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On the List and Bounded Distance Decodibility of the

Reed-Solomon Codes

(Extended Abstract)

Qi Cheng∗ Daqing Wan†

Abstract

For an error-correcting code and a distance bound, the list decoding problem is to compute
all the codewords within the given distance to a received message. The bounded distance
decoding problem, on the other hand, is to find one codeword if there exists one or more
codewords within the given distance, or to output the empty set if there does not. Obviously
the bounded distance decoding problem is not as hard as the list decoding problem. For a
Reed-Solomon code [n, k]q, a simple counting argument shows that for any integer g < n,

there exists at least one Hamming ball of radius n − g, which contains at least
(n

g)
qg−k many

codewords. Let ĝ(n, k, q) be the smallest integer g such that
(n

g)
qg−k < 1. For the distance

bound between n−
√
nk and n− ĝ(n, k, q), we do not know whether the Reed-Solomon code

is list, or bounded distance decodable, nor do we know whether there are polynomially many
codewords in all balls of the radius. It is generally believed that the answers to both questions
are no. There are public key cryptosystems proposed recently, whose security is based on
the assumptions. In this paper, we prove: (1) List decoding can not be done for radius
n− ĝ(n, k, q) or larger, otherwise the discrete logarithm over Fqĝ(n,k,q)−k is easy. (2) Let h be

a positive integer satisfying h < q1/4 − 2. We show that the discrete logarithm problem over
Fqh can be efficiently reduced to the bounded distance decoding problem of the Reed-Solomon
code [q, 3h+4]q with radius q−4h−4. These results show that the decoding problems for the
Reed-Solomon code are at least as hard as the discrete logarithm problem over finite fields.
The main tools to obtain these results are an interesting connection between the problems of
list-decoding of Reed-Solomon code and the problems of discrete logarithms over finite fields,
and a generalization of the Katz’s theorem, which concerns representations of elements in an
extension finite field by products of linear factors.

1 Introduction and Motivation

An error-correcting code C over an alphabet Σ is an injective map φ : Σk → Σn. When we need
to transmit a message of k letters over a noisy channel, we apply the map on the message first (
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i.e. encode the message ) and send its image (i.e. the codeword) of n letters over the channel. The
Hamming distance between two sequence of letters of the same length is the number of positions
where two sequences differ. A good error-correcting code should have a large minimum distance
d, which is defined to be the minimum Hamming distance between any two codewords in φ(Σk).
A received message, possibly corrupted, but with no more than (d− 1)/2 errors, corresponds to a
unique codeword, thus may be decoded into the original message despite errors occur during the
communication.

Error-correcting codes are widely used in practice and are mathematically interesting and
intriguing. It attracts the attention of theoretical computer science community recently. Sev-
eral major achievements of theoretical computer science, notably the Probabilistically Checkable
Proofs and derandomization techniques, rely heavily on the techniques in error-correcting codes.
We refer to the survey [14] for details.

For the purpose of efficient encoding and decoding, Σ is usually set to be a finite field, and
the map φ is set to be linear. Numerous error correcting codes have been proposed, among them,
the Reed-Solomon codes are particularly important. They were deployed to transmit information
from and to spaceships, and were used to store information in optical media. The Reed-Solomon
code [n, k]q, is the map from a0, a1, · · · , ak−1 ∈ Fq to (a0 + a1x+ · · ·+ ak−1x

k−1)x∈S⊆Fq
for some

|S| = n. (The choice of S will not affect our results in this paper. ) Since any two different
polynomials with degree k − 1 can share at most k − 1 points, the minimum distance of the
Reed-Solomon code is n− k+1. If the radius of a Hamming ball is less than half of the minimum
distance, there should be at most one codeword in the Hamming ball. Finding the codeword is
called unambiguous decoding. It was solved, see [2] for a simple algorithm.

If we gradually increase the radius, there will be two or more codewords lying in some Hamming
balls. Can we efficiently enumerate all the codewords in any Hamming ball of certain radius? This
is the so called list decoding problem. The notion was first introduced by Elias [5]. There was
virtually no progress on this problem for radius slightly larger than half of the minimum distance,
until Sudan published his influential paper [13]. His result was subsequently improved, the best
algorithm [9] solves the list decoding problem for radius as large as n−

√
nk. The work sheds new

light on the limitation of list decodibility of Reed-Solomon codes. To the other extreme, if the
radius is greater than or equal to the minimum distance, there are exponentially many codewords
in some Hamming balls.

The decoding problem of Reed-Solomon codes can be formulated into the problem of curve fit-
ting or polynomial reconstruction. In the problem, we are given n points (x1, y1), (x2, y2), · · · , (xn, yn).
The goal is to find polynomials of degree k− 1 that pass at least g points. In this paper, we only
consider the case when points have distinct x-coordinates. If we allow multiple occurrences of
x-coordinates, the problem is NP-hard [6], and it is not relevant to the Reed-Solomon decoding
problem. If g ≥ (n + k)/2, it corresponds to the unambiguous decoding of Reed-Solomon codes.
If g >

√
nk, the radius is less than n−

√
nk, the problem can be solved by the Guruswami-Sudan

algorithm. If g ≤ k, it is possible that there are exponentially many solutions, but finding one is
very easy.

In this paper, we study the following question: How large can we increase the radius before the
list decoding problem or the bounded distance decoding problem become infeasible? The question
has been under intensive investigations for Reed-Solomon codes and other error-correcting codes.
The case of general non-linear codes has been solved [6]. The case for linear codes is much harder.

2



Some partial results have been obtained in [8, 7]. However, none of them applies to Reed-Solomon
codes. No negative result is known about the list decodibility of Reed-Solomon codes, except a
simple bound given by Justesen and Hoholdt [10], which states that for any positive integer g < n,
there exists at least one Hamming ball of radius n − g, which contains at least

(n
g

)

/qg−k many
codewords. This bound matches the intuition well, consider an imaginary algorithm as follows:
randomly select g points from the n input points, and use polynomial interpolation to get a
polynomial of degree at most g − 1 which passes these g points. Then with probability 1/qg−k,
the result polynomial has degree k − 1. The sample space has size

(n
g

)

. Thus heuristically, the

number of codewords in Hamming balls of radius n − g is at least
(

n
g

)

/qg−k on the average. In
the same paper, Justesen and Hoholdt also gave an upper bound for the radius of the Hamming
balls containing a constant or less number of codewords.

If we gradually increase g, starting from k, then
(n

g

)

/qg−k will fall below 1 at some point.

However, g is still very far away from
√
nk. Let ĝ(n, k, q) be the smallest integer such that

(

n
g

)

/qg−k is less than 1. The following lemma shows that there is a gap between ĝ(n, k, q) and√
nk.

Lemma 1 1. For positive integers k < g < n, if g >
√
nk, then ng−k >

(n
g

)

(which implies

that qg−k >
(n

g

)

).

2. For any constant 0 < c1 < 1/2 and fixed k/n, if g = k + c1(n − k), then
(n

g

)

/ng−k ≤ 2−c2n

for some positive constant c2.

In fact, for a fixed rate (k/n) and q = Θ(n), ĝ(n, k, q) = k+ Θ( n
log n). We prove that if the list

decoding of the [n, k]q Reed-Solomon code is feasible when radius is n−ĝ(n, k, q), then the discrete
logarithm over Fqĝ(n,k,q)−k is easy. In the other words, we prove that the list decoding is not feasible
for radius n − ĝ(n, k, q) or larger, assuming that the discrete logarithm over Fqĝ(n,k,q)−k is hard.
Note that it does not rule out the possibility that there are only polynomially many codewords
in all Hamming balls of radius n − ĝ(n, k, q), even assuming that intractability of the discrete
logarithm over Fqĝ(n,k,q)−k .

Theorem 1 If there exists an algorithm solving the list decoding problem of radius n− ĝ(n, k, q)
for the Reed-Solomon code [n, k]q in time qO(1), then discrete logarithm over finite field Fqĝ(n,k,q)−k

can be computed in time qO(1).

When the list decoding problem is hard for certain radius, or a Hamming ball contains too
many codewords for us to enumerate all of them, we can turn our attention to designing an
efficient bounded distance decoding algorithm, which only need to output one of codewords in the
ball, or output the empty set in case that the ball does not contain any codeword. However, we
prove that the bounded distance decoding is hard as well.

Theorem 2 Let q be a prime power and h be a positive integer satisfying q > (h + 2)4. If the
bounded distance decoding problem of radius q− 4h− 4 for the Reed-Solomon code [q, 3h+ 4]q can
be solved in time qO(1), the discrete logarithm problem over Fqh can be solved in time qO(1).
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To prove the theorem, we naturally come across the following question: In a finite field Fqh ,
for any α such that Fqh = Fq[α], can Fq + α generate the multiplicative group (Fqh)∗? This
interesting problem has a lot of applications in graph theory, and it has been studied by several
number theorists. Chung [4] proved that if q > (h−1)2, then (Fqh)∗ is generated by Fq +α. Wan

[16] showed a negative result that if qh − 1 has a divisor d > 1 and h ≥ 2(q logq d + logq(q + 1)),
then (Fqh)∗ is not generated by Fq + α for some α. Katz [11] applied the Lang-Weil method,
and showed that for every h ≥ 2 there exists a constant B(h) such that for any finite field Fq

with q ≥ B(h), any element in (Fqh)∗ can be written as a product of exactly n = h + 2 distinct
elements from Fq + α. Clearly B(h) has to be an exponential function. In this paper, we obtain
a generalization of the Katz’s theorem, in which we use a bigger n and manage to decrease B(h)
to a polynomial function. For details, see Section 3.2

It is generally believed that the list decoding problem and the bounded distance decoding for
Reed-Solomon codes are computationally hard if the number of errors is greater than n−

√
nk and

less than n − k. This problem is even used as a hard problem to build public key cryptosystems
and pseudorandom generators [12]. A similar problem, noisy polynomial interpolation [3], was
proved to be vulnerable to the attack of lattice reduction techniques, hence is easier than originally
thought. This raises concerns on the hardness of polynomial reconstruction problem. Our results
confirm the belief that polynomial reconstruction problem is hard, under a well-studied hardness
assumption in number theory, hence provide a firm foundation for many protocols based on the
problem.

This paper is organized as follows. In Section 2, we prove Lemma 1. In Section 3, we sketch
the proof of Theorem 1 and Theorem 2. In Section 4, we show an interesting duality between the
size of a group generated by linear factors, and the list size in Hamming balls of Reed-Solomon
codes.

2 Proof of Lemma 1

In this section, we prove Lemma 1 by showing the following statement.

Theorem 3 There is no positive integral solution for

(

n

g

)

> nh (1)

g >
√

n(g − h). (2)

We first obtain a finite range for h, g and n.

Lemma 2 If (n, g, h) is a positive integral solution, then h < 88.

Proof: Denote g/h by α and n/h by β. From g >
√

n(g − h), we have α >
√

β(α− 1). Hence
α < β < α+ 1 + 1

α−1 .

Recall that for any positive integer i,
√

2πi(i/e)i ≤ i! ≤
√

2πi(i/e)i(1 + 1
12i−1 ).

(

n
g

)

=
(

βh
αh

)

≤ ( ββ

αα(β−α)β−α )h.

Thus ββ

αα(β−α)β−α ≥ βh, which implies
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h ≤ ββ−1

αα(β − α)β−α
.

Recall some facts:

1. For x > 0, xx takes the minimum value 0.6922.. at x = e−1 = 0.36787944....

2. For x > 0, 1 ≤ (1 + 1
x)x ≤ e = 2.7182818284...

If α ≥ 2, then β − α ≤ 1 + 1
α−1 ≤ 2. We have

h ≤ 1.45ββ−1

αα

≤
1.45(1 + α+ 1

α−1)
(α+ 1

α−1
)

αα

≤ 1.45(1 + α+
1

α− 1
)(

1
α−1

)(1 +
1

α
+

1

α(α − 1)
)α

≤ 1.45 ∗ 4 ∗ e ∗ 2 < 32.

If α < 2, h ≤ 1.45ββ−1

(β−α)β−α . There are two cases. If β ≤ 3, then

h ≤ 1.452 ∗ 9 < 19.

If β > 3, then

h ≤ 1.45(
β

β − α
)β−1(β − α)α−1

≤ 1.45(
β

β − 2
)β−1(1 +

1

α− 1
)α−1

≤ 1.45 ∗ e3 ∗ 3 < 88.

2

Corollary 1 α ≥ 88/87 and β − α < 88.

Note that if α < 89, then β < 178. If α ≥ 89, then β − α ≤ 1 + 1/88, but n− g = (β − α)h is
an integer, and h ≤ 87, so β − α ≤ 1. So if n > 2h, (1) can not hold.

Proof: Now we can finish proving the main theorem of this section, by exhaustively searching
for the solutions in the finite range that h < 88, n < 178 ∗ 88 = 15664 and h < g < n in a
computer. 2

Similarly we can show that for any constant c, the inequalities
(

n

g

)

≥ nh−c (3)

g >
√

t(g − h) (4)

have only finite many positive integral solutions.
Denote n

g−k by γ and g
g−k by δ. To prove the second part of the lemma, it suffices to see that

(n
g

)

=
(γ(g−k)

δ(g−k)

)

≤ cg−k
2 for some constant c2 only depending on α and β.
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3 The Decoding Problem of Reed-Solomon Codes and the Dis-

crete Logarithm over Finite Fields

Let q be a prime power and let Fq be the finite field with q elements. Let S be a subset of Fq of
n elements. For a positive integer g ≤ n, consider

Sg = {A|A ⊆ S, |A| = g}.

For any A ∈ Sg, denote
∏

a∈A(x−a) by PA(x). Let h(x) be an irreducible monic polynomial over
Fq of degree h < g. Define a map ψ : Sg → Fq[x]/(h(x)) by

ψ(A) = PA(x) (mod h(x)).

For any f(x) in Fq[x]/(h(x)), if ψ−1(f(x)) is not empty, then there exists at least one polynomial
t(x) and one A ∈ Sn such that f(x) + t(x)h(x) = PA(x). For any a ∈ A, PA(a) = 0, t(a) =
−f(a)/h(a). Hence there are at least g elements in S which are the roots of f(x) + t(x)h(x) = 0,
and the curve y = t(x) passes at least g points in the following set of n points:

{(a,−f(a)/h(a))|a ∈ S}.

According to Pigeonhole principle, there must exist a polynomial f̂(x) such that |ψ−1(f̂(x))| ≥
|Sg|/|Fq[x]/(h(x))| =

(n
g)
qh . Note that t(x) has degree g − h and leading coefficient 1. For any

polynomial f ∈ Fq[x] of degree at most h−1, let Tf(x) be the set of polynomial t(x) of degree g−h
such that f(x) + t(x)h(x) = PA(x) for some A ∈ Sg, and let Cf(x) be the set of codewords within

distance of n− g to the received word (−f(a)/h(a)− ag−h)a∈S in Reed-Solomon code [n, g − h]q.
There is a one-to-one correspondence between Tf(x) and Cf(x), by sending any t(x) ∈ Tf(x) to

(t(a) − ag−h)a∈S .
Suppose that we know f(x) and h(x), but not A, are we still able to find t(x)? This is just a

list decoding problem of Reed-Soloman code [n, g − h]q. Once we have a list of t(x), we can find
A by factoring f(x) + t(x)h(x). This provides a general framework for the following proofs.

3.1 The proof of Theorem 1

Given a Reed-Solomon code [n, k]q, let h = ĝ(n, k, q) − k. Recall that ĝ(n, k, q) is the smallest
integer such that

(n
g

)

/qg−k is less than 1, and h is the degree of an irreducible polynomial h(x).
We show that there is an efficient algorithm to solve the discrete logarithm over Fqĝ(n,k,q)−k =
Fq[x]/(h(x)) if there is efficient list decoding algorithm for the Reed-Solomon code [n, k]q with
radius n− ĝ(n, k, q). Let α = x (mod h(x)). Suppose that we are given the base b(α) and we need
to find out the discrete logarithm of t(α) with respect to the base, where b and t are polynomials
over Fq of degree at most h− 1. That there is an efficient list decoding algorithm implies:

1. There are only polynomially many codewords in any Hamming ball of radius n− ĝ(n, k, q),
which in turn implies that |ψ−1(f)| ≤ qc for any f ∈ Fqh and a constant c. Hence

|ψ(Sĝ(n,k,q))| ≥
(

n
ĝ(n,k,q)

)

qc
= Θ(qĝ(n,k,q)−k/qc) = Θ(qh/qc).
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2. And they can be found in polynomial time.

We use the index calculus algorithm with factor bases (α+a)a∈S . If we randomly select an integer
i between 0 and qĝ(n,k,q)−k − 1, then with probability bigger than 1/qc, ψ−1(b(α)i) is not empty.
Apply the list decoding algorithm, we get relations

b(α)i = f(α) =
∏

a∈A1

(α+ a) = · · · =
∏

a∈Al

(α+ a)

for some A1, A2, · · · , Al ∈ Sĝ(n,k,q) where l is the list size. From the relations, we get linear
equations.

i =
∑

a∈A1

logb(α+ a) = · · · =
∑

a∈Al

logb(α + a) (mod qĝ(n,k,q)−k − 1)

We repeat the above procedure. Since i is picked randomly, and Sg is the sample space, the
probability that the new equation is linear independent to the previous ones is very high at the
beginning of the algorithm. It would not take long time before we get n independent equations.
Solving the system of equations gives us logb(α+ a) for all a ∈ Fq.

In the last step, for a random i, we compute b(α)it(α). If ψ−1(b(α)it(α)) is not empty, we can
solve logb t immediately. This proves the main theorem.

3.2 The proof of Theorem 2

Theorem 4 Let q be a prime power and let h be a positive integer. If q ≥ (h + 2)4, then every
element in F∗

qh can be written as a product of exactly 4h+ 4 distinct factors from {α+ a|a ∈ Fq},
for any α such that Fq(α) = Fqh.

Proof: We thank Chaohua Jia for helpful discussion on the proof of this theorem. Fix an α
such that Fq(α) = Fqh . For β ∈ F∗

qh , let Nk(β) denote the number of solutions of the equation

β =
k

∏

i=1

(α+ ai), ai ∈ Fq,

where the ai’s are distinct. We need to show that for k = 4h + 4, the number Nk(β) is always
positive if q ≥ (h+ 2)4.

Let G be the character group of the multiplicative group F∗
qh , which is a cyclic group of order

qh − 1. A simple inclusion-exclusion argument shows that

Nk(β) ≥ 1

qh − 1
(

∑

ai∈Fq,1≤i≤k

−
∑

1≤i1<i2≤k

∑

ai∈Fq,ai1
=ai2

)
∑

χ∈G

χ−1(β)χ(

k
∏

i=1

(α+ ai)).

For non-trivial χ, one has the well-known Weil estimate

|
∑

a∈Fq

χ(α+ a)| ≤ (h− 1)
√
q.

7



We deduce that

Nk(β) ≥ qk −
(k
2

)

qk−1

qh − 1
− (1 +

(

k

2

)

)(h − 1)kqk/2.

In order for Nk(β) > 0, it suffices to have the inequality

(q −
(

k

2

)

)qk/2−1−h > (1 +

(

k

2

)

(h− 1)k.

This inequality is clearly satisfied if both q > 2
(k
2

)

+ 1 = k(k − 1) + 1 and qk/2−1−h > (h − 1)k.
These two inequalities are satisfied if we take k = 4h+4 and q ≥ (h+2)4. The theorem is proved.

2

Now we are ready to prove Theorem 2
Proof: Let h(x) be an irreducible polynomial over Fq of degree h. Then Fqh = Fq[x]/(h(x)).

Denote x (mod h(x)) as α. Suppose we need to solve the discrete logarithm of t(α) base b(α) in
Fqh , where b and t are polynomials of degree at most h− 1. We let S = Fq.

(Fq)4h+4 = {A|A ⊆ Fq, |A| = 4h+ 4}.

First we randomly select an integers i between 0 and qh−1. Compute b(α)i, and let f(α) be the
result where f(x) is a polynomial of degree at most h−1. Now run the bounded distance decoding
algorithm on the Reed-Solomon code [q, 3h+ 4]q with the point set {(a,−f(a)/h(a) − a3h+4)|a ∈
Fq} and the distance bound q − 4h − 4. Then according to Theorem 4, the answer is not the
empty set. Let the answer be t(x) − x3h+4. The polynomial t(x) has degree 3h + 4, and agrees
with {(x,−f(x)/h(x))|x ∈ Fq} at 4h + 4 many points or more. The polynomial f(x) + t(x)h(x)
has degree at most 4h+ 4, but has at least 4h+ 4 many distinct zeros, thus it will be completely
splitted as a product of linear factors. Let f(x)+ t(x)h(x) =

∏

a∈A(x+a) for some A ∈ (Fq)4h+4.
Write it in another way,

bi =
∏

a∈A

(α+ a).

We get

i =
∑

a∈A

logg(α+ a) (mod qh − 1).

However, we may not be able to solve logg(α + a) for all a ∈ Fq, since the latter relations
may be linearly dependent on the former relations. This is the case, for instance, when all the
Ai’s come from a subset of Fq. After we detect that, we start to compute t(α)b(α)x, and find
its representation of product of linear factors. Any linear dependence will give us the discrete
logarithm of t(α) base b(α). 2

4 Group Size and List Size

Let q be a prime power, and S be a subset of Fq of n elements, where n is very small compared
to q. Let α be an element in Fqh such that Fq[α] = Fqh . What is the order of the subgroup

8



generated by α + S for some S ⊆ Fq ? This question has an important application in analyzing
the performance of the AKS primality testing algorithm [1]. Experimental data suggests that
the order is greater than qh/c for some absolute constant c for |S| ≥ h log q. If we can prove it,
the space complexity of the AKS algorithm can be cut by a factor of log p (p is the input prime
whose primality certificate is sought), which will make (the random variants of ) the algorithm
comparable to the primality proving algorithm used in practice. However, the best known lower
bound is (c|S|/h)h for some absolute constant c [15]. We discover an interesting duality between
the group size and the list size in Hamming balls of certain radius.

Theorem 5 Let k, n be positive integers and q be a prime power. One of the following statements
must be true.

1. For any constant c1, there exists a Reed-Solomon code [n, k]q (n/3 < k < n/2), and a
Hamming ball of radius n− ĝ(n, k, q) containing more than c11.9

n codewords.

2. Let s = log q, the group generated by α+ S, has cardinality at least qh/c2 for some absolute
constant c2, where S ⊆ Fq and |S| = s log q.

To prove the first statement would solve an important open problem in the Reed-Solomon
codes. To prove the second statement would give us a primality proving algorithm much more
efficient in term of space complexity than the original AKS and its random variants, hence make
the AKS algorithm not only theoretical interesting, but also practical important. However, at
this stage we cannot figure out which one is true. What we can prove, however, is that one of
them must be true. Note that it is also possible that both of the statements are true.

Proof: Let s = log q, k = sh/2 − h and n = sh. So the rate k/n is very close to 1/2 as s gets
large, and ĝ(n, k, q) = sh/2. Assume the first statement is wrong, this means that there exists
a constant c3 such that for any Reed-Solomon code [n, k]q with n/3 < k < n/2, the number of
codewords in any Hamming ball of radius n − ĝ(n, k, q) is less than c31.9

n. The number of balls
containing at least one codeword with that radius and center point at (−f(a)/h(a) − ak)a∈S∈Fq

,

where f ∈ Fq[x] has degree less than h is greater than

qh/(c31.9
n) = qh−n log 1.9/ log q/c3 ≥ qh/c,

which is a low bounded of the size of the group generated by α+ S. 2

5 Concluding Remarks

Interesting open questions include whether the decoding problem of Reed-Solomon code is equiv-
alent to or harder than the discrete logarithm over finite fields, and whether there exists a poly-
nomial time quantum algorithm to solve the decoding problem of Reed-Solomon code.
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