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ARTICLE

Dark matter from axion strings with adaptive mesh
refinement
Malte Buschmann1✉, Joshua W. Foster2,3,4✉, Anson Hook5, Adam Peterson6, Don E. Willcox6,

Weiqun Zhang6 & Benjamin R. Safdi 3,4✉

Axions are hypothetical particles that may explain the observed dark matter density and the

non-observation of a neutron electric dipole moment. An increasing number of axion

laboratory searches are underway worldwide, but these efforts are made difficult by the fact

that the axion mass is largely unconstrained. If the axion is generated after inflation there is a

unique mass that gives rise to the observed dark matter abundance; due to nonlinearities and

topological defects known as strings, computing this mass accurately has been a challenge

for four decades. Recent works, making use of large static lattice simulations, have led to

largely disparate predictions for the axion mass, spanning the range from 25 microelec-

tronvolts to over 500 microelectronvolts. In this work we show that adaptive mesh refine-

ment simulations are better suited for axion cosmology than the previously-used static lattice

simulations because only the string cores require high spatial resolution. Using dedicated

adaptive mesh refinement simulations we obtain an over three order of magnitude leap in

dynamic range and provide evidence that axion strings radiate their energy with a scale-

invariant spectrum, to within ~5% precision, leading to a mass prediction in the range

(40,180) microelectronvolts.
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An outstanding mystery of the Standard Model of particle
physics is that the neutron electric dipole moment, which
would cause the neutron to precess in the presence of an

electric field, appears to be over ten billion times smaller than
expected1. Axions were originally invoked as a dynamical solu-
tion to this problem; they would interact with quantum chro-
modynamics (QCD) inside of the neutron so as to remove the
electric dipole moment2–5. However, free-streaming ultra-cold
axions may also be produced cosmologically in the early Uni-
verse, and these axions may explain the observed dark matter
(DM)6–8, which is known to govern the dynamics of galaxies and
galaxy clusters.

Multiple efforts are underway at present to search for the exis-
tence of axion DM in the laboratory9,10, but these efforts are hin-
dered by the fact that the mass of the axion particle is currently
unknown. The axion is naturally realized as the pseudo-Goldstone
boson of a global symmetry called the Peccei-Quinn (PQ) sym-
metry, which is broken at a high energy scale fa2–5,11. If the PQ
symmetry is broken after the cosmological epoch of inflation, then
there is a unique axion mass ma that leads to the observed DM
abundance. (If the PQ symmetry is broken before or during infla-
tion, then the DM abundance depends on the initial value of the
axion field that is inflated12.) However, computing this mass is
difficult principally because after PQ symmetry breaking axion
strings develop; at the string cores the full PQ symmetry is restored.
As the Universe expands the strings shrink, straighten, and combine
by emitting radiation into axions. The contribution to the DM
abundance from the string-induced axions has been heavily deba-
ted, with some works claiming that string-induced axions play a
minor role13,14, with the DM abundance dominated by axions
produced during the QCD phase transition, and others claiming
these axions dominate the DM abundance15–17. The evolution of
the axion string network in the early Universe has been studied
numerically and analytically since the 1980’s13–22 with increasingly
complex and capable frameworks in recent years23–28. The earliest
simulations were restricted computationally to lattices of
order ~1503 sites15, while modern-day static-lattice simulations
have achieved ~8,0003 sites25.

In this work, we use adaptive mesh refinement (AMR) simu-
lations to provide an even larger jump in sensitivity by main-
taining high resolution around the string cores and lower
resolution elsewhere29; to achieve the same resolution as our
simulations using a static grid would require a 65,5363 site lattice.
Our substantial dynamical range allows us to determine that
radiation from axion strings prior to the QCD phase transition
likely dominates the DM density.

Results
AMR simulation framework. The axion a is the phase of the
complex PQ scalar field Φ ¼ ðr þ f aÞ=

ffiffiffi
2

p
eia=f a , with a= a(x) and

r= r(x) real functions of spacetime x. The radial mode r is heavy
and is not dynamical at temperatures below its mass mr. The
axion field, on the other hand, is massless until the QCD phase
transition and thus is dynamical on scales smaller than the cos-
mological horizon between the PQ and QCD epochs. The axion
field acquires a small mass ma � Λ2

QCD=f a at temperatures T of
order the QCD confinement scale ΛQCD from QCD instantons30,
though in our simulations we focus on temperatures T≫ΛQCD

where the mass may be neglected.
Our simulation is based on the block-structured AMR software

framework AMReX31. The equations of motion (EOM) for Φ can
be derived from the Lagrangian32

LPQ ¼ j∂Φj2 � λ jΦj2 � f 2a
2

� �2

� λT2

3
jΦj2; ð1Þ

where λ is the PQ quartic coupling. (We fix λ= 1 without loss of
generality so that mr ¼

ffiffiffi
2

p
f a.) The EOM is solved using the

strong-stability preserving Runge-Kutta (SSPRK3) algorithm with a
time step size that satisfies the Courant-Friedrichs-Lewy condition
on a lattice defined in fixed comoving coordinates. Evolution takes
place in rescaled conformal time η ¼ R=R1 ¼ ðt=t1Þ1=2, where R is
the scale factor of the Friedmann-Lemaître-Robertson-Walker
metric, R1≡ R(t1), and t1 is a reference time such that H1≡
H(t1)= fa with Hubble parameter H. In these units the PQ phase
transition takes place around η ≈ 1, and we chose a starting time of
ηi= 0.1 and a final time of ηf= 75.7. Our simulation volume is a
box with periodic boundary conditions and comoving side length
L= 120/(R1H1). This volume corresponds to a box length of 1200
Hubble lengths at ηi and ~1.6 Hubble lengths at ηf. (Gorghetto
et al.27 found that finite-volume effects are not important for
simulations ending with a box length of ~1.5 Hubble lengths).

The string width scale Γ is set by m�1
r , while the maximum

physical length scale that may be resolved with the comoving
lattice grows linearly with η. Thus, finer grids are needed to
resolve Γ at later times. We start with a uniform grid of 20483 grid
sites, with an initial state based on a thermal distribution before
the PQ phase transition (see Methods). Extra refined grids are
then added over time whenever the comoving string width drops
below a certain threshold. We add the first four extra refinement
levels when Γ is resolved by four grid sites at the respective finest
level, with the fifth extra level added when Γ is resolved by three
grid sites (see Fig. 1 and Supplementary Fig. 1). In comparison,
note that Gorghetto et al.27 resolves Γ by one grid site at the end
of their simulation. Each extra level introduces eight times as
many grid cells per volume as the previous level. Refined levels
are localized primarily around strings. This is achieved by
identifying grid cells that are pierced by a string core using the
algorithm described in Fleury and Moore33. The exact grid layout
is periodically adjusted to track strings over time. See Fig. 1 for an
illustration of the grid layout. Convergence tests of the AMR
framework and tests of the dependence on the initial state are
described in Methods section.

String network evolution. The axion string network is thought to
evolve and shrink with time by radiating axions so as to obey the
scaling solution, where the number of strings per Hubble patch
remains order unity as a function of time20. The network evo-
lution is illustrated in the top panels of Fig. 1, with time slices
labeled by logðmr=HÞ ¼ logð2mrtÞ. The energy density in axion
radiation is overlaid on top of the string network and is strongest
in the vicinity of areas of large string curvature.

The string length per Hubble volume is quantified through the
parameter ξ, which is defined by ξ � ‘t2=V with ℓ the total string
length in the simulation volume V . We determine ℓ by counting
string-pierced plaquettes in our simulation using the algorithm
described in Fleury and Moore33. We illustrate ξ as a function of
logmr=H in Fig. 2.

We compute ξ at points in time separated by a Hubble time
(Δ logmr=H ¼ log 2), since the network is strongly correlated on
time scales smaller than a Hubble time.

We verify that ξ increases linearly with logmr=H, which was
first suggested in refs. 24,27. Gorghetto et al.27 constructed a suite
of simulations on static grids of up to 45003 sites and out
to at most logmr=H � 7:9; they fit a model of the form
ξ ¼ c�2=log

2 þ c�1= logþc0 þ c1 log, with log � logmr=H, to
their ξ data for log 2 ð4:5; 7:9Þ and found c1= 0.24 ± 0.02 for
the leading term. Given mr ~ 1010 GeV and the QCD phase
transition beginning at temperatures T ~ 1 GeV, the string
network is expected to evolve until log� � 65, which is far
beyond the dynamical range that may be simulated.
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In Fig. 2 we illustrate our fit of the same functional form as
in Gorghetto et al.27 to our ξ data over the range log 2 ð4; 9Þ; we
find c1= 0.254 ± 0.002 (see Methods section for details). As a
systematic test we fit the functional form ξ ¼ c0 þ c1 log to the ξ
data over the limited range log 2 ð7:5; 9Þ and determine
c1 ≈ 0.252. Importantly, the parameter c1, which governs the
large log behavior of ξ, agrees between the two methods and
agrees with the measurement in Gorghetto et al.27. Assuming that
the QCD phase transition begins at log� 2 ð60; 70Þ we estimate
that at the beginning of the phase transition ξ= ξ*∈ (13, 17). The
linear growth of ξ with logmr=H does not support the analytic
velocity-dependent one-scale model (see refs. 34–36), which
predicts that ξ should approach a constant at large log. On the
other hand, the observation that ξ grows linearly with log may be
naturally explained by the well-established logarithmic increase of
the string tension with time, μðtÞ � μ0 logmr=H with μ0 ¼ πf 2a to
leading order in large log (see Supplementary Fig. 2). A given

string segment loses energy at a constant rate that does not evolve
with time20, and as a result energy builds up in the strings relative
to the situation where μ does not increase logarithmically with
time. This increase in energy is manifest by a logarithmically
increasing ξ. (See Methods section for details of this argument.)

Axion radiation spectrum. As the string network evolves in the
scaling regime axions are produced at a rate Γa ≈ 2Hρs, where
ρs= ξμ/t2 is the energy density in strings. As we show later in this
Article, the DM density from string-induced axion radiation is
proportional to the number density of axions at logmr=H ¼ log�.
To compute the number density we need to know the axion
radiation spectrum from strings. We quantify the spectrum
through the normalized distribution Fðk=HÞ ¼ d log Γa=dðk=HÞ
for physical momentum k. (See, e.g., Gorghetto et al.24 for a
review of the analytic aspects of the network evolution.) We
compute F numerically from our simulation ouput by
Fðk=HÞ / ð1=R3Þ d

dt R3∂ρa=∂k
� �

, with ∂ρa/∂k the time-dependent
differential axion energy density spectrum.

The axion radiation is distributed in frequency between the
effective infrared (IR) cutoff, which is provided by H, and the
effective ultraviolet (UV) cutoff set by the string width ~mr. For
momenta k well between these two scales (H≪ k≪mr) the
radiation spectrum is expected to follow a power-law. Below, we
describe how we measure the index of this power law.

We calculate F via finite differences in nonuniform Δt
corresponding to uniform intervals in logmr=H. In our fiducial
analysis, we calculate instantaneous emission spectra using
intervals of Δ logmr=H ¼ 0:25, which is of order Hubble-time
separations. At each logmr=H value, we fit a power-law model
F(k/H)∝ 1/(k/H)q to the instantaneous spectra between an IR
cut-off kIR= xIRH and a UV cut-off kUV=mr/xUV, with the cut-
offs chosen to be sufficiently far from the physical IR and UV cut-
offs. (See the methods for details of how this fit is performed.) We
chose xIR= 50 and xUV= 16 in order to be sufficiently far into
the power law regime of k.

In the top panel of Fig. 3 we illustrate F computed at
logmr=H ¼ 8:75 for our fiducial choice of xIR and xUV as well as
two systematic variations on the choice of fitting range, extending
to xIR= 30 (“Extended IR Data”) and xUV= 12 (“xtended UV
Data”). The best-fit power-law models are also illustrated. In the
bottom panel, we show the evolution of the index q as a function

Fig. 2 Evolution of the string length. The string length per Hubble volume ξ
increases with time in our simulation, indicating a logarithmic violation to
the scaling solution24, which would predict constant ξ. At late times in the
simulation (large logmr=H) the growth in ξ appears linear in logmr=H with
coefficient c1≈ 0.25 as measured for the fit over the full logmr=H range
shown, but including terms all the way down to c�2=log

2. The fit illustrated
by the solid curve only includes terms down to c0 but is limited to late times
(log 2 ð7:5;9Þ); this fit leads to c1≈ 0.25 also. These fits indicate that at the
beginning of the QCD phase transition, at log� � 65, we expect ξ*≈ 15. The
error bars in ξ correspond to normally distributed 68% confidence intervals
derived during the fitting procedure.

Fig. 1 Simulation snapshots and illustrations. (Top row) 3-D rendering of various simulation states from the initial state (left) to the final state (right).
Shown is the full simulation volume with the respective relative size of a Hubble volume indicated. The axion energy density is illustrated by the density of a
3-D media and string cores are overlaid in yellow. (Bottom row) Zoom in on a string segment. From left to right: Relationship between the string width and
the number of refinement levels as a function of time; 2-D slices of the radial mode and string radiation centered around a string element; string element
enshrouded by axion energy density; and an illustration of the layout of the three coarsest grid levels around a string core (not to scale). Animations
available here and can be downloaded at Buschmann et al.54.
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of logmr=H, for both our fiducial analysis and for a systematic
variation where we use Δ logmr=H ¼ log 2 when computing F.
We compare our results to the best-fit model obtained in
Gorghetto et al.27, who claimed evidence that q evolves
logarithmically in time, with q > 1 at late times. In particular,
Gorghetto et al.27 fit the evolution model qðtÞ ¼ q1 logðmr=HÞ þ
q0 to their q data and found evidence for non-zero q1, claiming
q1= 0.053 ± 0.005. Fitting this model to our q data (see Methods
section for details) yields q1=− 0.04 ± 0.08 and q0= 1.36 ± 0.69,
which is in tension with the results in Gorghetto et al.27. (The
best-fit model in that work is inconsistent at the level ~ 1.8σ with
our measured q values). Given that we do not find evidence for
logarithmic growth of q, we impose q1= 0 and find
q0= 1.02 ± 0.04, which is interestingly consistent with the scale
invariant spectrum q0= 1, suggested in refs. 13,28, to within ~5%.
An additional argument in favor of q0= 1 is that the string loops
appear logarithmically distributed in size, as shown in Supple-
mentary Fig. 3 and as expected for a network of intersecting
strings (see Methods section).

One difference between Gorghetto et al.27 and this work that
may contribute to the difference in q is that Gorghetto et al.27

used xUV= 4; in Supplementary Fig. 4 we show that using
xUV= 4 in our fits also leads to positive q1 at non-trivial
significance (see Supplementary Tab. II); however, as illustrated
in Supplementary Fig. 8 at large logmr=H and xUV= 4 the fits
become visibly poor at large k/H because the spectrum F(k/H)
begins to drop rapidly for k ~mr. The fact that Gorghetto et al.27

is only resolving the string cores by around one grid site at large

logmr=H may also play a role. We test the importance of the
string-core resolution by performing an alternate simulation
where we do not add extra refinement levels after
logmr=H � 5:3, such that Γ is resolved by one grid site at
logmr=H � 8:1 (see Supplementary Fig. 1). As illustrated in
Supplementary Fig. 10, in this case the spectrum becomes
distinctly biased towards larger q at larger log, where the string-
core resolution is low.

Our result that q1 is consistent with zero is robust to changes to
xUV (Supplementary Fig. 4 and Supplementary Tab. II), for
32 ≥ xUV≳ 8, to xIR (Supplementary Fig. 5 and Supplementary
Tab. I), for the range 30 ≤ xIR ≤ 100 that we consider, to the Δ log
size used in computing F (Supplementary Fig. 6 and Supplemen-
tary Tab. III), for 0:125 ≤ Δ log ≤ log 2, and to the method used
for regulating the string cores when computing F (Supplementary
Fig. 7 and Supplementary Tab. IV).

Dark matter density. The axion EOM during the QCD epoch
generically violates number density conservation. In particular, the
non-linear axion potential is a function of cosða=f aÞ, which
implies that non-linear terms in the EOM are important if
∣a/fa∣ ≳ π. Given the instantaneous spectrum F(k/H) we may
compute the average field value squared at a given time t by
hða=f aÞ2i � 4π

R tðdt0=tÞξðt0ÞhðH0=k0Þ2i logmr=H
0, with hðH0=k0Þ2i

being the expected value of H/k at time t0 computed from the
distribution F(k/H) (see Methods section and note that this is
accurate to leading order in logmr=H). We expect 〈(H/k)2〉 to be
proportional to H2=k2IR, with kIR=H /

ffiffiffi
ξ

p
being the effective IR

cut-off for F(k/H) that arises from the typical separation of
strings ~ k�1

IR ; note that this implies that as ξ(t) grows with time,
the effective IR cut-off moves towards the UV like

ffiffiffi
ξ

p
because the

strings become more closely packed together. Let us define a

dimensionless coefficient β by the relation hðH=kÞ2i�1 ¼ β ξ; a fit
of this functional form to the spectral data leads to β= 840 ± 70
for q= 1.06 (see Supplementary Fig. 9). Note that smaller values
of q lead to larger values of β and that q= 1.06 is the maximum
value of q allowed at 1σ from our analysis. In terms of this coef-
ficient hða=f aÞ2i � ð4π=βÞ logmr=H ≲ 1:1 (for logmr=H ≲ 70),
which implies that non-linear number changing processes are at
most marginally relevant. (Non-linear corrections to the linearized
force are at most ~ 15%.) This justifies our use of number density
conservation below in estimating the DM abundance.

To compute the axion number density we need to compute the
expectation value 〈H/k〉 over the distribution F(k/H). Following
the justification in the previous paragraph we may parameterize
this expectation value in terms of the IR cut-off and thus ξ,
hH=ki�1 ¼ δ

ffiffiffi
ξ

p
, for a dimensionless parameter δ. In Fig. 4 we

illustrate the 〈H/k〉−1 data, assuming q= 1.06, as a function of
logmr=H along with the best fit model, which leads to δ= 113 ± 7;
note that smaller values of q lead to larger values of δ. To compute

〈H/k〉−1 (and also hðH=kÞ2i�1
) we numerically integrate the

spectrum up to k=H ¼ xmax, with xmax ¼ 50, and then analytically
integrate the power-law functional form F(k/H)∝ 1/kq from xmax
to k=H � elog� , with log� � 60� 70. The axion number density at
the epoch of the QCD phase transition is then, to leading order in
log�, n

string
a � ð8πf 2aH=δÞ

ffiffiffiffiffi
ξ�

p
log�.

If the spectrum is exactly scale invariant at large k, such that
q= 1, then δ / logðmr=HÞ. Defining δ ¼ δ1 logðmr=HÞ in this
case we compute δ1= 6.2 ± 0.4. The axion number density from
strings is then nstringa � ð8πf 2aH=δ1Þ

ffiffiffiffiffi
ξ�

p
. At 1σ we find that q

could be as low as q ≈ 0.98. For q < 1 the quantity δ increases for
increasing UV cut-offs like ðmr=HÞ1�q; in particular, for q= 0.98
and logmr=H ¼ 70 we calculate δ= 820 ± 50. Thus, accounting

Fig. 3 The instantaneous emission spectra. (Above) Example fits to the
instantaneous emission spectrum calculated at logmr=H ¼ 8:75. In our
fiducial analysis, the instantaneous emission spectra are calculated using a
timestep corresponding to Δ logmr=H ¼ 0:25, and a power-law model is fit
to the data at k between the IR and UV cutoffs of kIR= 50H and kUV=mr/
16. The data included in this fit range is shown in gray with the best-fit
power law depicted in black; the indicated uncertainties are at 68%
confidence and are derived during the fitting procedure. We also illustrate
two systematic variations, one in which we extend our IR cutoff down to
kIR= 30H ("Extended IR Data"), and another where we extend our UV
cutoff upward to kUV=mr/12 ("Extended UV data"). For clarity, the data
are down-binned by a factor of 2 in k/H. (Below) The evolution of the fitted
power-law index q as a function of logmr=H. The best fit indices obtained in
our fiducial analysis are shown in black, with red showing the indices
computed using Δ logmr=H ¼ log 2. In our fiducial analysis we constrain
q= 1.02 ± 0.03, which is shaded. For comparison, the best fit linear growth
of q obtained in Gorghetto et al.27 is shown in dotted gray.
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for the uncertainty on q from our simulations we find that δ is in
the range δ∈ (106, 870).

Let us more precisely define the time t* as the time when the
axion field becomes dynamical, which is when 3H(t*)=ma(t*),
for a time-dependent mass ma(t) that is increasing rapidly during
the QCD phase transition30. The axion string network is observed
to collapse around t* (see, e.g. Buschmann et al.26), meaning that
at times t≳ t* axion number density is conserved. Assuming
axion number density conservation allows us to relate the
present-day DM abundance to the expression for nstringa at t* (see
Methods section):

Ωstr
a � 0:12 h�2 f a

4:3�1010GeV

� �1:17
107
δ

ffiffiffiffi
ξ�
17

q
log�
70 : ð2Þ

Axions produced from domain wall and misalignment dynamics
during the QCD phase transition provide a sub-dominant contribu-
tion to the DM density26: ΩQCD

a � 0:017 h�2ðf a=4:3 � 1010GeVÞ1:17.
The DM abundance as measured by the Planck Observatory using
the cosmic microwave background is ΩDM= (0.12 ± 0.0012)h−2,
with h the Hubble rate scaling factor37. Adding in the contribution
from the QCD phase transition ΩQCD

a , and assuming q∈ (0.98, 1.06),
we find that the fa that gives rise to the observed DM abundance
should be in the range fa∈ (3.1 × 1010, 1.4 × 1011) GeV (ma∈ (40,
180) μeV), where for the lower fa bound we have conservatively
allowed for the possibility that at t* the remaining energy density in
strings is instantaneously deposited into axions with spectrum F,
raising the string-induced DM density by a factor of 3/2, though in
actuality this contribution is likely smaller since the spectrum shifts
towards the UV as ma(t) increases. If the index is scale invariant
(q= 1), then we predict ma= 65 ± 6 μeV.

Discussion
In this work, we provide the largest and highest-resolution
simulation of the axion string network to-date by making use of
an AMR framework that allows us to resolve the axion string
cores while maintaining lower resolution over the majority of the
simulation volume. Our AMR approach may be used in the future
to simulate the axion dynamics at the QCD epoch where domain
walls form and the string network collapses26 and to study axion-

like particle string networks that produce gravitational wave
radiation36,38,39.

Our results have important implications for axion direct
detection experiments, as our preferred mass range of
(40, 180) μeV is higher than that which may be probed by two
of the main dedicated experiments that are aiming to test this
cosmological scenario, ADMX40 and HAYSTAC41. On the
other hand, this mass range may be probed by ADMX with
future searches42, by the MADMAX experiment43,44, and by
the proposed plasma haloscope45. Our work motivates focus-
ing experimental efforts on this mass range. The dominant
source of uncertainty on ma in our estimates arises from the
index q, which we find does not evolve with logmr=H and is in
the range (0.98, 1.06); this range is statistics-limited and will
shrink with future simulation efforts using AMR, leading to
more precise predictions that can in turn better inform
experimental efforts.

Methods
Simulation framework. We decompose the complex PQ scalar field as Φ ¼
ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
and assume a radiation-dominated cosmological background. In

this notation the axion field is given by a(x)= faarctan2(ϕ2, ϕ1) and the radial mode

by rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ21 þ ϕ22

q
� f a . The EOM can be derived from the Lagragian in (1) and

expressed in the dimensionless fields ψ= ϕ/fa as

ψ
00
1 þ

2
η
ψ0
1 � �∇2

ψ1 þ λψ1 η2 ψ2
1 þ ψ2

2 � 1
� �þ T2

1

3f 2a

" #
¼ 0; ð3Þ

ψ
00
2 þ

2
η
ψ0
2 � �∇2

ψ2 þ λψ2 η2 ψ2
1 þ ψ2

2 � 1
� �þ T2

1

3f 2a

" #
¼ 0 ; ð4Þ

with T1 defined as the temperature when H(T1)= fa. Here, primes denote deri-
vatives with respect to η while the spatial gradient �∇ is taken with respect to
�x ¼ R1H1x. We chose λ= 1 without loss of generality and the ratio ðT1=f aÞ2 is
given by

T1

f a

� �2

� 8:4 ´ 105
1012 GeV

f a

� �
: ð5Þ

Note that the PQ breaking scale fa is degenerate with the choice of physical box size
L and dynamical range in η. This implies that one has to perform only a single
simulation, which can be reinterpreted through trivial rescaling for different axion
masses.

Using an AMR technique means that some parts of our simulation volume are
run at a higher spatial (and temporal) resolution than other parts. Our
implementation is based on AMReX31, a software framework for block-
structured AMR.

Our simulation starts out with a uniform grid of N0= 20483 cells, which we will
refer to as the coarse level. We generate thermal initial conditions with
wavenumber up to 25 in each spatial direction at an initial time ηi= 0.1. See
Buschmann et al.26 for details of how the initial state for Φ is generated from the
thermal correlation functions. The comoving box length of our simulation volume
is L= 120 with periodic boundary conditions. This implies the simulation contains
(120)3 Hubble volumes at η= 1. Our starting time is η= 0.1. Note that the
comoving spatial difference Δx0= L/N0 between lattice points is such that our
initial state for ψ is smooth during the initial stages of the PQ phase transition (i.e.,
the structure in ψ is resolved by multiple grid sites).

Linearization of the EOM in (3) and (4) reveals that the system of PDEs is
strongly hyperbolic and admits stable evolution with Runge-Kutta time integration
and the method of lines (MoL). We chose to reduce the EOM to first order in time
by defining the conjugate momentum Π1;2 � ψ0 and evolving Π1,2 and ψ1,2

independently. The EOM in (3) and (4) is solved using the strong-stability
preserving Runge-Kutta (SSPRK3) method. This method is of third-order and as
such one order higher than the often used leapfrog integration scheme. We find
that this method provides the best trade-off between numerical stability and
computational costs including memory consumption when compared against a
second- and fourth-order Runge-Kutta method. At the coarse level, the time step is
Δη0= 0.02, satisfying the Courant-Friedrichs-Lewy (CFL) condition at Δη0/
Δx0 ≈ 1/3. The laplacian in the EOM is computed to sufficient accuracy by a
second-order finite difference method.

A grid of N0= 20483 cells will not be able to resolve string cores at late times.
To maintain resolution we periodically refine a volume around strings, which
means decreasing the grid spacing by a factor of 2 in a local volume (see Fig. 1). We
refer to the volumes with different resolutions as levels ℓ with the coarse level being
level ℓ= 0. Each level differs from each other not only in spatial resolution,

Fig. 4 Evolution of the axion number density. The inverse expectation
value 〈H/k〉−1 is computed using the instantaneous axion spectrum F(k/H)
by numerically integrating the spectrum to k=H ¼ xmax ¼ 50 and then
analytically integrating the power law distribution F(x)∝ x−q from xmax to
the UV cut-off at k=H � elog� for log� � 65. The data are illustrated along
with their 68% uncertainties. For q > 1 the expectation value does not
strongly depend on the UV cut off but is instead a function of the effective
IR cut-off, which is set by ξ such that hH=Ki�1 ¼ δ

ffiffiffi
ξ

p
for some parameter

δ, which we determine by fitting this model to the numerical data as
illustrated here. Smaller values of δ correspond to larger axion number
densities and thus large axion DM densities. Here, we illustrate the result
for the maximum allowed q of 1.06, which leads to the smallest δ consistent
with our simulation results.
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Δxℓ= Δx0/2ℓ, but also in temporal resolution to locally satisfy the CFL condition,
Δηℓ= Δη0/2ℓ. The higher-resolution lattice on level ℓ is determined by fourth-order
spatial interpolation of the coarser level ℓ− 1 if no data at that location and level
exists. Since different grid spacing and time step sizes are used simultaneously, each
level is evolved independently and then synchronized appropriately. This is known
as the subcycling-in-time approach and requires fourth-order spatial interpolation
and second-order temporal interpolation during synchronization. The simulation
is insensitive to the exact order of the interpolation used. See the AMReX
documentation31 for more information about the technical details of the AMR
approach.

We add an additional level each time the string width Γ drops below four grid
sites at the current finest level, i.e. at η ≈ 3, 6, 12, and 24 (logmr=H � 2:6, 3.9, 5.3,
6.7), leading to a total number of 5 levels. A 6th level is added at
η ≈ 64(logmr=H � 8:7) when the string width drops to 3Δxℓ=4. See Supplementary
Fig. 1 for an illustration of the respective string core resolution at different times in
our simulation, compared to the resolution achieved in the static lattice simulation
in Gorghetto et al.27. Note that to match the resolution of the finest level on a
uniform grid would require a stunning 65,5363 cells.

We use a tagging algorithm to decide on which local volumes to refine, with
cells tagged ensured to be within a refined volume. In total we use three different
tagging criteria that target (i) string cores, (ii) large gradients in ψ, and (iii) short
wave-length radiation emitted by strings:

● String cores are identified using the procedure described in Fleury and
Moore33 (Appendix A.2). This involves finding plaquettes that are being
pierced by strings. The cell at the low-index corner of a pierced plaquette is
tagged.

● As strings decay the resulting radiation can produce large gradients in the
field. To ensure sufficient resolution we tag cells with Δx2‘∇

2ψ1;2 > 0:04.
The precise numerical value is of phenomenological origin and has proven
to work well in our simulation setup.

● String radiation into radial modes is highly suppressed at late times yet it
can cause numerical instabilities if not sufficiently resolved. To avoid a
numerical breakdown we tag cells at the coarse level where Δx0η

3∇2ðψ2
1 þ

ψ2
2Þ > 4 is fulfilled.

Certain string dynamics, in particular strings that are reconnecting, can cause
large shock waves that travel away from strings. The typical scale of these wave
fronts is related to the string width and they therefore requires good spatial
resolution as well. The refinement criteria (ii) and (iii) track these wave fronts in
the two field components as they would not be otherwise captured by the first
refinement criteria. Strings are not stationary and thus the grid layout has to be
adjusted periodically. As this is computationally expensive we re-grid level ℓ only
every Δηℓ= 0.2/2ℓ. However, we ensure that within this time interval even the
fastest moving strings with v= c are always at least a full string width away from
any coarse-fine boundary. This is done by leaving a buffer zone of 11 grid sites
around each tagged cell that is refined as well.

The simulation was performed on NERSC’s Cori XC40 system using 1024 KNL
nodes (Intel Xeon Phi Processor 7250) with, in total, 69,632 physical CPU cores
and over 98 TB DDR4 RAM. It ran for about 74 h (~5.2 Million CPU hours) in a
hybrid OpenMP/MPI mode. Some of the smaller systematic tests ran on NERSC’s
Perlmutter system with up to 128 NVIDIA A100 GPUs.

The string length per Hubble ξ. We compute the string length per Hubble ξ,
defined in the main Article, using the algorithm from Fleury and Moore33 that
involves counting string-pierced plaquettes; our measured values for ξ are illu-
strated in Fig. 2. We then fit the model

~ξ ¼ c�2

log2mr=H
þ c�1

logmr=H
þ c0 þ c1 logmr=H ð6Þ

to this data, though this fit is made complicated by the fact that it is difficult to
estimate statistical uncertainties from our ξ measurements. We thus determine
these uncertainties in a data-driven way. Given that we expect the uncertainties to
be statistical in nature, and thus determined by the finite simulation volume, we
assign uncertainties to each measurement such that the uncertainty at a given
logi � logmr=HðtiÞ value is σξi ¼ σ0e

�3logi=4. Here, the factor e�3logi=4 is the time-
dependence of the square-root of the number of Hubble patches per simulation
box, which is a proxy for the square-root of the number of independent string
segments in the simulation volume. We then treat σ0 as a nuisance parameter that
we profile over during the fit. In particular, the likelihood is

Lξ ξ;Mξ ; fc; σ0g
	 
 ¼Y

i

exp � ðξi�~ξiÞ
2

2σ2
ξi

� �
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2ξi

q ; ð7Þ

with ξi and ~ξi denoting the data and model prediction, respectively, at the time
labeled by logi. Note that we denote the model byMξ with model parameter vector
c= {c−2, c−1, c0, c1} in addition to σ0. The uncertainties in Fig. 2 arise from the best-
fit σ0.

Construction of the axion energy density spectrum. In order to compute the
axion energy density spectrum, we consider the screened time-derivative of the
axion field, which is defined by

_ascrðxÞ ¼ f ðxÞ _a ðxÞ: ð8Þ
In this definition, we include a function f that screens out the locations of

strings, which appear as discontinuities in the axion field and its derivative. We
consider three choices of the screening function:

f ðxÞ ¼ 1þ rðxÞ=f a
	 
2 ð9Þ

f ðxÞ ¼ 1þ rðxÞ=f a ð10Þ

f ðxÞ ¼ 1 (no mask). ð11Þ
In this work our fiducial results use (9) such that

_ascrðxÞ ¼ ψ1ðxÞ _ψ2ðxÞ � _ψ1ðxÞψ2ðxÞ. The screening in (10) reproduces that of27

while (11) corresponds to no string screening. Because 1+ r(x)/fa ≈ 1 at locations
far away from string cores, screening as in (9) and (10) only modify the axion time
derivative in the direct vicinity of strings. As shown in Supplementary Fig. 7, the
results presented in this work are relatively insensitive to the choice of screening
function, which can be understood from the fact that we study the emission at
spatial scales well beyond the string width.

The axion energy density spectrum within our simulation can then be
computed as in Gorghetto et al.27 by

∂ρa
∂k

¼ jkj2
ð2πLÞ3

Z
dΩkj~_ascrðkÞj2; ð12Þ

where ~_ascrðkÞ is the Fourier transform of the field _ascr. We compute this energy
density spectrum with the HACC SWFFT algorithm46 applied to the axion time
derivative computed at the coarsest level of spatial resolution. After we have
compasuted dρa/dk using the fast Fourier transform (FFT), we then bin our FFT
data in 1774 equal-sized bins between k= 0 and the maximum k, corresponding to
kmax
com=2π ¼ 1024

ffiffiffi
3

p
=L. This binned spectrum is then used in our subsequent

analysis.

Measuring the string tension. We compute the effective string tension realized in
our simulation following the procedure described in refs. 24,27. We first compute
the average energy density within our entire simulation volume using

ρtot ¼ hj∂Φj2 þ λ jΦj2 � f 2a
2

� �2

i: ð13Þ

We then compute the average axion and radial mode energy densities by

ρa � h _a2i ; ð14Þ

ρr � h1
2
_r2 þ 1

2
ð∇rÞ2 þ λ

4
ðr2 þ 2rf aÞ

2i: ð15Þ

In computing ρa and ρr, we mask regions of the simulation volume that are at
the highest level of refinement to exclude string contributions. Note that in com-
puting both ρtot and ρr, we neglect the small contribution of the thermal mass in
(1). The string energy density is then straightforwardly obtained from

ρs ¼ ρtot � ρa � ρr : ð16Þ
Using the string energy density, we may determine the effective tension by

μdata ¼ t2ρs=ξ ; ð17Þ
with the subscript “data" denoting the measured value, which can be compared to
the theoretically expected string tension at large values of logmr=H:

μth � πf 2a log
mr

H
: ð18Þ

This comparison is illustrated in Supplementary Fig. 2 for times between
logmr=H ¼ 8 and logmr=H ¼ 9.

Importantly, we only want to compare the leading log behavior of μdata and μth.
Moreover, the addition of a refinement level at logmr=H � 8:7 changes the
effective UV cutoff in the numerical calculation, leading to a discontinuity in the
measured effective tension. To analyze the effective tension, we thus adopt a simple
logarithmic growth model for the effective tension

μ ¼ μ1f
2
a logmr=H þ μb; logmr=H ≤ 8:7

μ1f
2
a logmr=H þ μa; else ;

(
ð19Þ

which allows for a different constant offset before (μb) and after (μa) the addition of
the refinement level but enforces uniform logarithmic growth of the string tension.
We use a Gaussian likelihood with data-driven uncertainty on the μdata values σμ;
we treat σμ as a nuisance parameter in addition to μa,b. Profiling over the nuisance
parameters we determine μ1= 3.7 ± 0.5, which should be compared to the
theoretically expected value μ1= π.
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Given that we compute the effective string tension from the time-evolution of
the total energy density, as highlighted in Eq. (16), the agreement between the
measured tension and the theoretical prediction may be seen as a test that our
numerical procedure does not have a source of numerically induced energy leakage,
at least not at the level of precision that we may measure in this test.

Instantaneous emission analysis. Here we describe the method by which we fit a
power-law model to the instantaneous emission spectrum. Up to an overall nor-
malization, the instantaneous emission spectrum is given by

F
k
H

� �
/ 1

R3

∂

∂t
R3 ∂ρa

∂k

� �
: ð20Þ

In our simulation framework, time evolution is performed in terms of η and
hence the instantaneous emission Fi at conformal time ηi is calculated by numerical
finite difference as

Fi
k
H

� �
/ 1

η4i

η3iþ1
∂ρiþ1
∂k � η3i

∂ρi
∂k

ηiþ1 � ηi

 !
; ð21Þ

where ∂ρi/∂k is the axion energy density spectrum at ηi. At each ηi, we consider a
power-law model of the form

f
k
H
; fA; qg

� �
¼ A

k
H

� ��q

ð22Þ

and adopt the parametrized form

σ
k
H
; fB; p;Cg

� �
¼ B

k
H

� ��p

þ C ð23Þ

to describe the combined statistical and systematic uncertainty in the data. We then
analyze the data at each ηi with the Gaussian likelhood Li , which is of the form

Li di;Mi

	 
 ¼Y
j

1ffiffiffiffiffi
2π

p
σ j
exp � 1

2

di;j � f j
σ j

 !2" #
ð24Þ

where di,j is the value of the numerically computed instantaneous emission spec-
trum at the jth value of k/H computed at time ηi. The model predictions for the
mean and the error at the jth value of k/H are specified by the model parameters
Mi ¼ fAi; qi;Bi; pi;Cig for each time ηi. The values of k/H and associated data that
enter the likelihood are restricted to satisfy k/H > xIR and k=H < x�1

UVmr=H.
In performing the analysis, we only analyze emission spectra which contain at

least 10 bins between kIR≡HxIR and kUV≡mr/xUV. We make the fiducial analysis
choices of using the screening function of Eq. (9), kIR= 50H and kUV=mr/16, and
using a finite difference in time-spacings corresponding to Δ logmr=H ¼ 0:25. The
impact of varying these fiducial choices, which is marginal, is illustrated in the
Supplementary Figs. 4–7.

Using the likelihood in Eq. (24), we determine the maximum likelihood
estimate q̂i for the emission index at each ηi. Since the likelihoods are quadratic to
very good approximation, we also determine Gaussian uncertainties σqi on q̂i at

each ηi by 1=σ2qi ¼ �∂2=∂2qi logLi evaluated at the likelihood-maximizing model
parameters. After obtaining q̂i and σqi at each ηi, we join the results to study the
possible evolution of q. We use a Gaussian likelihood

Lq q;Mq; σ
h i

¼
Y
i

exp � ðq̂i�~qiÞ2
2ðσ2þσ2qi Þ

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2 þ σ2qi Þ

q ð25Þ

where ~qi is the model prediction at time ηi specified by parametersMq . We include
an additional error term σ as a nuisance parameter which is added in quadrature
with the data-driven σqi to address possible systematic effects. In this work, we
consider two possibilities for the evolution of q, the first that q grows linearly as
qðlogmr=HÞ ¼ q1ðlogmr=HÞ þ q0 and the second that q is constant such that
qðlogmr=HÞ ¼ c0. As in our analysis of the individual instantaneous emission
spectra, the maximum likelihood estimates and uncertainties of the parameters σ,
q0, and q1 can be determined via standard frequentist techniques.

AMR convergence. We perform two different, smaller-scale simulations to test the
convergence of the AMR technique. Both simulations use a comoving side length
of L= 23/(R1H1), which allows us to simulate to a final state at log � 5:8 before
running into finite-volume effects. One simulation uses a static grid with 20483

sites, which is large enough that the string width is still resolved by four sites at the
final state. This simulation serves as the baseline, as it over-resolves the entire field
at all times. The second simulation uses AMR with a coarse level resolution of 5123

sites. By adding two additional refinement levels at log � 3:1 and log � 4:5 we
ensure that strings are resolved by at least four grid sites at all times, though the
resolution may be lower away from the strings. The initial states for both simu-
lations are identical; that is, the 5123 initial state is a down-sampled version of the
20483 initial state. All other parameters are identical to that of our main simulation.
Note that the static-grid simulation is achieved by running within AMReX but
without employing any of its AMR capabilities.

For both simulations we compute our quantities of interest, the string length
per Hubble volume ξ and the instantaneous axion radiation spectrum. In
Supplementary Fig. 11 we present the relative difference in string length between
the two simulations. At all times the relative difference between both simulations is
<0.4% and, more importantly, the relative difference is centered around zero with
no observable drift in either direction. In Supplementary Fig. 12, we compare the
relative difference in emission spectra obtained between the two simulations, where
the differences are also at the sub-percent level for k≲mr/4, which is the largest k
considered in this work. Note that these spectra are computed by comparing the
states between logmr=H ¼ 4:953 and logmR=H ¼ 5:790. The FFT for the static
grid is computed from the 20483 state, while for the AMR simulation the FFT is
computed from the coarse level (5123); thus, some small differences may be
expected. This is because of the fact that down-binning to the coarse level is
equivalent to an effective low-pass filter, which suppresses the power of the high-k
modes and thus leads to a small spectral distortion. However, in both this test and
in our fiducial analysis we calculate that this spectral distortion on the index is at
the one percent level or less and thus subdominant compared to our statistical
uncertainty. While this test did not evolve to high enough log to fit for the index q,
since such evolution would be challenging with a static grid, we can infer from the
differences in the spectra that the differences in q would likely also be at the sub-
percent level and thus subdominant compared to our statistical uncertainty on the
final q measurement, which is at the level of ~5%.

Dependence on the initial state. We perform a set of simulations to test the
dependence of our results on the initial state. In particular, in our fiducial simu-
lation we were forced to make a choice for the maximum wavenumber for the
modes included in our initial state. In this section we provide evidence that our
results are not sensitive to that choice by performing multiple, smaller simulations.
Each of the smaller simulations uses a L= 44/(R1H1) box length and a coarse level
resolution of 10243 sites. With three extra refinement levels this allows us to
simulate to log � 7. We perform two sets of simulations with a maximum wave-
number of 5 and 25. For each set we run two different initial state realizations to
enhance statistics. The physical size of the highest-k mode can be characterized by
L=kmax, with our main simulation corresponding to L=kmax ¼ 120=25 ¼ 4:8. Thus,
we run additional simulations with L=kmax � 8:8 and 1.8 to study the effects of
minimum physical wavelengths much smaller and much larger than in our fiducial
simulation.

For each simulation we compute the string length per Hubble volume ξ and the
instantaneous spectrum F(k/H). In Supplementary Fig. 13 we compare the
evolution of ξ from our systematic tests with that of our main simulation. In this
section, and this section only, we determine the error on ξ by σξ ¼ ξσNseg

=Nseg,

where σNseg
is the Poissonian error on the independent number of string elements

Nseg= ℓtot/Lcorr= 4ξ3/2(L/η)3. Here, ℓtot= Vξ/t2 is the total number of string
segments in a volume V with a correlation length of Lcorr ¼ 1=ðH

ffiffiffi
ξ

p
Þ. The

simulation volumes of both initial state realizations are combined in this procedure.
Note that we determine the uncertainties this way in order to avoid having to
perform fits of functional forms to the low log ξ data. While the field configurations
of the three L=kmax variations start out drastically different, the differences appear
to diminish at later times. This supports the hypothesis of Gorghetto et al.39, which
is that the axion string evolution approaches an attractor solution.

In Supplementary Fig. 14, we stack the emission spectra from the two
systematic variations and determine their best-fit power-law model, using the final-
state data at log � 7. We compare these results to that from our fiducial simulation.
The systematic variations and the fiducial simulation demonstrate mutual
compatibility at the expected statistical precision, as indicated in the right panel of
Supplementary Fig. 14. Note that for these fits, to ensure a suitably large analysis
region, we choose an IR cutoff of 30H and a UV cutoff of mr/8 rather than our
fiducial analysis choice of 50H and mr/16. Results for the individual simulations
without stacking are presented in Supplementary Tab. V.

DM abundance calculation. Here we describe the calculation of the DM abun-
dance from the quantity nstringa , which is described in the main Article. Define
Λ ≡ 400MeV; then the temperature-dependent axion mass is well characterized by
a power-law47:

m2
aðTÞ ¼

αaΛ
4

f 2aðT=ΛÞn
; T � Λ ; ð26Þ

with αa and n dimensionless constants. The most recent lattice simulations agree
with the dilute instanton gas approximation and support αa= (4.6 ± 0.9) × 10−7 for
n ≈ 8.1648, which are the values we assume in this work (note that these uncer-
tainties are sub-dominant to those from the axion production from strings from
our simulations). We also approximate the temperature-dependent number of
relativistic degrees of freedom as g�ðTÞ � g0�ðT=MeVÞγ , with g0� � 50:8 and
γ ≈ 0.053, which has been shown to match the full result for g*(T) up to a few
percent over the temperature range 800 < T < 1800MeV relevant for this
calculation49. We also assume that the numbers of radiation and entropy degrees of
freedom are the same over the temperature range of interest, since the difference
between these is also at the level of a few percent48 and thus a sub-dominant source
of uncertainty.
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The temperature T* is defined as the temperature at which 3H(T*)=ma(T*);
using HðT�Þ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ=90

p
T2
�=Mpl, with Mpl the reduced Planck mass, we may

solve explicitly for T*. We assume that the string network evolves uninterrupted up
to T* but that for T < T* it quickly evaporates and is not a significance source of
axions (but see below). In this approximation axion number density is conserved
for T < T*, so that we may write the axion DM abundance today as in Eq. (2). Note
that Ωstr

a / f ð6þnþγÞ=ð4þnþγÞ
a � f 1:17a , which is the same scaling as for ΩQCD

a , since for
both contributions the fa-scaling has the same origin (see e.g. Buschmann et al.26).

While we do not simulate the QCD phase transition in this work, it is important
to keep in mind that the string network does evolve non-trivially during the QCD
epoch. As illustrated in the simulations in Buschmann et al.26, the string network
collapses rapidly after T*. In particular, the string network in Buschmann et al.26

was completely gone at temperatures of order T ~ T*/1.5. Note that we and
Buschmann et al.26 assume a domain wall number NDW of unity so that domain
walls are unstable. For an alternative scenario with NDW > 1 where domain walls
can exist well beyond the QCD phase transition see e.g. Hiramatsu et al.50. In our
approximation where the string network evolves uninterrupted until T* the string
network has energy ρs= 4H2(T*)μ(T*)ξ* at T*. Between T* and ~ 1/1.5T* all of that
energy is transferred to axion radiation. However, it is likely that the spectrum of
radiation during this collapse is shifted to the UV compared to the function F(k/H)
from before the mass turns on, since after T* the axion mass ma(T) is much larger
than Hubble and thus provides an IR cut-off for the radiation spectrum that is
further in the UV compared to that for the axion-string network prior to the QCD
phase transition. Since the spectrum is shifted towards the UV, it should produce
less axions by number density and thus be less important for the final DM
abundance. Still, in order to be conservative we estimate the maximum amount of
DM that may be produced by the string network by assuming that at T* all of the
energy density in ρs is transferred instantaneously to axions with spectrum F(k/H).

This provides a contribution to the axion energy density Ωdecay
str � Ωstr

a =2, with Ωstr
a

being the contribution to the DM abundance from axions produced prior to T*.
We allow for this possibility when determining that the maximum allowed axion
mass is 180 μeV, but we do not include this contribution when estimating the
minimum allowed axion mass of 40 μeV.

In this work we assume that the radial mass, mr, is of order the decay constant
fa ~ 1010− 1012 GeV. However, one possibility is that mr≪ fa, as may happen in
e.g. supersymmetric theories where mr is related to the supersymmetry breaking
scale; in this case, mr≳ TeV is possible51. If ma ~ TeV, then logðmr=HÞ � 50, which
is large enough such that our conclusion that ma∈ (40, 180)μeV produces the
correct DM abundance is still valid in this scenario.

Note that in these estimates we must perform the fit of the model δ ´
ffiffiffi
ξ

p
to the

〈H/k〉−1 data illustrated in Fig. 4. The 〈H/k〉−1 data do not have easily estimated
uncertainties and so, as we have illustrated multiple times already, we determine
these uncertainties in a data-driven way by assigning the uncertainties of all data
points a value σ, which we profile over when determining δ. The uncertainties in
Fig. 4 reflect the best-fit value of σ.

Lastly, the derivation above assumes that number-changing processes are not
important in the QCD phase transition since ∣a/fa∣ ≲ 1. Note that the formula in the
main Article for hða=f aÞ2i for the string-induced axion radiation arises from the
relation hða=f aÞ2i ¼ ð1=f 2aÞ

R
dk dρa=dkð1=k2Þ, with dρa=dk ¼R tdt0Γ0=H0ðR0=RÞ3FðkR=R0H0Þ and primes denoting quantities evaluated at t0 .

Semi-analytic analysis of string evolution. In the main Article we pointed to an
argument related to the logarithmically increasing string tension for why ξ may be
expected to increase logarithmically in time as well. Here, we expand upon that
argument as well as give an argument for why q= 1 may be expected for the
spectrum. As the string network evolves in the scaling regime axions are produced
at a rate Γa ≈ 2Hρs, where ρs= ξμ/t2 is the energy density in strings, and μ �
μ0 logðmr=HÞ is the string tension, to leading order in large log. Recall that
μ0 ¼ πf 2a . The tension μ has a logarithmic divergence that is regulated in the IR by
the scale of string curvature ~H−1 because of energy associated with the axion field
configuration, which wraps around the string. Physically we may imagine that the
long strings are composed of a random walk of smaller segments that we refer to as
correlation lengths, which may evolve dynamically and straighten on timescales of
order H−1. Denote the number density of correlation lengths as nc. Then, we may
relate Γa= ncdEc/dt, where dEc/dt is the power transferred to axions by the
straightening correlation lengths. Previous studies of collapsing closed string loops
and straightening string kinks have shown that the loops and kinks lose energy as
dE=dt ¼ �αf 2a , with α � Oð1� 10Þ, regardless of the loop and kink sizes14,20,52,53.
We assume that the correlation lengths radiate as dEc=dt ¼ �αf 2a for some
α ~ 1− 100. Solving the energy balance equation then leads to a time-dependent
correlation length Lc � α=½πH logðmr=HÞ	 for large log. Let us now assume that
there are ~N str strings in total per Hubble patch, with each string composed of a
random walk of smaller correlation lengths. This then implies that at large
logðmr=HÞ the parameter ξ scales as ξ � Nstrðπ=4αÞ logðmr=HÞ, which reproduces
the observed scaling for N str � few, consistent with the simulation data as illu-
strated in Fig. 2, and α � Oð10Þ.

One of the most important results of this Article is the result that q ≈ 1, to
within ~ 5%. In order to further support this result, we show visually that the string

distribution is approaching an attractive solution that supports q= 1. String loops
can be characterized by the parameter nℓ, which is the number of string loops with
size smaller than ℓ at a time t, as well as by ξℓ, which is the total length of string
loops with size smaller than ℓ. In Supplementary Fig. 3 we illustrate ξℓ/ξ∞ versus the
length ℓ at various times, with ξ∞= ξ. Visually, it is clear that as time progresses,
the string loop distribution approaches an attractor solution, whose validity is
extending over an increasingly large range of lengths. This sort of attractor solution
for the loop distribution was also found for the fat string approximation in
Gorghetto et al.24 but here we are able to show that this also holds in the physical
case. Given the importance of this distribution, we numerically fit a power law
model to the data using the same procedure described in Methods Sec. I. The
treatment of uncertainties and definition of the Gaussian likelihood is analogous to
that used for the instantaneous emission spectrum, with a power-law model of the
form ξℓ=Dℓm. We perform the fit at various times ηi to obtain corresponding
indices mi. The fitting range is Hℓ/π∈ (8H/mr, 1/2) to ensure we are within the
attractor regime. We only include string loop distributions with at least 8 data
points within the fitting range and logmr=H ≥ 4. The results for mi are then joint
using a Gaussian likelihood identical to that for q in (25) assuming m is time-
independent. We find m= 0.97 ± 0.03 with the fit illustrated in Supplementary
Fig. 3.

Let us now show that m= 1 implies q= 1. From a m= 1 length distribution, we
can calculate the number of strings loops with length between ℓ and ℓ+ dℓ to be

dξ‘
d‘

¼ ‘
dn‘
d‘

¼ D ; ð27Þ

for some constant D. We can determine the constant D by using

ρ ¼
Z

d‘
dρ
d‘

¼
Z

d‘μ‘
dn‘
d‘

¼ Dμ‘max ¼ ξsub Hμ

t2
; ð28Þ

leading to D ≈ ξsub H/t3 with ξsub H representing the total string length in sub-
horizon sized string loops.

We are interested in the spectrum of axions emitted by the string network. A
string loop of length ℓ emits axions dominantly at the fundamental frequency k ~ 1/
ℓ. Meanwhile, the string loop radiates energy at a rate dE

dt ¼ �αf 2a . We can now
combine all of this knowledge with Eq. (27) to find

F½k=H	 / αf 2a
dn‘
dk

¼ αcf 2a
k

: ð29Þ

We thus find that given the attractive behavior seen in Supplementary Fig. 3,
that the instantaneous spectrum of axions emitted by the network should be
approaching q= 1. As a side-note, given this understanding of the string loop
distribution, we can easily derive the energy density and spectrum of gravity waves
emitted by string loops using dEGW/dt=−αGWGμ239. Note, however,
that Gorghetto et al.39 finds q ≈ 2 for gravitational waves. A clue for reconciling
these results may be found in the curvature distribution of the infinitely long
straight strings. Taking the radius of curvature to be ~ ℓ, the curvature distribution

of the infinite string is approximately dξ‘
d‘ � ‘ (see the discussion in the following

paragraphs for a possible explanation for this curvature distribution). Applying the
arguments in this section, we find that the infinitely long string radiates gravity
waves with a spectrum of q ≈ 2. If axions were dominantly radiated from the string
loops while gravity waves were dominantly radiated from the infinitely long strings,
the different spectra would be reconciled. It would be interesting to study this
difference in more detail.

Finally, we conclude by giving analytic arguments for why Supplementary Fig. 3
takes the form that it does. Namely that at larger lengths, ξℓ∝ ℓ, and at smaller
lengths ξℓ ∝ ℓ2. At small lengths, the string loops shrink due to the emission of
axions giving ‘ðtÞ ¼ ‘0 � αf 2aðt � t0Þ=μ with ℓ0 being the initial loop size at a time
t0. If string loops are formed at a constant rate with a fixed length ℓ0, then dn‘=d‘ /
dn‘0=dt ¼ constant. Multiplying by ℓ and integrating, one finds that at small
lengths ξℓ ∝ ℓ2, in rough agreement with Supplementary Fig. 3.

Larger string loops shrink by intersecting the long, relatively straight, and
infinite strings that carry most of the string length. The two strings will intersect at
a rate Γint given roughly by the average string speed over the average distance
between strings. Upon intersecting the infinite string, the string loop loses a
random amount of its string length. If the locations of the intersections are
random, the probability distribution for the final length of the string loop, ℓ, is
proportional to its length. Thus an initial string loop of length ℓ0 has
dP=d‘ ¼ 2‘=‘20. Putting this intuition into equation form, we find

dn‘
dtd‘

¼ �Γint
dn‘
d‘

þ
Z 1

‘

d‘0
dP
d‘

dn‘0
d‘0

Γint : ð30Þ

The first term on the right hand side gives the loss of loops due to intersections
while the second term gives their production from larger loops of size ℓ0. Solving
for the equilibrium distribution, we find that dnℓ/dℓ∝ 1/ℓ. As before, multiplying
by ℓ and integrating, one finds that ξℓ∝ ℓ giving q= 1.

Data availability
Due to the large size of the simulation output (>50 Terabytes), data products from this
work are not stored in a public repository but may be made available by the
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corresponding authors upon request. Supplementary animations are available at https://
bit.ly/amr_axionand can be downloaded at Buschmann et al.54.

Code availability
The AMReX code framework used in this work is publicly available at https://amrex-
codes.github.io/. Additional code may be made available upon request, though it is highly
tailored for NERSC’s Cori XC40 system.
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