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Step 1: 1 → 3

Company 3 can choose
between two possible paths.
The top one does not lead to
a successful alliance. It
chooses the link to company
6.
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An example
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Step 2: 3 → 6

From company 6 there is
only one way to choose the
next company (company 7).
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An example
Creating a strategic alliance in business 3 links away.
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Step 3: 6 → 7

The path with 3 consecutive
links was found. Alliance is
created from company 1 to
company 7.
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Growth of a model (1)
with 3 parameters: α, β, γ

At each time step
select a starting node i according to probability

Pα(i) =
[deg(i)]α

∑N
m=1[deg(m)]α

assign of search distance d according to probability

Pβ(d) =
d−β

∑

∞

m=1m−β

generate a search path (selection of the following
nodes (ls) on the path)

Pγ(l) =

[

1 + u(l)γ
]

∑M
m=1

[

1 + u(m)γ
]

u(x) ≡ unused degree of x
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node are linked (a cycle is formed)
otherwise a newly created node is linked to a starting node
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Growth of a model (2)

If the search path
can be traversed for d nodes, a starting node and target
node are linked (a cycle is formed)
otherwise a newly created node is linked to a starting node

Initial condition (asympototically not important): 1 node.



Motivation Model Results Summary

Outline

1 Motivation
An example

2 Model

3 Results
Network properties
Simulations



Motivation Model Results Summary

Representations of network models
with 250 nodes, β = 1.3

α = 1, γ = 0 α = 1, γ = 0

α = 0, γ = 0 α = 0, γ = 1



Motivation Model Results Summary

Representations of network models
with 250 nodes, β = 1.3

α = 1, γ = 0 α = 1, γ = 0

α = 0, γ = 0 α = 0, γ = 1



Motivation Model Results Summary

Role of parameters in network evolution.

α . . . the attachment parameter describes forming hubs
(highly connected nodes)
β . . . the distance decay parameter accounts for
density of the network
γ . . . the routing parameter increases search – more
cycle formations, it accounts for more interconnected
network



Motivation Model Results Summary

Role of parameters in network evolution.

α . . . the attachment parameter describes forming hubs
(highly connected nodes)
β . . . the distance decay parameter accounts for
density of the network
γ . . . the routing parameter increases search – more
cycle formations, it accounts for more interconnected
network



Motivation Model Results Summary

Role of parameters in network evolution.

α . . . the attachment parameter describes forming hubs
(highly connected nodes)
β . . . the distance decay parameter accounts for
density of the network
γ . . . the routing parameter increases search – more
cycle formations, it accounts for more interconnected
network



Motivation Model Results Summary

Role of parameters in network evolution.

α . . . the attachment parameter describes forming hubs
(highly connected nodes)
β . . . the distance decay parameter accounts for
density of the network
γ . . . the routing parameter increases search – more
cycle formations, it accounts for more interconnected
network

Network evolution depends on local information, but cycle
formation depends on global properties of the network:

successful search decreases mean distance of a node to
other nodes
failed search increases the distance (with adding a new
node)



Motivation Model Results Summary

Role of parameters in network evolution.

α . . . the attachment parameter describes forming hubs
(highly connected nodes)
β . . . the distance decay parameter accounts for
density of the network
γ . . . the routing parameter increases search – more
cycle formations, it accounts for more interconnected
network

Network evolution depends on local information, but cycle
formation depends on global properties of the network:

successful search decreases mean distance of a node to
other nodes
failed search increases the distance (with adding a new
node)



Motivation Model Results Summary

Outline

1 Motivation
An example

2 Model

3 Results
Network properties
Simulations



Motivation Model Results Summary

Simulations
The assumption

Successful searches and adding nodes influence the frequency
of one another −→ long-range interactions among nodes.
We simulated the networks to check whether the degree (k )
distributions can be described of the form (generalized
q-exponential function)

p(k) = p0kδe−k/κ
q

where the q-exponential (Tsallis, 1988) function ex
q is defined as

ex
q ≡

[

1 + (1 − q)x
]1/(1−q)

(ex
1 = ex)

if 1 + (1 − q)x > 0, and zero otherwise.
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Simulations
The procedure

simulate 10 realizations of networks with 5000 nodes
different parameters α, β and γ

fit generalized q-exponential function to simulated
distributions using Gauss-Newton algorithm for
nonlinear least-squares estimates (some tail
regions had to be manually corrected)
get the fitted the parameters (q, κ and δ)
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Simulations
Some results
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Simulations
Goodness of fit tests

In order to test the q-exponential fits we used two
nonparametric statistical tests

Kolmogorov-Smirnov test (since q-exponential is
defined on [0, inf) only, we used two sample test): null
hypotesis was never rejected
Wilcoxon rank sum test: null hypotesis rejected in
1/12 examples

Since data are very sparse in the tail, we excluded datapoints
with probability < 10−4.
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Model parameters and q-exponential
p(k) = p0kδe−k/κ

q
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δ depends only on parameter α.
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Model parameters and q-exponential
p(k) = p0kδe−k/κ
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Dependence of parameter q.
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Model parameters and q-exponential
p(k) = p0kδe−k/κ

q

Dependence of parameter κ.
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feedback networks was presented. Algorithm uses only
local properties of the nodes.
The simulated networks confirmed the assumption of
long-range interactions in such a network (generalized
q-exponential functions were fitted to empirical degree
distributions).
The competition between creating cycles (stronger
feedback) and adding new nodes (growth in size).

In the future
Apply the present model to real networks (biotech
intercorporate networks).
Analyze more network model topological properties (e.g.
mean distance of a node to other nodes).
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