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The transformation of an atomic nucleus into two excited fission fragments is modeled as a strongly 
damped evolution of the nuclear shape. As in previous studies, it is assumed that the division of mass 
and charge is frozen in at a critical neck radius of c0 = 2.5 fm. In order to also determine the energetics, 
we follow the system further until scission occurs at a smaller neck radius, at which point the shapes of 
the proto-fragments are extracted. The statistical energy available at scission is then divided on the basis 
of the respective microscopic level densities. This approach takes account of important (and energy-
dependent) finite-size effects. After the fragments have been fully accelerated and their shapes have 
relaxed to their equilibrium forms, they undergo sequential neutron evaporation. The dependence of 
the resulting mean neutron multiplicity on the fragment mass, ν̄(A), including the dependence on the 
initial excitation energy of the fissioning compound nucleus, agrees reasonably well with observations, 
as demonstrated here for 235U(n, f), and the sawtooth appearance of ν̄(A) can be understood from shell-
structure effects in the level densities.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Even 80 years after its discovery [1,2], nuclear fission remains 
a fertile topic for experimental and theoretical research [3–6]
and improvements in instrumentation, modeling, and computation 
have enabled a renaissance in the field.

In their seminal paper [7], Bohr and Wheeler described fission 
as an evolution of the nuclear shape subject to both conservative 
forces from the potential energy of deformation and dissipative 
forces resulting from the coupling to the residual system. This con-
ceptually simple picture suggests that the shape dynamics can be 
regarded as a Brownian process, as pioneered by Kramers [8].

In the limit of strong dissipation, an idealization first suggested 
by the recognition that the nuclear dissipation is very strong [9]
the shape evolution can be simulated as a random walk by the 
nuclear shape [10,11] on the multi-dimensional potential-energy 
surface. This assumption of overdamped motion is supported by 
recent time-dependent density functional calculations of the whole 
fission process [12,13], while other calculations describe a fading 
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away of the dissipation in the last stages of fission, when a thin 
neck develops towards scission [14].

The Brownian walks are followed from well inside the fission 
barrier, across the barrier region, until the neck radius c has shrunk 
to a certain critical value, c0 ≈ 2.5 fm, at which the partitioning 
of the nucleons between the emerging fragments is assumed to 
be frozen in. The resulting fragment mass distributions have been 
found to be in remarkably good agreement with available exper-
imental data [10,15,16]. Furthermore, extension of the potential 
energy to include both neutron and proton degrees of freedom has 
yielded a good reproduction of the observed odd-even staggering 
in the fragment charge distributions [17,18].

Those simulations have generally employed potential-energy 
surfaces obtained by the macroscopic-microscopic method [19]
and the gradual reduction of the microscopic effects as the energy 
is raised has been accounted for by means of an energy-dependent 
suppression factor containing a few adjusted global parameters 
[16]. A recent study [20] improved the treatment by using shape-
dependent microscopic level densities to guide the Brownian evo-
lution, thereby providing a consistent framework for calculating 
the energy-dependent fission-fragment yields, without the need 
for introducing any parameters. This refinement has made it possi-
ble to address more detailed features, such as the non-monotonic 
energy dependence of the symmetric fragment yield [20].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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We here develop the approach further by following the shape 
evolutions beyond the freeze-out configurations at c = c0 until ef-
fective separation of the proto-fragments occurs at a smaller neck 
radius, c = csc. For each such scission configuration, we extract 
the distorted shapes of the two nascent fragments and we then 
distribute the available excitation energy between those two frag-
ments based on their microscopic level densities, calculated for 
their respective distorted shapes.

The degree of excitation of the fission fragments, as indicated 
by the corresponding mean neutron multiplicity, ν̄(A), has long 
been puzzling because it appears to differ from simple statistical 
expectations. Most strikingly, for actinides, the light fragment typ-
ically evaporates more neutrons than the heavy fragment, ν̄(AL) >
ν̄(AH). However, as was recently pointed out by Schmidt and Ju-
rado [21], previous treatments [22–24] employed the simplified 
Fermi-gas (Bethe) level density [25] which may be misleading at 
low energies where structure effects tend to be significant.

We demonstrate that a consistent use of the appropriate micro-
scopic level densities in the distorted proto-fragments at scission 
provides a reasonable description of the sawtooth appearance of 
the fragment-mass dependence of the mean neutron multiplicity 
ν̄(A).

2. Methodology

In our study, we generate and analyze a large number of scis-
sion configurations (typically 106) for the compound system 236U∗
having a specified initial excitation energy E∗

0. For this task, we 
employ the Brownian shape evolution method [10], performing 
Metropolis walks on the potential-energy surface tabulated for 
the three-quadratic-surfaces (3QS) shape family [19]. These shapes 
[26] are characterized by five parameters: the overall elongation 
given by the quadrupole moment Q , the radius c of the hyper-
bolic neck between the two spheroidal end sections which have 
deformations ε f 1 and ε f 2, and the mass asymmetry α.

Each Metropolis walk is started in the second minimum and 
continued across and beyond the outer barrier through the freeze-
out at c = c0 (where the mass division is frozen out) and until a 
scission configuration is reached at c = csc. We regard the value 
of this quantity as being somewhat adjustable; here we use the 
value csc = 1.5 fm determined in Ref. [27] as leading to good 
agreement with the measured fragment kinetic energies. The mass 
numbers of the nascent heavy and light fragments, AH and AL, 
are determined by the value of the 3QS asymmetry parameter α
at freeze-out. The associated fragment charge numbers, ZH and 
ZL, are selected as those values that best preserve the N:Z ra-
tio. For the present exploratory study, we consider only divisions 
into even-even fragments.

We assume that the scission shape is transformed into two 
proto-fragments that have spheroidal shapes characterized by the 
3QS ε2 values at scission, εsc

H , and εsc
L . These generally differ 

from the corresponding ground-state deformations, εgs
i (including 

also ε4 and ε6 deformations). The associated distortion energies, 
Edist,i = Mi(ε

sc
i ) − Mi(ε

gs
i ), are converted into statistical fragment 

excitations later on as the fragment shapes relax to their ground-
state forms. The shape-dependent fragment masses, Mi(ε), are cal-
culated in the same macroscopic-microscopic model that was used 
to obtain the potential-energy surfaces [28].

Because the collective kinetic energy associated with the shape 
evolution is assumed to be negligible prior to scission (see Refs. [9,
12,13]), we take the available excitation energy at scission to be 
the difference between the total energy, Etot , and the potential en-
ergy of the scission configuration,

E∗
sc = Etot − U (Q sc, csc, ε

sc
1 , εsc

2 ,αsc) . (1)
In the present study, we assume that this quantity is divided statis-
tically between the two fragments, i.e. the total excitation energy 
of the heavy fragment, E∗

H, is governed by the following micro-
canonical distribution,

P (E∗
H; E∗

sc) ∼ ρ̃H(E∗
H;εsc

H ) ρ̃L(E∗
sc − E∗

H;εsc
L ) , (2)

and E∗
L = E∗

sc − E∗
H due to energy conservation, where ρ̃i(E∗

i ; εsc
i ) ≡

ρ̃(Ni, Zi, E∗
i ; εsc

i ) is the effective density of states (see below) of a 
nucleus with neutron and proton numbers Ni and Zi , spheroidal 
deformation εi , and a total excitation energy of E∗

i , with i = H, L. 
Because the fragment deformations at scission generally differ 
from their ground-state values there is no experimental informa-
tion available on the required level densities. Instead, an estab-
lished microscopic model is employed to calculate the energy par-
tition distribution function Eq. (2).

The key novelty of the present study is the use of shape-
dependent microscopic level densities in the above expression (2)
for the partitioning of the available energy. The fragment level den-
sities are calculated by employing the combinatorial method of 
Ref. [29], to the same model as that giving the shape-dependent 
compound nuclear level density employed in the Metropolis walk. 
Thus, for each proto-fragment, the neutron and proton wave func-
tions are calculated in the spheroidal effective field and the many-
quasi-particle excitations are constructed. For each such configu-
ration, a BCS pairing calculation is carried out and the associated 
rotational band is built. For each value of the angular momentum 
I , the level density ρ(E∗, I; εsc) is then extracted by counting the 
number of energy levels having angular momentum I in a small 
energy interval around E∗ . In the present study, we are interested 
in the energy distribution only, so we sum over the fragment angu-
lar momentum, Ii , to obtain the effective density of states entering 
in Eq. (2),

ρ̃i(E∗
i ;εsc

i ) =
∑

Ii

(2Ii + 1)ρi(E∗
i , Ii;εsc

i ) . (3)

3. Results

Fig. 1 shows the energy distribution P (E∗
H; E∗

sc) at three differ-
ent values of the total available energy E∗

sc for two different mass 
divisions having (AH:AL) = (130:106) and (152:84). These two di-
visions contribute to the yields at the inner and outer wings of 
the double-humped mass distribution, respectively, (see e.g. Fig. 9 
of Ref. [20]), and the deformations considered are typical of those 
divisions.

The energy distribution was calculated with both the mi-
croscopic level density discussed above and a simple macro-
scopic (Fermi-gas) level density, ρFG(E∗) ∼ exp[2√

aE∗] with a=A/

(8 MeV). Both yield rather broad distributions due to the small-
ness of the nuclear system. The macroscopic form yields smooth 
Gaussian-like distributions peaked at E∗

H/E∗
L = AH/AL, whereas the 

microscopic form yields irregular distributions that may have qual-
itatively different appearances, especially at lower values of E∗

sc
where quantal structure effects are most significant. In particular, 
it is possible that one fragment receives all the available energy 
with the partner fragment being left without excitation. Although 
the probability for this decreases quite rapidly with increasing 
E∗

sc, this feature is in dramatic contrast to the macroscopic re-
sult.

The mechanism for the energy partitioning considered here dif-
fers from the idealized “energy sorting mechanism” proposed in 
Ref. [21], where all energy is transferred to one fragment, namely 
the one with the lowest temperature. The finite size of the nuclear 
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Fig. 1. The distribution function P (E∗
H; E∗

sc) for the total excitation of the heavy frag-
ment in 235U(n, f) for two different divisions, either (N, Z , ε)H = (80, 50, −0.1) and 
(N, Z , ε)L = (64, 42, 0.3) (top panels) or (N, Z , ε)H = (92, 60, 0.1) and (N, Z , ε)L =
(52, 32, 0.1) (bottom panels), and three different values of the available energy at 
scission, E∗

sc=10 (left column), 20 (center column), 40 (right column) MeV. The dis-
tributions obtained from microscopic (blue histograms) and Fermi-gas (solid red 
curves) level densities are normalized to the maximum value of the Fermi-gas re-
sult.

system always leads to a broad distribution of the fragment excita-
tions, as seen in Fig. 1, where both fragments have an appreciable 
chance for receiving part of the energy.

For the case shown in the top panel of Fig. 1, the heavy 
fragment is 130Sn which is very close to being doubly magic. It 
therefore has a spherical ground-state shape, εgs

H = 0, while the 
light fragment, 106Mo, has a well-deformed prolate ground-state 
shape, εgs

L = 0.33. The fragment deformations at scission are εsc
H =

−0.10 and εsc
L = 0.30 which both deviate only slightly from the 

ground-state deformations. The near magicity of the heavy frag-
ment (which has a shell correction energy of −10.2 MeV) causes 
the level density to remain very small up to excitation energies of 
20 MeV. Conversely, the shell correction energy of the light frag-
ment is +0.35 MeV and its level density is considerably larger than 
that of the heavy partner in that energy range. As a consequence, 
the energy distribution is peaked at small values of E∗

H and the 
major part of the energy goes to the light fragment. For exam-
ple, when the total energy available for sharing is 10 MeV, the 
most likely outcome is that the heavy fragment receives only ≈2 
MeV, while the light fragment gets ≈8 MeV. This is very differ-
ent from the macroscopic (Fermi-gas) scenario in which the most 
likely excitations of those fragments are about 5.5 and 4.5 MeV, 
respectively.

A different picture appears in an example when the two frag-
ments differ more in size, as illustrated in the bottom panel of 
Fig. 1. Here the microscopic energy-partition distribution function 
strongly favors the heavy fragment, 152Nd, relative to the light 
fragment, 84Ge. In this case, the typical scission deformation of 
the heavy fragment is considerably smaller, εsc

H = 0.10, than its 
ground-state deformation, ε

gs
H = 0.24. Therefore the heavy frag-

ment has a large single-particle level density and, consequently, 
it has a large positive shell correction energy, +6.1 MeV (as com-
pared to −6.9 MeV for the ground-state shape) and a particularly 
high level density. On the other hand, the neutron number of the 
light fragment, NL = 52, is close to being magic so its level density 
is low. As a result, the heavy fragment is strongly favored in the 
energy division, even up to quite high energies, as clearly seen in 
Fig. 1 (d)-(f).

As the available energy is increased, the microscopic energy 
partition distribution (2) approaches the macroscopic form ob-
Fig. 2. The mean fragment distortion energy Edist(A) (black dots), the mean excita-
tion energy at scission, E∗

sc(A) (red squares), and the sum, Edist(A) + E∗
sc(A) (green 

diamonds), as extracted from an ensemble of 106 scission configurations, are shown 
as functions of the fragment mass number A. For reference is also shown E∗

sc(A)

obtained with the simple Fermi-gas level density (red dashed curve).

tained with the Fermi-gas level density [20] and the structure 
effects on the mass partition subside, albeit at various rates.

For each scission configuration obtained at the end of the 
Metropolis walk, the excitation energies of the nascent fragments 
are sampled from the appropriate microscopic partition distribu-
tion (2) illustrated in Fig. 1. For 235U(nth, f), the resulting mean 
excitation energy E

∗
sc(A) is shown in Fig. 2 as a function of the 

fragment mass number A, together with the mean fragment dis-
tortion energy Edist(A), as well as the sum of these two quantities 
which represents the total excitation energy of the fragment rela-
tive its ground state.

To illustrate the effect of the microscopic level densities, Fig. 2
also shows the mean excitation energy obtained with the simple 
Fermi-gas level density. The structure of the undulating difference 
between the two curves, �E∗

sc(A) ≡ E∗
sc,mic(A) − E∗

sc,mac(A), can be 
qualitatively understood from the two energy partition distribution 
functions discussed above. The local minimum in �E∗

sc(A) slightly 
below A = 130 and its local maximum around A = 106 result from 
the favoring of the light fragment in the energy sharing illustrated 
in Fig. 1 (a) – (c), while the pronounced maximum of �E∗

sc(A) at 
A ≈ 150 and the corresponding minimum around A ≈ 84 result 
from the favoring of the heavy fragment illustrated in Fig. 1 (d) – 
(f).

With regard to the distortion energies, we note that the scis-
sion shapes are typically less deformed than the corresponding 
ground-state shapes, εsc

i < ε
gs
i . The resulting mean distortion en-

ergies increase from 2–3 MeV for light fragments to 6–7 MeV 
for heavy fragments. As a consequence, the maximum in E

∗
sc(A)

around A = 150 is enhanced by the large distortion energies in 
the same mass region, as is clearly brought out in Fig. 2.

After scission, the fragments are accelerated by their Coulomb 
repulsion, and their shapes relax towards the ground-state shapes. 
We assume that the relaxation of the shapes occurs at a shorter 
time scale than the subsequent neutron evaporation. In this pic-
ture, neutrons are evaporated from fragments in their ground-state 
deformation, starting out with the full excitation energy E∗

sc + 
Edist. The higher this energy, the more neutrons can be evapo-
rated. Thus, experimental information on the average number of 
neutrons emitted ν̄(A) as function of the fragment mass carries 
information on the energy partitioning of the excitation energy of 
fragments. We therefore proceed to calculate neutron evaporation 
from the fragments.
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Fig. 3. The calculated mean neutron multiplicity ν̄(A) (blue diamonds) for 
235U(nth, f) is shown as a function of the mass number of the primary fission frag-
ment, which is compared to a variety of experimental data: black squares [30], 
yellow circles [31], green triangles [32], orange diamonds [33], purple stars [34]
brown triangles [35], red circles [36]. The red/blue arrows point to the mass divi-
sions selected in Fig. 1.

Because the initial compound excitation energies are relatively 
low, neutron emission prior to or during fission is insignificant. 
Furthermore, the fragment angular momentum I is hardly affected 
by the evaporation, so the energy available for neutron evapora-
tion is taken as E = E∗ − Ērot, where Ērot is the average rotational 
energy (which will later contribute to the photon radiation). For 
a given fragment (Z , N, E, ε), the kinetic energy εn of the evapo-
rated neutron is sampled from the spectrum ∼ ρ̃ ′(E ′; ε′) εn, where 
ρ̃ ′ denotes the effective level density in the daughter fragment 
(Z ′ = Z , N ′ = N −1, E ′ = E −εn − Sn, ε′), with Sn being the neutron 
separation energy in the mother fragment. (Though not important 
for the present study, to be consistent we employ the microscopic 
level density (3) for the evaporation daughter nucleus.) Following 
the treatment in Ref. [40], the neutron evaporation is continued 
until the excitation energy has fallen below the neutron separation 
energy.

Fig. 3 shows the calculated mean neutron multiplicity ν̄(A) to-
gether with experimental data from a variety of experiments. (A 
related analysis for 240Pu was performed in Ref. [13].) The ob-
served sawtooth behavior (minima at A ≈ 76, 126 and maxima at 
A ≈ 110, 156) is reasonably well reproduced by the calculation and 
arises from a combined effect of the behavior of the neutron sep-
aration energy Sn(A), which displays a jump near A = 132 due to 
the closed shells at Z = 50 and N = 82, and the behavior of the to-
tal intrinsic fragment energy Edist(A) + E∗

sc(A) (see Fig. 2). Indeed, 
the energy partition determined by microscopic level densities (as 
compared to Fermi-gas level densities) implies an enhanced neu-
tron emission for A ∼ 106 and A ∼ 150, and correspondingly less 
neutrons emitted for A ∼ 130 and A ∼ 84.

The shortfall of ν̄(A) in the region around A = 110 arises from 
the fact that the Brownian shape evolution leads to too large frag-
ment kinetic energies for mass divisions near symmetry, possibly 
because the 3QS shape family employed is inadequate for those 
very elongated scission configurations. (If the kinetic energies are 
adjusted to correct for this shortcoming, the agreement of ν̄(A)

with data is significantly improved [27].)
The energy dependence of the energy partitioning is illustrated 

in Fig. 4 which shows ν̄(A) resulting from first-chance fission at 
three different incident neutron energies. The experimental data 
from Ref. [41] are also shown. As the energy is raised, the struc-
ture effects in the level densities smear out and the undulations in 
ν̄(A) diminish. In the region around A = 130, the very low neutron 
Fig. 4. For 235U(n, f) is shown the calculated mean neutron multiplicity as a function 
of the mass number of the primary fission fragment, ν̄(A), for three different inci-
dent neutron energies En: 0.5 MeV (a), 5.55 MeV (b), 14 MeV (c). The experimental 
data from Ref. [41] are also shown.

multiplicity occurring for thermal fission grows rather rapidly with 
increasing neutron energy, causing the sawtooth feature of ν̄(A) to 
weaken. This behavior is due to the decrease of the strong neg-
ative shell correction at higher excitation energy for fragments in 
this mass region, increasing the level density and thus the share of 
the excitation energy taken up by the heavy fragment at scission. 
On the contrary, the neutron multiplicity from the light fragments 
is affected much less by the increase in energy. Indeed, as En is 
increased from 0.5 to 5.55 MeV the measured [41] mean neutron 
multiplicity grows by 0.04 and 0.69 for light and heavy fragments, 
respectively, while the corresponding calculated increases are 0.20 
and 0.54.

4. Summary and discussion

For the purpose of elucidating the importance of structure ef-
fects for the degree of excitation of the primary fission fragments, 
we have augmented the recently developed level-density guided 
Metropolis shape evolution treatment [20] with shape-dependent 
microscopic level densities for the nascent proto-fragments which 
are distorted relative to their equilibrium shapes. The available en-
ergy is partitioned microcanonically according to the correspond-
ing microscopic level densities which take account of the structure 
effects for these non-equilibrium shapes. For each fragment, the 
distortion energy is converted into additional excitation before the 
neutron evaporation cascade begins. Apart from the symmetry re-
gion where the 3QS shape family appears to be inadequate and 
leads to too little statistical excitation, the dependence of the re-
sulting mean neutron multiplicity on fragment mass, ν(A), agrees 
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reasonably well with the experimental data. In particular, the saw-
tooth appearance of ν(A) can be understood from shell-structure 
effects in the level densities as well as from structure in the dis-
tortion energy surface.

We also studied how ν(A) changes as the excitation energy of 
the fissioning nucleus is increased. The sawtooth behavior is weak-
ened due to the reduction of the shell corrections near A = 130
which significantly increases the level density in the heavy frag-
ment and therefore E

∗
sc (AH), hence also ν̄(AH). Such an evolution 

is also seen in the experimental data. It is thus our conclusion that 
the microscopic sharing mechanism studied here contributes sig-
nificantly to the observed sawtooth behavior.

In our treatment, the characteristic feature that relatively few 
neutrons are emitted from the heavy 132Sn-like fragments and rel-
atively many from the light partner fragments emerges mainly 
because of the shell effects in the level-densities. This mecha-
nism differs from some previous studies where similar results were 
obtained with less (or no) excitation energy but with a very de-
formed light fragment (hence a large Edist(AL)) and a nearly spher-
ical heavy fragment, leading to conversion of deformation energy 
for the light fragment into emitted neutrons [38,39]. In both sce-
narios the sawtooth appearance of ν̄(A) is related to the shell 
effects associated with a spherical shape of the heavy fragment.

In recent calculations [12,13,37] octupole deformations of the 
fission fragments are found to play an important role in the 
fission dynamics. In some cases, this significance is related to 
shell-stabilized octupole deformations of specific isotopes [37]. In 
our calculations the parametrized fragment shapes are limited to 
quadrupole deformations defined from the edge shape parameters 
in the 3QS shape family. It would certainly be interesting (but time 
consuming) to include octupole shapes of each proto-fragment as 
well.

The total excitation energy in the two fragments is reflected in 
the resulting neutron multiplicity and is thus experimentally ac-
cessible, whereas it is less obvious how to determine how much of 
that energy was present as statistical excitation already at scission 
and how much was recovered later from the proto-fragment dis-
tortions. Careful analysis of the detailed form of ν̄(A) may identify 
observable differences between the two mechanisms, but this may 
require more accurate experimental data.

Finally, we wish to note that the presented treatment stays 
within the well-established framework of the macroscopic-micro-
scopic model of nuclear structure underlying the calculation of the 
nuclear potential-energy surfaces that have been used successfully 
to calculate fission-fragment mass distributions [10,11,16,20]. This 
novel treatment has considerable predictive power and can readily 
be applied to other fission cases as well, including cases where no 
experimental data yet exist.
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