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Motivation

Cycle formation in growing network

How to model a growing network which forms cycles
(establishes closer connections by adding links)?

Examples of such networks:

@ kinship network (where to find a suitable, not
blood-related, partner)

@ trading network (search for distant trading partners to
avoid the costs of paying too dearly in exchanges with
close partners)

@ business network (seeking for not too similar business
partners)
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Creating a strategic alliance in business 3 links away.

A company which wants to
make a strategic alliance.
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An example

Creating a strategic alliance in business 3 links away.

Step1:1—>3

Company 3 can choose
between two possible paths.
The top one does not lead to
a successful alliance. It
chooses the link to company
6.
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An example
Creating a strategic alliance in business 3 links away.

2 Step2: 3 -6
5 From company 6 there is
only one way to choose the
3 next company (company 7).
6
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An example

Creating a strategic alliance in business 3 links away.

\ Step3:6 —7
The path with 3 consecutive
° links was found. Alliance is
3 created from company 1 to
company 7.
6
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Previous work

@ lots of work on generative models for graphs (preferential
attachment model of Albert and Barabasi (1999), copying
model of Kumar et al. (2000)); do not create cyclic
networks

@ social networks model of Newman (2003); not an evolving
network model

@ autocatalytic network model (Kauffman et al., 1986) which
focused on topological graph closure properties and
simulation of chemical kinetics
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Model

Growth of a model (1)

with 3 parameters: a, 3, v

At each time step
@ selecta starting node j according to probability
P.(i) = N[deg(l)]
> m—1[deg(m)]*
@ assign of search distance d according to probability
bo
C memP
@ generate a search path (selection of the following
nodes (/s) on the path)

Ps(d)

B {1 + u(/)V]
Sy |1+ u(my]

u(x) = unused degree of x

P+(/)
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@ can be traversed for d nodes, a starting node and target
node are linked (a cycle is formed)
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Model

Growth of a model (2)

If the search path

@ can be traversed for d nodes, a starting node and target
node are linked (a cycle is formed)

@ otherwise a newly created node is linked to a starting node
Initial condition (asympototically not important): 1 node.
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Role of parameters in network evolution.

@ «...the attachment parameter describes forming hubs
(highly connected nodes)

@ (...the distance decay parameter accounts for
density of the network

@ ~...the routing parameter increases search — more
cycle formations, it accounts for more interconnected
network

Network evolution depends on local information, but cycle
formation depends on global properties of the network:

@ successful search decreases mean distance of a node to
other nodes

@ failed search increases the distance (with adding a new
node)
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Simulations

The assumption

Successful searches and adding nodes influence the frequency
of one another — long-range interactions among nodes.

We simulated the networks to check whether the degree (k)
distributions can be described of the form (generalized
g-exponential function)

p(k) = pok’eg /"

where the g-exponential (Tsallis, 1988) function ey is defined as

1/(1-q)
e=|1+(1-9qx (ef =€)

if 1 + (1 — g)x > 0, and zero otherwise.
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Simulations

The procedure

@ simulate 10 realizations of networks with 5000 nodes
@ different parameters a, 5 and ~

@ fit generalized g-exponential function to simulated
distributions using Gauss-Newton algorithm for
nonlinear least-squares estimates (some tail
regions had to be manually corrected)

@ get the fitted the parameters (q, « and 9)
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Simulations

Some results

Degree distributions and fittings for f = 1.4, y=0 Degree distributions and fittings for p = 1.4, y=1
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Simulations

Goodness of fit tests

In order to test the g-exponential fits we used two
nonparametric statistical tests
@ Kolmogorov-Smirnov test (since g-exponential is
defined on [0, inf) only, we used two sample test): null
hypotesis was never rejected
@ Wilcoxon rank sum test: null hypotesis rejected in
1/12 examples
Since data are very sparse in the tail, we excluded datapoints
with probability < 1074,
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Model parameters and g-exponential
p(k) = pok’e; /"

Dependence of & parameter

o B=

A B=

+ B=

. X Pp=

o B=

° v B=

2 . @ b=
T * B=

. & p=1571=
“° 0 depends only on parameter a.
0.0 0.2 04 0.6 0.8 1.0
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Model parameters and g-exponential
p(k) = pok’e; /"

Dependence of parameter g.

Parameter g grows rapidly as each of the 3 model
parameters increase.
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Model parameters and g-exponential
p(k) = pok’e; /"

Dependence of parameter &.

v=0

Parameter xk diverges when § and ~ grow large and o = 0.
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Summary

Conclusion

@ A generative model for creating graphs representing
feedback networks was presented. Algorithm uses only
local properties of the nodes.

@ The simulated networks confirmed the assumption of
long-range interactions in such a network (generalized

g-exponential functions were fitted to empirical degree
distributions).

@ The competition between creating cycles (stronger
feedback) and adding new nodes (growth in size).

@ In the future
@ Apply the present model to real networks (biotech
intercorporate networks).
@ Analyze more network model topological properties (e.g.
mean distance of a node to other nodes).
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