3

∣
∣
∣
P

dhg

dP
− ∂ρ3

∂P

∣
∣
∣
h
hg

]

z34
Acs

2

[

ρ3L3 +
1
2
∂ρ3
∂h3

∣
∣
∣
P
(hg + hout)L3 − hgL3

∂ρ3
∂h3

∣
∣
∣
P

]

z41 Acs(ρ1 − ρ3)

z42 Acs [(ρg − ρ3) + (1− γ̄)(ρf − ρg)]

z43 Acs

[

L2(γ̄
dρg
dP

+ (1− γ̄)
dρf
dP

) + aL1 + L3(
1
2
∂ρ3
∂h3

∣
∣
∣
P

dhg

dP
+ ∂ρ3

∂P

∣
∣
∣
h
)
]

z44
Acs

2
L3

∂ρ3
∂h3

∣
∣
∣
P

z51 (CpρA)w

[

Tw1 − Tw

∣
∣
∣
L1

]

z55 (CpρA)wL1

z61 (CpρA)w

[

Tw

∣
∣
∣
L1

− Tw

∣
∣
∣
L1+L2

]

z62 (CpρA)w

[

Tw2 − Tw

∣
∣
∣
L1+L2

]

z66 (CpρA)wL2

z72 (CpρA)w

[

Tw

∣
∣
∣
L1+L2

− Tw3

]

z77 (CpρA)wL3

Acs π ((ri + w)2 − r2i )
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Entries of Z(x, u) for the Three-Zone Evaporator Model (continued)

a ∂ρ1
∂P

∣
∣
∣
h
+ 1

2
∂ρ1
∂h1

∣
∣
∣
P

dhf

dP

Tw

∣
∣
∣
L1

Tw2 if L̇1 > 0 Tw1 if L̇1 ≤ 0

Tw

∣
∣
∣
L1+L2

Tw3 if L̇2 > 0 Tw2 if L̇2 ≤ 0

Entries of f(x, u) for the Three-Zone Evaporator Model

f1 ṁin(hin − hf ) + αi1πDiL1(Tw1 − Tr1)−
Acs

2

[

ρ1L1 +
1
2
(hin + hf )

∂ρ1
∂h1

∣
∣
∣
P
− hfL1

∂ρ1
∂h1

∣
∣
∣
P

]

ḣin

f2 ṁin(hf − hg) + αi2πDiL2(Tw2 − Tr2) +
1
2
AcsL1

∂ρ1
∂h

∣
∣
∣
P
(hg − hf )ḣin

f3 ṁout(hg − hout) + αi3πDiL3(Tw3 − Tr3)

f4 ṁin − ṁout − AcsL1

2
∂ρ1
∂h1

∣
∣
∣
P
ḣin

f5 αoπDoL1(Th,in − Tw1) + αi1πDiL1(Tr1 − Tw1))

f6 αoπDoL2(Th,in − Tw2) + αi2πDiL2(Tr2 − Tw2))

f7 αoπDoL3(Th,in − Tw3) + αi3πDiL3(Tr3 − Tw3))

Acs π ((ri + w)2 − r2i )
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A constant, mean void fraction is assumed to simplify the derivation. A simple

and commonly used correlation is the one from Zivi (1964) cited in [JT02] which

minimizes the total kinetic energy flow locally at each position along the pipe.

The slip ratio S is used in its calculation.

S =
ug

uf

=

(
ρf
ρg

) 1
3

= µ
1
3 (5.38)

The average vapor fraction in the pipe is the complement of the average liquid

fraction η̄ :

γ̄ = 1− η̄ = 1− 1 + (1/µ)
2
3 (2

3
ln(1/µ)− 1)

((1/µ)
2
3 − 1)2

(5.39)

The Jacobians and their matrix structures for the three-zone evaporator model

are

∂f

∂x
=





















a11 0 a13 0 a15 0 0

0 a22 a23 0 0 0 a26

a31 a32 a33 a34 0 0 a37

0 0 0 0 0 0 0

a51 a52 a53 0 a55 a56 a57

a61 a62 a63 0 a65 a66 a67

a71 a72 a73 a74 a75 a76 a77





















∂f

∂u
=





















b11 0 b13 0 0 0

b21 0 0 0 0 0

0 b32 0 0 0 0

b41 b42 0 0 0 0

0 0 0 0 b55 b56

0 0 0 0 b65 b66

0 0 0 0 b75 b76




















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Entries of Jacobian Matrices for the Three-Zone Evaporator Model ∂f
∂x

a11 αi1πDi(Tw1 − Tr1)

a13 −ṁin
dhf

dP
− αi1πDiL1

∂Tr1

∂P

∣
∣
∣
h1

a15 αi1πDiL1

a22 αi2πDiL2

a23 ṁin(
dhf

dP
− dhg

dP
)− αi2πDiL2

dTr2

dP

a26 αi2πDiL2

a31 −αi3πDi(Tw3 − Tr3)

a32 −αi3πDi(Tw3 − Tr3)

a33 ṁout
dhg

dP
− αi3πDiL3

∂Tr3

∂P

∣
∣
∣
h3

a34 −ṁout − αi3πDiL3
∂Tr3

∂hout

∣
∣
∣
P

a37 αi3πDiL3

a51 αoπDo(Th − Tw1) + αoπDoL1
∂Th

∂L1

a52 αoπDoL1
∂Th

∂L2

a53 αi1πDiL1
∂Tr1

∂P

∣
∣
∣
h1

a55 −αoπDoL1 − αi1πDiL1 + αoπDoL1
∂Th

∂Tw1

a56 αoπDoL1
∂Th

∂Tw2

a57 αoπDoL1
∂Th

∂Tw3

a61 αoπDoL2
∂Th

∂L1

a62 αoπDo(Th − Tw2) + αi2πDi(Tr2 − Tw2) + αoπDoL2
∂Th

∂L2

a63 αi2πDiL2
dTr2

dP

a65 αoπDiL2
∂Th

∂Tw1

a66 −αoπDoL2 − αi2πDiL2 + αoπDoL2
∂Th

∂Tw2

a67 αoπDoL2
∂Th

∂Tw3

110



Entries of Jacobian Matrices for the Three-Zone Evaporator Model ∂f
∂x

(continued)

a71 −αoπDo(Th − Tw3)− αi3πDi(Tr3 − Tw3)− αoπDoL3
∂Th

∂L1

a72 −αoπDo(Th − Tw3)− αi3πDi(Tr3 − Tw3)− αoπDoL3
∂Th

∂L2

a73 αi3πDiL3
∂Tr3

∂P

∣
∣
∣
h3

a74 αi3πDiL3
∂Tr3

∂hout

∣
∣
∣
P

a75 αoπDoL3
∂Th

∂Tw1

a76 αoπDoL3
∂Th

∂Tw2

a77 −αoπDoL3 − αi3πDiL3 + αoπDoL3
∂Th

∂Tw3

Entries of Jacobian Matrices for the Three-Zone Evaporator Model ∂f
∂u

(continued)

b11 hin − hf

b13 ṁin

b21 hf − hg

b32 hg − hout

b41 1

b42 −1

b55 αoπDoL1
∂Th

∂Thi

b56 πDoL1(Th − Tw1)
∂αo

∂ṁh,in
+ αoπDoL1

∂Th

∂ṁh

b65 αoπDoL2
∂Th

∂Thi

b66 πDoL2(Th − Tw2)
∂αo

∂ṁh,in
+ αoπDoL2

∂Th

∂ṁh

b75 αoπDoL3
∂Th

∂Thi

b76 πDoL3(Th − Tw3)
∂αo

∂ṁh,in
+ αoπDoL3

∂Th

∂ṁh
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5.2.9 Condenser Model

5.2.9.1 Two-Zone

Figure 5.4: Two-Zone Moving Boundary Model for Condenser

The derivation is similar to that of the two-zone evaporator found in [RA04].

The resulting model is a set of five nonlinear differential equations, written in

descriptor form given by

Z(x, u)ẋ = f(x, u) (5.40)

x =
[

L1 P hout Tw1 Tw2

]T

u =
[

ṁin ṁout hin Tc,in ṁc

]T

(5.41)

Z(x, u) =














z11 z12 0 0 0

z21 z22 z23 0 0

z31 z32 z33 0 0

0 0 0 z44 0

z51 0 0 0 z55














(5.42)
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f(x, u) =














ṁin(hin − hf ) + αi1Ai(
L1

L
)(Tw1 − Tr1)

ṁout(hf − hout) + αi2Ai(
L−L1

L
)(Tw2 − Tr2)

ṁin − ṁout

αoAo(Tc − Tw1)− αi1Ai(Tw1 − Tr1)

αoAo(Tc − Tw2)− αi2Ai(Tw2 − Tr2)














(5.43)

For circular tubes, the inner and outer tube surface areas are given by Ai = 2πriL

and Ao = 2πroL, respectively.

Entries of Z(x, u) for the Two-Zone Condenser Model

z11 [ρg(hg − hf )] (1− γ̄)Acs

z12

[(
d(ρghg)

dP
− dρg

dP
hf

)

(1− γ̄) +
(

d(ρfhf )

dP
− dρf

dP
hf

)

γ̄ − 1
]

AcsL1

z21 ρ2(hf − h2)Acs

z22

[(

∂ρ2
dP

∣
∣
∣
h2

+ 1
2
∂ρ2
∂h2

∣
∣
∣
P

dhf

dP

)

(h2 − hf ) +
ρ2
2

dhf

dP
− 1

]

Acs(L− L1)

z23

[
1
2
∂ρ2
∂h2

∣
∣
∣
P
(h2 − hf ) +

ρ2
2

]

Acs(L− L1)

z31 [(ρf − ρ2) + (ρg − ρf )(1− γ̄)]Acs

z32

{[

∂ρ2
ρP

∣
∣
∣
h2

+ 1
2
∂ρ2
∂h2

∣
∣
∣
h
P

dhf

dP

]

(L− L1) +
[
dρg
dP

(1− γ̄) +
dρf
dP

γ̄
]

L1

}

Acs

z33
1
2
∂ρ2
∂h2

∣
∣
∣
P
Acs(L− L1)

z44 (CpρV )w

z51 (CpρV )w

(
Tw1−Tw2

L−L1

)

z55 (CpρV )w

Acs π ((ri + w)2 − r2i )

A constant, mean void fraction is assumed to simplify the derivation. This is

empircally calculated as prescribed in [BW81].

γ̄ =
1

1− c
+

c

(1− x0)(1− c)2
ln[c+ (1− c)x0] (5.44)
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The Jacobians for the two-zone condenser model are

∂f

∂x
=














a11 a12 0 a14 0

a21 a22 a23 0 a25

0 0 0 0 0

a41 a42 0 a44 a45

a51 a52 a53 a54 a55














∂f

∂u
=














b11 0 b13 0 0

0 b22 0 0 0

b31 b32 0 0 0

0 0 0 b44 b45

0 0 0 b54 b55














Entries of Jacobian Matrices for the Two-Zone Condenser Model
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∂f
∂x

a11
αi1Ai

L
(Tw1 − Tr1)

a12 −ṁin
dhf

dP
− αi1Ai

L1

L
dTr1

dP

a14 αiAi
L1

L

a21 −αi2Ai

L
(Tw2 − Tr2)

a22 ṁout
dhf

dP
− αi2Ai(

L2

L
)∂Tr2

∂P

∣
∣
∣
h2

a23 −ṁout − αi2Ai(
L2

L
) ∂Tr2

∂hout

∣
∣
∣
P

a25 αi2Ai(
L2

L
)

a41 αoAo
∂Tc

∂L1

a42 αi1Ai
∂Tr1

∂P

a44 −αoAo − αi1Ai + αoAo
∂Tc

∂Tw1

a45 αoAo
∂Tc

∂Tw2

a51 αoAo
∂Tc

∂L1

a52 αi2Ai
∂Tr2

∂P

a53 αi2Ai
∂Tr2

∂hout

a54 αoAo
∂Tc

∂Tw1

a55 −αoAo − αi2Ai + αoAo
∂Tc

∂Tw2

∂f
∂u

b11 hin − hf

b13 ṁin

b22 hf − hout

b31 1

b32 −1

b44 αoAo
∂Tc

∂Tc,in

b45 Ao(Th − Tw1)
∂αo

∂ṁc
+ αoAo

∂Tc

∂ṁc

b54 αoAo
∂Tc

∂Tc,in

b55 Ao(Tc − Tw2)
∂αo

∂ṁc
+ αoAo

∂Tc

∂ṁc
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5.2.9.2 Three-Zone

Figure 5.5: Three-Zone Moving Boundary Model for Condenser

Similar to the 3-zone evaporator model, the condenser model is a set of seven

nonlinear differential equations, written in descriptor form.

Z(x, u)ẋ = f(x, u) (5.45)

x =
[

L1 L2 P hout Tw1 Tw2 Tw3

]T

(5.46)

u =
[

ṁin ṁout hin ḣin Tc,in ṁc

]T

(5.47)
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Z(x, u) =





















z11 0 z13 0 0 0 0

z21 z22 z23 0 0 0 0

z31 z32 z33 z34 0 0 0

z41 z42 z43 z44 0 0 0

z51 0 0 0 z55 0 0

z61 z62 0 0 0 z66 0

0 z72 0 0 0 0 z77





















(5.48)

f(x, u) =
[

f1 f2 f3 f4 f5 f6 f7

]T

(5.49)
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Entries of Z(x, u) for the Three-Zone Condenser Model

z11 Acsρ1(hin − hf )

z13

[
dρ
dP

+ 1
2

dρf
dh

∂hg

dP
)(hin − hg) +

1
2

dhg

dP
ρf − 1

]

AcsL1

z21 Acs [ρfhg − ρ3hf ]

z22 Acs [(ρghg − ρfhf )γ̄ + (ρf − ρ3)hf ]

z23 Acs

[

(
dρf
dP

+ 1
2

dρf
dh

dhg

dP
)hgL1 + (∂ρ3

∂P
+ 1

2
∂ρ3
∂h

dhf

dP
)hfL3

]

+Acs

[

(
dρfhf

dP
(1− γ̄) + dρghg

dP
γ̄ − 1)L2

]

z24
1
2
∂ρ3
∂h

hfAcsL3

z31 ρ3(hf − h3)Acs

z32 ρ3(hf − h3)Acs

z33

[

(∂ρ3
∂P

+ 1
2
∂ρ
∂h

dhf

dP
(h3 − hf ) + (1

2

dhf

dP
)ρ3 − 1

]

AcsL3

z34
[
1
2
∂ρ3
∂h

(h3 − hf ) +
1
2
ρ3
]
AcsL3

z41 Acs(ρ1 − ρ3)

z42 Acs [(ρg − ρf )¯̄γ + (ρf − ρ3)]

z43 Acs

[

(
dρf
dP

+ 1
2

dρf
dh

dhg

dP
)L1 + (∂ρ3

∂P
+ 1

2
∂ρ3
dh

dhf

dP
)L3 + (

dρf
dP

(1− γ) + dρg
dP

γ̄)L2

]

z44
Acs

2
L3

∂ρ3
∂h

z51 (CpρV )w
Tw1−Tw2

L1

z55 (CpρV )w

z66 (CpρV )w

z71 (CpρV )w
Tw2−Tw3

L3

z72 (CpρV )w
Tw2−Tw3

L3

z77 (CpρV )w

Acs π ((ri + w)2 − r2i )
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Entries of f(x, u) for the Three-Zone Condenser Model

f1 ṁin(hin − hg) + αi1πDiL1(Tw1 − Tr1)

−A
2

[

ρ1L1 +
1
2
(hin + hf )

∂ρ1
∂h1

∣
∣
∣
P
− hfL1

∂ρ1
∂h1

∣
∣
∣
P

]

ḣin

f2 ṁin(hg − hf ) + αi2πDiL2(Tw2 − Tr2)

+1
2
AcsL1

∂ρ1
∂h

∣
∣
∣
P
(hg − hf )ḣin

f3 ṁout(hf − hout) + αi3πDiL3(Tw3 − Tr3)

f4 ṁin − ṁout − AcsL1

2
∂ρ1
∂h1

∣
∣
∣
P
ḣin

f5 αoπDoL1(Tc − Tw1) + αi1πDiL1(Tr1 − Tw1)

f6 αoπDoL2(Tc − Tw2) + αi2πDiL2(Tr2 − Tw2)

f7 αoπDoL3(Tc − Tw3) + αi3πDiL3(Tr3 − Tw3)

5.3 Dynamic Piston Expander Model

ThermoBox, a MATLAB toolbox for thermodynamic modeling, provides the gen-

eral thermodynamic blocks to create a dynamic piston expander model based on

mass and energy conservation principles applied to a control volume with arbitrary

number of inlet and outlet ports. The input, output, and state features of each

block are presented. The interested reader is directed to [Lim11] for derivation

details of each of these blocks.
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Figure 5.6: Control Volume of a General Open System with Variable Volume

The cylinder is modeled using mass and energy balances for a control volume of an

open system with arbitrary number of inlet and outlet ports. Heat transfer across

the volume boundaries is accounted for through a user-defined model. The model

also accounts for a variable volume to represent the piston volume displacement

in the cylinder.

The model assumes the following

1. Zero-dimensional, that is properties are uniform throughout the volume

2. Only displacement work is done by the system

3. Kinetic and potential energies of the fluid are neglected

The governing equations describing mass and energy are given by

dm

dt
=
∑

i

ṁi (5.50)
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dE

dt
= Q̇− Ẇ +

∑

i

ṁihi (5.51)

where E is the total energy state of the system, Q̇ is the rate of heat transfer into

the system, Ẇ is the rate of work done by the system, and hi is the enthalpy at

port i. The dynamic equation for the temperature state is given by

dT

dt
=

[
∂T
ρ
( ∂ρ
∂T

)ρ − h
]

dm
dt

−
[
T (∂P

∂T
)ρ
]

dV
dt

+ Q̇+
∑

i ṁihi
[

mCp =
V T
ρ
(∂P
∂T

)2ρ(
∂P
∂ρ
)−1
T

] (5.52)

5.3.1 Orifice Model

Figure 5.7: Compressible Flow due to Pressure Differential

This model is for open systems with inlet and outlet ports to depict pressure-

driven flow through a constriction. The assumptions of the model are:

1. One-dimensional, steady flow

2. Isentropic process

3. n is constant along the flow path

4. Negligible potential energy
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Without a pressure difference, the mass flow rate is zero. Non-zero mass flow rate

is induced by a difference in the fluid pressure P0 (also known as the stagnation

presure) and the back pressure Pb. The flow direction is from the higher pressure

to the lower one. As the back pressure decreases, flow is towards the back pressure

and at some point the throat pressure PT will reach a critical pressure when the

flow becomes sonic at the throat. The flow reaches the speed of sound for the

throat state. A further decrease in PB does not affect the throat condition. The

mass flow rate does not increase for choked flow, and the fluid continues to expand

from the throat pressure to the back pressure outside the throat.

Accounting for choked flow, the mass flow rate of a compressible fluid is described

by

ṁ =







AT

(
PB

P0

) 1
n

√

P0ρ0
2n
n−1

[

1−
(

PB

P0

)n−1
n

]

if PB > P0

(
2

n+1

) n
n−1

AT

(
2

n+1

) n+1
2(n−1) if PB ≤ P0

(
2

n+1

) n
n−1

where n is given by

n =
CPρ

CvP

(
∂P

∂ρ

)

T

(5.53)

.
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5.3.2 Piston-Crankshaft Assembly

Figure 5.8: Piston-Cylinder Assembly Connected to Crankshaft

The piston-cylinder is connected to a crankshaft as shown in Figure 5.8. For a

crank position angle θ, the cylinder volume is described by

V (θ) = Vd

[
1

rc − 1
+

1

2

(

R + 1− cos(θ)−
√

R2 − sin2(θ)

)]

(5.54)

where Vd is the swept volume, rc is the compression ratio, R is the ratio of the

connecting rod to the crank radius. Taking the time derivative yields the following:

dV (θ, θ̇)

dt
=

1

2
Vd

[

sin(θ)

(

1 +
cos(θ)

√

R2 − sin2(θ)

)]

θ̇ (5.55)

To calculate the heat transfer rate, the expression for the surface area of the

cylinder is needed and described below.

A(θ) =
πB2

2
+

4

B
V (θ) (5.56)
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where B is the bore diameter. The input to the block is the crank speed in RPM

and the outputs are the rate of volume change V̇ in m3 and the crank position θ

in degrees. The initial parameters are the following:

1. Crank position in degrees

2. Displaced volume of the cylinder in liters

3. Ratio of the connecting rod length to the crank radius

5.3.3 Simulations

The two-cylinder piston expander in this research application is connected to the

engine crankshaft in a 1:1.33 ratio (1.3 expander rotations for every crankshaft

rotation). Working fluid expansion provides additional torque to the crankshaft.

The intake port valve is driven by the position of the piston. The exhaust port is

a sleeve valve, but considered a pin valve like the intake port. The lift of the valve

determines the port opening area. The lift profiles for the intake and exhaust

ports of both cylinders are identical and are shown in Figure 5.9 with zero degrees

as top-dead-center (TDC).
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Figure 5.9: Intake and Exhaust Port Lift Profile

The piston expander is simulated for a water-ethanol mixture and the results are

shown in Figures 5.10 and 5.11. The evaporating and condensing pressures are 4

MPa and 0.115 MPa, respectively. The inlet and outlet working fluid enthalpies

are 2300 kJ
kg

and 1950 kJ
kg
, respectively. The engine crankshaft speed is 1200 revo-

lutions per minute. The expander power generated is within the expected range

established by the static RC model design in Chapter 4.
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Figure 5.10: Expander Power and Torque

The power and torque from each cylinder is expected to be identical due to a com-

mon geometry and valve timing. The differences are attributed to the numerical

solver handling the initial condition of each piston 180 degree out of phase of each

other. The engine power improvement from the RC is given by

Engine Power Improvement =
Expander Power

Average Engine Power
(5.57)

The average engine power and torque are 143 kW and 987 N-m, respectively, and

are representative of the driving cycles examined in this dissertation.
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Figure 5.11: Expander Pressure-Volume Diagram
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CHAPTER 6

State Estimation for Rankine Cycles

There has been a growing need for modeling, controlling, and monitoring waste

heat recovery (WHR) systems during transient operations. Depending on the

driving terrain, the engine’s exhaust can experience large exhaust temperature

and flow rate swings. Heat source transients are presented in Chapter 2 for a 13

liter heavy-duty diesel engine. The transients create a challenge in operating the

WHR as a steady-state cycle and introduce concerns of drying out and flooding

components as well undesirably high and low working fluid temperatures. These

critical conditions must be known before so corrective action can be taken.

Furthermore, some process variables are difficult to measure. Even if possible,

the extra measurement sensors may add to system complexity and cost. The

limited space under the engine hood necessitates minimal, automotive grade sen-

sors that adequately measure system state. Pressure, temperature, and mass flow

rate sensors are typically available. Other process variables are difficult to mea-

sure such as wall temperatures and phase boundaries in two-phase flow. While

phase-change boundary detectors exist, they are typically expensive research grade

sensors. Practically, this boundary cannot be measured directly in automotive ap-

plications for this reason.

State estimation is discussed in the literature and often required in feedback con-

trol and monitoring for fouling. Nonlinear observers were applied on a low-order

evaporator model based on sensor measurements of evaporating temperature and
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used to synthesize feedback control [CHA04]. The fixed observer gains were ob-

tained for specified operating points and guaranteed state estimation convergence.

An Extended Kalman Filter (EKF) has been applied on a dynamic heat exchanger

model to detect fouling [JLP07]. However, the considered working fluid does not

undergo a phase change. To the knowledge of the authors, estimation has not

been explored for the mathematically richer Moving Boundary heat exchanger

models describing multi-phase evaporating and condensing flows. Furthermore,

evaluating state estimation performance using different and minimal measurement

sensors has received little attention. The availability and cost of these sensors can

impact whether feedback control can be achieved, if at all depending on state

observability.

This chapter examines model-based state estimation techniques useful for monitor-

ing heat exchanger state of health and control design for critical condition avoid-

ance. Depending on the operating conditions, controls may be needed to steer the

system away from the mentioned critical conditions. Details for a model-based

nonlinear estimation method of a nonlinear open organic Rankine cycle (ORC)

model are presented. A linear state estimator is also developed for estimating the

linear and nonlinear open ORC. The measurements considered are typically avail-

able pressure and temperature and their ability to individually and collectively

infer the unmeasurable states or process variables is examined.

This chapter begins with state observer design on a linear moving boundary model

for an evaporator before focusing on nonlinear state estimation. A nonlinear

Extended Kalman Filter (EKF) and a Fixed-Gain estimator are presented, both

using typically available pressure and/or temperature sensor measurements to

estimate evaporator states. Estimation performance based on a numerical (Full)

and analytical (Approximated) process Jacobian is shown.
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Simulations of the state estimators are given under transient step inputs. The

chapter examines state estimation performance based on measurement choice and

investigates the relative observability for selected measurements. State estimation

performance is also presented for the selected Jacobian method in the estimator

design.

The chapter concludes with simulations of a exhaust gas recirculation (EGR)

evaporator coupled to an expander for waste heat recovery in a heavy-duty truck.

Transient heat source data are provided from driving cycles of a 13 liter diesel pow-

ertrain described in Chapter 2. The results are useful for predicting power recov-

ery in heat recovery applications. The estimation results are useful for controller

design and performance monitoring including fouling detection and scheduling

maintenance.

6.1 Linear State Estimation

State estimators are useful for state feedback control design when one or more

states cannot be measured. A linear estimator is designed from a small-signal

linear model of the nonlinear Moving Boundary models. The linear heat exchanger

model for the nonlinear model ẋ = Z−1f is given by

δẋ = Aδx+Bδu (6.1)

δy = Cδx+Dδu

where the system matrices A and B are given in Chapter 5. For pressure and tem-

perature output measurements, the C matrix is given by and its linear estimator

is given by

C =




δP

δTout



 (6.2)
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where δTout is a thermodynamic function of working fluid states δP and δhout.

Its linear state estimator is given by

δx̂k = Aδx̂k−1 +Bδuk−1 + Lδỹk−1 (6.3)

δŷk = Cδx̂k +Dδuk (6.4)

δỹk = δzk − δŷk (6.5)

δuk = uk − ueq (6.6)

δzk = zk − zeq (6.7)

x̂k = xeq + δx̂k (6.8)

The gain L can be obtained from pole-placement.

The three-zone evaporator model is linearized about the operating or lineariza-

tion point. Depending on the linearization point, the model may contain a zero

eigenvalue for continuous-time systems or an eigenvalue on the unit circle for

discrete-time systems, rendering the system unobservable. This arises from the

mass conservation equation, with hout being the uncontrollable and unobservable

state. For the purpose of designing a closed-loop state estimator, the hout state

is temporarily removed. This is justified since this state has minimal influence on

the other states, despite being highly influenced by them. It is added back to the

system after designing the closed-loop state estimator via pole placement. The

observer poles are made five times larger than the model’s eigenvalues.

Figures 6.1-6.3 show that the three-zone linear evaporator states are fully observ-

able, allowing the use of full state feedback control. A pressure measurement is

able to reconstruct the other states.

The abbreviations SC, TP, and SH are SubCooled, Two-Phase, and SuperHeat,

respectively.
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Figure 6.1: State Estimator for Linear Three-Zone Moving Boundary Evaporator

Model for Flat Road Cycle
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Figure 6.2: State Estimator for Linear Three-Zone Moving Boundary Evaporator

Model for Hilly Road Cycle
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Figure 6.3: State Estimator for Linear Three-Zone Moving Boundary Evaporator

Model for Rolling Hills Road Cycle

The simulations show that the linear estimator works well for the linear model.

Because real systems do not necessarily remain around the operating point, the

linear model and thus the estimator may no longer apply. A new linear model and

estimator may be computed at the new operating point, which may work well.

Too many operating points may make the approach cumbersome. A nonlinear

estimator is investigated in the next section for the nonlinear model to avoid the

limited validity of linear models and their linear estimators.
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6.2 Nonlinear State Estimation

Nonlinear estimators are useful when linear models are not available or difficult

to obtain. Nonlinear control design can be directly executed without needing to

linearize. The standard Extended Kalman Filter and its Fixed-Gain version are

presented and compare.

6.2.1 Extended Kalman Filter (EKF)

The continuous-time plant is given by

ẋ = g(x, u) + w(t) w(t) ∼ N(0, Q) (6.9)

where g(x, u) = Z−1f and w is process noise with zero mean and covariance Q.

The discrete-time plant is obtained using Forward Euler with a sampling time of

ts.

xk = xk−1 + tsg(xk−1, uk−1) (6.10)

The measurement equation is given by

zk = h(xk) + vk vk ∼ N(0, R) (6.11)

where v is the measurement noise with zero mean and covariance R. In general,

the measurement function h is a nonlinear function of the states and inputs.

The discrete-time extended Kalman Filter (EKF) estimator model is given by

x̂k|k = x̂k|k−1 + tsg(x̂k|k−1, uk) +Kkỹk (6.12)

where ỹk = zk − h(x̂k|k−1) is the innovation or measurement residual. Kk is the
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Kalman Gain computed by the following update equations

Kk = Pk|k−1H
T
k S

−1
k (6.13)

Sk = HkPk|k−1H
T
k +Rk (6.14)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (6.15)

Pk|k = (I −KkHk)Pk|k−1 (6.16)

6.2.2 Fixed-Gain State Estimator

A Fixed-Gain EKF estimator has the same structure as Equation 6.12 but with

K fixed. Its value is obtained from the steady-state gain of the EKF found at

equilibrium.

6.2.3 For Moving Boundary Condenser Model

Nonlinear state estimation for a stand-alone Moving Boundary heat exchanger

model is presented in this section. The states of a two-zone condenser model are

estimated by an EKF for constant and step inputs. Both pressure and temperature

measurements are used. The Approximated Jacobian is assumed.

6.2.4 Simulations

Figure 6.4 show the estimation performance for constant inputs to the condenser

model. The net mass flow is zero. The estimation error all converge to the model

states with exception of the phase-change boundary having an estimation bias

within 10% of the plant model value.
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Figure 6.4: EKF Estimator States using Pressure and Temperature Measure-

ments, Constant Inputs

Figure 6.5 shows step changes in the heat sink temperature and mass flow rate.

At time 200 and 1000 seconds, the temperature and mass flow rate increased by

25% and decreased by 33%, respectively. The phase-change boundary state also

experiences the worst estimation performance.
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Figure 6.5: EKF Estimator States using Pressure and Temperature Measure-

ments, Step Inputs

6.3 Nonlinear State Estimation for Open Organic Rankine

Cycle (ORC)

To meet emission standards, exhaust gas recirculation (EGR) coolers are found

in modern day heavy-duty engines for nitrogen oxide reduction. The cooler re-

jects heat from the engine manifold exhaust before recirculating it to the piston

combustion chamber to displace combustible components. This leads to lower

temperature combustion and lower production of nitrogen oxides. The heat rejec-
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tion provides an opportunity to recover energy through a ORC.

The EGR cooler from a 13 liter diesel powertrain serves as the ORC evaporator

and is coupled to an expander for waste heat recovery. Simulations were conducted

for the Rolling Hills driving cycle. Its transient heat conditions in temperature

and mass flow rate are shown in Chapter 2. The other inputs to the ORC model

were kept constant as described in the Setup section.

The states of a control-oriented two-zone evaporator Moving Boundary model are

estimated. An expander model is connected to the evaporator through a throttle

valve as seen in Figure 6.6. Because the heat exchanger dynamics are much slower

than that of the expander and throttle, the latter components are treated as static

models.
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Figure 6.6: Open Rankine Cycle Model

6.3.1 Evaporator Model

The two-zone evaporator model is given by

Z(xe, ue)ẋe = f(xe, ue) (6.17)

where the state xe and input ue vectors are

xe = [L1 P hout Tw1 Tw2]
T (6.18)

ue = [ṁin ṁout hin Th,in ṁh]
T (6.19)
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Z and f are a five-dimensional matrix and vector, respectively.

6.3.2 Expander and Throttle Valve Models

The following models are static due to the slower heat exchanger dynamics. The

mass flow rate into the expander is given by

ṁv =
βµPin√

Tin

(6.20)

where β is the valve coefficient, µ is throttle valve position, and Tin is the inlet

temperature, also the evaporator outlet temperature calculated as P and hout in

Figure 6.6.

The expander outlet enthalpy is given by the rearrranged isentropic efficiency

definition

hout = hin − η (hin − hout,s) (6.21)

with an assumed isentropic efficiency η.

The power output of the expander is given by

N = ṁv (hin − hout) (6.22)

Equation 6.20 for the throttle valve mass flow rate is connected to the evaporator’s

ṁout input as shown in Figure 6.6. The evaporator pressure P and enthalpy hout

determine the Tin for the turbine model.

6.3.3 Open ORC System Model

The system model with the evaporator, valve, and expander connected still has

the nonlinear form in Equation 6.17:

Z(x, u)ẋ = f(x, u) (6.23)
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where the state x and input u vectors are now

x = [L1 P hout Tw1 Tw2]
T (6.24)

u = [ṁin hin Th,in ṁh µ]T (6.25)

The output measurements are pressure and outlet temperature of the working

fluid, defined as

y = [P Tout]
T (6.26)

Linearizing Equation 6.17 at equilibrium xeq and ueq yields

δẋ = Aδx+Bδu (6.27)

δy = Cδx+Dδu

where

A = Z−1∂f

∂x

∣
∣
∣
xeq ,ueq

(6.28)

B = Z−1∂f

∂u

∣
∣
∣
xeq ,ueq

(6.29)

While this is a valid step for sufficiently small signals around that operation point,

the linearization may not describe the nonlinear dynamics for large enough tran-

sients. This chapter focuses on simulation and analysis with the nonlinear model

to capture a larger operating range.

The filter will assume combinations of pressure and temperature measurements

available for state estimation. That is,

h(x) =




P

Tout



 (6.30)

where Tout is a thermodynamic function of working fluid states P and hout.
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6.3.4 State and Relative Observability

Pressure and temperature sensors are typically available for heat exchanger mea-

surements. Because these sensors are not always desired due to physical and cost

requirements, this section examines state estimation effectiveness for each sensor

and their combinations. State and relative observability are examined through

the empirical observability gramian for nonlinear systems. The same relative ob-

servability measures for linear systems are applied.

For the purpose of defining the gramians, a nonlinear system control system is

assumed:

ẋ = f(x, u) (6.31)

y = h(x, u) (6.32)

The initial state perturbation sets are given in [Him] as

Ex = {fi ∈ R
n; ‖fi‖ = 1; fifj 6=i = 0; i = 1, . . . , n} (6.33)

Rx = {Ti ∈ R
n×n;T ∗

i Ti = 1; i = 1, . . . , t} (6.34)

Ru = {Si ∈ R
j×j;S∗

i Si = 1; i = 1, . . . , s} (6.35)

Qx = {di ∈ R; di > 0; i = 1, . . . , r} (6.36)

These sets should correspond to the ranges in initial states the system is operating

in. For the sets defined above and the steady-state x̄ and corresponding output

ȳ, the empirical observability gramian is given by

Wo =
1

|Qx||Rx|

|Qx|∑

k=1

|Rx|∑

l=1

1

d2k
Tl

∞∫

0

Ψkl(t)dtT ∗
l (6.37)

Ψkl
ab =

(
ykla(t)− ȳ

)∗ (
yklb(t)− ȳ

)
∈ R

where ykla is the system output for the initial state xkla
0 = dkSlfa + x̄.
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To measure the relative observability of nonlinear systems, the empirical observ-

ability gramian in Equation 6.38 is computed using the Unified Software Frame-

work for Empirical Gramians described in [Him]. The gramian is calculated at

every time-step, from the current time to the next sampling step. The calcula-

tions use the current states and inputs, which are then perturbed by rotations and

scaling. The sets of rotations are {1} (unit matrix) and {−1,1} (negative unit

matrix and unit matrix). The restricted rotations simplifies Equation 6.38 to

Wo =
1

|Qx||Rx|

|Qx|∑

k=1

|Rx|∑

l=1

1

d2k

∞∫

0

Ψkl(t)dt (6.38)

and the initial state perturbation to xkla
o = −1ldkfa + x̄.

Candidates for measuring the degree of observability of a linear system are typi-

cally based upon the linear observability gramian. The same measures are applied

on the empirical observability gramian for the nonlinear system. These measures

typically examine the gramian’s smallest and the largest eigenvalues. Both are

used for analysis.

The following observability measures are used in [SH04] and are based on the

eigenvalues λi of the observability gramian Wo. Larger values of the following

measures indicate a higher degree of observability.

µ1 =
n

trace(W−1
o )

(6.39)

µ3 = λmin(Wo) (6.40)

µ4 =
n

trace(W−1
o )

(6.41)

µ5 = det(Wo)
1/n (6.42)

The condition number relates the relative observability between the most and least

observable states. Smaller condition numbers generally imply increased system
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observability.

µ7 = CN =
σmax

σmin

(6.43)

The smallest singular value is a measure of how far the system is away from being

unobservable.

µ2 = NS = σmin(Wo) (6.44)

The largest singular value measures the maximal response in the direction of the

most observable state in the state space. The spectral radius is given by

µ6 = ρ(Wo) = σmax(Wo) (6.45)

Finally, the overall observability from sensor measurements can be measured by

summing all singular values through the matrix trace function.

µ7 = trace(Wo) =
∑

σi(Wo) (6.46)

Table 6.1 evaluates the observability measures mainly based on the smallest eigen-

value. The measures are the largest across every observability measure using both

pressure and temperature measurements. As expected, observability is less using

only one measurement. The results indicate that a temperature measurement

provides more observability than a pressure measurement. Furthermore, adding

pressure to temperature measurements did not substantially increase observabil-

ity.

Table 6.2 reports the measures which are predominantly influenced by the ob-

servability gramian’s largest eigenvalue. The results indicate that a temperature

measurement provides more observability than a pressure measurement. Further-

more, adding pressure to temperature measurements did not substantially increase

observability.

145



Table 6.1: Smallest Eigenvalue Observability Measures for Nonlinear Model at

Equilibrium

µ1 µ2 µ3 µ4 µ5

P 4.3 · 10−12 8.8 · 10−13 0 2.2 · 10−4 1.2 · 1014

T 5.4 · 10−6 1.1 · 10−6 1.2 · 10−12 103 2.01 · 1014

P&T 6.6 · 10−6 1.3 · 10−6 1.7 · 10−12 108 2.4 · 1018

Table 6.2: Largest Eigenvalue Observability Measures for Nonlinear Model at

Equilibrium

µ6 µ7

P 110 130

T 2.6 · 1012 2.6 · 1012

P&T 2.6 · 1012 2.6 · 1012

State observability is in general a function of the input signal. Since the aim is

to determine state observability during driving cycles, the heat source inputs are

used in computing the observability measures. The observability measures are

shown as a function of time in Figure 6.7 for µ1 and µ2. Because these measures

are calculated from a non-singular empirical observability gramian, observability

exists at all time for these inputs and suggests stability of the nonlinear state

estimation error dynamics for the driving cycle.

Furthermore, note that relative observability does not change for the different

measurements in the presence of transient inputs. As with the measures evaluated
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at equilibrium, using both measurements provide more observability than just

one. Temperature measurements make the system relatively more observable than

pressure measurements.

0 500 1000 1500 2000 2500
−30

−25

−20

−15

−10

−5

0

log(µ
1
)

Time (sec)

0 500 1000 1500 2000 2500
−30

−25

−20

−15

−10

−5

log(µ
2
)

Time (sec)

 

 

PT

P

T

Figure 6.7: Relative Observability using Empirical Observability Gramian for

Rolling Hills Driving Cycle

Each of the linear model’s observability matrices corresponding to pressure, tem-

perature, and both measurements is rank deficient. This indicates the linear model

is unobservable for any combination of measurements and suggests the Fixed-Gain

linear estimator is ineffective when the plant operates away from the linearization

point.
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6.3.5 EKF Design

6.3.5.1 Measurement Jacobian

The filter assumes combinations of pressure and temperature measurements avail-

able for state estimation. That is,

h(x) = [P Tout]
T (6.47)

where Tout is a thermodynamic function of working fluid states P and hout.

The linearized pressure and temperature measurement function Hk is given by

Hk =
∂h

∂x

∣
∣
∣
∣
x̂k|k−1

=




0 1 0 0 0

0 ∂T
∂P

∂T
∂hout

0 0



 (6.48)

6.3.5.2 Numerical (Full) and Analytical (Approximated) Jacobian

The state estimates are computed at every time step by linearizing the discretized

plant dynamics:

Fk−1 = I + ts
∂g

∂x

∣
∣
∣
x̂k−1|k−1,uk−1

(6.49)

= I + ts

[

Z−1
k

∂f

∂x

∣
∣
∣
∣
x̂k−1|k−1,uk

+
∂Z−1

k

∂x

∣
∣
∣
∣
x̂k−1|k−1,uk

f

]

The term ∂f
∂x

has a closed-form solution. The other term ∂Z−1

∂x
, however, does not

have an analytical form. Two methods are proposed to handle its computation.

The first method is numerically computing the full Jacobian term ∂g
∂x
. The (i, j)

entry of the n× n Jacobian is given by

∂gi
∂xj

=
gi(x+ ej∆x, u)− gi(xi, u)

ej∆x
i = 1, 2 . . . n j = 1, 2 . . . n (6.50)
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where gi is the ith column of g, xi is the ith state variable of the state vector x,

and e are basis vectors. The state perturbation vector ∆x is selected sufficiently

small ensuring it captures the nonlinearity of g.

∆x is selected sufficiently small by examining the nonlinearity of g and capturing

the slope of the g − x curve of each state. This must be true over the entire

operating state space. Since evaporators typically operate in steady-state with

transients, a first step in determining the correctly sized ∆x is to examine the

nonlinearity at an equilibrium state. Figure 6.8 plots g around an equilibrium as

a function of deviations for each state ∆xi with ∆xj 6=i = 0 for i = 1, 2, . . . , 5 and

j = 1, 2, . . . , 5. The EKF using this ∆x determined at the (xeq, ueq) point in Figure

6.8 computes an F that properly estimates states in this chapter’s simulations,

even though F is evaluated at other non-equilibrium points.

Based on Figure 6.8, the ∆x chosen is

∆x =

[

0.02m 0.1MPa 5
kJ

kg
1◦C 1◦C

]T

(6.51)
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Figure 6.8: Nonlinearity of g(xeq, ueq)

The second method is an analytical approximation of the Jacobian by assum-

ing the evaporator operates at or near an equilibrium. The term f is or near

zero, making the entire ∂Z−1

∂x
f term negligible. F can then be approximated by

eliminating that term so that

Fk−1
∼= I + tsZ

−1
k

∂f

∂x

∣
∣
∣
∣
x̂k−1|k−1,uk

(6.52)

This approximation is valid for Jacobian evaluations near the equilibrium and

reduces computation complexity and possible inaccuracies using the numerical

Jacobian calculation. The trade-off is the filter using the Approximated Jacobian

may be less accurate the farther away from the equilibrium point.
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6.3.6 Simulation

Figure 6.9: Open Rankine Cycle Model with State Estimator

Simulations were conducted in MATLAB/Simulink to estimate evaporator states

from available measurements of pressure and/or temperature. The EKF used

either a Full or Approximated Jacobian and their estimation performances are

compared. The block diagram for the simulation is shown in Figure 6.9.

A Fixed-Gain estimator is obtained from the steady-state EKF using pressure and

temperature measurements. The simulations included constant and step changes

in evaporator inputs to compare their estimation performance under these tran-

sients. The values and timing of the step changes in the inputs are presented in
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Table 6.3 for comparing different measurement and Jacobian choices.

Finally, simulations of an open power cycle using an actual driving cycle heat

source data are presented.

6.3.6.1 Setup

The evaporator is initialized to an equilibrium x(t0) = xeq associated with constant

inputs u = ueq, different from the estimator’s initialization. The EKF estimator

in both Full and Approximated Jacobian cases assumes process and measurement

noise in its update equations while the plant model does not. Noise is added to

the plant model to evaluate its effect on estimation. Fouling is also introduced

by reducing the heat transfer coefficients of the plant model while the estimator’s

values remain the same (unfouled).

The design parameters are representative of a heat exchanger from a heavy-duty

diesel powertrain:

1. Working Fluid: 52% Ethanol, 48% Water Mixture

2. Tube material: Copper

3. Evaporator tube length: 0.7 m

4. Inner tube diameter: 14 mm

5. Outer tube diameter: 16 mm

The expander and throttle operating and design variables are given by:

1. Outlet Pressure: 2 MPa

2. Isentropic Efficiency η: 90 %
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Table 6.3: Step Changes in Evaporator Inputs for Comparing Measurement and

Jacobian Choice

Step Input t (seconds) Initial Value Final Value

Th,in 1100 450 ◦C 350 ◦C

ṁh 2000 0.062 kg
s

0.108 kg
s

hin 2500 350 kJ
kg

570 kJ
kg

ṁin 3000 0.0066 kg
s

0.0067 kg
s

3. Valve Coefficient β: 0.03

4. Throttle Position µ: 81.25 %

The estimator parameters are defined by:

1. Q = 10−3I

2. R = 10−3I

3. L = K at equilibrium

4. x̂(t0) = E[x(t0)] 6= x0 estimator initialized away from model initial condi-

tions

5. P (t0) =Var[x(t0)] = 10−3I

6. ts = 5 seconds

Figure 6.10 compares the different measurement choices for the Full Jacobian case.

Although relative observability differs between the choices, all provide successful

state estimation.
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Figure 6.10: Evaporator and EKF Estimator States, Full F

Figure 6.11 compares the different measurement choices for the Approximated

Jacobian case. The estimation errors spike at the onset of step changes, but

converge shortly after.
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Figure 6.11: Evaporator and EKF Estimator States, Approximate F

Figure 6.12 shows a Fixed-Gain Estimator is inadequate for state estimation. The

error grows out of bound quickly after initialization and never recovers.
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Figure 6.12: Evaporator and Fixed-Gain Estimator States using Pressure and

Temperature Measurements

Figures 6.13 and 6.14 show the EKF state estimator subjected to noise and foul-

ing. Zero-mean measurement and process noises exist throughout the simulation

with variances defined in the Setup section. At t = 1000 seconds, fouling is

simulated with the evaporator heat transfer coefficients reduced by 25% of their

unfouled values. The EKF continues to use the unfouled heat transfer coefficients.

The EKF estimation error in L1 increased as the fouling was not known by the

estimator. However, the estimation error for the other states did not increase as

significantly. The growing error in the L1 state is an indicator that fouling has

occurred.
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Comparing the noise and noise-free Approximated Jacobian cases in Figures 6.11

and 6.13, the estimation spikes seem to disappear with noise. A possible reason

is that the filter is kept open by noise, allowing the estimator to track the model

states better at the onset of step inputs.
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Figure 6.13: Evaporator with Process Noise and EKF Estimator States using

Noisy Pressure and Temperature Measurements, Approximated F
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Figure 6.14: Evaporator with Process Noise and EKF Estimator States using

Noisy Pressure and Temperature Measurements, Full F

Figures 6.15-6.17 all show reasonable estimation for either Jacobian method. The

estimation error is smaller for the Full Jacobian case and only slightly larger for

the Approximated Jacobian. Figure 6.17 compares the estimation error between

the two Jacobian cases and shows modest inaccuracies in the state estimate for

the Approximated case.

WHR systems typically must satisfy operating constraints. In this application,

the evaporator pressure has a soft and hard limit of 4 and 6 MPa, respectively.

Short excursions in that range is acceptable. The pressure is clearly violated

throughout the entire driving cycle. However, the working fluid outlet temperature
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Tout remains below the 300 ◦C limit and the phase change boundary L1 is within

acceptable range. Exhaust outlet temperature (not shown) must be within a

specified temperature range for proper EGR operation. These constraints must be

met through a controller that determines the appropriate evaporator and expander

actuator inputs. The state estimator presented in this chapter is a requirement

for controllers depending on full state estimator feedback. This will be the focus

of Chapter 7.
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Figure 6.15: EKF Estimator States using Pressure and Temperature Measure-

ments, Rolling Hills Cycle, Approximated F
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Figure 6.16: EKF Estimator States using Pressure and Temperature Measure-

ments, Rolling Hills Cycle, Full F
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Figure 6.17: EKF Estimation Error using Pressure and Temperature Measure-

ments, Rolling Hills Cycle

6.3.7 Remarks

A two-zone Moving Boundary nonlinear evaporator model was implemented in the

MATLAB/Simulink environment as part of an open ORC. An expander model

is connected to the evaporator via a throttle valve. The expander and throttle

models are assumed static due to their relatively faster dynamics.

Linear and nonlinear state estimation for the ORC model using typically available

pressure and temperature measurements are addressed. Simulations showed that

both the nonliner and linear fixed-gain estimators are inadequate for state estima-
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tion, even with both pressure and temperature measurements. This is attributed

to the model nonlinearity. The empirical observability gramian determined that

either pressure or temperature measurements resulted in an observable system.

Having both pressure and temperature measurements provided the most relative

observability followed by temperature and then pressure measurements. For ro-

bust state estimation of the nonlinear model, the EKF with either a pressure or

temperature measurement sufficed. Estimation performance improves with both

measurements and agrees with observability measures using the empirical obsrv-

ability gramian. The EKF handles the nonlinearity for either Jacobian choice with

similar performance, independent of measurement choice. However, the Approxi-

maed Jacobian case results in higher estimation error at the onset of transients.

Finally, this section simulated a power cycle to recover waste heat from diesel

engine exhaust and showed that the EKF performed well in estimating all model

states. The simulations included driving cycle transients and both process and

measurement noise. The EKF also performs well in estimating most plant states

in the presence of plant fouling. The overall results provide an essential step

for future feedback control development in heat exchangers and its performance

monitoring for fouling and maintenance. Specifically for WHR in the heavy-duty

powertrain application, controls is needed to satisfy system constraints that were

not met with constant input operation. This provides motivation for Chapter 7.
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CHAPTER 7

Control Methods for Rankine Cycles

7.1 Introduction

This chapter investigates control schemes to operate the Rankine cycles (RCs) un-

der heat source and heat sink transients, which may deviate the working fluid from

the desired operating conditions and lead to other critical conditions. Operating

conditions are often specified in ranges that process variables should remain in.

When reaching outside these ranges, critical conditions such as dry-out, flooding,

and temperature shocks in components. The control problem is formulated for a

RC intended to convert waste heat to useful power in a heavy-duty diesel power-

train system while satisfying operating constraints and avoid critical conditions.

Attention is given towards tracking operating pressures as a way to produce the

maximum expansion power while satisfying other constraints. Two RC architec-

tures are considered, each differing in available control actuators. Both single-

input single-output (SISO) and multi-input multi-output (MIMO) controllers in

the form of Proportional Integral, Linear Quadratic, and Model Predictive con-

trollers are designed and implemented on both linear and nonlinear dynamic RC

models in simulation. The controllers’ performances are compared in their track-

ing performance and ability to satisfy other operating constraints.

This chapter concludes with RC simulations in operating pressure tracking on

base and peak loading power plants as well as load following plants where the RC
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must deliver a demanded power curve.

7.2 Control-Oriented RC Dynamic Modeling

The RC models in this chapter use the Moving Boundary approach to describe

and capture heat exchanger dynamics while assuming static models for the pump,

valves, and expansion device. The heat exchangers considered are two-zone models

where the evaporator has two-phase and superheat regions and the condenser with

two-phase and subcooled regions. This choice of two-zone heat exchanger models is

intended to simplify the modeling by reducing system order. Secondly, the RCmay

not be necessarily described by isentropic compression and expansion processes

resulting in two-phase fluid-phases in the heat exchangers. The dynamics of the

valves, pump, and expander are assumed much faster than that of heat exchangers.

In simplifying the RC model, they are treated as static thermodynamic models

described in Chapter 4.

The static RC design provided in Chapter 4 define setpoints and actuator limits for

the dynamical RC model and its control design. The Single Valve RC Architecture

relies on the setpoints of design 1 of the static RC model while the Dual Valve

RC Architecture uses the setpoints of design 2 of the static RC model. The static

RC models’ operating conditions in mass flow rates also establish a range for the

control actuator limits.

The heat transfer coefficients (HTCs) for the heat exchangers are calculated based

on the external heat source/sink cross flow across a single tube where the 52%

ethanol-48% water mixture flows internally. The geometry assumes effective cross-

sectional area and lengths described in Chapter 2. Correlations for the HTCs are

provided in Chapter 5.
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7.3 Control Problem Formulation

In the presence of operating disturbances stemming from varying heat source or

sink, RCs can reach a variety of critical conditions such as dry-out, flooding,

and temperature shocks in components. For heavy-duty diesel powertrains, such

disturbances include

1. Heat Source/Sink conditions vary significantly depending on the driving

cycle and determine how much heat can be added and rejected in the RC.

2. Engine Crankshaft driving the pump and coupled to the expander affect

their rotational speeds.

The disturbance input variables are given by

ud = [Th,in ṁh ω Tc,in]
T (7.1)

where Th,in and ṁh are the heat source’s temperature and flow rate, respectively,

ω is the engine crankshaft speed, and Tc,in is the heat sink temperature.

These disturbances are found in vehicular RC applications, but may also be com-

mon to other applications including geothermal, industrial, and solar. Distur-

bances can lead to critical conditions defined as the following variables being out

of range:

1. Pressure cannot be too high in the evaporator or too low in the condenser.

This range is governed by the limitation of the components’ material and

their designed operating range.

2. Temperature of the evaporatoring working fluid must be high enough to

be superheated to avoid liquid droplets in the expander, but not too high to
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cause temperature shocks in the components’ materials. In the condenser,

the working fluid must be cool enough to enter the pump as a liquid, but high

enough so that the available heat achieves evaporation in the evaporator.

3. Phase-change Boundaries in the heat exchangers must remain in range

to ensure evaporation and condensation occur.

The goal of controls is to avoid these critical conditions through manipulating

actuators during operation. Possible ways to control RCs are:

1. Mass flow rate through the pump and expander valves: determines the

evaporator outlet (expander inlet) conditions. If more/less heat is avail-

able, pass more/less working fluid through the evaporator to achieve (su-

perheated) vapor.

2. Heat Source/Sink temperature and flow rate: determines the evapora-

tor/condenser outlet (expander/pump inlet) conditions. Subject to a vary-

ing working fluid mass flow and inlet enthalpy, modulate the temperature

and mass flow of the heat source/sink to achieve (superheated) vapor or

(subcooled) liquid.

The RC MIMO system has cross-coupling between the inputs and outputs men-

tioned above. Depending on how strong those couplings are, the SISO couplings

above may be adequate in achieving the desired effect.
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Figure 7.1: RC Architecture

The examined RC architecture is shown in Figure 7.1. The state variables are

um = [xe xc]
T (7.2)

where xe and xc are the evaporator and condenser’s states, respectively.

The manipulated input variables and their combinations are given by

um = [ṁc µ1 µ2]
T (7.3)
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where ṁc is the heat sink flow rate and µ1 and µ2 are throttle positions of the

pump and expander valves, respectively.

The disturbance input variables are given by

ud = [Th,in ṁh Tc,in ω]T (7.4)

where Th,in and ṁh are the heat source’s temperature and flow rate, respectively

and ω is the angular speed of the load connected to the pump and/or expansion

device(s).

The measured output variables are

y = [Pc Pe]
T (7.5)

State estimators can be used for feedback control when access to unmeasured

states are required.

Feedback control for setpoint or reference tracking is considered to keep key state

variables within constraints. The controller should minimize the output error of

the tracking loop while satisfying the other constraints. The control structure is

shown in Figure 7.2.

Figure 7.2: RC Control Diagram
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7.4 Control of Single Valve RC Architecture

Figure 7.3: RC with Expander Throttle Valve

7.4.1 Objective

Flooding avoidance and pressure regulation are desired in the operation of this ar-

chitecture. Static RC model design 2 in Chapter 4 provides the nominal operating

points.

The throttle valve, pump speed, and heat sink flow rate are designated as manip-

ulated control variables. The expander’s speed is not controlled.
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7.4.2 Controller Formulation

Three independent PI single-input single-output (SISO) controllers are designed

and applied to a RC model with two-zone heat exchangers connected to static

pump and expander models as shown in Figure 7.3. The control diagram is shown

in Figure 7.4.

Figure 7.4: RC PI Control Diagram

The control and actuator relationship is given by the following:

1. The evaporator’s working fluid pressure is regulated to P ∗
e by manipulating

pump speed ω

2. The evaporator’s phase change boundary L1,e is regulated to L∗
1,e by varying

the throttle valve position µ

3. The condenser’s working fluid pressure is regulated to P ∗
c by manipulating

the coolant mass flow rate ṁc

170



The controllers regulate the RC to the setpoint r by minimizing the regulation

error

e1 = r − y

where y = [Pc L1,e Pe]
T and r is the corresponding vector of setpoints for each

output signal.

The anti-windup feature minimizes the saturation error e2 due to exceeding actu-

ator limits. The saturation error is given by

e2 =







0 if usat,low ≤ u ≤ usat,high

u− usathigh if u > usat,high

u− usatlow if u < usat,low







(7.6)

The back-calculating anti-windup PI controller is mathematically expressed as

um = [ω µ ṁc]
T = b+ kpe1 +

∫

(kie1 + kbe2)dt (7.7)

The disturbance input ud due to heat source and sink conditions is given by

ud = [Th,in ṁh Tc,in]
T (7.8)

7.4.3 L1,e, Pe, and Pc Regulation for Flooding Avoidance

The phase change boundary and pressures are regulated under constant step in-

puts using the control structure shown in Figure 7.4 where the flooding occurs

due to insufficient heat. Manual and controlled corrective action is taken to steer

the system away from the critical condition. The PI controllers’ parameters are

manually tuned to the design parameters shown in Table 7.1.

The phase change boundary state is first assumed accessible for feedback control.

An nonlinear EKF estimator developed in Chapter 6 is then used to obtain the

state estimate and compared to the perfect state access case.
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Controller Parameters Actuator Feedback Saturation

Signal Limits

C1 b = 500, kp = 333 Pump Speed Pe [100, 2000]

ki = 1, kb = 1 RPM

C2 b = 1.5, kp = 0.1 Coolant Flow Rate Pc [0.5, 4.5]

ki = 0.1, kb = 1 kg
s

C3 b = 0.5, kp = 1000 Throttle Position L1,e [0.3, 0.9]

ki = 10, kb = 1 %

Table 7.1: PI Controller Design Parameters

Input Variable Time Initial Value Final Value

Step Th,in 2000 seconds 450 ◦C 290 ◦C

Table 7.2: Simulation Inputs

7.4.3.1 Perfect State Access of L1,e

The evaporator’s phase change boundary is regulated to the setpoint r by varying

the throttle valve position as shown in Figure 7.5. In Figure 7.4, this is the inner-

most control loop; the outer two are not considered here. Access to the L1,e state

is first assumed and then compared to its estimated value using an Extended

Kalman Filter.

The setpoint r is given by

r =
[
P ∗
e L∗

1,e P ∗
c

]T
= [4MPa 0.5m 0.1MPa]T (7.9)

A step reduction in the heat source’s temperature occurs according to Table 7.2

to place the heat exchanger into a critical condition. The phase change boundary

increases until out of range without any throttle response to correct it.

Manual and feedback controlled throttle responses are simulated and compared.
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The manual throttle response is a step and the controller’s parameters are man-

ually tuned to the design parameters shown in Table 7.1 for C3.
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Figure 7.5: RC with PI Control for Phase-Change Boundary Regulation: Evapo-

rator States

The full throttle case resulted in flooding where the phase change boundary ap-

proached the length of the evaporator in Figure 7.5. Recall this scenario is both

physically and mathematically undesirable. The working fluid never became su-

perheated and a caused the model to become singular.

A step change in the throttle limits the mass flow rate entering the evaporator,

allowing the working fluid flow to become superheat for the available heat . The
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phase change boundary steered away from flooding as a result.

The throttle control also avoids flooding by tracking the desired setpoint. The

oscillations were due to the lack of dynamics in the throttle valve. Note that the

controller did not achieve setpoint before the temperature reduction, indicating

the setpoint was not feasible with the prior operating conditions.
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Figure 7.6: RC with PI Control for L1,e Regulation [r = L∗
1,e = 0.5m]: Condenser

States

The condenser states are shown in Figure 7.6. Note that the condenser phase

change boundary saturates due to the evaporator’s phase change saturating. How-
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ever, the condenser phase change boundary did not reach the critical flooding

condition.
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Figure 7.7: RC with PI Control for L1 Regulation: Pump and Expander States

The expander and pump power, throttle valve flow rate, and expander outlet

enthalpy are shown in Figure 7.7. The net power is significant and is in the

expected range obtained from the static RC model at similar operating conditions.

The expander’s outlet enthalpy is useful to determine working fluid quality if

desired.
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7.4.3.2 State Estimation of L1,e
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Figure 7.8: RC with PI Control: Evaporator States

Because L1 is typically unmeasurable, the Extended Kalman Filter (EKF) is used

to provide its estimate. Figures 7.8, 7.9, and 7.10 compare the pressure regulation

control with perfect state feedback and state estimator feedback with the EKF.

The estimator uses the Approximated Jacobian with both pressure and tempera-

ture measurements.
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Figure 7.9: RC with PI Control: Condenser States

Note the longer oscillatory response time for the evaporator’s phase change bound-

ary to converge. This is attributed to the EKF’s Approximated Jacobian. Because

this state is not as tightly controlled around the setpoint, the state estimator feed-

back creates ringing oscillations in the other states.
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Figure 7.10: RC with PI Control: Pump and Expander States

7.4.4 L1,e, Pe, and Pc Regulation under Driving Cycle Transients

The following simulations feature an evaporator not close to flooding so that

pressure regulation performance can be examined. The evaporator’s phase-change

boundary is set to a low setpoint to ensure a large superheat region.

The setpoint r is given by

r =
[
P ∗
e L∗

1,e P ∗
c

]T
= [4MPa 0.1m 0.1MPa]T (7.10)

Two sets of simulations are presented. The first set uses constant, average heat

source from a driving cycle described in Table 7.3. The second set is the actual
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Value Units

Th,in 450 ◦C

ṁh 0.062 kg
s

Tc,in 80 ◦C

ω 1500 RPM

Table 7.3: Constant RC Heat Source and Sink Conditions

transient heat source values. Additionally, an EKF is used in the second set for

state estimator feedback of the evaporator’s phase-change boundary.
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7.4.4.1 Constant (Averaged) Heat Source
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Figure 7.11: RC with PI Control under Averaged Rolling Hills Driving Cycle:

Evaporator States (State: Solid Line, Setpoint: Dashed Line)

Note how the actuator signals in Figures 7.11 and 7.12 reach steady-state in achiev-

ing setpoint tracking. The pressure setpoints are reached with zero-error, but the

phase-change boundary setpoint is not. The steady-state error is approximately

13% from setpoint and is attributed to the throttle valve position saturating.
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Figure 7.12: RC with PI Control under Averaged Rolling Hills Driving Cycle:

Condenser States (State: Solid Line, Setpoint: Dashed Line)

7.4.4.2 Perfect State Access to Phase-Change Boundary

As seen in Figures 7.13 and 7.14, the pressures were better regulated to setpoint

than the phase-change boundary under transient heat input. The transient is a

cause for non-zero steady-state setpoint error with the designed controller.

Saturation is a cause for the apparent bias in the phase-change boundary that

is absent in the pressures. The throttle valve control signal used for the latter’s

regulation is saturated and results in the non-zero steady-state error.
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Figure 7.13: RC with PI Control under Rolling Hills Driving Cycle: Evaporator

States (PI: Lighter Line, Open-Loop: Darker Line)

182



0 1000 2000 3000
0.2

0.25

0.3

0.35

L
1

m

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

P
c

M
P

a

0 1000 2000 3000
300

320

340

360

380

h
out

k
J

k
g

0 1000 2000 3000
0.5

1

1.5

2

2.5
ṁc
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Figure 7.14: RC with PI Control under Rolling Hills Driving Cycle: Condenser

States (PI: Lighter Line, Open-Loop: Darker Line)

7.4.4.3 State Estimate of L1,e

An estimate of the phase-change boundary is used instead of assuming perfect ac-

cess to the state. Figure 7.15 shows the performance of the EKF estimator for the

evaporator. The estimator uses pressure and outlet temperature measurements

in constructing the state estimates. Although initial estimation error is present,

the estimates converge quickly to the state values and exhibit the same dynamical

trends.
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Figure 7.15: RC with PI Control under Rolling Hills Driving Cycle: Evaporator

States and EKF State Estimates

Figures 7.16 and 7.17 show that setpoint tracking of the pressures and phase-

change boundary appears similar to the case of perfect access to the phase-change

boundary. The significant difference appears in the throttle valve control signal,

which is more responsive with state estimation.
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Figure 7.16: RC with PI Control with EKF State Estimator Feedback under

Rolling Hills Driving Cycle: Evaporator States (State: Solid Line, Setpoint:

Dashed Line)
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Figure 7.17: RC with PI Control with EKF State Estimator Feedback under

Rolling Hills Driving Cycle: Condenser States (State: Solid Line, Setpoint:

Dashed Line)

7.4.4.4 Controller Comparisons

Figures 7.18 and 7.19 compare controllers of pressure regulation, phase-change

boundary regulation, and their combinations. Independently, the controllers’ reg-

ulation performance is similar to that of the combined controllers. The results

indicate pressure and phase-boundary regulation control loops do not impact each

other.
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ṁc

Time (sec)

k
g s

0 1000 2000 3000
0

5

10

N
exp

Time (sec)

k
W

0 1000 2000 3000
120

130

140

150

T
w1

Time (sec)

◦
C

0 1000 2000 3000
100

110

120

130

T
w2

Time (sec)

◦
C

0 1000 2000 3000
60

70

80

90

T
out

Time (sec)

◦
C

 

 

OL
PI (L

1e
)

PI (P
e
/P

c
)

PI (P
e
/P

c
/L

1e
)

F
igu

re
7.19:

R
C

w
ith

P
I
C
on

trol
u
n
d
er

R
ollin

g
H
ills

D
riv

in
g
C
y
cle:

C
on

d
en
ser

S
tates

188



7.4.5 Remarks

Three independent Proportional Integral SISO controllers using the actuator and

feedback variable pairings successfully provided high performance setpoint track-

ing for pressures and phase-change boundary. The controller performed favorably

in flooding avoidance, although oscillatory effects were observed in the other states

even with perfect access of the phase-change state. Larger oscillations occurred

using the EKF’s estimate for the phase-change state.

Regulation was simulated under heat source transients from a driving cycle. Open-

loop simulations show undesirable high evaporating pressure and low condensing

pressure. This resulted in the highest expander power, but the operating pressures

were out of the desirable operating range. Actuation of pump speed, throttle valve

position, and heat sink flow rate resulted in desirable pressures close to setpoint,

but the transients did not allow for zero tracking error, which was expected.

Compared to the open-loop case, the controllers regulated the pressures much

closer to the setpoints.

Furthermore, the evaporator’s phase-change boundary was controlled to around

setpoint with oscillatory tracking error even under constant inputs. This was due

to throttle valve saturation. The EKF estimate of this state for feedback control

appeared acceptable when comparing the estimates to the states. However, when

the estimate is used for feedback, the throttle valve control signal differed signif-

icantly to the same signal in the case of perfect state access. This was probably

due to the linearization accuracy using the EKF’s Approximated Jacobian.

The independent regulation of the pressures and phase-change boundary under

driving cycles indicated that the three setpoints can be achieved in a SISO manner.

The expander power generated in the simulations are comparable to the power

189



range established from static RC model design 1 found in Chapter 4.

7.5 Control of Dual Valve RC Architecture

Figure 7.20: RC with Pump and Expander Throttle Valves

7.5.1 Objective

The aim of the architecture is to maximize expander power under automotive

WHR constraints specified in Chapter 2. and transient driving conditions. Pres-

sure regulation to high evaporating pressure and low condensing pressure indi-

rectly leads to the highest expander power. The other constraints should be
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maintained to acceptable ranges while performing pressure regulation. Static RC

model design 2 in Chapter 4 provides the nominal operating points.

The architecture is shown in Figure 7.20 is directed towards automotive WHR

systems where the engine crankshaft is coupled to the pump and expander. In

addition to the exhaust heat source, this setup provides angular speed disturbance

input to the RC system. To replace the loss of pump speed as a control actuator,

the architecture features an additional control valve between the evaporator and

pump, referred to as the pump throttle valve. The valve between the evaporator

and expander will be referred to as the expander throttle valve. These two control

valves are available for the controllers to manipulate their open and close positions.

The heat sink flow rate is also a manipulated control variable, controlled by a valve

not shown.

Advanced controllers are presented to satisfy system operating constraints as de-

scribed in this section. These advanced controllers will attempt pressure regulation

in addition to ensuring other key states such as phase-change boundaries and heat

exchanger outlet temperatures remain in range. Step and driving cycle transients

are considered in the simulations.

This section concludes with an application to power load following demanded from

the expander. The RC system is controlled to meet square-wave and sinusoidal

power demands from the load in the presence of driving cycle transients. While

this application may not have direct relevance to automotive WHR where maxi-

mum power is typically called for at all times, the effort here is more meaningful

and extends to applications with precise power production. Example applications

include demand-based solar energy recovery for building heat and cooling or ap-

plications without energy storage capabilities and need to produce and deliver

instantanteous power.

191



The RC system can be operated as a base loading power plant appropriate for

automotive WHR. Instead of demanding low capacity power from the expander,

maximum power can be achieved by setting an unachievable high constant power

load demand.

7.5.2 Controller Overview

The performance of the following controllers are designed with emphasis placed on

pressure regulation while satisfying temperature and phase-boundary constraints.

1. Proportional Integral (PI)

2. Linear Quadratic Integral (LQI)

3. Model Predictive Control (MPC)

The methodology for controller design is as follows. A linear model is first con-

structed at a steady-state operating point of the nonlinear model. Actuator and

feedback variable configurations are chosen to determine the control loop(s) appro-

priate to meeting the system operating constraints. Control design is performed

on the linear model before applying it on the nonlinear model. Controller perfor-

mance and robustness are then analyzed and compared across controllers.

7.5.3 WHR Constraints

Table 7.4 describes operating constraints for a RC-based WHR system in a 13-

liter heavy-duty diesel truck engine. The evaporating pressure Pe must also be

higher than the condensing pressure Pc. The proposed controllers in this section

will attempt to satisfy these constraints. These constraints are determined from

Chapter 2.
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Variable Low Limit High Limit Units

Pe 1 (s) 1.5 (h) MPa

Pc 0.1 (h) 0.2(s) MPa

L1,e, L1c 0 (h) 0.7 (h) m

Tout,e Tsat,g(h) 300 (s) ◦C

Tout,c - Tsat,f , 70 (for oil separation) (h) ◦C

Table 7.4: RC Constraints for Dual Valve RC Architecture: (s)oft, (h)ard

7.5.4 Linear RC Model

Figures 7.21 and 7.22 compare the Linear and Nonlinear RC models for the Rolling

Hills driving cycle.

The small-signal model in state-space form is given by

δẋ = Aδx+Bδu (7.11)

δy = Cδx+Dδu (7.12)

The deviations δx and δu are added to the equilibrium state xeq and input ueq to

obtain the linear model (different from the small-signal model) for comparison to

the nonlinear model.

Note the comparison is poor in the beginning because the nonlinear model has not

reached the equilibrium point that the linear models are linearized about. Once

the nonlinear model settles to its equilibrium, its states match that of the linear

model and the trends are comparable. After about 2000 seconds, both the linear

and nonlinear models match fairly well.

Feedback controllers are designed on the linear model and applied to the nonlinear

one.
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Figure 7.21: Comparison of Linear and Nonlinear Model: Evaporator
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Figure 7.22: Comparison of Linear and Nonlinear Model: Condenser

7.5.5 Actuator and Feedback Variable Configurations

The configurations for the controllers depend on the actuator combinations. The

ones considered have the following manipulated inputs shown in Table 7.5.

The feedback configurations are shown in Table 7.6. Pressures are measured for

their regulation to setpoints.
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Actuator Configuration um

2 [ṁc µ1]
T

3 [ṁc µ1 µ2]
T

Table 7.5: Actuator Configuration for Dual Valve Architecture

Feedback Configuration y

Pressures [Pc Pe]
T

Table 7.6: Feedback Configuration for Dual Valve Architecture

7.5.6 Proportional Integral Control

The PI controllers are designed as described in Table 7.7 with Actuator Config-

uration 2. The valve positions vary continuously between 10% and 100% with a

non-zero low limit to avoid stagnant working fluid and pressure build-up. This can

lead to pressure being out of range and cause numerical problems in simulation.

The saturation limits for the heat sink flow rate is obtained from the range found

in static RC model design 2 in Chapter 4.

The controllers regulate the RC to the setpoint r by minimizing the regulation

error

e1 = r − y (7.13)

where y = [Pc Pe]
T and r is the corresponding vector of setpoints for each output

signal.

The anti-windup feature minimizes the saturation error e2 due to exceeding actu-

ator limits. The saturation error is given by

e2 =







0 if usat,low ≤ u ≤ usat,high

u− usathigh if u > usat,high

u− usatlow if u < usat,low







(7.14)
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Controller Parameters Actuator Signal Sat. Limits

C1 b = 0.5, kp = 333 µ1 Pe [0.1, 1]

ki = 10, kb = 1

C2 b = 0.05, kp = −3.3 ṁc Pc [0.05, 0.1]

ki = −0.064, kb = 1

Table 7.7: Proportional Integral Controller Design Parameters for Dual Valve

Architecture

The back-calculating anti-windup PI controller is mathematically expressed as

um = [ṁc µ1]
T = b+ kpe1 +

∫

(kie1 + kbe2)dt (7.15)

The disturbance input ud due to heat source and sink conditions is given by

ud = [Th,in ṁh Tc,in]
T (7.16)

The gains are tuned using the PID Tuner in MATLAB’s Simulink environment

[Inc].

Control action is only given to the pump throttle valve µ1 while the heat sink

flow rate ṁc saturates. As a result, the condensing pressure in Figure 7.24 is

unregulated and its setpoint tracking error grows. The evaporating pressure in

Figure 7.23 hovers near the setpoint with large deviations.
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Figure 7.23: RC with PI Control (Actuator 2) under Rolling Hills Driving Cycle:

Evaporator States
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Figure 7.24: RC with PI Control (Actuator 2) under Rolling Hills Driving Cycle:

Condenser States

7.5.7 Linear Quadratic Integral Control

Linear Quadratic Regulation (LQR) affords the advantage of multi-input multi-

output (MIMO) control that Proportional Integral (PI) does not feature. Further-

more, state and input objectives may be achievable with a specified performance

index and proper choice of weights.

A linear model of the RC system is obtained about an equilibrium point xeq and

ueq. The controllable and observable linear model has the form given in Equation
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7.12.

The infinite-horizon LQR problem is posed as minimizing the pressure fluctations

in both the evaporator and condenser. The performance index is described as

J(u) =

∫ ∞

0

(
δxTQδx+ δuTRδu

)
dt (7.17)

where Q and R are assigned desired weightings for states or state estimates. More

weighting can be given to the pressure fluctuations to emphasize their minimiza-

tion. The key advantage that LQR has over PI is the ability to minimize other

states in an optimal form without extra control loops. Furthermore, weighting

can be assigned to the manipulated inputs to dictate preference of the control

action.

Solving the Riccati equation yields an optimal control law

δu = −Kδx (7.18)

where a linear state observer is used for state feedback. The optimal control is

applied to the Nonlinear RC system by adding the equilibrium point to the control

law.

u = ueq + δu (7.19)

The optimal control gain is fixed though it can be updated (time-varying) with

subsequent linearizations and LQR solutions applied along the RC system’s state

trajectories. Because the linear model matches the nonlinear model fairly well dur-

ing driving cycle transients as seen in Figures 7.21 and 7.22, updated linearizations

are not performed.
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Figure 7.25: Linear Quadratic Integral Control Structure

LQI is a variation on LQR by computing an optimal state-feedback control law for

the tracking loop shown in Figure 7.25. The control law comes from the Riccati

equation solution as in the LQR framework with the added integral tracking of

measured output variables. For a plant with state-space equations

dx

dt
= Ax+Bu (7.20)

y = Cx+Du (7.21)

the state-feedback control is of the form

u = −Kz = −K [x xi]
T (7.22)

where xi is the integrator output. This control law ensures that the output y

tracks the reference command r. For MIMO systems, the number of integrators

is equal to the dimension of the output y.

The control law minimizes the cost function

J(u) =

∫ ∞

0

(
zTQz + uTRu+ 2zTNu

)
dt (7.23)

in continuous time or

J(u) =
∞∑

k=0

(
zTk Qzk + uT

kRuk + 2zTk Nuk

)
(7.24)
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in discrete time. In discrete time, the integrator output xi is computed using the

forward Euler formula:

(xi)k+1 = (xi)k + Ts(rk − yk) (7.25)

where Ts is the sampling time of the plant [Inc].

Note that for small-signal linear models, deviation variables are implied in these

equations. In other words, x := δx, u := δu, r := δr, and y := δy. To recover

the original variables x, u, r, and y, their equilibrium values xeq, ueq, req, and yeq

must be added to the small signal values.

7.5.7.1 Design

The matrices Q, R, and N are tuned to reflect interested state deviations to be

minimized by applying normalized weights to those states. In other words, a

scaling transformation is performed such that

zscaled = Szz (7.26)

uscaled = Suu (7.27)

where the state and input scaling matrices are given as

Sz =











1
z1,max−z1,min

0 · · · 0

0 1
z2,max−z2,min

· · · 0

0 0
. . . 0

0 · · · 0 1
zn,max−zn,min











(7.28)

Su =











1
u1,max−u1,min

0 · · · 0

0 1
u2,max−u2,min

· · · 0

0 0
. . . 0

0 · · · 0 1
un,max−un,min











(7.29)
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The weighting matrices then become Q = qST
x Sx and R = rST

u Su, which are now

normalized to the square of the range of each state variable. Additionally, the

diagonal matrices q and r are embedded and act as tuning parameters.

For this particular design, q is such that the corresponding entries weight the

pressures states by a factor of 10 more than the other states. The tuning param-

eter r is such that the corresponding entries for the control actuators are several

magnitudes smaller (10−5) than the other inputs. The state-input cross matrix N

is taken as zero.

These matrices are designed for the actuator and feedback configurations pre-

sented in Tables 7.5 and 7.6.

7.5.7.2 Simulations with Perfect State Feedback

Figures 7.26-7.29 show the LQI controller with Actuator Configuration 2. The

controllers are applied to the linear models and the nonlinear models. The open-

loop (OL) linear and nonlinear models are also shown for comparison.

In the linear simulations, although the pressures are closer to setpoint with control

than in the OL case, the control signals saturate for most of the driving cycle,

preventing the pressures from being regulated.
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Figure 7.26: Linear RC with LQI Control (Actuator 2) under Rolling Hills Driving

Cycle: Evaporator States
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Figure 7.27: Linear RC with LQI Control (Actuator 2) under Rolling Hills Driving

Cycle: Condenser States

Both the linear and nonlinear simulations exhibit control signal saturation for

most of the driving cycle. During the short period before saturation, the control

signals are able to reduce the pressures closer to setpoint than in the OL case.
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Figure 7.28: Nonlinear RC with LQI Control (Actuator 2) under Rolling Hills

Driving Cycle: Evaporator States
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Figure 7.29: Nonlinear RC with LQI Control (Actuator 2) under Rolling Hills

Driving Cycle: Condenser States

The formulation of the LQI controller allows for additional actuators in the reg-

ulation problem. Actuator Configuration 3 is simulated in Figures 7.30-7.33.

Using Actuator Configuration 3, the control action brings the pressures to setpoint

in a superior fashion over Actuator Configuration 2.
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Figure 7.30: Linear RC with LQI Control (Actuator 3) under Rolling Hills Driving

Cycle: Evaporator States
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Figure 7.31: Linear RC with LQI Control (Actuator 3) under Rolling Hills Driving

Cycle: Condenser States
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Figure 7.32: Nonlinear RC with LQI Control (Actuator 3) under Rolling Hills

Driving Cycle: Evaporator States
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Figure 7.33: Nonlinear RC with LQI Control (Actuator 3) under Rolling Hills

Driving Cycle: Condenser States

The open-loop response due to step changes in inputs for the Actuator 3 configu-

ration is shown in Figures 7.34 and 7.35. The step changes in the inputs are given

in Table 7.8. Note the pressures are both away from their setpoints.
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Table 7.8: Step Changes in RC Inputs to Compare LQI (Actuator 3) and

Open-Loop Cases

Step Input t (seconds) Initial Value Final Value

ω 500 500 RPM 750 RPM

Th,in 1000 450 ◦C 400 ◦C

ṁh 1500 0.062 kg
s

0.108 kg
s

Tc 2000 60 ◦C 75 ◦C

ṁc 3000 0.05 kg
s

0.1 kg
s
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Figure 7.34: Open-loop Nonlinear RC under Step Inputs: Evaporator States
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Figure 7.35: Open-loop Nonlinear RC under Step Inputs: Condenser States

Figures 7.36 and 7.37 show the LQI controlled case for Actuator Configuration 3

and demonstrates improved pressure regulation to setpoint.
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Figure 7.36: Nonlinear RC with LQI Control (Actuator 3) under Step Inputs:

Evaporator States
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Figure 7.37: Nonlinear RC with LQI Control (Actuator 3) under Step Inputs:

Condenser States

7.5.7.3 Simulations with State Estimation Feedback

This last set of simulations shows superior performance of Actuator Configuration

3 over 2. Because perfect state access for feedback is not possible, the next set

of simulations shows control with state estimate feedback using available pressure

and temperature measurements. The Approximated Jacobian is used to reduce

computational load.

215



0 2000 4000 6000
0

0.01

0.02

0.03

L
1

Time (sec)

m

0 2000 4000 6000
0

1

2

3

P
e

Time (sec)

M
P

a

 

 

LQI3
Setpoint

0 2000 4000 6000
2000

2200

2400

h
out

Time (sec)

k
J

k
g

0 2000 4000 6000
0

50

100

µ
1

Time (sec)

%
O

p
en

0 2000 4000 6000
0

50

100

µ
2

Time (sec)

%
O

p
en

0 2000 4000 6000
0

200

400

600

T
w1

Time (sec)

◦
C

0 2000 4000 6000
200

400

600

T
w2

Time (sec)

◦
C

0 2000 4000 6000
150

200

250

300

T
out

Time (sec)

◦
C

Figure 7.38: Nonlinear RC with LQI/EKF State Estimation Feedback Control

(Actuator 3) under Rolling Hills Driving Cycle: Evaporator States

216



0 2000 4000 6000
0.24

0.25

0.26

L
1

Time (sec)

m

0 2000 4000 6000
0

0.2

0.4

P
c

Time (sec)

M
P

a

 

 

LQI3
Setpoint

0 2000 4000 6000
330

335

340

h
out

Time (sec)

k
J

k
g

0 2000 4000 6000
0.04

0.06

0.08

0.1
ṁc
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Figure 7.39: Nonlinear RC with LQI/EKF State Estimation Feedback Control

(Actuator 3) under Rolling Hills Driving Cycle: Condenser States
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Figure 7.40: EKF State Estimation of Nonlinear RC under Rolling Hills Driving

Cycle: Evaporator States
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Figure 7.41: EKF State Estimation of Nonlinear RC under Rolling Hills Driving

Cycle: Condenser States

7.5.8 Model Predictive Control

Model Predictive Control (MPC) is a special case of Linear Quadratic Regulation

(LQR) control. Both compute an optimal MIMO control law based on a horizon

and solve a quadratic performance index. Unlike LQR, MPC has the advantage of

specifying constraints that the control law must meet in a receding finite-horizon

manner. This lends naturally to the operating physical constraints, for example,

bounded temperature and pressure ranges, that are specified for RC systems.
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The constraints in MPC can be specified as bounds on input and output. These

bounds can be both hard (equality) or soft (inequality) constraints. Rate con-

straints can also be specified for the inputs.

MPC solves an optimization problem that typically does not have an analytical

solution. This is due to the existence of constraints, for example, that must be

incorporated into the solution of a quadratic programming problem. Without

constraints, the performance index reduces to the performance index in the LQR

problem whose analytical solution is found by solving the Riccati equation.

The receding finite-horizon feature of MPC allows for prediction and corrective

action through an updated control law. The performance index is solved for a

specified prediction interval into the future. The plant dynamics are projected

in this interval, which allows for a predictive look-ahead in computing a control

law. Given sufficiently long horizons, the predictive control not only satisfies

constraints (if feasible), but also takes corrective action immediately when the

plant is predicted to reach a constraint bound. The first solution of the control

law is applied with the rest discarded. This procedure repeats at the next sampling

instant with the next horizon.

The Model Predictive Control Toolbox MATLAB/Simulink is used to design and

simulate controllers on the Linear RCs to meet operating constraints under driving

cycle transients. The controllers are then implemented on the Nonlinear RCs. The

MPC controller computes control laws based on the Linear RC model, and uses

a linear state observer for feedback control for both Linear and Nonlinear RCs.

Thus, a nonlinear state estimator is not needed. Specific details of the toolbox

functions can be found in [BMR13].
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7.5.8.1 Design

As with the other controllers in this chapter, the objective is pressure regulation

with the same saturation limits on the control acutators. Table 7.9 show these as

manipulated constraints. The values are the minimum and maximum deviations

from the equilibrium point of the linear model.

Manipulated Variables Units Min Max

ṁc
kg
s

0 0.05

µ1 % -40 50

µ2 % -15 75

Table 7.9: MPC Constraints for Dual Valve Architecture

The expander throttle valve µ2 is available only for Actuator Configuration 3. The

maximum up and down rates are set to ±∞. There are no imposed constraints on

output variables so the MPC controller can be compared to the other controllers

discussed in this section.

The horizons for the MPC designs are given in Table 7.10.

Units Values

Control Interval Seconds 5

Prediction Horizon Intervals 10

Control Horizon Intervals 2

Table 7.10: MPC Horizons for Dual Valve Architecture

The input weights are given in Table 7.11. µ2 is available only for Actuator

Configuration 3.
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Input Weights Weight Rate Weight

ṁc 0 0.1

µ1 0 0.1

µ2 0 0.1

Table 7.11: MPC Weights for Dual Valve Architecture

Output weights are set to 1 for both pressures.

7.5.8.2 Simulations

Figures 7.42 and 7.43 show results for Actuator Configuration 2. As in the LQI

case for the same configuration, the pressure tracking performance is poor due to

the expander throttle valve position µ2 being saturated.
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Figure 7.42: Nonlinear RC with MPC Control (Actuator 2) under Rolling Hills

Driving Cycle: Evaporator States
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Figure 7.43: Nonlinear RC with MPC Control (Actuator 2) under Rolling Hills

Driving Cycle: Condenser States

Figures 7.44 and 7.45 show results for Actuator Configuration 3 where the tracking

performance is satisfactory with proper control action of the expander throttle

valve.

224



0 2000 4000 6000
0

0.01

0.02

L
1

Time (sec)

m

0 2000 4000 6000
1

2

3

P
e

Time (sec)

M
P

a

 

 

MPC
Setpoint

0 2000 4000 6000
2100

2200

2300

h
out

Time (sec)

k
J

k
g

0 2000 4000 6000
0

50

100

µ
1

Time (sec)

%
O

p
en

0 2000 4000 6000
0

50

100

µ
2

Time (sec)

%
O

p
en

0 2000 4000 6000
0

200

400

600

T
w1

Time (sec)

◦
C

0 2000 4000 6000
200

400

600

T
w2

Time (sec)

◦
C

0 2000 4000 6000
200

250

300

T
out

Time (sec)

◦
C

Figure 7.44: Nonlinear RC with MPC Control (Actuator 3) under Rolling Hills

Driving Cycle: Evaporator States
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Figure 7.45: Nonlinear RC with MPC Control (Actuator 3) under Rolling Hills

Driving Cycle: Condenser States

Better tracking performance is achieved by leveraging the anticipative feature in

MPC as shown in Figures 7.46 and 7.47. The look-ahead feature takes corrective

action at each time step when variables are predicted to break their constraints

within the prediction horizon interval.
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Figure 7.46: Nonlinear RC with Anticipative MPC Control (Actuator 3) under

Rolling Hills Driving Cycle: Evaporator States
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Figure 7.47: Nonlinear RC with Anticipative MPC Control (Actuator 3) under

Rolling Hills Driving Cycle: Condenser States
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7.5.9 Controller Comparison
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Figure 7.48: Control Tracking Error of Nonlinear RC under Rolling Hills Driving

Cycle

Figure 7.48 compares the tracking errors of the two advanced controllers (LQI

and MPC) to a PI controller. The PI controller assumes Actuator Configuration

2 while the advanced controllers assume either Configuration 2 or 3. The PI,

LQI2, and MPC2 controllers are unable to remove the steady-state tracking error

due to the heat source transients. However, the MPC3 controllers reduce the

tracking error significantly better than the other controllers, especially for the
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y2(Pe) variable.

Even with the look-ahead feature inactive, the MPC controllers have the best

performance of the presented controllers.

Figure 7.49 compares the LQI controller with EKF state estimation feedback.

The same conclusions can be made as in the perfect state access case for the

LQI, though the tracking errors are more oscillatory due to the use of the EKF’s

Approximated Jacobian.
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7.5.10 Remarks

This architecture has been used in automotive WHR and provides opportuni-

ties for control design to meet operating constraints and objectives under driving

disturbances. Maximum power is the WHR goal while satisfying temperature,

pressure, and phase-change boundary ranges. Transients came from heat source

temperature and flow rate disturbing the evaporator and engine crankshaft speed

coupled to the pump and expander. The goal of controls is to maintain these

operating constraints through regulation.

In an effort to understand the minimum number of and ideal actuators to meet the

constraints and objectives, different control feedback and actuator configurations

were examined. The control feedback configuration comprised of pressures while

actuator configurations involved throttle valve positions and heat sink flow rate.

Pressure regulation achieved mixed success in driving the pressures to their re-

spective setpoints. In PI control, pairing each pressure with an actuator to form

control feedback loops resulted in steady-state tracking error. Depending on the

configuration, advanced controls in the form of LQI did not necessarily improve

the tracking error. The LQI controller with the same actuator configuration as PI

did not conclusively lead to better tracking error. However, adding an extra actu-

ator to the LQI controller significantly reduced the tracking error. This suggests

controllability of the system improved with the extra actuator.

It should be noted that although PI control was not successful for regulation in

the Dual Valve RC Architecture, the controller performed well in the Single Valve

RC Architecture. The reason(s) for this is not discussed in this dissertation but

could include differences in actuators configuration and operating conditions.

Model Predictive Control attempts to improve tracking performance by solving
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constrained optimization problems at each time interval. The updated control

law from the receding horizon approach is expected to perform better than the

infinite-horizon LQI that also lacks the predictive capability. The results in fact

supported these benefits of MPC by better regulating the pressures with and

without the look-ahead feature.

With state estimation, other feedback configurations are possible that are not

explored in this dissertation. Controllability and feasibility, and their existence,

are topics of future research activities.

The expander power generated in the simulations are comparable to the power

range established from static RC model design 2 found in Chapter 4.

7.6 Base Loading and Power Load Following

Conventional power plants for electric generation can either operate at base load,

peaking, or load following depending on the application and objective. Base load

power plants operate most efficiently and cost-effectively at maximum output and

only reduce their power for maintenance or repair. Peaking power plants, on

the other hand, only operate during periods of peak demand. In regions with

widespread air conditioning use, demand peaks mid-afternoon, so peaking power

plants may start-up and shutdown a few hours before and after, respectively, to

meet the demand. In between base and peaking power plants are load following

plants that track a known or predictable time-varying load demand.

Like conventional power plants, RC applications may either call for base load,

peaking or power load following operation. Automotive WHR typically desires

maximum power recovery to contribute mechanical torque to the engine drivetrain

as often as possible. Time-varying, demand-based operation here would make little
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sense. However, if the power recovery is used to run vehicle accessories like air

conditioning or lights at anticipated periods of times e.g. hot humid days or night

time driving, then peaking or load following mode might be useful. Also, without

an energy storage device such as batteries, the recovered power must be used

immediately or else wasted. Base loading here makes little sense while peaking or

load following appear more appropriate.

Consequently, some RC applications must be operated as a peaking or load follow-

ing power plant. For solar or geothermal RCs used to power home air conditioning

compressors, the demand peaks in the afternoon and can vary based on the amount

of cooling requested. Due to the varying demand, the RCs are operated in power

load following mode.

This section examines base load as well as load following power plants. Constant

and time-varying demand loads are given to the RC’s expander to follow, the

former representing base loading and the latter power load following. The power

plant operation is to maintain pressure setpoints, so a pair of PI controllers are

used for pressure regulation. The results demonstrate proper pressure regulation

to setpoint while performing base load and load following operations.

7.6.1 Controller Design

Three independent Proportional Integral loops are designed for regulation control

of pressures and expander power.

The controllers regulate the RC to the setpoint r by minimizing the regulation

error

e1 = r − y

where y = [Pc Pe Nexp]
T and r is the corresponding vector of setpoints for each
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output signal.

The anti-windup feature minimizes the saturation error e2 due to exceeding actu-

ator limits. The saturation error is given by

e2 =







0 if usat,low ≤ u ≤ usat,high

u− usathigh if u > usat,high

u− usatlow if u < usat,low







(7.30)

The back-calculating anti-windup PI controller is mathematically expressed as

um = [ṁc µ1 µ2]
T = b+ kpe1 +

∫

(kie1 + kbe2)dt (7.31)

The disturbance input ud due to heat source and sink conditions is given by

ud = [Th,in ṁh Tc,in]
T (7.32)

The gains are tuned using the PID Tuner in MATLAB’s Simulink environment

[Inc].

Controller Parameters Actuator Feedback Signal Sat. Limits

C1 b = 0.5, kp = 333 µ1 Pe [0, 1]

ki = 10, kb = 1

C2 b = 1.5, kp = 0.1 ṁc Pc [0, 4.5]

ki = 0.1, kb = 1

C3 b = 05., kp = 0.2602 µ2 Nexp [0, 1]

ki = 8.8241, kb = 1

Table 7.12: Proportional Integral Controller Design Parameters for Dual Valve

Architecture Power Load Following

7.6.2 Simulations

The following simulations show the following power demand cases:
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1. Base Loading

(a) Constant

(b) Maximum

2. Power Load Following

(a) Square Wave

(b) Sinusoidal Wave

The heat source used in the simulations are from a driving cycle given in Table

7.13 though other transient may be used.

Value Units

Th 450 ◦C

ṁh 0.062 kg
s

Tc 100 ◦C

ω 1500 RPM

Table 7.13: Constant RC Heat Source and Sink Conditions

In each of the above base and peak loading cases, the constraints in Table 7.14

are imposed.
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Variable Low Limit High Limit Units

Pe 4 (s) 6 (h) MPa

Pc 0.1 (h) - MPa

L1,e, L1c 0 (h) 0.7 (h) m

Tout,e Tsat,g(h) 300 (s) ◦C

Tout,c - Tsat,f , 70 (for oil separation) (h) ◦C

Table 7.14: RC Constraints for Base Loading and Power Load Following: (s)oft,

(h)ard

7.6.2.1 Pressure Regulation without Power Load Following

Figures 7.50-7.53 seek to regulate evaporating and condensing pressures without

any tracking in power for Constant and Rolling Hills driving cycles. The expander

throttle valve is set to 25% open for both cases. The controllers meet both pressure

setpoints and show expander pressure is slightly below 1 kW.
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Figure 7.50: Nonlinear RC without Power Load Following under Constant Driving

Cycle: Evaporator
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Figure 7.51: Nonlinear RC without Power Load Following under Constant Driving

Cycle: Condenser
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Figure 7.52: Nonlinear RC without Power Load Following under Rolling Hills

Driving Cycle: Evaporator
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Figure 7.53: Nonlinear RC without Power Load Following under Rolling Hills

Driving Cycle: Condenser

7.6.2.2 Base Load Following

Figures 7.54 and 7.55 attempt to provide 1 kW of base load while maintaining

pressure setpoints.
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Figure 7.54: Base Load Following [Nexp = 1] for Nonlinear RC under Rolling Hills

Driving Cycle: Evaporator
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Figure 7.55: Base Load Following [Nexp = 1] for Nonlinear RC under Rolling Hills

Driving Cycle: Condenser

Figures 7.56 and 7.57 show power demand of 10 kW that the RC is unable to

supply. The simulations show both pressures also do not reach their setpoints

while providing the most power possible.

By setting an unachievable demand, the RC is operating at full load. Note the

expander throttle position is fully open to achieve maximum power while the

pump throttle position varies to meet the evaporating pressure setpoint.
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Figure 7.56: Base Load Following [Nexp = 10] for Nonlinear RC under Rolling

Hills Driving Cycle: Evaporator
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Figure 7.57: Base Load Following [Nexp = 10] for Nonlinear RC under Rolling

Hills Driving Cycle: Condenser

7.6.2.3 Power Load Following

Square-wave and sinusoidal power demands are tracked in this section. Both

simulations reveal a stronger coupling to the condensing pressure than to the

evaporating pressure. In Figures 7.58 and 7.60, the evaporating pressure reaches

its setpoint. Square-wave and sinusoidal features are evident in the condensing

pressure around its setpoint in Figures 7.59 and 7.61 and suggest that power

tracking affects condensing pressure tracking. For large enough amplitudes in
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power demand, the condensing pressure may fall below atmospheric pressure and

experience undesirable vacuum conditions.

0 1000 2000 3000
0

0.2

0.4

L
1

Time (sec)

m

0 1000 2000 3000
0

5

10

P
e

Time (sec)

M
P

a
 

 State
Setpoint

0 1000 2000 3000
2050

2100

2150

2200

h
out

Time (sec)

k
J

k
g

0 1000 2000 3000
0

50

100

µ
1

Time (sec)

%
O

p
en

0 1000 2000 3000
0

2

4

6
ṁc
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Figure 7.58: Power Load Following [Square-waveNexp] for Nonlinear RC under

Rolling Hills Driving Cycle: Evaporator
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Figure 7.59: Power Load Following [Square-waveNexp] for Nonlinear RC under

Rolling Hills Driving Cycle: Condenser
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Figure 7.60: Power Load Following [SinusoidalNexp] for Nonlinear RC under

Rolling Hills Driving Cycle: Evaporator
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Figure 7.61: Power Load Following [SinusoidalNexp] for Nonlinear RC under

Rolling Hills Driving Cycle: Condenser

Similar to the case without power tracking, the evaporating pressure cannot be

controlled in the beginning of each simulation. The pump throttle position is in

the closed position during this time. The absence of working fluid flow in the

evaporator leads to its pressure increasing significantly.

7.6.3 Remarks

Proportional Integral (PI) control regulates heat exchanger pressures and ex-

pander power fairly well under base and power load following. Both constant and
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time-varying power load demands are successfully tracked while meeting pressure

setpoints.

In power load following, the pressure regulation performance slightly degrades

at the expense of the expander tracking a load power demand. Power regulation

seems to affect condensing pressure regulation more significantly than evaporating

pressure. This is attributed to the expander throttle valve influencing both power

and condensing pressure.

While the previous section showed improved tracking performance using advanced

controllers for the same RC architecture, the PI controller performs fairly well for

the specified operating and heat source/sink conditions presented in this section.

The results suggest that advanced control may be a requirement for general oper-

ating conditions where PI may not perform well. Additionally, higher regulation

performance may be needed for advanced controllers to meet although PI may be

sufficient.
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CHAPTER 8

Thermodynamic and Component Library

A library of the component models used in this research has been created for the

purpose of simulating power cycle systems. The components can be used as-is

for 52% Ethanol and 48% Water mixture, though the user can simulate for other

working fluids as long as thermodynamic and transport properties are available. A

fitting function routine is provided to least squares fit tabular properties to poly-

nomial functions compatible with the component models. The following sections

document the MATLAB functions and Simulink files for these components.

8.1 build components.m

This file builds example models including evaporators, condensers, and expanders

in MATLAB and loads the workspace to run the associating Simulink block mod-

els.
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8.2 Evaporator Models

8.2.1 Three-Zone

8.2.1.1 Z3MBevapMain.m

This calculates and loads the required variables to the workspace to simulate the

3-zone evaporator model. The results are also loaded and displayed. Be sure

to first load the heat source data and determine the equilibrium points prior to

running the simulation model in EGRevaporatorSim.mdl.

8.2.1.2 Z3MBevap.m

This file generates the derivatives for the 3-zone nonlinear evaporator model for

EGRevaporatorSim.mdl.

8.2.1.3 Z3MBevapReduced.m

This file generates the derivatives for the 3-zone nonlinear evaporator reduced

model for EGRevaporatorSimReduced.mdl.

8.2.1.4 EGRevaporatorSim.mdl

This file simulates the 3-zone nonlinear evaporator model. Be sure to use

Z3MBevapMain.m to generate the heat source and equilibrium point. Load the

simulation data to plot the results afterwards.
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8.2.1.5 EGRevaporatorSimReduced.mdl

This file simulates the 3-zone nonlinear evaporator reduced model. Be sure to

use Z3MBevapMain.m to generate the heat source and equilibrium point. Load the

simulation data to plot the results afterwards.

8.2.1.6 Z3MBevapLinear.m

Z3MBevapLinear.m is a MATLAB function that creates a 3-zone Moving Bound-

ary Evaporator Linear Model for 52% Ethanol 48% Water mixture given user-

defined geometry parameters. The function has the following syntax:

[A B Aevaplqr Bevaplqr xe ue u t evap u evap ulqr evap K Lobsv] =

Z3MBevapLinear(L, nT, Di, Do, wall thickness,roadcycle)

The function inputs are:

1. length of heat exchanger, L (in meter)

2. number of tube bundles, nT

3. diameter of inner tube, Di (in meter)

4. diameter of outer tube (shell), Do (in meter)

5. thickness of inner tube wall, wall thickness (in meter)

6. driving cycle heat source to test model, roadcycle

The function outputs are:

1. linear model A matrix
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2. linear model B matrix

3. closed-loop linear model A matrix, Aevaplqr

4. closed-loop linear model B matrix, Bevaplqr

5. equilibrium state vector xe

6. equilibrium input vector ue

7. time vector of input vector for simulation plots, u t evap

8. input vector for simulation plots, u evap

9. LQR input vector for simulation plots, ulqr evap

10. LQR feedback gain matrix, K

11. observer gain matrix, Lobsv

This function calculates the linearized model of the 3-zone Moving Boundary

model for evaporators described by

Z(x, u)ẋ = f(x, u) (8.1)

where

x =
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The linear model is described by

δẋ = Aδx+Bδu (8.2)

where

A = Z−1 δf

δx

∣
∣
∣
xe,ue

(8.3)

and

B = Z−1 δf

δu

∣
∣
∣
xe,ue

(8.4)

and xe,ue is an equilibrium point that satisfy f(xe, ue) = 0. The working fluid is

52% Ethanol, 48% Water mixture.

Note: The A matrix may be unstable for specified geometry, use eig(A) to check

stability.

A LQR control law K is designed for an evaporator model without uncontrol-

lable states to minimize the pressure state. The controllable system is defined by

matrices Ac,Bc with states
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The LQR outputs are:

1. Aevap = Ac − BcK, Bevap: the closed-loop matrices
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2. K: the feedback gain matrix

3. ulqr evap = −Kxc, u t evap: the LQR control signal and its time series

An observer gain Lobsv is designed to estimate evaporator states using pole-

placement with δP as measurement.

Plot(s) of the LQR controller and observer are displayed for a driving cycle sim-

ulation with EGR exhaust as the heat source.

Specify the variable roadcycle as a string from the following:

1. rolling

2. flat

3. hilly

8.2.1.7 MB3ZSS.m

This MATLAB function uses a nonlinear equation solver fsolve to calculate equi-

librium points for 3-zone evaporator model with 52% ethanol 48% water mixture

as the working fluid. fsolve interatively finds the state and input vector pair

(x, u) such that f(x, u) = 0. Users can choose the geometry and initial conditions

by editing the m-file.

The user should be cautious of no solutions using fsolve, indicating an equilib-

rium solution may not exist for the specified conditions and/or working fluid.
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8.2.2 Temperature Dynamics Model

8.2.2.1 HXdTempSimSetup.m

This file loads the variables to the workspace for HXdTempSim.mdl to simulate

a 3-zone evaporator model using transient data. Choose between Ricardo or

Hagerstown experimental data. The file also plots the results of the simulation

once it is completed.

8.2.2.2 dTemp.m

This file is used by HXdTempSim.mdl to generate the derivatives in the 3-zone

temperature dynamics evaporator model.

8.2.2.3 HXdTempSim.mdl

This file simulates the 3-zone temperature dynamics evaporator model. Use

HXdTempSimSetup.m to load the required variables to the workspace prior to sim-

ulation. Use the switches to select constant or transient inputs for the model.

8.3 Condenser Models

8.3.1 Three-Zone

8.3.1.1 MBCondSS.m

This file generates equilibrium solutions for the 3-zone nonlinear condenser model.

Can also be used to generate initial conditions for MB3ZCondenserSim.mdl.
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8.3.1.2 Z3MBcond.m

This file generates the derivatives for the 3-zone nonlinear condenser model for

MB3ZCondenserSim.mdl.

8.3.1.3 MB3ZCondenserSim.mdl

This file simulates the 3-zone nonlinear condenser model based on Z3MBcond.m

generating the derivatives. You may use MBCondSS.m to generate initial condition

xc.

8.3.2 Two-Zone

8.3.2.1 Z2MBcondLinear.m

Z2MBcondLinear.m is a MATLAB function that creates a 2-zone Moving Bound-

ary Condenser Linear Model for 52% Ethanol 48% Water mixture given user-

defined geometry parameters. The function has the following syntax:

[A B xc uc u t u] = Z2MBcondLinear(L, nT, Di, Do, thickness wall)

The function inputs are:

1. length of heat exchanger, L (in meter)

2. number of tube bundles, nT

3. diameter of inner tube, Di (in meter)

4. diameter of outer tube (shell), Do (in meter)

5. thickness of inner tube wall, wall thickness (in meter)

257



The function outputs are:

1. linear model A matrix

2. linear model B matrix

3. equilibrium state vector xc

4. equilibrium input vector uc

5. time vector of input vector for simulation plots, u t

6. input vector for simulation plots, u

This function calculates the linearized model of the 2-zone Moving Boundary

model for condensers described by

Z(x, u)ẋ = f(x, u) (8.5)

where

x =
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The linear model is described by

δẋ = Aδx+Bδu (8.6)

where

A = Z−1 δf

δx

∣
∣
∣
xc,uc

(8.7)
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and

B = Z−1 δf

δu

∣
∣
∣
xc,uc

(8.8)

and xc, uc is an equilibrium point that satisfies f(xc, uc) = 0. The working fluid

is 52% Ethanol, 48% Water mixture.

Note: The A matrix may be unstable for specified geometry and/or nominal

operating condition, use eig(A) to check stability.

Plot(s) of model is displayed for a sinusoidal disturbance of amplitude 0.025 kg/s

in coolant flow rate.

8.3.2.2 Z2MBcondLinearTPSC.mdl

This Simulink file runs the 2-zone condenser linear model built using

Z2MBcondLinear.m.

8.3.2.3 MB2ZSScond.m

This MATLAB function calculates equilibrium points for 2-zone condenser models.

8.4 Expander Models

8.4.1 Static

8.4.1.1 expander static.mdl

This Simulink file runs an example static expander model described in Chapter 4

and [BM09].
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8.4.2 Dynamic

8.4.2.1 expander dynamic.mdl

This Simulink file runs an example dynamic 2-cylinder reciprocating piston ex-

pander model based on the ThermoBox MATLAB toolbox [Lim11].

The model inputs are:

1. engine speed, in revolutions per minute (RPM)

2. intake pressure conditions, in MPa

3. intake enthalpy conditions, in kJ
kg

4. exhaust pressure conditions, in MPa

5. exhaust enthalpy conditions, in kJ
kg

The function outputs are:

1. temperature of cylinder 1 T1, in K

2. mass of cylinder 1 m1, in kg

3. volume displacement of cylinder 1 V1, in m3

4. crank angle of cylinder 1 V1, in degrees

5. temperature of cylinder 2 T2, in K

6. mass of cylinder 2 m2, in kg

7. volume displacement of cylinder 2 V2, in m3
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8. crank angle of cylinder 2 V2, in degrees

These variables are:

1. Bore diameter , in m

2. Stroke, in m

3. rod length b, in m

4. crank radius c, in m

5. connecting rod ratio, Rod, c
b

6. displaced volume Vd, in liters

7. dead volume Vc, in liters

8. compression ratio, rc

9. area of intake port, Aintake, in m2

10. area of exhaust port, Aexhaust, in m2

11. valve diameter for intake, Vd intake1, in mm

12. valve diameter for exhaust, Vd exhaust1, in mm

13. valve diamter for intake, Vd intake2, in mm

14. valve diameter for exhaust, Vd exhaust2, in

15. initial density in cylinder 1, rho i1, in kg
m3

16. initial density in cylinder 2, rho i2, in kg
m3

17. initial crank angle of cylinder 1, theta i1, in degrees
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18. initial crank angle of cylinder 2, theta i2, in degrees

19. initial volume of cylinder 1, V i1, in m3

20. initial volume of cylinder 2, V i2, in m3

21. initial mass of cylinder 1, m i1, in kg

22. initial mass of cylinder 2, m i2, in kg

23. initial temperature of cylinder 1, T i1, in K

24. initial temperature of cylinder 2, T i2, in K

25. theta1, calculated from invVcrank.m, in

26. theta2, calculated from invVcrank.m, in

27. lift profile data file, liftCyl#.mat, generated by Cyl#lift.m

Use building components.m to load designed values to the workspace prior to

simulation and plot figures for the work, power, torque, and engine improvement

(based on average engine power and torque from selected driving cycle).

8.4.2.2 Cyl#lift.m

This function generates a lift profile for intake and exhaust valves as a function

of crank angle. # denotes the cylinder number e.g. 1, 2, etc.

The function inputs are:

1. Area of intake valve opening Ai, in m2

2. Area of exhaust valve opening Ae, in m2
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The function outputs are:

1. valve diameter for intake Vd intake, in mm

2. valve diameter for exhaust Vd exhaust, in mm

3. file of valve lift profile (mm) as a function of crank angle θ, in .mat file

8.4.2.3 Vcrank.m

This function returns the cylinder volume as a function of crank position in the

same units as Vd.

The function inputs are:

1. crank position θ, in degrees

2. displaced volume Vd, in m3

3. compression ratio, rc

4. connecting rod length, R, in m

The function outputs are:

1. cylinder volume V, in m3

8.4.2.4 invVcrank.m

This function returns the two crank angle positions for a given displaced volume.

The function inputs are:

1. length of piston cylinder L, in m
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2. bore diameter B, in m

3. stroke S, in m

4. compression ratio rc

5. connecting rod ratio R

The function outputs are:

1. first crank angle position θ1, in degrees

2. second crank angle position θ2, in degrees

8.5 Thermodynamic Properties

8.5.0.5 thermoProp2.m

This function determines thermodynamic properties for air at different states given

independent properties of pressure and temperature. The function is designed for

use in MATLAB.

The function input is the following:

1. pressure p, in Pa

2. temperature T, in K

The function output is a vector of the following in the same order:

1. density rho, in kg
m3

2. internal energy u, in J
kg
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3. enthalpy h, in J
kg

4. entropy s, in J
kgK

5. isochoric heat capacity cv, in J
kgK

6. isobaric heat capacity cp, in J
kgK

7. first derivative of pressure with respect to density dp drho, in Pa
kg

m3

8. first derivative of pressure with respect to temperature dp dT, in Pa
K

9. speed of sound w, in m
s

8.5.0.6 Ethanol H2O 52 48 thermoprop Ph simulink.m

This function determines thermodynamic properties for 52% Ethanol, 48% Water

mixture at different states given independent properties of pressure and enthalpy.

The function is designed for use in Simulink.

The function input is a vector of the following in the same order:

1. pressure P, in MPa

2. enthalpy h, in kJ
kg

3. phase, either 1 (subcooled), 2 (two-phase), or 3 (superheat)

The function output is a vector of the following in the same order:

1. density rho, in kg
m3

2. temperature T, in K
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8.5.0.7 Ethanol H2O 52 48 thermoprop.m

This function determines thermodynamic properties for 52% Ethanol, 48% Water

mixture at different states given independent properties of pressure and temper-

ature. The function is designed for use in MATLAB.

The function inputs are the following in the same order:

1. temperature T, in K

2. pressure P, in MPa

3. phase, either 1 (subcooled), 2 (two-phase), or 3 (superheat)

The function outputs are the following in the same order:

1. density rho, in kg
m3

2. enthalpy h, in kJ
kg

3. partial derivative of density with respect to pressure, in dp dP
kg

m3

MPa

4. partial derivative of density with respect to enthalpy dp dh, in
kg

m3
kJ
kg

5. internal energy u, in kJ
kg

6. partial derivative of internal energy with respect to pressure du dP, in
kJ
kg

MPa

7. partial derivative of temperature with respect to pressure dT dP, in K
MPa

8. entropy s, in kJ
kgK

9. speed of sound w, in m
s

10. specific heat capacity, constant pressure Cp, in kJ
kgK
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11. specific heat capacity, constant volume Cv, in kJ
kgK

12. liquid saturation temperature Tsatf, in K

13. vapor saturation temperature Tsatg, in K

8.5.0.8 Ethanol H2O 52 48 thermoprop simulink.m

This function determines thermodynamic properties for 52% Ethanol, 48% Water

mixture at different states given independent properties of pressure and temper-

ature. The function is designed for use in Simulink.

The function input is a vector of the following in the same order:

1. temperature T, in K

2. pressure P, in MPa

3. phase, either 1 (subcooled), 2 (two-phase), or 3 (superheat)

The function output is a vector of the following in the same order:

1. density rho, in kg
m3

2. enthalpy h, in kJ
kg

3. partial derivative of density with respect to pressure
kg

m3

MPa

4. partial derivative of density with respect to enthalpy
kg

m3
kJ
kg

5. internal energy u, in kJ
kg

6. partial derivative of internal energy with respect to pressure
kJ
kg

MPa

7. partial derivative of temperature with respect to pressure K
MPa
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8. entropy s, in kJ
kgK

9. speed of sound w, in m
s

10. specific heat capacity, constant pressure Cp, in kJ
kgK

11. specific heat capacity, constant volume Cv, in kJ
kgK

8.5.0.9 Ethanol H2O 52 48 thermoprop Trho.m

This function determines thermodynamic properties for 52% Ethanol, 48% Water

mixture either in superheat or subcooled states given independent properties of

density and temperature. The function is designed for use in Simulink in conjuc-

tion with ThermoBox models.

The function input is a vector of the following in the same order:

1. density rho, in kg
m3

2. temperature T, in K

3. phase, either 1 (subcooled) or 0 (superheat)

The function output is a vector of the following in the same order:

1. pressure p, in Pa

2. internal energy u, in J
kg

3. enthalpy h, in J
kg

4. entropy s, in J
kgK

5. isochoric heat capacity Cv, in J
kgK
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6. isobaric heat capacity Cp, in J
kgK

7. partial derivative of pressure with respect to density at constant temperature

dP dp, in Pam3

kg

8. partial derivative of pressure with respect to temperature at constant density

dP dT, in Pa
K

9. speed of sound W, in m
s

8.5.0.10 Ethanol H2O 52 48 thermoprop Ph.m

This function determines thermodynamic properties for 52% Ethanol, 48% Water

mixture at different states given independent properties of pressure and enthalpy.

The function is designed for use in MATLAB.

The function inputs are the following in the same order:

1. enthalpy h, in kJ
kg

2. pressure P, in MPa

3. phase, either 1 (subcooled), 2 (two-phase saturated liquid), 3 (two-phase

saturated vapor), or 4 (superheat)

The function outputs is are the following in the same order:

1. density rho, in kg
m3

2. entropy s, in kJ
kgK

3. partial derivative of density with respect to pressure dp dP
kg

m3

MPa

4. partial derivative of density with respect to enthalpy dp dh
kg

m3
kJ
kg
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5. partial derivative of enthalpy with respect to pressure dh dP
kJ
kg

MPa

6. internal energy u, in kJ
kg

7. partial derivative of internal energy with respect to pressure du dP
kJ
kg

MPa

8. partial derivative of temperature with respect to pressure dT dP K
MPa

9. temperature T, in K

10. speed of sound w, in m
s

11. specific heat capacity, constant pressure Cp, in kJ
kgK

12. specific heat capacity, constant volume Cv, in kJ
kgK

13. liquid saturation temperature Tsatf, in K

14. vapor saturation temperature Tsatg, in K

8.5.0.11 makeA.m

This function makes the A matrix in the least squares problem Aq = z.

The function inputs are:

1. first independent variable x

2. second independent variable y

3. maximum desired order N

The function output is:

1. matrix A
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The entries of A are polynomial functions of x and y of the form xnxyny where

nx and ny are exponent coefficients less than N . The size of A depends on the

desired maximum order N.

8.5.0.12 thermoProp3 tank.m

This function determines thermodynamic properties for air (treated as an ideal

gas) given independent properties of density and temperature. The function is

designed for use in Simulink in conjuction with Thermobox models.

The function inputs are the following in the same order:

1. density rho, in kmol
m3

2. temperature T, in K

The function output is a vector of the following in the same order:

1. pressure p, in MPa

2. isobaric heat capacity Cp, in kJ
kmolK

3. partial derivative of pressure with respect to density dp drho, in kPa
kmol

m3

4. partial derivative of pressure with respect to temperature dp dT, in kPa
K

5. enthalpy h, in kJ
kmol

6. isochoric heat capacity Cv, in kJ
kmolK

7. internal energy u, in kJ
kmol

8. entropy s, in kJ
kmolK
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8.5.1 Least Squares Fit Coefficients

8.5.1.1 flow fit param ethanol water 52 48 vapor

expanded TP Trho.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water vapor mixture with temperature and

pressure as independent properties. The properties are valid in the range of 20 to

240 kg
m3 and 500 to 600 Kelvin.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.2 flow fit param ethanol water 52 48 subcooled

expanded TP Trho.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water subcooled mixture with temperature and

pressure as independent properties. The properties are valid in the range of 420

to 1000 kg
m3 and 280 to 600 Kelvin.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.3 flow fit param ethanol water 52 48 vapor Trho.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water vapor mixture with temperature and

pressure as independent properties. The properties are valid in the range of 20 to

40 kg
m3 and 500 to 580 Kelvin.

272



Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.4 flow fit param ethanol water 52 48 vapor expanded TP.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water vapor mixture with temperature and

pressure as independent properties. The properties are valid in the range of 0.01

to 10 MPa and 320 to 1200 Kelvin.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.5 flow fit param ethanol water 52 48 subcooled

expanded TP.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water subcooled mixture with temperature and

pressure as independent properties. The properties are valid in the range of 0.01

to 10 MPa and 250 to 550 Kelvin.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.6 flow fit param ethanol water 52 48 twophase f

expanded TP.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48%Water saturated liquid mixture with temperature
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and pressure as independent properties. The properties are valid in the range of

0.01 to 10 MPa and 305 to 552 Kelvin.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.7 flow fit param ethanol water 52 48 twophase g

expanded TP.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48%Water saturated vapor mixture with temperature

and pressure as independent properties. The properties are valid in the range of

0.01 to 10 MPa and 312 to 560 Kelvin.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.8 flow fit param ethanol water 52 48 vapor

expanded TP Ph.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water vapor mixture with enthalpy and pressure

as independent properties. The properties are valid in the range of 0.01 to 10 MPa

and 1874.9 to 4004.6 kJ
kg
.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.
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8.5.1.9 flow fit param ethanol water 52 48 subcooled

expanded TP Ph.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water subcooled mixture with enthalpy and

pressure as independent properties. The properties are valid in the range of 0.01

to 10 MPa and -14.496 to 1296.1 kJ
kg
.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.10 flow fit param ethanol water 52 48 twophase f

expanded TP Ph.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water saturated liquid mixture with enthalpy

and pressure as independent properties. The properties are valid in the range of

0.01 to 10 MPa and 191.98 to 1312.8 kJ
kg
.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.11 flow fit param ethanol water 52 48 twophase g

expanded TP Ph.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water saturated vapor mixture with enthalpy

and pressure as independent properties. The properties are valid in the range of

0.01 to 10 MPa and 1862.3 to 2081.6 kJ
kg
.
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Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.12 flow fit param ethanol water 52 48 vapor Ph.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water vapor mixture with enthalpy and pressure

as independent properties. The properties are valid in the range of 0.01 to 6 MPa

and 1874.9 to 4004.6 kJ
kg
.

Generate the A matrix using makeA.m to find other thermodynamic properties z

by computing z = Aq.

8.5.1.13 flow fit param ethanol water 52 48 subcooled Ph.mat

This MATLAB file contains the least squares fit coefficients q of thermodynamic

properties for 52% Ethanol, 48% Water subcooled mixture with enthalpy and

pressure as independent properties. The properties are valid in the range of 0.01

to 10 MPa and 20.759 to 1081.9 kJ
kg
.

8.6 Heat Transfer

8.6.1 Transport Properties

8.6.1.1 AirthermoProp.m

This function calculates the transport properties for air.

The function inputs are the following:
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1. density rho, in kmol
m3

2. temperature T, in K

3. isobaric heat capacity Cp, in J
kgK

The function outputs are the following:

1. dynamic viscosity mu, in Ns
m2

2. thermoconductivity k, in W
mK

3. Prandtl number Pr

8.6.1.2 H2OtransportProp.m

This function calculates transport properties for water.

The function inputs are the following:

1. temperature T, in K

2. density rho, in kg
m3

3. isobaric heat capacity, Cp, in J
kgK

The function outputs are the following:

1. viscosity mu, in Pa− s

2. thermoconductivity k, in W
mK

3. Prandtl number, Pr
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8.6.2 Correlations

8.6.2.1 MB2ZHTC.m

This function determines the heat transfer coefficients for the 2-zone Moving

Boundary model with the first region being two-phase and the second superheat.

This function can be used for either evaporators or condensers. The function

inputs are the following:

1. mass flow rate of outer tube or shell mdots, in kg
s

2. mass flow rate of inner tube mdott, in kg
s

3. diameter of shell ds, in meters

4. diameter of tube dt, in meters

5. wall thickness wall thickness, in meters

6. saturated liquid density rhof, in kg
m3

7. saturated vapor density rhog, in kg
m3

8. number of tubes in bundle nT

9. length of heat exchanger L, in meters

10. average temperature of heat source Th, in K

11. average temperature of working fluid in region 1 Tr1, in K

12. average temperature of working fluid in region 2 Tr2, in K

13. average isobaric heat capacity in region 1 Cp1, in kJ
kgK

14. average isobaric heat capacity in region 2 Cp2, in kJ
kgK
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The function outputs are the following:

1. tube-side heat transfer coefficient in region 1 alpha i1, in kW
m2K

2. tube-side heat transfer coefficient in region 2 alpha i2, in kW
m2K

3. shell-side heat transfer coefficient alpha o, in kW
m2K

8.6.2.2 MB3ZHTC.m

This function determines the heat transfer coefficients for the 3-zone Moving

Boundary model with the first region being subcooled, second as two-phase, and

the third as superheat. This function can be used for either evaporators or con-

densers. The function inputs are the following:

1. mass flow rate of outer tube or shell mdots, in kg
s

2. mass flow rate of inner tube mdott, in kg
s

3. diameter of shell ds, in meters

4. diameter of tube dt, in meters

5. wall thickness wall thickness, in meters

6. saturated liquid density rhof, in kg
m3

7. saturated vapor density rhog, in kg
m3

8. length of heat exchanger L, in meters

9. length of two-phase region L2, in meters

10. average temperature of heat source Th, in K
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11. average temperature of working fluid in region 1 Tr1, in K

12. average temperature of working fluid in region 2 Tr2, in K

13. average temperature of working fluid in region 3 Tr3, in K

14. average isobaric heat capacity in region 1 Cp1, in kJ
kgK

15. average isobaric heat capacity in region 2 Cp2, in kJ
kgK

16. average isobaric heat capacity in region 3 Cp3, in kJ
kgK

17. saturated liquid enthalpy hf, in kJ
kg

18. saturated vapor enthalpy hg, in kJ
kg

The function outputs are the following:

1. tube-side heat transfer coefficient in region 1 alpha i1, in kW
m2K

2. tube-side heat transfer coefficient in region 2 alpha i2, in kW
m2K

3. tube-side heat transfer coefficient in region 3 alpha i3, in kW
m2K

4. shell-side heat transfer coefficient alpha o, in kW
m2K

8.7 Road Cycles

8.7.1 roadcycles110415.m

This function loads pre-processed road cycle data roadcycles110415.mat and

generates a structure and plots of several engine characteristics. The

movingaverage.m function smooths out some of the undesired/questionable data

points.
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The function input is:

1. choice of road cycle entered as a string, either ’flat’, ’rolling,’ or ’hilly’

The function output is a struct cycle with the following fields:

1. time, in seconds

2. engine throttle position throttlepos, in percent

3. engine speed engine spd, in revolutions per minute

4. engine brake torque engine brake torque, in Newton-meters

5. engine brake power engine brake power, in kW

6. EGR exhaust mass flow rate mdotegr, in kg
s

7. tailpipe heat exchanger exhaust mass flow rate mdotexhaust, in kg
s

8. inlet working fluid pressure in EGR heat exchanger Pegrin, in MPa

9. outlet working fluid pressure in EGR heat exchanger Pegrout, in MPa

10. temperature of tailpipe heat exchanger exhaust Texhaustin, in Celcius

11. inlet temperature of EGR exhaust Tegrin, in Celcius

12. outlet temperature of EGR exhaust Tegrout, in Celcius

8.7.2 roadcycles110415.mat

This mat data file contains driving cycle data for flat, rolling, and hilly conditions.

Use roadcycles110415.m to load the data.
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8.7.3 movingaverage.m

This function computes a moving average of a vector of data x with window size

M.

The function inputs are:

1. original data x

2. window size M

The function outputs are:

1. averaged data y
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CHAPTER 9

Conclusion

Important challenges of increasing energy demand and improving the reliance on

alternative energy sources characterize our world today. Recovering and convert-

ing heat energy from either exisiting or sustainable energy sources can improve

energy efficiency and reduce energy consumption. To aid in this effort, this disser-

tation has contributed to the development of waste heat recovery (WHR) systems

through techniques in modeling, estimation, and control. Static Rankine (RC)

models use traditional steady-state assumptions to describe the power cycle with

fixed heat sources. With waste and alternative heat sources typically being low-

to medium-grade quality and often highly transient, dynamical models for the RC

components are presented to describe the complex WHR dynamics. The static

RC model based on thermodynamic energy balance provide design optimization

of the cycle based on heat source/sink and working fluid flow conditions. The

Moving Boundary method for heat exchangers provide control-oriented and low-

order mathematical models of multi-phase evaporators and condensers. Static

pump, valve, and piston expander models are applicable for applications where

the heat exchange dynamics are relatively slower. A dynamic, reciprocating piston

expander based on energy balance in a control-volume is presented for more accu-

rate modeling. The static and dynamic models together provide a physics-based

mathematical framework for understanding power recovery and a foundation for

the estimation and control methods presented in this dissertation.
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Facilitating the growing interest for organic RC (ORC) for low-grade heat source

WHR, this dissertation considers an organic working fluid mixture in ethanol and

water. A least-squares fitting routine performed off-line for thermodynamic and

transport properties provides accurate equations of state for arbitrary fluids. The

procedure improves computational efficiency over intensive on-line table look-up

methods. Thermoproperties for water and steam are also presented for higher-

grade heat sources.

To monitor RC performance and incorporate model-based control design, an Ex-

tended Kalman Filter (EKF) provides superior state estimates of the nonlinear

Moving Boundary heat exchanger models. The results show that either pressure

or temperature measurements effectively construct state estimates in the presence

of heat exchanger fouling as well as measurement and process noises. Relative ob-

servability based on the empirical gramian for nonlinear systems show the highest

relative observability when using both measurements. An Approximated, analyt-

ical Jacobian linearization for the process proves nearly as effective as the Full,

numerical Jacobian and can avoid the latter’s numerical challenges.

To ensure high and proper operational WHR performance in the presence of tran-

sient heat sources, several model-based control methods are presented for different

RC architectures and actuator configurations. The single valve architecture to-

gether with Proportional Integral (PI) control show successful flooding avoidance

while regulating heat exchanger pressures. The pressure and phase-change track-

ing controllers satisfy constraints while open-loop operation does not. Control of

an automotive WHR system applied on the dual valve architecture show superior

tracking performance for a Linear Quadratic Integral (LQI) and Model Predic-

tive Controller (MPC) over a Proportional Integral controller. For the advanced

LQI and MPC controllers, perfect state as well as EKF state estimation feedback
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are considered. The state estimation feedback also show improved performance

over PI control. Finally, control for power load following address the need for

base loading and power load following power plant modes that WHR systems can

operate in depending on the application.

Finally, this dissertation provides a library of RC components, thermodynamic,

and transport property models useful for constructing WHR system models and

for performing studies not limited to trade-off, sensitivity, and ”what-if.” The

estimation and control methods in this dissertation provide possibilities for con-

strained operation.

To summarize, this dissertation applies modeling, estimation, and control methods

for a 13-liter heavy-duty diesel truck powertrain whose exhaust is used as the

transient heat source to an ORC WHR system. The results indicate up to 10

kW of power can be generated from the driving cycle heat source transients.

The magnitude of the power differs depending on the set of operating conditions

chosen. Nonetheless, the power generated represents a significant portion of the

overall engine’s brake power. The engine power improvement provided by the

ORC can be as high as 7%, which agrees with the road testing performed by Volvo

Powertrain on its WHR system. However, a note must be given to the reader

regarding the accuracy and validity of the simulation results this dissertation

provides. The complex geometry of the evaporator pose challenges in modeling,

specifically in determining the proper flow configurations for the internal and

external flows. The reader should be aware that the results in this dissertation

reflect significant simplification of the heat exchanger as a single tube in cross

flow. As a result, the heat transfer correlations used for this simpler geometry

may not accurately represent the actual geometry. Improvements to this modeling

limitation remain as future research.
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