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ABSTRACT OF THE DISSERTATION

From Photonics to Al: A Holistic Framework for Next-Generation 4D Fluorescence

Microscopy
by

Javier Carmona Jr
Doctor of Philosophy in Electrical and Computer Engineering
University of California, Los Angeles, 2025

Professor Katsushi Arisaka, Chair

Recording the neural activity of biological organisms is paramount to understanding how
they, and consequently, we, process the world. Fluorescence microscopy has served as the
standard for recording this neural activity due to its ability to capture large populations of
neurons simultaneously. Recent efforts in fluorescence microscopy have been concentrated
on imaging large-scale volumes; however, most of these efforts have been limited by spa-

tiotemporal and bandwidth constraints.

I present a novel system called Transverse-Sheet Illumination Microscopy (TranSIM),
which captures axially separated planes onto multiple two-dimensional SCMOS sensors at
near diffraction-limited resolution with 1.0 pm, 1.4 pm, and 4.3 pm (x, y, and z, respec-
tively). The parallel use of sensors reduces the bandwidth bottlenecks typically found in
other systems. TranSIM allows for the capturing of data at large-scale volumetric fields of
view up to 748 x 278 x 100 pm? at 100 Hz. Moreover, I was able to capture smaller fields
of view of 374 x 278 x 100 pm? at a faster volumetric rate of 200 Hz. Additionally, I found
that the system’s versatile design allowed us to change the vertical magnification program-
matically rather than necessitating a change of objectives. With this baseline system, I was
able to record intricate neuronal communication in both larval and adult stage fruit flies.
Moreover, I was able to reconstruct the complex physiological deformation of larval stage

zebrafish hearts.
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Despite its advantages, TranSIM acquires sparsely sampled volumetric data, necessi-
tating computational reconstruction techniques to infer missing planes. To address this, I
leveraged deep learning-based volumetric reconstruction methods to enhance data continu-
ity. I first explored three-dimensional convolutional neural networks (3D-CNNs) with self-
attention mechanisms, which effectively capture spatial dependencies and refine structural
details across planes. These time-independent networks demonstrated high performance in
reconstructing static volumes, and while satisfactory, are potentially limited when capturing
temporally evolving neural dynamics. To overcome these limitations, I further investigated
the implementation of four-dimensional recurrent neural networks (4D-RNNs), which in-
tegrate temporal dependencies alongside spatial information. By incorporating recurrent
components, in the form of long-short term memory, these networks improved temporal

coherence in the reconstructions, particularly in dynamic imaging experiments.

These results highlight the potential of artificial neural networks to significantly enhance
TranSIM’s imaging capabilities, enabling accurate volumetric reconstructions from sparse
data while preserving both spatial and temporal fidelity. This advancement paves the way
for more efficient high-speed volumetric fluorescence microscopy, facilitating the study of
large-scale neural networks in living organisms with unprecedented detail. All together, I
have demonstrated how the combination of TranSIM coupled with neural networks can serve

as the framework for next-generation 4D microscopy.
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1.1

1.2

2.1

LIST OF FIGURES

4D Space-Time Diagram of Organisms. This diagram depicts the brain’s spatial
and temporal scales in a logarithmic space. From synaptic processes operating
on nanometer scales and millisecond timescales to whole-brain dynamics over
decades, it highlights the orders of magnitude required to study neural activity

comprehensively. Courtesy of Dr. Katsushi Arisaka. . . . . . . . ... ... ...

Microscopy 4D Scanning Comparison. Critical areas of Neuroscience research
lie in the study of action potentials/brain waves and large volumetric regions in
the brains of organisms. Highlighted in grey are advancements in microscopy
have lead to a large exploration in the 4D occupation of brains. Transverse-Sheet
Tllumination Microscopy reaches highly sought regions of exploration in terms of
volume and speed, increasing the total volumetric field of view up to near 1 mm?,
while achieving rates comparable to the fastest methods available, commercially
and otherwise, with further room for improvement. For comparison, four regions
indicating state-of-the-art research indicate a (1) ~0.1 mm?® region scanned at 0.8
volumes per second (VPS), Ahrens et al. (2013) [1], fastest volumetric scans; (2)
~0.017 mm? at 10 VPS, and (3) ~0.005 mm? at 321 VPS, Voleti et al. (2019)
[2], and (4) fastest sub-micron resolution, Ahrens et al. (2013) [1] and Chen
et al. (2014) [3]. TranSIM was tested up to ~0.07 mm? at 200 VPS for a 5
minute period, denoted by the blue rectangle. The blue dashed line indicates the
cut-off boundary that TranSIM can operate by changing the volumetric scanning

parameters (slowing the scan rate, increasing the volume rate, or vice versa). . .

Jablonski Transition Diagram. The process of fluorescence involves excitation
by a photon (hve), vibrational relaxation within the excited state (F;), and
emission of a photon (Avey) as the molecule returns to the ground state. The
emitted photon has lower energy (longer wavelength) than the absorbed photon

due to energy dissipation as heat or non-radiative processes. . . . . . . . .. ..



2.2

2.3

24

3.1

3.2

Airy Disk Formation. The Airy disk pattern results from the diffraction of light
through a circular aperture. The resolution limit is reached when the central

maxima of adjacent Airy disks are separated by the radius of the first minimum.

Relationship Between PSF and MTF (A) The PSF describes the system’s spatial
response to a point source. (B) The MTF, obtained as the Fourier Transform of
the PSF, quantifies how contrast is transmitted at different spatial frequencies.
Sampling below the Nyquist rate introduces aliasing, distorting high-frequency
details. Sampling at or above the Nyquist rate ensures accurate representation

of the image. . . . . . . . . .

Impact of Sampling on PSF and MTF. (A) The first row shows the PSF cross-
sections in the XY and XZ planes for three different sampling conditions: over-
sampled, critically sampled, and undersampled. The PSF represents the spatial
response of the imaging system to a point source, with finer sampling improv-
ing resolution fidelity. (B) The second row shows the MTF cross-sections in the
XY and XZ planes and optical resolution limits (dashed white lines). The MTF
quantifies the ability of the system to preserve spatial frequency contrast, with
undersampling introducing aliasing artifacts and oversampling reducing data ef-

ficiency. . . . . .

Point Confocal Microscopy. Invented by Marvin Minsky, in 1957, the point con-
focal microscope clarified a fuzzy Widefield traditional method by rejecting out

of focus light. . . . . . . . . .

Widefield vs. Confocal Comparison. By placing a pinhole at approximately half
the distance to the first dark lobe, the overall lateral resolution of the system can
be increase by a factor of 2 while retaining nearly of the input intensity. The solid
line indicates what a widefield system would see. The dashed red line indicates
the compression of the first lobe down by a factor of 2 after applying a confocal

pinhole. . . . . . .
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3.3

3.4

3.5

3.6

Line-Scanning Confocal Microscopy. By focusing light down to a line using a
cylindrical lens, that scanning of that line can be synchronized with the rolling
shutter of modern sCMOS cameras. The net effect is a system that is half wide-
field and have confocal. In the direction of the shutter, confocality exists whereby
the rolling shutter rejects out of focus light, while in the orthogonal direction,

widefield is present. . . . . ... Lo

Light Sheet Microscopy. Conventional light-sheets (left) are created using a cylin-
drical lens to focus the light only in one dimension. To create ”pencil-like” beams,
right that are instead scanned confocally with the rolling sCMOS sensor, the

methodology is to use a regular spherical lens, rather than a cylindrical lens.

Comparison of Light-Sheet Illumination Beams. The first and standard beam illu-
mination method is created using a cylindrical lens which collapses a gaussin plane
wave in one dimension. The typical propagation length is 100-500 pm, however
this type of beam does not afford any confocality application to a rolling shutter
sCMOS sensor. For confocality, a spherical lens can be used which collapses the
beam in both dimensions with the same propagation distance. Non-diffracting
beams created by interference, Bessel-Gauss beams, have a much larger propa-
gation distance, 250-1000 pm, compared to same numerical aperture collapsed
Gaussian Beams. With the aid of a Spatial Light Modulator (SLM), an array
of Bessel beams can be configured to interfere even further by trimming away at
each adjacent beams thereby reducing the overall waist of the beams. Courtesy of
Blake Madruga, adopted from his Thesis work on Configurable Bessel-Gaussian

Sheet Illumination Microscopy[4]. . . . . . . . . .. ... L.

3-Dimensional Scanning. Two main methods for mechanic depth scanning are
the translation of the objective using a piezoelectric actuator (left) and movement

of the sample stage using a motorized stage (right). . . . . .. ... .. ... ..
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3.7

4.1

4.2

SCAPE Microscopy. With a single objective, SCAPE microscopy achieves depth
resolved images. To do so, an oblique illumination sheet is implemented. On
the detection axis, only the orthogonal directional fluorescence is utilized. After
descanning, the descanned plane, is relayed to a secondary objective whereby
utilizing a tertiary, the image plane is mapped onto a flat image plane and onto

an Imaging SeNSOT. . . . . . . v o v o e e e e

A schematic representation of the U-Net architecture. The network consists of a
contracting path (left) for feature extraction and an expansive path (right) for
reconstructing spatial details. The down-sampling and up-sampling paths are
known as the encoder and decoder paths, respectively. Skip connections link
corresponding layers in the contracting and expansive paths, enabling the preser-
vation of spatial information lost during down-sampling. Each block represents
a multi-channel feature map, with the number of channels increasing in the con-
tracting path to capture complex features and decreasing in the expansive path to
refine spatial resolution. Arrows denote convolutional, pooling, and up-sampling
operations. This architecture enables precise pixel-level segmentation, even with

limited training data. . . . . . . . . . ..

Deep-Z Microscopy. Single plane images are feed into a trained neural network,
where the are refocused up to distance of £10um. For conformation, the Deep-Z
generated refocused images are compared to the mechanical translations focused
images for a fluorescent bead (a). (b) is distribution of the FWHM of 300 nm
fluorescent beads in the lateral dimension for both Deep-Z propagation and me-
chanical objective translation. Similarly for (c), the axial dimension FWHM are
measure. In both cases, it is seen that the Deep-Z propagation matches very well

with the mechanical translation. . . . . . . . . . . . . . ...
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5.1

6.1

6.2

6.3

6.4

TranSIM + Neural Networks, From Sparse to Dense. TranSIM is only able to
capture sparsely separated image planes. These planes are typically separated by
a distance of 20 pum laterally and axially leading to parallelipiped volume. By
training neural networks, this data can be virtually refocused and recovered to

form a true three-dimensional image. . . . . . . . . . ... ... L.

Optical schematic of Transverse Sheet Illumination Microscopy. The system in-
corporates a multiplexed illumination scheme that generates laterally and axially
separated light sheets, which are then scanned across the imaging field. Fluo-
rescent signals from multiple planes are separated using knife-edge mirrors and

mapped onto sCMOS sensors, enabling simultaneous multi-plane imaging.

Optical Schematic of lllumination. By placing parallel facing partially reflecting
and fully reflecting mirrors, a focused laser beam can be multiplexed ad infinitum

with laterally and axially separated foci. . . . . . . . ... ... ... ... ...

Optical Schematic of Detection. The once laterally and axially separated foci can
be trimmed away and reflected onto sCMOS sensors for imaging. Here I show a
detailed view of how these foci can be steered. On the round trip, the Nth + 2,
image plane will be at the same position axially as the first plane, but laterally
shifted to be adjacent to the previous plane leading to a set of axially refocused

and laterally displaced image planes that get sent in unison to the sensor. . . . .

Effect of Magnification on Volume Scaling. The original parallelepiped volume
(left) and the magnified version (right) demonstrate anisotropic scaling. The lat-
eral dimensions (X and Y) shrink by a factor of 1/M, while the axial dimension
(Z) compresses more significantly by a factor of 1/M?. This mimics how mag-
nification in microscopy increases lateral resolution while reducing axial depth,

leading to a flattened appearance in the Z-direction. . . . . . . . . . . . ... ..
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6.5

6.6

6.7

Control Software. Fully integrated control software for waveform generation, laser
control, and camera control. The software is generalized enough to accept any
number of cameras, as each camera is controlled by its own thread. Each module

is also control by its own thread. . . . . . . . .. ... .. o0,

Idealized vs. Real-World Inter-Planar Alignment. On the left, the idealized situa-
tion assumes perfect knowledge of the inter-planar distance, allowing for straight-
forward alignment of imaging planes based solely on their spatial separation. This
approach results in a coherent three-dimensional volume without the need for ad-
ditional corrections. On the right, the real-world scenario is depicted, where each
imaging plane may undergo affine transformations due to experimental factors
resulting from slight optical misalignment. In white are the idealized locations
and in orange are the true transformations that must be reversed for proper align-
ment. These transformations include translations, rotations, and scaling, which
necessitate a robust computational pipeline to iteratively refine and accurately

align the planes in three-dimensional space. . . . . . . . ... ... ... ....

TranSIM Time-Independent Neural Network Architecture. The figure illustrates
the neural network architecture employed for 3D image reconstruction. The net-
work consists of a downsampling path, a bottleneck with self-attention, and an
upsampling path. Each stage in the downsampling path applies convolutional
layers followed by max-pooling, progressively reducing spatial resolution while
capturing deeper features. The bottleneck layer incorporates a self-attention
mechanism that operates across the depth dimension, enabling the network to
capture global contextual information. In the upsampling path, transposed con-
volutions restore spatial resolution, and skip connections integrate features from
corresponding layers in the downsampling path. The final output is a recon-
structed 3D image, with enhanced fidelity and resolution, processed from the

input image stack. . . . ... Lo
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6.8

7.1

7.2

7.3

7.4

Visualization of loss function weight distributions across imaging planes. The plot
compares different weighting strategies for the loss function: MAE, scaled MAE,
Cosine-MAE, and scaled Cosine-MAE. The weights are plotted as a function
of plane index, illustrating how different weighting schemes emphasize certain
planes more than others. The uncertainty bands (green) indicate the approximate
positional variance of the imaging planes, providing insight into the weighting’s

impact on reconstruction accuracy. . . . . . . . . ..o e e

TranSIM System Hardware. . . . . . . . . . . . . .

Beam Multiplexing Module. Measured spatial separation between 90:10 beam-

splitter and depth reflection paper placed at 2.56 mm, with rotation angle oo /~ 3.84°. 77

Point Spread Function Analysis of All Planes. Point spread function and in-
tensity analysis of the system with cross-sectional views and independent XYZ
analysis by plane. Utilized 1 pm beads and theoretical PSF was calculated using
the modified FWHM taking the bead’s size into account denoted in detail in the
methods section. Nikon 40X 0.8NA objective was used to increase spatial sam-
pling to isolate the possibility of aliasing by the lower magnification of the Nikon
16X 0.8NA objective. . . . . . . . .

Inter-Planar Alignment Validation. The top row shows the maximum intensity
projection (MIP) images captured from two cameras, with arrows indicating the
sequential positioning of imaging planes. The bottom row traces a single 4 um

bead as it appears across different depths. Scale bar is 10 uym. . . . . . . . . ..
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7.5

7.6

7.7

Inter-Planar Alignment and Volumetric Scaling. The figure illustrates the mea-
sured inter-planar distances as a function of magnification. Cross-correlation-
based analysis was employed to quantify lateral and axial shifts between planes,
ensuring proper formation of the imaging volume. The results confirm that lateral
separation scales as 1/M while axial separation scales as 1/M?, in accordance with
theoretical predictions. This validation ensures that TranSIM maintains accurate
spatial relationships across imaging planes, critical for high-resolution volumetric

reconstruction. . . . . . . . .

The working principle of Transverse Sheet Illumination Microscopy. (A) Six later-
ally and axially separated beams illuminate the sample, creating a parallelepiped
volume. Two sensors capture these planes simultaneously, with one sensor record-
ing odd-numbered planes (1, 3, 5) and the other capturing even-numbered planes
(2, 4, 6). A zoomed-in view highlights neurons in the optic lobe. (B) The il-
lumination beams are generated by spatially multiplexing a focused laser beam
using a 90:10 beamsplitter and a reflective mirror cavity, producing separated
beams based on mirror angle and spacing. The fluorescence signals retain their
separation and are directed to an imaging sensor via a knife-edge mirror. (C) A
3D reconstruction of the imaging planes after alignment, showing a Drosophila

melanogaster instar 2 larval brain. . . . . . . . .. ... o0

Time-resolved Imaging of Zebrafish Heart. Each row represents a different imag-
ing plane (depth), spanning a total of 120 pm, while each column corresponds
to a different time point (spanning 6 frames, each 10 ms apart). In planes 0-2,
the atrium is observed closing, whereas in planes 3-5, the ventricle is seen open-
ing. This simultaneous volumetric capture enables the study of cardiac dynamics

across multiple depths in a single acquisition. . . . . . . . ... ..o L.
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7.8

7.9

Neural dynamics in Drosophila melanogaster larvae. An instar 2 larva was imaged
at 100 volumes per second across 6 planes with an average interplanar distance of
20 pm. The top panel (+30 pm) captures imaging approximately halfway through
the optic lobe, while the last plane (-30 pm) was positioned near the ventral side
at the bottom of the optic lobe. At the center of the optic lobe, we observed a
high density of active neurons, which decreased further into the sample, leaving
only a few neurons with a distinct commissure throughout several planes. Scale
bar in the tile panel view is 100 pm. Zoomed in to panel +30 pm, we can see
high neuron density clustering and not all neurons being selected. Scale bar in
zoomed view is 50 pm. The top 100 neuronal traces were plotted over a 40-
second time window, with zoomed-in subplots of 8 and 2 seconds to highlight fast
neural dynamics. A three-dimensional rendering of the reconstructed volume,
visualized via Napari, showcases the alignment of planes and highlights the stair-
case configuration characteristic of TranSIM. Scale bar in the three-dimensional

reconstruction is 50 pm. . . . ... Lo

Neural dynamics in adult Drosophila melanogaster. An adult-stage fruit fly was
imaged at 100 volumes per second across 6 planes with an average inter-planar
distance of 20 pm. The top panel captures the surface of the optic lobe, while the
deepest plane attempts to visualize structures inside the optic lobe. At the center
of the optic lobe, we observed a high density of active neurons, which gradually
decreased further into the sample, leaving only a few identifiable neurons. The
tile-panel view scale bar represents 100 pm. In the zoomed-in panel at +30 pm, a
high-density clustering of neurons is evident, though not all neurons were selected
during processing. The scale bar in the zoomed view is 50 pm. The top 300 neu-
ronal traces were plotted over a 30-second time window, with zoomed-in subplots
of 8 and 2 seconds to highlight fast neural dynamics. A three-dimensional render-
ing of the reconstructed volume, visualized via Napari, showcases the alignment
of planes and highlights the staircase configuration characteristic of TranSIM.

The scale bar in the 3D reconstruction represents 50 pm. . . . . . . . . . . . ..
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7.10

7.11

Inter-planar correlated neurons in the adult fly optic lobe. The figure presents
an analysis of correlated neural activity based on signal-to-noise ratio (SNR)
ranked neurons. (Top-left) A single frame from the imaging stack is displayed
with detected neuron contours overlaid. The subset of neurons belonging to a
highly correlated group is highlighted using distinct colors. (Top-right) The
corresponding neuronal traces from the correlated group are plotted over a 30-
second window, revealing synchronous activity patterns. (Bottom-left) The
full correlation matrix of the top 300 neurons is shown, where the color scale
represents the strength of correlation. (Bottom-right) A zoomed-in section of
the neuronal traces illustrates fine temporal dynamics over a 2-second window,
demonstrating rapid fluctuations in fluorescence intensity. The results indicate
that functionally related neurons within the optic lobe exhibit strong temporal
coherence, further validating the ability of TranSIM to resolve high-speed neural

activity across multiple planes. . . . . . . . . ... oL

Lllustration of Spatiotemporal Compression in TranSIM. The top row demon-
strates spatial compression, where increasing the vertical scanning amplitude ef-
fectively reduces vertical sampling at the sensor, allowing for larger volumetric
fields of view without compromising resolution. Using neuronal tracing with the
CalmAn processing pipeline, we confirmed that spatial compression enables a
two-fold increase in the total imaging volume, expanding from 374 x 278 x 100 um?
to 748 x 278 x 100 um?. The bottom row highlights temporal compression, where
reducing the vertical ROI by half (from 920 to 460 pixels) leads to a doubling of
the frame rate from 100 Hz to 200 Hz, enabling higher-speed volumetric imaging.
These approaches allow for flexible adaptation of TranSIM to different imaging

needs, whether prioritizing spatial coverage or high-speed dynamics. . . . . . . .
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8.1

8.2

8.3

Comparison of Real, Generated, and Theoretical PSFs and MTFs. The first
row displays the XY cross-sections of the point spread function (PSF) for the
theoretical, real, and generated cases, respectively. The second row shows the
corresponding modulation transfer function (MTF) representations, highlighting
spatial frequency content in the XY plane. The third and fourth rows present the
XZ cross-sections of the PSF and MTF, respectively, illustrating axial resolution
differences. The final two plots display 1D cross-sections of the MTF in the XY
and XZ planes, providing quantitative comparisons of frequency response along
lateral and axial dimensions. These results validate the neural network’s ability
to approximate the optical system’s response while revealing potential deviations

from the theoretical and measured PSFs. . . . . . . . . . . . . ... ... ...

Comparing MAE-Cosine to Standard Loss Functions The top row presents the
reconstructed planes using different loss functions: MAE-Cosine, MAE, and
MSE. The second row displays the mean absolute difference maps between the
ground truth and the reconstructed images, highlighting errors in the predic-
tions. The two plots show the SSIM and RMSE values as a function of the
plane index, demonstrating the structural similarity retention across depth and
the RMSE values across the planes, respectively, illustrating the overall intensity
error trends. The results indicate that Cosine-MAE achieves the best balance

between preserving structural integrity and minimizing intensity errors. . . . . .

Comparison of Ground Truth and Reconstructed Planes. Each row corresponds
to a different selected axial plane, while the columns present: (1) the original
ground truth image, (2) the reconstructed plane using the neural network, (3) the
Structural Similarity Index (SSIM) map highlighting structural deviations, and
(4) the absolute difference between the ground truth and reconstructed image.
The SSIM and RMSE values are displayed for each reconstructed plane, indicating
the fidelity of the neural network’s predictions. These comparisons illustrate how
well the neural network preserves structural information and intensity variations

across different depths. . . . . . . . ... Lo



8.4

8.5

8.6

8.7

Voxel Throughput vs. Image Area. The plot illustrates the reconstructed voxels
per second as a function of image resolution, with input sizes ranging from 1282
to 6402 pixels. The results indicate a positive correlation between image area and
voxel throughput, suggesting that larger images allow for more efficient volumetric
reconstruction. This trend highlights the scalability of the neural network and

its suitability for handling high-resolution fluorescence microscopy data. . . . . .

Time-Dependent Neural Network. To investigate the temporal discontinuity in
volumetric reconstruction, a LSTM based RNN was implemented. 4D chunks
of data (time sequence + 3D volume) were fed into the neural network. The
neural network, returned time correlated reconstructions of the same shape. PSF

analysis shows similar results to the time-independent neural network. . . . . . .

Depth Reconstruction Analysis. Each row corresponds to a different selected axial
plane, while the columns present: (1) the original ground truth image, (2) the
reconstructed plane using the neural network, (3) the Structural Similarity Index
(SSIM) map highlighting structural deviations, and (4) the absolute difference
between the ground truth and reconstructed image. The SSIM and RMSE values
are displayed for each reconstructed plane, indicating the fidelity of the neural
network’s predictions. These comparisons illustrate how well the neural network

preserves structural information and intensity variations across different depths.

Neural Networks Fvaluated against Noisy and Denoised Ground Truth Data. The
plots illustrate how reconstruction accuracy varies across depth planes, highlight-
ing the impact of noise on model performance. Higher SSIM values and lower
RMSE values indicate better structural preservation and lower reconstruction er-
ror, respectively. The results demonstrate that both TDNN and TINN achieve
higher SSIM and lower RMSE when compared to denoised ground truth, suggest-
ing that a significant portion of the reconstruction error arises from the networks’
implicit denoising processes. Additionally, TINN consistently outperforms TDNN
across all depths, reinforcing its superior ability to maintain structural integrity

while minimizing noise-induced artifacts. . . . . . . . . ...
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5.1

8.1

LIST OF TABLES

Microscope Comparison. Entire parameter space of various microscopes are listed
in the area of volumetric scanning. Major research developments in microscopy
have taken place in order to increase the speed are which they can image volumes.
Although their suitable application domains vary wildly from system to system,
the overarching connection is bandwidth. In the grey column, the total bandwidth
of the system is shown in units of GigaPixels/s. Moreover, the green column by-
passes any sensor non-equivalences, and instead focuses on the total volumetric
imaging field imaging rate that is achieved in mm?/s, or volume size times the
volume rate, of each system. Also shown, are proposed versions of Transverse-
Sheet Illumination Microscopy, in addition to its first proof-of-concept. These
future additions aim to explore the possibility of increased throughput of the
system, limited only by the bandwidth of the current imaging sensors. Courtesy
of Dr. Arisaka, adopted microscope comparison in NITH R21 Proposal to include

experimental results of TranSIM[5]. . . . . . . ... ... ... ... L.

Average SSIM and RMSE values for different loss functions used in TranSIM
inter-plane reconstruction. Higher SSIM values indicate better structural preser-

vation, while lower RMSE values indicate lower reconstruction error. . . . . . .
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CHAPTER 1

Introduction

1.1 Motivation

In contemporary neuroscience, understanding how biological organisms process the world
requires tools capable of capturing neural activity with both high spatial and temporal
resolution. For example, model organisms like Danio rerio contain approximately 10°-10°
neurons during their larval stages, with neural processes operating on millisecond timescales
to integrate and react to sensory stimuli [6, 7]. These neurons occupy a 3D volume of 750

pm X 500 pm x 250 pm, presenting a formidable challenge to current imaging modalities.

Similarly, Drosophila melanogaster, a widely studied model organism, presents unique
challenges due to its neuronal density and size. During the larval stage, a Drosophila brain
spans approximately 590 ym x 340 ym X 120 pm and contains about 10* neurons [?], while
the adult brain, with a volume of 900 ym x 500 pum x 200 um, houses nearly 10° neurons
8, 9, 10, 11]. These neural circuits operate on millisecond timescales, necessitating imaging

tools capable of capturing activity across large volumes with high temporal resolution.

Traditional fluorescence microscopy excels in spatial resolution but often sacrifices tem-
poral performance. In contrast, methods optimized for temporal resolution, such as local
field potential recordings, lack spatial comprehensiveness. The ultimate goal of neuroscience
imaging remains to visualize large volumes of neural tissue with millisecond resolution, al-
lowing researchers to decipher the dynamics of sensory integration, signal propagation, and
motor output on the brain-wide scale. Figure 1.1 illustrates this expansive phase space as a

4D Space-Time diagram.
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Figure 1.1: 4D Space-Time Diagram of Organisms. This diagram depicts the brain’s spatial
and temporal scales in a logarithmic space. From synaptic processes operating on nanometer
scales and millisecond timescales to whole-brain dynamics over decades, it highlights the
orders of magnitude required to study neural activity comprehensively. Courtesy of Dr.

Katsushi Arisaka.

1.2 Transverse-Sheet Illumination Microscopy

To bridge this gap, my master’s work introduced Transverse-Sheet Illumination Microscopy
(TranSIM), a system capable of high-speed volumetric imaging by spatially multiplexing
excitation planes and utilizing parallelized detection [12]. TranSIM achieved field-of-view
volumes of 748 pm x 278 pm x 100 pgm at 100 Hz and smaller volumes at up to 200
Hz. By capturing six axially separated imaging planes simultaneously, the system addressed

2



bandwidth limitations that plague traditional methods while maintaining near-diffraction-

limited resolution.

Figure 1.2 illustrates TranSIM’s positioning within the microscopy landscape. This sys-
tem’s capabilities fill critical gaps in the wvolume-speed phase space, enabling brain-wide

imaging at temporal resolutions sufficient to capture neural dynamics.
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Figure 1.2: Microscopy 4D Scanning Comparison. Critical areas of Neuroscience research lie
in the study of action potentials/brain waves and large volumetric regions in the brains of or-
ganisms. Highlighted in grey are advancements in microscopy have lead to a large exploration
in the 4D occupation of brains. Transverse-Sheet Illumination Microscopy reaches highly
sought regions of exploration in terms of volume and speed, increasing the total volumetric
field of view up to near 1 mm?, while achieving rates comparable to the fastest methods
available, commercially and otherwise, with further room for improvement. For comparison,
four regions indicating state-of-the-art research indicate a (1) ~0.1 mm? region scanned at
0.8 volumes per second (VPS), Ahrens et al. (2013) [1], fastest volumetric scans; (2) ~0.017
mm? at 10 VPS, and (3) ~0.005 mm? at 321 VPS, Voleti et al. (2019) [2], and (4) fastest
sub-micron resolution, Ahrens et al. (2013) [1] and Chen et al. (2014) [3]. TranSIM was
tested up to ~0.07 mm? at 200 VPS for a 5 minute period, denoted by the blue rectangle.
The blue dashed line indicates the cut-off boundary that TranSIM can operate by changing
the volumetric scanning parameters (slowing the scan rate, increasing the volume rate, or

vice versa).



1.3 Incorporating Neural Networks into TranSIM

While TranSIM’s hardware advancements established a solid foundation for high-speed volu-
metric imaging, challenges such as sparse sampling, data throughput, and real-time analysis
remained significant hurdles. To address these limitations, this dissertation introduces a
novel neural network architecture specifically designed to enhance TranSIM’s performance.
Neural networks have transformed the field of image processing, offering powerful capabili-
ties such as denoising, super-resolution, real-time segmentation, and, critically for TranSIM,

virtual refocusing [13, 14, 15].

By seamlessly integrating these advanced algorithms into TranSIM’s data processing

pipeline, the following advancements were achieved:

1. Sparse to true three-dimensional spatial sampling (2.5D — 3D).
2. Enhanced volumetric imaging bandwidth without compromising resolution.

3. Gentler illumination through inherent noise reduction and utilization of out-of-focus

information with neural networks.

This work represents a paradigm shift in microscopy, where hardware and artificial neural

networks can be combined harmoniously to advance biological science research.



CHAPTER 2

Fluorescence Microscopy Principles

Fluorescence microscopy has emerged as one of the most transformative tools driving the
rapid advancements in neuroscience research over the past few decades. Its unparalleled
ability to record biological systems with high contrast and spatial resolution has enabled us to
explore how large populations of neurons communicate and interact. Despite its significance,
I often found it challenging to locate a comprehensive resource that clearly explained the
fundamental principles of fluorescence microscopy. This chapter aims to fill that gap, drawing
from my own studies and experiences to provide an accessible and cohesive guide to this

indispensable technique.

2.1 Fluorescence Microscopy

The phenomenon of fluorescence, first described in 1852 by Sir George Gabriel Stokes [16],
refers to the ability of certain materials to absorb radiation at one wavelength and emit it
at a longer wavelength. This process, illustrated in Figure 2.1, is governed by three main

transitions:

1. Absorption of a photon, exciting the molecule from its ground state (Eq) to a higher
energy state (F,):
EO + hyea: — En- (21)

2. Non-radiative relaxation to the lowest vibrational level of the excited state (E1):

En — E1~ (22)



3. Emission of a photon as the molecule returns to the ground state:

El — EO + hl/em' (23)

The energy difference between the absorbed and emitted photons, known as the ”Stokes’
energy shift,” allows for the separation of excitation and emission spectra in fluorescence

microscopy [17, 18].

This principle revolutionized microscopy by enabling high-contrast imaging of fluorescent
molecules. The discovery of the Green Fluorescent Protein (GFP) by Shimomura et al. in
1962 marked a turning point [19], as it allowed for the non-invasive labeling of biological
samples. GFP variants, reactive to calcium ion (Ca?") concentrations, further transformed
microscopy by enabling real-time imaging of dynamic biological processes, giving rise to

calcium imaging [20, 21, 22, 23, 24].
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Figure 2.1: Jablonski Transition Diagram. The process of fluorescence involves excitation
by a photon (hv.y), vibrational relaxation within the excited state (E;), and emission of a
photon (hvey) as the molecule returns to the ground state. The emitted photon has lower
energy (longer wavelength) than the absorbed photon due to energy dissipation as heat or

non-radiative processes.

2.2 Spatial Resolution and Numerical Aperture

The resolving power of a microscope is determined by its Numerical Aperture (NA), which
defines the system’s ability to capture light from a wide angular range. A higher NA corre-
sponds to greater light collection and improved resolution. This concept is mathematically

linked to the diffraction limit, as described by Born and Wolf [25].

The diffraction-limited resolution is characterized by the formation of an Airy disk, re-

sulting from the interference of light waves passing through a circular aperture. The intensity
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profile of the Airy disk is given by:

2J1(kaw)} 2 7 (2.4)

where J; is the first-order Bessel function, a is the aperture radius, and k is the wave number.

Figure 2.2 illustrates the Airy disk pattern.

The lateral resolution of an imaging system is expressed as:

A

dlateral = M7 (25)

where A is the wavelength of light. Similarly, axial resolution, describing the resolving power

along the optical axis, is given by:
2\

daxial = m (26)

These relationships highlight the importance of increasing NA to achieve finer resolution,

though this also narrows the depth of field.
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Figure 2.2: Airy Disk Formation. The Airy disk pattern results from the diffraction of light
through a circular aperture. The resolution limit is reached when the central maxima of

adjacent Airy disks are separated by the radius of the first minimum.

Understanding these principles forms the foundation for the development of advanced
systems like TranSIM, which leverages high-NA objectives and parallelized imaging to over-

come traditional resolution and speed constraints.
9



2.2.1 Bead Size Correction

The point spread function (PSF) describes the three-dimensional spatial response of an
imaging system to a point source. It is a critical parameter in characterizing the resolution
of fluorescence microscopy systems. The theoretical lateral and axial full-width at half-
maximum (FWHM) values are traditionally determined by the system’s numerical aperture
(NA) and the wavelength of the illumination or detection light. However, in experimental
setups using calibration beads, the bead size introduces additional convolution to the ob-
served PSF. To accurately reflect the system’s performance, this effect must be accounted

for.

2.2.1.1 Lateral Resolution

The theoretical lateral FWHM (djqerq1) 18 defined as:

A
daera e
lateral INA

where A is the detection wavelength and N A is the numerical aperture. In the presence of

(2.7)

calibration beads with diameter dp..q, the observed lateral FWHM is modified as follows:

— 2 2
dlateral,observed - dlateral + dbead‘ (28)

This expression accounts for the additive convolution introduced by the finite bead size. To
express the lateral PSF in terms of the Gaussian standard deviation (0j4zera), the relationship

between FWHM and o is used:

Araterat,observed (2.9)
2/2In(2) |

Olateral =

2.2.1.2 Axial Resolution

The axial FWHM (dz4) is influenced by both the detection and illumination NAs, as well
as their respective wavelengths (Agetection a0 Njjpumination). Without correction, the axial

FWHM is given by:

\/ Nictection \* . { Ntumination
dam‘al —9 < etection ) + ( illumination ) ' (210)
NA?letection NA?llumination

10



To incorporate the bead size into the axial PSF, the observed FWHM is adjusted similarly

da:pial,observed = \/ d?w:ial + dzead' (211)

The corresponding Gaussian standard deviation (ogzia) is:

to the lateral dimension:

dazia observe
Zazial,observed (2.12)

Oazial = 2\/@ .
2.3 The Modulation Transfer Function (MTF)

The Point Spread Function (PSF) describes how an optical system responds to a point source
of light. It is the fundamental descriptor of resolution in imaging systems, characterizing
the spreading of light from an idealized point source due to diffraction and aberrations.
Mathematically, the PSF is the system’s impulse response in the spatial domain. However,
in practice, it is often more useful to consider its counterpart in the frequency domain, the

Modulation Transfer Function (MTF).

The MTF is defined as the Fourier Transform (FT) of the PSF and represents how
different spatial frequencies are transmitted by the optical system. The MTF is a crucial
metric for evaluating system performance, as it quantifies the contrast degradation at varying
spatial frequencies. High spatial frequencies correspond to fine details, while low spatial

frequencies represent broad features. Mathematically:
MTF(fz, fy, f2) = | F[PSF](z,y, 2)], (2.13)

where f;, fy,, and f. are the spatial frequency components in the z, y, and z directions,

respectively.

2.3.1 Nyquist Criterion and Sampling in Fluorescence Microscopy

The Nyquist criterion establishes the minimum sampling rate required to accurately rep-
resent a signal without aliasing. In the context of imaging, the Nyquist rate is twice the

highest spatial frequency transmitted by the optical system. For a microscope, the Nyquist
11



sampling interval s is given by:

1
§< —— 2.14
2 : fcutoff ( )
__ 2-NA : __ NA?
where feutoff lateral = =3~ is the lateral cutoff frequency of the system, and feutoffaxial = S5

is the axial cutoff frequency.
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Figure 2.3: Relationship Between PSF and MTF (A) The PSF describes the system’s spatial
response to a point source. (B) The MTF, obtained as the Fourier Transform of the PSF,
quantifies how contrast is transmitted at different spatial frequencies. Sampling below the
Nyquist rate introduces aliasing, distorting high-frequency details. Sampling at or above the

Nyquist rate ensures accurate representation of the image.

In turn, the sampling rate is determined by the pixel size of the sensor and the effective
magnification of the system M. Sampling at, below, or above the Nyquist rate has distinct

implications:

e Below Nyquist (Under-sampling): Spatial frequencies higher than the sampling
frequency are aliased, introducing artifacts and distortions. This degrades image qual-

ity and can obscure fine details.

12



e At Nyquist: The minimum sampling rate ensures that all resolvable spatial frequen-
cies are represented without aliasing. This is ideal for preserving image fidelity while

minimizing data redundancy.

e Above Nyquist (Over-sampling): Sampling at a higher rate reduces aliasing risk
but increases data storage and processing requirements. Beyond a certain point, over-

sampling provides diminishing returns.

13
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Figure 2.4: Impact of Sampling on PSF and MTF. (A) The first row shows the PSF cross—
sections in the XY and XZ planes for three different sampling conditions: oversampled,
critically sampled, and undersampled. The PSF represents the spatial response of the imag-
ing system to a point source, with finer sampling improving resolution fidelity. (B) The
second row shows the MTF cross-sections in the XY and XZ planes and optical resolution
limits (dashed white lines). The MTF quantifies the ability of the system to preserve spa-
tial frequency contrast, with undersampling introducing aliasing artifacts and oversampling

reducing data efficiency.
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2.4 Implications for Microscope Design

In fluorescence microscopy, the interaction between PSF and MTF determines the resolution

and contrast of the system. To achieve optimal imaging performance:

e High-NA objectives improve both the lateral and axial resolution, extending the cutoff

frequency.
e Proper sampling ensures an accurate representation of spatial frequencies without alias-
ing.

e Trade-offs can be implemented with microscopy design to ensure that parameters such
as resolution, field of view, and spatial sampling are correctly balanced to achieve the

desired outcome.

This foundational understanding underpins the design of systems like TranSIM, which
leverage high NA, a prudent choice in spatial sampling, and parallelized imaging to address

traditional resolution and speed limitations.
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CHAPTER 3

Spatiotemporal Advancements in Microscopy

With the advent of Fluorescence Microscopy, a flurry of unforeseen levels of utility came into
play from the tool. Finally, with the introduction of GFP, living cell dynamic imaging took
life. Since then, a large portion of the development in light microscopy imaging has been in
speeding up the tool to image faster and faster dynamics. For example, complex organisms
like Danio rerio, Zebrafish, a vertebrate animal, has neural dynamic processes on the order
of 1-10s of milliseconds, Eimon et al. (2018) [26]. For cardiovascular processes, like heart
rate, those can beat at 120-180 bpm, Sampurna et Al. (2018)[27]. Currently, there are a lot
of tools that can image at these speeds with relative ease, however, the caveat is that most
methods can only do so in 2D fields of view only. Nevertheless, when imaging only in 2D,
a great deal of information is lost because these are inherently 3D structures that are being
studied. For that reason, people have been trying to increase not only spatial resolution of

microscopes, but also temporal resolution in 3D.

3.1 Confocal Microscopy

When light illuminates the entire field without, this type of microscopy is known as Widefield.
System wise, this is the most convenient method illuminate a sample due to its simplicity as
shown in Figure 3.1. However, this type of illumination does come with its own drawbacks.
Due to the decrease depth of field produced by large NA systems, most of the light that is
being captured is out of focus light and therefore contaminates the light would otherwise

follow resolution limit expressions.
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Figure 3.1: Point Confocal Microscopy. Invented by Marvin Minsky, in 1957, the point
confocal microscope clarified a fuzzy Widefield traditional method by rejecting out of focus

light.

In 1957, Marvin Minsky, came up with an ingenious method by which to remove this
contaminating, out of focus light [28]. He noted, that at the imaging plane, while most of
the light was was out of focus, the image was still being formed at or near its theoretical
limit. One could reject the out of focus light simply by placing a pinhole in the formed image
location equivalent to the object illuminated location. Due to the point confocal nature of
the design, new innovative systems have since invented that allow for the image of larger
areas by either translation of the sample on a motorized stage or by deviating the light
source with motorized deflection mirrors which in most cases now is a coherent light source

(laser). Eventually, these were able to produce up to a few images per second. However,
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they remained bandwidth limited by the point scanning nature of the system.

It can been from the Airy disk formation figure that most of the intensity is contained
within the radius of the first dark ring. In fact, if one were to model that first lobe as a

Gaussian distribution, one can see that at,

1.220m

(kaw)cutoff = 5 s (31)
0.610 A A

confocal = —— — = 0.310—. 3.2

Weon focal 2 a a (3:2)

half the distance to the first dark ring, approximately 70% of the information is retained.
Here is where by placing a pinhole increases the overall resolution of the system. Not only
does the pinhole remove widely distributed the outer rings of the Airy disk, but also decreases
the overall width of the central lobe, resulting in a increase of lateral resolution by a factor

of 2. See Figure 3.2.
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Figure 3.2: Widefield vs. Confocal Comparison. By placing a pinhole at approximately half
the distance to the first dark lobe, the overall lateral resolution of the system can be increase
by a factor of 2 while retaining nearly of the input intensity. The solid line indicates what a
widefield system would see. The dashed red line indicates the compression of the first lobe

down by a factor of 2 after applying a confocal pinhole.

3.1.1 Spinning Disk Confocal Microscopy

To increase the speed, David Egger and Mojmir Petran, shortly after the invention of the
point confocal, in 1967 took and old device called the Nipkow disk and reapplied to the
recently invent point confocal technique [29]. This move parallelized the point-by-point
process such that images capture increase several order of magnitude. Currently, state-
of-the-art systems, like the Yokogawa Spinning Disk Confocal module (CSU-X1)[30] can

routinely take images up to 2000 frames per second, attached to the appropriate sensor.
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3.1.2 Line-Scanning Confocal Microscopy

Another method to parallel process the acquisition of data that has confocality in mind
is Line-Scanning Confocal Microscopy (LSCM) [31, 32]. Instead of acquiring data on a
point-by-point basis, LSCM utilizes a standard feature in modern scientific Complementary
Metal-Oxide-Semiconductor (sCMOS) cameras, like the Hamamatsu Flash 4.0 v2 (Hama-
matsu Photonics K.K., Hamamatsu City, Japan), which can activate only a subset of pixels
and not allowing the adjacent pixel rows to collect photons. Each pixel column (times active
pixels) is routed to its own Analog-to-Digital (A/D) converter. This has the same effect that
a pinhole would have, but only in one dimension. Using a scanning galvanometer, a laser

line can be synchronized with the rolling shutter. See Figure 3.3.
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Figure 3.3: Line-Scanning Confocal Microscopy. By focusing light down to a line using a
cylindrical lens, that scanning of that line can be synchronized with the rolling shutter of
modern sCMOS cameras. The net effect is a system that is half widefield and have confocal.
In the direction of the shutter, confocality exists whereby the rolling shutter rejects out of

focus light, while in the orthogonal direction, widefield is present.
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The resulting point spread function (PSF) is a convolution of the point confocal PSF in
the X-dimension and a widefield PSF in the Y-dimension, where the PSF is elongated along

the direction of the active pixel rows,

A
d =0.310— .
lateral,x 0.3 ONA7 (3 3)
d —0.610-2 (3.4)
lateral,y — VY- NA, .

Although the overall PSF has increased in size, the benefits gained can arguably out weigh
the negative side effects. Namely, the speed of the system can be increased dramatically.
sCMOS cameras, like the Hamamatsu Flash 4.0 v2 have ”light-sheet” modes that can acquire
full frame images of 2048 pixels x 2048 pixels at 50 FPS. Newer sensors has the capability to
capture in this mode with even larger sensor areas at 100 FPS (Hamamatsu Flash Fusion)
[33] or even 121 FPS (Hamamatsu Flash Lightning) [34] under its rolling shutter mode.
Previously, the bottleneck of confocal systems was the scanning speed by which you could
scan and area point by point. By parallel processing the illumination and acquisition in 1

dimension, the entire process was sped up at the cost of some lateral resolution.

3.2 Light-Sheet Microscopy

By illuminating orthogonal to the detection axis, the main issues that plague single objective
imaging, namely: phototoxicity, photobleaching and optical out of plane light contamination,
to name a few. The first iteration of a light-sheet microscope used a cylindrical lens to
create the sheet, which results in approximately a thin widefield section equivalent lateral
resolution. Lately, innovative techniques have unfolded so further increase the resolution.
Similarly to LSCM, a thin "pencil” like Gaussian beam can be created using a spherical
lens and translated along the detection plane using a galvanometer. Ahrens et al. (2013)[1]
managed to image Zebrafish in whole at 0.8 Hz using a more sophisticated version using dual
detection and illumination objectives, which they named IsoView. With this illumination

methodology, a confocal conjugation with the imaging sensors rolling aperture can be used,
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thereby increasing the resolution in the lateral and axial dimensions. See Figure 3.4.
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Figure 3.4: Light Sheet Microscopy. Conventional light-sheets (left) are created using a
cylindrical lens to focus the light only in one dimension. To create ”pencil-like” beams, right
that are instead scanned confocally with the rolling sCMOS sensor, the methodology is to

use a regular spherical lens, rather than a cylindrical lens.

Even further, sub diffraction limit beams have been created by implementing Airy beams,
Vettenburg et al. (2014)[35], non-diffracting beam profiles like Bessel-Gauss beams and
optical lattices of said beams which are formed by conical phase profiles, Betzig (2005) and
Chen et al. (2014) [36, 3]. See Figure 3.5. The general purpose for this type of beams is
not only their resolution improvements, but also because the beams propagate for longer

distances than standard Gaussian beams are the same numerical aperture focusing angle.
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Figure 3.5: Comparison of Light-Sheet Illumination Beams. The first and standard beam
illumination method is created using a cylindrical lens which collapses a gaussin plane wave
in one dimension. The typical propagation length is 100-500 pm, however this type of
beam does not afford any confocality application to a rolling shutter sSCMOS sensor. For
confocality, a spherical lens can be used which collapses the beam in both dimensions with
the same propagation distance. Non-diffracting beams created by interference, Bessel-Gauss
beams, have a much larger propagation distance, 250-1000 pm, compared to same numerical
aperture collapsed Gaussian Beams. With the aid of a Spatial Light Modulator (SLM),
an array of Bessel beams can be configured to interfere even further by trimming away at
each adjacent beams thereby reducing the overall waist of the beams. Courtesy of Blake
Madruga, adopted from his Thesis work on Configurable Bessel-Gaussian Sheet [llumination

Microscopy[4].
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3.3 Scanned Volumetric Imaging

In the previous sections, discussion was focused on 2D imaging by means of widefield, con-
focal, or light-sheet illumination. However, due to the minuscule depth of field that large
numerical aperture objectives provide (on the order of microns), and the inherent need to
image in 3D, methods have been developed image make this possible. There are 2 ways by
which this can be achieved according the previous research. The first method is to translate
the sample such that is moves in and out of the focal plane of the objective. The second
method is to move the objective such that the objective’s focal plane is translated relative

to the sample. See Figure 3.6.
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Figure 3.6: 3-Dimensional Scanning. Two main methods for mechanic depth scanning are
the translation of the objective using a piezoelectric actuator (left) and movement of the

sample stage using a motorized stage (right).
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3.4 Static Volumetric Imaging

Recently, a push has been made to create methods by which the slow translation of an imag-
ing objective or sample can be avoided. The physical translation is an unavoidable require-
ment due to the highly compressed depth of field associated with high numerical aperture

systems. Nevertheless, new methods have surfaced by which to bypass this limitation.

3.4.1 Light Field Microscopy

Standard microscopy methods rely on the capture of incident light onto a sensor. This is usu-
ally comprised on 2D information only (stemming from the fact that high NA systems have
short depth-of-fields), the rest of the information has or has not already angular converged
into an image. For example, an object that is further away from the objective focal plane
will have already converged. Conversely with objects closer to the focal plane; they have yet
to converge. With the placement of a microlens array at the formed image plane, the objects
in the objective focal plane that are exactly correlated with the image plane while transmit
through only one of the microlenses. However, if they have not yet converged or have already
converged will pass through multiple microlens arrays. Now, by placing a detector at the
back focal plane (BFP) of the of the microlens array, there will be product of multiple mi-
crolens BFP each containing different 2D angular information from the entire volume being
imaged. This aforementioned method is known as Light Field Microscopy (LFM), Levoy et
al. (2005) [37]. Through computational deconvolution, based on the field theory of light, the
entire volume can be reconstructed [38, 39, 40]. Limitations of this system lie in the heavy
computational resources required to perform this deconvolution, taking somewhere on ”the
order of seconds to minutes” for each volume being reconstructed [41, 42, 43, 44]. When
dealing with possible dynamic processes that are on the order of milliseconds and recordings
are preferred to last up to minutes or even hours, the times required to deconvolve an entire

data-set become staggering.
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3.4.2 Oblique Plane and SCAPE Microscopy

In 1P systems, oblique imaging techniques, also known as olbique plane microscopy (OPM),
have been developed to reduce the need for axial scanning, a key bottleneck in conventional
microscopy[45, 46, 47]. By tilting sheets of light at an oblique angle, fluorescence can be
simultaneously illuminated and detected using the same objective lens, like traditional or-
thogonal geometry systems. This approach eliminates the need for mechanical movement
of the objective, significantly increasing volumetric imaging speeds. With an emphasize be-
ing place on a purely optical methodology by which to obtain 3D images, Bouchard et al.
(2015)[48], and most recently Voleti et al. (2019)[2] have created a novel system that does
not rely on the translation of on object. Rather, it exploits an oblique light sheet illumi-
nation and detection scheme in order to capture volumes. Swept confocally-aligned planar
excitation (SCAPE) microscopy, see Figure 3.7, is a single object light sheet system that
has roots in both LSCM and LSM. By illuminating at an oblique angle, the once convolved
depth information, now becomes visible without the need for deconvolution. This oblique
light sheet produces fluorescence that is nearly orthogonal in the opposite half of the ob-
jective. The signal returns via the same pathway and is descanned by the once scanning
galvanometers. Once descanned, the static image is relayed through a pair of objectives
where the second objective in the pair looks at the formed image from an oblique angle. The
oblique angle is orthogonal angle of tilt that the light sheet was produced. The result is a flat
image plane captured by this secondary objective. Overall the system is a very clever way
of realigning the image plane such that it is once again flat on the imaging sensor. However,
the cost of this is technique is a reduced numerical aperture, approximately 50% reduction
in effective NA. Results indicate that when partnered with a HHCAM Fluo intensified CMOS
camera (Lambert Technologies, LLC Kissimmee, FL, US), volumes were generated of up to
321 VPS for voxel regions of 57 pixels x 640 pixels x 100 pixels for a maximum bandwidth
of 1.2 GPixels/second.
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Figure 3.7: SCAPE Microscopy. With a single objective, SCAPE microscopy achieves depth
resolved images. To do so, an oblique illumination sheet is implemented. On the detection
axis, only the orthogonal directional fluorescence is utilized. After descanning, the descanned
plane, is relayed to a secondary objective whereby utilizing a tertiary, the image plane is

mapped onto a flat image plane and onto an imaging sensor.
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CHAPTER 4

Deep Learning and Microscopy

Deep learning has fundamentally transformed fluorescence microscopy by offering powerful
solutions to challenges that traditional methods struggle to address, such as high-throughput
imaging, accurate segmentation, and three-dimensional (3D) reconstructions from sparsely
sampled data. Recent efforts have demonstrated that convolutional neural networks (CNNs),
see Figure 4.1, can significantly improve spatial resolution, segment data, denoise complex
biological images, and even perform 3D refocusing without additional mechanical scanning
[49, 50, 51, 52, 53] . These methods have had a substantial impact on various applications,

from single-molecule localization to high-speed volumetric imaging.

Nonetheless, there remain persistent challenges in fluorescence microscopy that deep
learning is well-positioned to solve. Rapid volumetric acquisition often yields under-sampled
or noisy data, as increasing acquisition speeds can compromise both signal-to-noise ratio and
axial resolution. Moreover, large-scale imaging of dynamic processes (e.g., neural activity or
cardiac motion) requires sophisticated computational tools that can preserve fast-evolving
biological features without distorting critical structural information. Such constraints are
particularly relevant for emerging techniques like Transverse-Sheet Illumination Microscopy.
By capturing multiple axial planes in parallel, TranSIM relieves many bandwidth bottlenecks,
but the resulting volumes are sparsely sampled along the optical axis, demanding advanced
reconstruction algorithms, and that is the aim of this work. This shows the importance
of deep learning as an integral component of modern microscopy pipelines—especially for
methods seeking to combine large fields of view, high volumetric rates, and near-diffraction-

limited resolution.

In the sections that follow, we first examine how deep learning techniques for segmenta-
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tion and localization (Section 4.1) have evolved to meet the unique demands of microscopy.
We then move on to explore restoration and denoising (Section 4.2) and most relevant for
this work, volumetric reconstruction (Section 4.3). Finally, we highlight their relevance to

TranSIM’s high-speed, sparse-acquisition paradigm.

4.1 Segmentation and Localization

Accurate segmentation of cells and subcellular structures forms the backbone of quantitative
fluorescence microscopy. Traditional image-processing pipelines relied on thresholding or
region-growing techniques that often fail when images are noisy or densely populated with
overlapping objects. Deep learning, in particular the U-Net architecture, revolutionized
biomedical segmentation by introducing skip connections and data augmentation strategies
that excel with relatively small training sets [54]. The success of U-Net in 2D contexts quickly
led to adaptations for 3D data, allowing segmentation of volumetric fluorescence datasets

where tissue sections or entire organs are imaged in high detail [?].
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Figure 4.1: A schematic representation of the U-Net architecture. The network consists of a
contracting path (left) for feature extraction and an expansive path (right) for reconstructing
spatial details. The down-sampling and up-sampling paths are known as the encoder and
decoder paths, respectively. Skip connections link corresponding layers in the contracting and
expansive paths, enabling the preservation of spatial information lost during down-sampling.
Each block represents a multi-channel feature map, with the number of channels increasing
in the contracting path to capture complex features and decreasing in the expansive path to
refine spatial resolution. Arrows denote convolutional, pooling, and up-sampling operations.

This architecture enables precise pixel-level segmentation, even with limited training data.

Beyond segmentation, localization of individual fluorescent emitters has also benefited
significantly from deep learning. In single-molecule localization microscopy (SMLM), CNN-
based approaches can process frames at high densities of active fluorophores, overcoming
fundamental limitations in traditional point-spread-function fitting methods [?]. For in-

stance, network architectures inspired by U-Net or residual networks can separate closely
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spaced emitters and produce more accurate position estimates at higher throughput. These
networks learn to recognize the subtle diffraction patterns associated with single molecules,
offering not only speed advantages over iterative fitting algorithms but also improved ro-

bustness to noise or background fluorescence.

As high-speed 3D acquisition becomes more accessible, the same principles applied to
segmentation and localization in 2D extend to volumetric data. Variations of U-Net or other
CNN backbones incorporate 3D convolutions and specialized layers to handle multi-plane
inputs, enabling the simultaneous detection of cells, nuclei, or synapses throughout thick

biological specimens [?].

4.2 Denoising and Image Restoration

Fluorescence microscopy images frequently suffer from noise and other degradation artifacts
arising from optical imperfections, photobleaching, and limited photon budgets. Traditional
denoising algorithms, such as median filtering or wavelet-based methods, often struggle to
preserve fine structures in highly noisy or under-sampled datasets [?]. In contrast, deep
neural networks (DNNs) have proven to be remarkably effective at learning complex noise

distributions and restoring high-fidelity images, even under challenging imaging conditions.

One prominent example is the Content-Aware Image Restoration (CARE) framework,
which employs a convolutional neural network (CNN) trained on pairs of low- and high-
quality fluorescence images [55]. This supervised approach models both signal and noise
characteristics by directly learning a mapping from noisy inputs to clean targets. By lever-
aging spatial context and multi-scale feature extraction, CARE preserves important bio-
logical structures while efficiently suppressing noise. Other supervised strategies similarly
rely on paired training data, where ground-truth images are experimentally obtained via

long-exposure acquisitions, physical averaging, or more advanced imaging systems.

However, obtaining high-quality reference images for supervised training can be labor-
intensive or impractical, especially for dynamic biological samples. To address this challenge,

self-supervised methods, such as Noise2Void and Noise2Self, have gained popularity for their
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ability to denoise fluorescence images without explicit ground-truth references [51, 52]. These
algorithms exploit the inherent redundancy in image data by masking or perturbing subsets
of pixels during training. The network learns to predict the masked regions based on sur-
rounding pixel intensities, effectively reducing noise while preserving fine-scale details. Such
methods offer a powerful alternative when exhaustive labeled data is unavailable or difficult

to acquire.

In addition to these approaches, specialized networks have been developed to tackle de-
noising in more specific application contexts. For example, DeepCAD and its real-time vari-
ant DeepCAD-RT have shown promise in providing high-quality denoised images for live-cell
imaging scenarios, where rapid data acquisition and on-the-fly processing are critical [56]. By
leveraging domain-specific training and optimized architectures, DeepCAD-based methods
are able to remove noise while preserving intricate cellular structures, making them particu-
larly suitable for fast biological experiments that cannot accommodate extensive averaging

or long-exposure reference images.

Across these various strategies—supervised, self-supervised, 2D, 3D, or real-time—the
core principle remains consistent: deep networks can learn sophisticated mappings between
degraded input images and their high-fidelity counterparts. This learned ability is instru-
mental for a range of microscopy modalities, from single-molecule studies to large-volume
tissue imaging. While the architectures and training paradigms differ, the end goal is unified:
to recover the most accurate and biologically meaningful representation of a sample, using as
few raw photons as possible. By reducing noise, these networks not only enhance visual clar-
ity but also improve downstream quantitative analyses, such as cell tracking, morphological

assessments, and the identification of subtle phenotypic changes.

4.3 Volumetric Reconstruction in Fluorescence Microscopy

Recent research has demonstrated that convolutional neural networks can be used to virtu-
ally refocus fluorescence images and reconstruct volumetric data with minimal reliance on

mechanical scanning. Shin et al. presented a framework termed Recursive Light Propagation
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Network (RLP-Net)[57], which learns short-distance axial refocusing and then recursively ap-
plies the same learned inference to project a two-dimensional fluorescence image into multiple
planes. This approach leverages spatial invariance principles and self-supervised denoising
to achieve high-speed volumetric imaging of dynamic specimens, including neurons in a live
zebrafish brain, all while mitigating phototoxicity by reducing laser power and axial sampling
7]

The concept of computational autofocusing has also been explored from a single out-of-
focus capture. Luo et al. introduced a deep learning pipeline that, once trained, processes
an arbitrarily defocused image to synthesize an in-focus image offline. By doing so, they
circumvent iterative axial scanning altogether. Their findings showed substantial gains in
acquisition speed and reduced photobleaching, which are particularly beneficial for prolonged
or large-area time-lapse studies [58]. Beyond autofocusing, Cho et al. detailed a method
called deep decomposition and deconvolution microscopy (3DM), aimed at fast volumetric
imaging of neuronal activity using a conventional epi-fluorescence system. Their pipeline
first decomposes wide-field images into low-rank and sparse components, then employs a
second network for deconvolution of the sparse activity signals. This combination effectively
removes background fluorescence, preserving the crucial temporal dynamics of processes such

as whole-brain zebrafish imaging.

Another line of research focuses on super-resolving or upgrading conventional fluorescence
images through trained networks. Rivenson et al. illustrated that a deep neural network can
learn to transform low-numerical-aperture (NA) images into high-NA equivalents, effectively
enhancing lateral resolution and contrast over wide fields of view. This data-driven mapping
bypasses complex physical models and instead relies on carefully aligned training pairs to
bridge the gap between different optical configurations without modifying the microscope

hardware [59].

Finally, Wu et al. proposed a system called Deep-Z that takes a single two-dimensional
fluorescence image and attaches a user-defined digital propagation matrix to infer refocused
slices in three dimensions. Their work effectively extended the depth of field by up to twen-

tyfold for live neuronal samples, such as C. elegans, with minimal loss of resolution. Equally
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important, the same architecture can correct for sample tilt or drift in post-acquisition
steps, making it attractive for experiments requiring high-throughput volumetric monitoring
of living specimens. An additional variant, Deep-Z+, was also shown to translate wide-field
images to confocal-like outputs, illustrating how deep networks can cross-connect distinct

optical modalities [13].
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Figure 4.2: Deep-Z Microscopy. Single plane images are feed into a trained neural network,
where the are refocused up to distance of £10um. For conformation, the Deep-Z generated
refocused images are compared to the mechanical translations focused images for a fluorescent
bead (a). (b) is distribution of the FWHM of 300 nm fluorescent beads in the lateral
dimension for both Deep-Z propagation and mechanical objective translation. Similarly for
(c), the axial dimension FWHM are measure. In both cases, it is seen that the Deep-Z

propagation matches very well with the mechanical translation.

More recent efforts incorporate recurrent architectures for extended depth-of-field recon-

structions. Huang et al. introduced Recurrent-MZ, which fuses multiple sparsely sampled
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axial slices within a single recurrent network pass, achieving multi-plane volumetric out-
puts while cutting the number of physical scans by up to thirtyfold. Their framework also
supports cross-modality learning, transforming wide-field images into confocal-like volumes,

emphasizing the flexibility of time-sequence models for fluorescence microscopy [14].

Taken as a whole, these methods reveal how carefully trained convolutional and recur-
rent neural networks—often combined with domain knowledge about fluorescence imaging
physics—can elevate performance, speed, and resolution in three-dimensional microscopy.
They show that by minimizing brute-force axial scanning and leveraging computational re-
construction, modern fluorescence microscopy can reach unprecedented volumetric acquisi-
tion rates, even on standard hardware. Such data-driven pipelines alleviate classic trade-offs
of resolution, field of view, and phototoxicity, and they highlight the continuing evolution of

optical microscopy through machine learning.

36



CHAPTER 5

Research Objective - Interlude

The key metric in microscopy spatiotemporally relevant bandwidth. What I mean by this is
the complete utilization of all microscopy parameters to maximize the bandwidth of a system.
In Chapter 2, we explored how spatial sampling can have an effect on the imaging quality of
data. Oversampling leads to wasted information and degradation in your bandwidth quality.
If T were to image a single PSF and magnify it to occupy my entire sensor, how useful would
that be? Not very, I would argue. However, on the opposite side, if I were to severely under-
sample my image then I might be losing information that would otherwise be be useful.
When imaging we must balance these pieces of information to create the most useful tool
possible. Therefore, in this work, I will justify my creation as having maximized all of the
aforementioned parameters given that the available hardware at my disposal to create the
highest performing system. That is, a system that does not sacrifice (much) field-of-view
for speed or resolution for spatial sampling, or any combination of these. I am primarily
building this tool to image whole neuron level activity and given that neurons are typically
> 10 pum in diameter, I can justify some spatial sacrifices that I will address later. This is

achieved through a careful balance of hardware (optical) and software (neural networks).

5.1 Volumetric Rates and Bandwidth

Below in Table 5.1, a comparison of the latest microscope technology is presented to gain
a broader understanding of the speeds that are currently available to conduct scientific
inquiries. It is evident that the domains of time, volume, and resolution, are interrelated by

a common principle, and that is bandwidth, grey column. Furthermore, although bandwidth
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is a great indicator of the imaging speed of a system, the lack of sensor-to-sensor comparison
renders the question more complex. Given that some systems do utilize sensors that have
an intrinsically faster bandwidth, the overall bandwidth is bound to be larger. For example,
when comparing a Hamamatsu Flash 4.0 v2 to a HiCam Fluo Image Sensor CMOS camera,
the repetition rate of the digitizers are completely different. Succinctly, the Flash 4.0 v2 has
a maximum frame rate of 50 FPS (under light-sheet mode) for a pixel area of 2048 x 2048
pixels?. Conversely, the HiCam Fluo has a frame rate of 1000 FPS at 1280 x 1024 pixels®.
This results in a maximum bandwidth of 0.21 GPixels/s (Flash 4.0 v2) versus 1.31 GPixels/s
(HiCam Fluo). Nevertheless, if paired with identical sensors, the system that utilizes the
most overall sensors is the system with the theoretical maximum bandwidth. Having been
said, total volume imaged per unit time is another valid form of comparison, given that much

of the research is put forth in order to cover more volume, faster.

5.2 Transverse-Sheet Illumination Microscopy

TranSIM is a new microscopy method is presented that utilizes previous work, namely LSCM
illumination and detection methodologies, and also novel methods to attack the problem of
fast 73D” microscopy. By parallel processing the scanning method of LSCM, much like Spin-
ning Disk Confocal parallel processed the illumination and detection of its Point Confocal
predecessor, TranSIM is able to speed up acquisition by several orders of magnitude. In ad-
dition, the depth refocusing methodology, removes the slow mechanical translation seen in
some previous systems, which tended to be a bottleneck when it came to volumetric imaging.
To do achieve such speeds, TranSIM takes the light sheet produced by cylindrical lens and
multiplexes it such that is has a lateral and axial separation, therefore, the light that is no
longer convolved in its propagation. This allows for a purely optical method by which to

detect the separate image planes being illumination.
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Method Camera Scanned Rate Volume Size Voxel Size Num of Voxels JGeometry [Bandwidth |Volume Rate
Name Beam Camera Frame #]Volume Frame [x y z X y z X y z
FPS VPS FPS  fum pm pm Jum pm  pm Gpixels/s |mmA3/s
TranSIM Gaussian [JFlash 4.0 100 3 200 200 554 748 160] 0.8 1.6 20] 682 460 9)Epi 0.565 13.2605
Gaussian JFusion 100 3 400 400] 624 748 160f 0.8 1.6 20] 768 460 9)Epi 1.272 29.8721
Gaussian |Lightning 121 3 681 681] 1229 748 160] 0.8 1.6 20§ 1536 460 9Epi 4331 100.1661
TranSIM
+Deep-Z Gaussian [Flash 4.0 100 3 200 200] 554 748 185 0.8 1.6 0.5] 682 460 369|Epi 23.153 15.2911
Gaussian JFusion 100 3 400 400) 624 748 185] 0.8 1.6 0.5 768 460 369)Epi 52.144 34.4463
Gaussian |Lightning 121 3 681 681) 1229 748 185 0.8 1.6 0.51536 460 369)Epi 177.551 115.5040
IsoView Gaussian [Flash 4.0 100 1 2 1001 800 800 800f 04 04 4] 2000 2000 200jOrtho 1.600 1.0240
Lattice Lattice Flash 4.0 100 1 10 1000 30 30 20] 0.15 0.15 0.2] 200 200 100jOrtho 0.040| 0.0002
Bessel Bessel Flash 4.0 100 1 5 200 60 100 40 0.15 0.15 1] 400 1000 40]Ortho 0.080| 0.0012
DualView Gaussian [Flash 4.0 100 1 0.5 50 50 50 501 0.6 0.6 0.6] 260 360 50]Ortho 0.002 0.0001
SCAPE Gaussian |Zyla 100 1 10 100] 260 800 265 3.3 3.3 2.6] 100 240 8OJEpi 0.019 0.5512
SCAPE 2.0 Guassian |HiCAM Fluo 1000 1 321 18308] 197 293 78] 3.9 1.07 0.86] 100 640 57|Epi 1.171 1.4452
Light Field Widefield |zyla 100 1 20 20] 700 700 200 14 14 2.6] 500 500 76]Epi 0.380| 1.9600
Spinning
Confocal  widefield JFlash 4.0 100 1 6 200§ 150 150 501 0.6 0.6 1.6] 250 250 33]Epi 0.012 0.0068

Table 5.1: Microscope Comparison. Entire parameter space of various microscopes are listed
in the area of volumetric scanning. Major research developments in microscopy have taken
place in order to increase the speed are which they can image volumes. Although their
suitable application domains vary wildly from system to system, the overarching connection
is bandwidth. In the grey column, the total bandwidth of the system is shown in units
of GigaPixels/s. Moreover, the green column by-passes any sensor non-equivalences, and
instead focuses on the total volumetric imaging field imaging rate that is achieved in mm3 /s,
or volume size times the volume rate, of each system. Also shown, are proposed versions
of Transverse-Sheet Illumination Microscopy, in addition to its first proof-of-concept. These
future additions aim to explore the possibility of increased throughput of the system, limited
only by the bandwidth of the current imaging sensors. Courtesy of Dr. Arisaka, adopted

microscope comparison in NIH R21 Proposal to include experimental results of TranSIM|[5].
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5.3 Applied Neural Networks

In Chapter 4, we saw how CNNs and in particular U-nets could be applied to fluorescence
microscopy in order to increase resolution, depth-of-field, and optimize analysis, to name a
few of its utility cases. Here I will continue this work with the advantage of having TranSIM,
a parallel depth augmented imaging system. I will explore how I can transform a sparsely
depth separated imaging device into a true three-dimensional microscope. Moreover, I am
able to achieve massive field-of-views without sacrificing much in the name of spatial sampling
or resolution. With that being said, in Figure 5.1, I showcase how TranSIM coupled with
neural networks can transform the way we do microscopy and I hope that this opens the

door to a new type of micorscopy.

TranSIM TranSIM + NN
r)x
Z
N, N+
~20 um {
N

Y X
‘ E Lacking ¢ Reconstructed
7 Information Information

~20 ym

N T~ ~
N

Figure 5.1: TranSIM + Neural Networks, From Sparse to Dense. TranSIM is only able to
capture sparsely separated image planes. These planes are typically separated by a distance
of 20 um laterally and axially leading to parallelipiped volume. By training neural networks,

this data can be virtually refocused and recovered to form a true three-dimensional image.
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CHAPTER 6

Materials and Methods

In this chapter, I will provide an in-depth explanation of the methodologies I developed

and incorporated into my work. The first part of this chapter is organized into four major

sections, each detailing a distinct aspect of the methods employed throughout this research:

The first section focuses on the advancements and modifications made to the TranSIM
system since my Master’s thesis. These updates include both hardware and optical

design enhancements aimed at improving imaging performance and functionality.

The second section outlines the post-acquisition data processing pipeline developed
for TranSIM, specifically addressing inter-planar alignment. This pipeline resolves a
critical gap in my thesis work, ensuring that the volumetric imaging data is properly

aligned and spatially accurate.

The third section delves into the neural network implementations, covering input data
preprocessing and the architectural design of the networks (time-independent and time-

dependent).

The fourth amd final section of part 1 reviews the custom loss functions used for

training, and the analytical approaches applied to interpret the results.

The second part of this chapter dives into to the biological data analysis that was per-

formed to validate this system on real life data. Here I primarily worked with Drosophila

melanogaster larvae and adult stages as the validation animal. Here I incorporated and fur-

ther developed, with the aid of some undergraduate students (listed in the acknowledgments
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section), and immobilization technique to minimize movement in larvae for neural network
training.

This chapter not only highlights the technical innovations made during this research but
also demonstrates the integration of computational techniques into the broader experimental

workflow, bridging the gap between raw imaging data and biological insights.

6.1 Hardware Optical Design

Transverse Sheet Illumination Microscopy (TranSIM) employs a novel optical design that
utilizes spatially multiplexed imaging schemes to achieve simultaneous imaging of multiple
axially and laterally separated planes. This configuration significantly enhances volumetric
imaging speed while maintaining near-diffraction-limited resolution. The system relies on a
carefully engineered combination of beam multiplexing optics, precise alignment mechanisms,

and a modular detection pathway to achieve parallelized data acquisition.

In Figure 6.1, the complete optical schematic of TranSIM is illustrated, highlighting
the key components responsible for generating the illumination and detection profiles. The
illumination system creates laterally and axially separated light sheets using a combination
of beam-splitting optics and reflective cavities, while the detection system ensures that the
fluorescent signals from multiple imaging planes are accurately separated and captured onto

multiple sSCMOS cameras.

For this proof-of-concept implementation, a 2-camera detection system was selected to
maximize imaging coverage. Fach camera captures three imaging planes, with each plane
mapped onto a region spanning 682 pixels x 920 (or 460) pixels on the sensor. This con-
figuration optimally utilizes the sensor area while maintaining high spatial resolution. Ad-
ditionally, a "light-sheet” mode is employed, enabling the rejection of out-of-focus light and

ensuring confocal-like imaging performance.
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Figure 6.1: Optical schematic of Transverse Sheet Illumination Microscopy. The system

incorporates a multiplexed illumination scheme that generates laterally and axially separated

light sheets, which are then scanned across the imaging field. Fluorescent signals from

multiple planes are separated using knife-edge mirrors and mapped onto sCMOS sensors,

enabling simultaneous multi-plane imaging.
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Figure 6.2: Optical Schematic of Illumination. By placing parallel facing partially reflecting
and fully reflecting mirrors, a focused laser beam can be multiplexed ad infinitum with

laterally and axially separated foci.

6.1.1 Illumination Design

TranSIM is a 1P system using a 488 nm, 100 mW Coherent Sapphire (Coherent Inc.) con-
tinuous wavelength laser. The laser beam diameter is expanded using a -50 mm (LC1715-A,
Thorlabs) to 250 mm (LA1461-A, Thorlabs) telescope for a 5 times beam expansion from
a 1 mm to 5 mm diameter. The beam is then passed through a 100 mm cylindrical lens
(LJ1567RM, Thorlabs) to create the prime laser line that will be multiplexed. For multi-
plexing, a 90:10 R:T beamsplitter (BS) (BSX10R, Thorlabs) is placed immediately after the
focal line of the cylindrical lens with angle o from the optical axis. A wedge mirror is then
brought it a close as possible to the laser line without clipping it and placed parallel to the
BS. The BS allows 10% of the light through and 90% is reflected to the wedge mirror which
in turn fully reflects the beam back towards to the BS. Here the beam again passes through

the BS with 10% of the remaining power and the process repeats. With each subsequent
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bounce, the transmitted beam’s power decreases exponentially
P,=0.1x (09" x P,.

Nevertheless, this results in an infinite set of beams that are equally laterally and axially
separated. The lateral separation is introduced by the slight angle o, and the axial separation
is introduced by the spatial delay introduced by the bouncing to the next lens. Additionally,

the lateral and axial separations are governed by the following geometric equations,

y = 2dsin(w),
z = 2d cos(a).

The multiplexed beams are then collected with a 100 mm achromatic lens (AC254-100-A,
Thorlabs) off centered such that the Nth/2 plane (of used planes on the detection side) is
placed at the centered axis. A detailed schematic of this beam multiplexing system is shown
in Figure 6.2. The beams are then reflected off a Dichroic mirror (T495lpxru, Chroma)
towards a galvanometer for scanning. The scan lens is an effective 100 mm focal length
telecentric lens created using a pair of 200 mm achromatic lenses (ACT508-200-A, Thorlabs).
Similarly, the tube lens is a 200 mm effective focal length lens comprised of a pair of 400 mm
achromatic lenses (ACT508-400-A, Thorlabs). Telecentric lenses were chosen to maintain
constant magnification. For our imaging lens we chose a Nikon 16X 0.8 NA objective. The

laser lines are then scanned laterally using the galvanometer.
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Figure 6.3: Optical Schematic of Detection. The once laterally and axially separated foci
can be trimmed away and reflected onto sSCMOS sensors for imaging. Here I show a detailed
view of how these foci can be steered. On the round trip, the Nth 4+ 2, image plane will
be at the same position axially as the first plane, but laterally shifted to be adjacent to the
previous plane leading to a set of axially refocused and laterally displaced image planes that

get sent in unison to the sensor.

6.1.2 Detection Design

The detection beams are collected with the same Nikon 16X 0.8 NA objective and are
initially scanned in the same manner as the illumination beams until they are de-scanned by
the galvanometer. Once de-scanned, the beams are then passed through the dichroic mirror
where they are injected into the cyclic module. The initial insertion is made by focusing
the focal lines using a 100 mm effective focal length telecentric lens using a pair of 200
mm achromatic lenses (AC254-200-A, Thorlabs) onto a D-shaped pickoff mirror (BBDO05-
E02, Thorlabs). The beams are initially laterally offset in the cyclic module as this will

allow space for realignment and focusing. Now inside of the cyclic module, the beams are
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relayed using a 4f relays composed of a 100 mm effective focal length telecentric lenses
made from pairs of 200 mm lenses (ACT508-200-A, Thorlabs) and a mirror for 90-degree
reflection placed between the telecentric lenses. At the relayed focal plane, a knife-edge mirror
(MRAK25-P01, Thorlabs) is brought in close enough to the beams to pick-off the first image
plane. This image plane is then relayed and rescanned into an ORCA-Flash4.0 V2 sCMOS
sensor (Hamamatsu) with the rolling shutter enabled. The rescanning is produced by a
galvanometer. The remaining beams are relayed with a pair of identical 4f telecentric relays
to the second knife-edge pick-off mirror where the second beam is sent to the sSCMOS sensor.
Using the last 4f relay, the remaining beams are laterally adjusted by physically translating
the 4f relay to be offset from the previous three relays. The focusing is achieved by adjusting
the position of the 4f relay lens distances. The beams are then allowed to pass underneath
the D-shaped pick-off mirror with the beams having been realigned and refocused to be

adjacent to the initial pass and the cycle repeats.
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6.1.3 Inter-Planar Distance and Volumetric Field-of-View

Parallelepiped Volume Magnified Parallelepiped Volume (M=16X)
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Figure 6.4: Effect of Magnification on Volume Scaling. The original parallelepiped volume
(left) and the magnified version (right) demonstrate anisotropic scaling. The lateral di-
mensions (X and Y) shrink by a factor of 1/M, while the axial dimension (Z) compresses
more significantly by a factor of 1/M?2. This mimics how magnification in microscopy in-
creases lateral resolution while reducing axial depth, leading to a flattened appearance in

the Z-direction.

TranSIM produces volumetric data with a staircase profile, resulting in a parallelepiped-like
volume. The lateral and axial offsets are determined by the angle of incidence, o, on the
90:10 beamsplitter and the separation distance to the depth mirror, d. The pre-magnification

lateral plane separation, ¥, is given by the trigonometric relation:
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y = 2dsin(w).
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