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Abstract

mportant component of expertise is the rapid pickup
ymplex. task-relevant pattern structure, yet such skills
ieldom trained explicitly. We report initial results
ying principles of perceptual learning to the
essing of structure in mathematics, specifically the
iection between graphed functions and their symbolic
essions. Subjects in two experiments viewed graphs
inctions and made a speeded. forced choice match from
ral equations. Training consisted of many short trials
lis active classification task involving examples of a
tion (e.g., sine) subjected to various transformations
. scaling, shifting, reflection). Experiment | used
rastive feedback - the graph for a trial was shown
rimposed on the canonical function to accentuate
sformations. Subjects showed substantial performance
s from 45 minutes of training and transferred to new
inces. new function families and a new task. In
eriment 2, with contrastive feedback removed, subjects
ved no transfer to new functions. The results indicate

value of perceptual training in producing
iematical expertise and the value of contrastive
back in particular.

at does it mean to attain mathematical expertise?
ction most often emphasizes declarative knowledge -
ind concepts. A student may learn, for example, that
inction y = Sin x can be generated by a certain
uction involving a triangle. Having learned about the
unction, the student may be able to answer certain
1 questions and work out problems on a test.
re is more to expertise, however, than facts, concepts
fferences. Suppose we ask the student who is familiar
= Sin x what the graph of y = Sin (x-2) would look
Chances are the student will not know immediately.
1g the answer may be an inference process requiring
il steps: We can substitute 2 for x to find that the
on now crosses the x axis at (2,0) instead of (0,0). If
ieck a few more points, perhaps the answer would
1€ clear.
¥ would an expert respond to this query? At a glance,
ntuitive that the "-2" in the function y = Sin (x-2)
the whole function rightward on the x axis by two
[f it were y = Sin (x+2), the shift would be to the
Likewise, y = 3 Sin x amplifies the function along the
i ¥ = Sin (4x) compresses along the x; and y = 2-Sin
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x causes a reflection around the x axis and shifts the whole
function upward by two units. The expert detects at a
glance the structural relationships in each equation and
intuitively knows their meaning in the spatial representation
(the graph in Cartesian coordinates).

This kind of expertise is important, and in some tasks,
decisive. To be able to look at a plot of data and recognize
how it could be approximated by an equation, or to
visualize the consequences of changes in an equation for the
shape of the function, would seem to be basic to the use of
mathematics in science. The student who can work out
these connections through factual knowledge and reasoning
lags behind one who intuits the relevant patterns at a glance.
The scientist’s ability to extract relevant structures in both
equations and graphs allows her attention and effort to be
allocated to the scientific problem at hand -- without having
to pause to work through what e™X looks like. These
aspects of skilled performance are our concern in this paper.

How these skills arise, in mathematics or in other
domains, may appear mysterious. In the examples of sine
functions above, we could specifically state to the student,
in a lecture or text, all of the transformations mentioned.
We might find that even after the student learned to state the
facts, classification of new examples would be slow and
arduous. Attaining the fluent pattern classification skills of
the expert may not come from this kind of instruction. We
would say that the students “need experience” and that they
will attain greater fluency with time. The same is said to
beginning radiologists, instrument pilots, accountants and
novices in other domains about the structures and patterns
they work with.

The passage of time is not very satisfactory as an
explanatory notion. A specific hypothesis about the
development of such skills is that they involve perceptual
learning (Gibson, 1969). Broadly, perceptual learning is
defined as “an increase in the ability to extract information
from the environment, as a result of experience and practice
with stimulation coming from it (Gibson, 1969).
Perceptual learning is a comerstone of advanced human
performance. In some domains, it leads to competence that
appears nearly magical. The magic comes from processes
that allow for continuing improvement in the extraction of
pattern structure with practice. For example, in 1996, Garry
Kasparov, the world champion chess player, defeated Deep
Blue, a chess-playing computer that examined 125 million
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possible moves per second. In 1997, Kasparov lost a close
match 1o an improved Deep Blue that cxamined
approximately 250 million moves per second. How can a
human, who examines a smaller number of possible moves
on cach turn (about 4) cven begin to compete with a
machine that computes all the possibilities for exactly what
the board will look like many moves later? The grandmaster
has developed pattern pickup skills, specifically relevant to
the game of chess (Chase & Simon, 1973). These allow
efficient processing of the board structures that will be
relevant to the outcome of the game. Much of this
knowledge is not accessible to the player. If it could be
clearly articulated, the grandmaster’s strategy could be
implemented in a computer chess-playing program,
allowing computers that look at mere thousands or even
hundreds of moves to defeat the best humans.

We do not et have good process models of perceptual
learning. Evidence indicates. however, that the performance
of certain acts of information processing. not the passage of
time. lead to advances in perceptual learning (Gibson, 1969;
Hock. 1987: Kamni & Sagi, 1993; Kellman & Kaiser, 1994;
Lewicki. 1992: Pick 1965: for a review see Goldstone,
1998). Impressive changes in detection and pattern
classification have often been obtained, even using relatively
brief training procedures in laboratory experiments. Such
experiments shed light on the conditions that lead to
perceptual learming., and they raise the possibility of
svstematizing procedures that might accelerate the
development of pattern extraction skills in educational and
training settings. In short, even while we lack complete
process models, we know quite a bit and can learn more
about how to produce perceptual learning. Expert pattern
processing skills represent a component of expertise that
differs from declarative knowledge and must be trained
differently. In the present research, we seek to apply
perceptual leamming principles to mathematics and
investigate how they can be optimized.

What are the ingredients for obtaining perceptual
leaming? Our answer is tentative, but a number of ideas
have received support. In the first place, information
pickup is a skill that is not much exercised by hearing a
recitation of facts. Training using many short trials
requiring a speeded response may optimize perceptual
learning. In these trials, the learner must be exposed to a
range of variation in a stimulus set that contains the
invariants that support some discrimination or classification
(Gibson, 1969). Often it is suggested that the learner must
be actively involved in a classification task, i.e., must
attend and respond on a number of trials. Where discovery
of differences is primary, such trials may allow leaming
without feedback (Gibson, 1969), whereas for other
classifications feedback may be crucial.

The Algebra — Geometry Connection

In the present research, we developed a perceptual learning
module (PLM) 1o advance subjects’ abilities to relate graphs
of mathematical functions to their symbolic expressions.
Obviously, connecting graphs and equations is a complex
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task, one that no doubt has conceptual and perceptual
components.” We do not attempt to separate these
components here. We chose the task, however, because
subjects appear to be quite poor at it initially, despite
having satisfactorily completed relevant coursework in
mathematics. It seemed plausible that their difficulties were
due in part to the limitations of traditional instruction and
might be overcome by perceptual learning.

We have three ultimate goals in this research. One is to
test whether a brief period of perceptual training can
improve subject's performance in interpreting graphs and
equations. If so, a second goal is to determine what
variables are important in producing and optimizing
perceptual learning. These include the type of feedback and
the role of active classification. Finally, we are interested in
how acquired pattern processing skills transfer to new
stimuli and more complex tasks. In this paper, we report
some initial findings related to all three of these goals.

Experiment 1

In Experiment 1, we tested a perceptual learning
procedure for developing pattern processing skills in
matching graphs to equations. The procedure incorporated a
number of ingredients that may be important in accelerating
perceptual classification skills. First, subjects performed an
active classification task. They performed many short trials,
each requiring a speeded, perceptual classification response.
On these trials, a graph appeared, followed two seconds later
by 3 choices of equations, one of which matched the graph.
Functions spanned a range of variation appropriate for
subjects to extract the invariant patterns specifying various
aspects. Finally, a particular kind of feedback display --

' We should make clear what we mean by “perceptual.” It is
common to think of the senses as providing low-level.
concrele. sensory information. such as color. and invoking
higher cognitive processes, such as inference processes, to
account for more abstract descriptions of reality. Our view of
perception 1s a much more inclusive one: Perceptual
mechanisms respond to abstract patterns of information and
produce abstract and meaningful descriptions of reality (cf.J.
Gibson, 1966, 1979: Marr. 1982: for recent discussions see
Kellman & Arterberry. 1998: Barsalou. in press). Although this
is not the place to attempt to find a clear boundary between
perception and conception, our working hypothesis is that any
potentially detectable pattern in the stimulus is a candidate for
perceptual learning. The shape of a sine function in a graph.
and the difference in patterns between y = Sin x and y = Sin 2x
are candidates for perceptual learning. as are aspects of the
elements, positions and sequencing of symbols in the
equations. On the other hand. knowledge that the sine function
is derived from a certain construction involving a triangle is
not potentially discernible from looking at the graph of y = Sin
x: contributions of that knowledge to performance are therefore
not perceptual. The reader who worries about the boundaries of
perceptual learning may feel more at home with our occasional
substitution of the more neutral phrase “pattern learning.”
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what we call contrastive feedback -- was used. This display
showed the canonical function (e.g., y = Sin x) as a dotted
line in the background, and the particular function for the
tnal (e.g..y 4 Sin (x+2) ) in front. Contrastive feedbach
may highlight the particular pattern transformations relating
the basic function to its variants. It is a form ol augmented
feedback (e.g., Lintern, 1980).

Method

Participants Participants were 20 undergraduate
students at the University of California, Los Angeles who
received credit units for participation in the one-hour
experiment,

Materials and Apparatus. Stimuli were designed with
Mathematica, version 2.2.1, and consisted of graphs of four
types of mathematical functions: Cosines, Logarithms,
Sines, and Exponentials. They were displayed in a Power
Macintosh 7100/66.

Design and Procedure. Subjects were randomly assigned
to one of 2 training groups: Sines and Exponentials, or
Cosines and Logarithms.

Training consisted of 8 blocks with 20 trials each. At the
beginning of each block, the basic function on which the
subject was to be trained was displayed on the screen (i. e.,
the graph and equation for y = Sin x). Then, for each trial, a
graph with some transformation from the basic function was
presented (i. e., Sin 3x) along with three equations.

Variations within function families were created using 6
transformations. These included:

1) X-shifting: Adding some integer to the
variable x within the scope of the basic function
(e.g.. y = Sin (x+4))

2) Y-shifting: Adding some integer outside
the scope of the basic function (e.g., y = 4+Sin x)

3) X-scaling (e.g., Sin x/4)

4) Y-scaling (e.g., y = 4 Sin x)
5) X-reflection (e.g., y = Sin (-x))
6) Y-reflection (e.g., x = - Sin X)

Many problems included combinations of these (e.g., y =
2-Sin(5x)). The materials given to the 2 training groups
were matched regarding the types of transformations seen
during training. However, matching of specific equations
were not necessarily made. For example, if y = Sin 2x was
given to one group, the other group would not necessarily
be given y = Cos 2x. The second group may have received
Cos 4x, for example.

The subject had to choose which of the possible answers
corresponded to the graph. Responses were entered on a
keyboard. A trial feedback screen reported whether the
subject’s answer was right or wrong. This screen also
showed a display with both the tested graph (depicted with
a thick blue line) and the basic one (depicted with a dotted
line) superimposed, along with a label indicating the cormrect
equation. This design for the feedback screen aimed to
highlight the relevant transformations relating the tested
expression and graph to the basic function type. At the end
of each block, average accuracy and reaction time for the
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previous 20 trials was reported. The training phase of the
experiment lasted 40-45 minutes.

Dependent Measures. Accuracy and reaction times for the
first 10 trials of the first 2 blocks were taken as a pre-test
measure, and scores for the last 10 trials of the last 2 blocks
were taken as a measure of the subjects’ end-of-training
performance  (EOT). Three kinds of posttests were
administered to both groups:

1) A Fuamiliar Functions Posttest (FFP) presented in
the same format as training, composed of 10 new instances
in the function families the subjects saw in training.

2) An Unfamiliar Functions Posttest (UFP) in the
same format, consisting of 10 trials from the function
families they had not seen (i. e., subjects trained on Sines
and Exponentials were tested on Cosines and Logarithms).

3) A Remote Transfer Posttest (RTP) assessing
transfer to a different task. In this task, subjects tried to
make sense of complicated “combination” functions (such as
y = - Cos (2x) * Log (-x) or y = Exp (-x/3)-5 Sin (5-x)).
Eight such combination functions were generated for both
studied and not studied pairs of function families. This
yielded two written forms with 8 graphs and 8 functions.
Subjects” task was to perform a matching test, indicating
the correct equation for each graph. Total time and accuracy
to complete each form was measured. Half of the subjects
did one form first, and the other half did the other form
first.

A control group of 20 subjects received no training and
was given the same tests as in the experimental condition:
the post-test with both sets of basic functions and the RTP
with combination functions. In the regular training, the
pretest (initial learning trials) formed a within-subjects
baseline. The control group served as an additional baseline
group for assessing effects in FFP, UFP, and RTP.
Because subjects were not given any feedback in the control
group, their performance allowed a check on possible rapid
learning effects that might have elevated performance in the
pretest.

Results

Training, FFP and UFP Results. Training had clear and
highly reliable effects on accuracy (shown in Figure 1) and
RT. Subjects improved from about 50% correct in the
pretest to about 70% in the final block of training.
Response times decreased about 40% during training.
Accuracy at EOT and in the FFP were both higher than in
the pretest and did not differ from each other. In the UFP,
in which subjects saw new instances, accuracy was slightly
higher than the pretest but not as high as in FFP. Accuracy
in the control group was similar to the pretest and worse
than the EOT and FFP. Reaction times were negatively
correlated with accuracy.

These patterns were confirmed by the analyses. Accuracy
and RTs were analyzed using a 2 (functions trained: sines
& exponentials or cosines & logarithmics) X 4 (phase:
pretest, EOT, FFP, UFP) analysis of variance (ANOVA),
with repeated measures on the latter factor. There was a
significant main effect of phase, for accuracy F(3,54) =
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Figure 1. Results for Experiments 1 and 2. Mean accuracy for the different stages of training are shown, including pre-
test, end of training, familiar functions post-test (FFP), unfamiliar functions post-test (UFP), remote transfer post-test (RTP)
for studied and non-studied functions, and remote transfer post-test for the control group.

12.669, p<0.001, and RT. F(3.54) =18.596, p<0.001.
Individual comparisons showed that participants were
significantly better and faster at the end of the training than
at the beginning (accuracy: t(19) = 7.241, p<0.001; reaction
time: t(19) = 7.486, p<0.001), and in the UFP (accuracy:
t(19) = 2.582, p<0.02; reaction time: t(19) = 4.174,
p<0.001). Accuracy was higher in FFP than in both the pre-
test, t(19) = 4.547, p<0.001, and the UFP, t(19) = 2.239,
p<0.05. RTs in the FFP were faster than in the pretest,
1(19) = 4.098. p<0.001, but not reliably different from
UFP. Subjects’ UFP performance was superior to pretest
performance (accuracy: t(19) = -2.281, p< 0.05; reaction
time: t(19) = 2.666, p<0.015). Accuracy did not differ
between EOT and FFP, but the former phase showed better
reaction time, t(19) = 4.198, p<.001. There was a reliable
interaction between function trained and condition,
F(3,54)=3.226, p<0.03. For reasons that are unclear, a
somewhat larger training effect was found with sines and
exponentials than with cosines and logarithmic functions.

The control group did not differ from the pretest group in
accuracy, t(38)=-0.453, n.s. UFP was faster than the control
group (t(38)=-3.551, p<.001) but not more accurate
(1(38)=1.425, n.s.). Reaction times in the control group
were reliably slower than in the pretest, mean difference =
4.6 sec, 1(38)=-2.661, p<0.011. This result suggests some
rapid improvements in response time during the early
training trials. (Note that in order to get 10 pretest trials
with each function type studied, the pretest comprised the
first 10 trials of each of the first two trial blocks, i.e., trials
1-10 and trials 21-30).

Remote Transfer Posi-test Results. Performance on the
two forms containing combination functions did not differ
depending on the function families seen during training.
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This observation was verified by the analyses. Two 2 X 2
(functions trained by functions tested) ANOVAs, one for
accuracy and another for reaction time, yielded no
significant main effects or interactions. Comparisons with
the control group revealed no reliable differences in terms of
accuracy. Response times were quite long for the RTP, on
the order of three minutes per form. Control subjects were
reliably slower than Experiment |1 subjects for non-studied
functions, t(38)=-2.19, p<0.035, and marginally slower for
the studied functions post-test, t(38) =-1.802, P<0.05 (one
tailed).

Discussion

The results of Experiment 1 support several conclusions.
First, training designed specifically to foster perceptual
learning can improve subjects’ performance in relating
graphs and equations. Although our subjects had previously
learned about the relevant functions in mathematics classes,
they had not become skilled in classifying patterns and
recognizing transformations. A relatively brief intervention
substantially improved both accuracy and speed. A second
finding was that training generalized to new instances in the
same function families and also to similar transformations
deployed in new function families. Training in this
experiment did not lead to reliable effects on our remote
transfer (combination function) test, which proved quite
difficult for subjects.

It does not appear that the 45 minutes of training were
sufficient to achieve automatic pattern recognition. At the
end of training, accuracy had not reached ceiling. Still,
response times had fallen to about 5.5 sec on average.
Response times on this order suggest that subjects were
becoming more automatic in their pattern classification



rather than using an elaborate reasoning process. Further
training might lead to greater automaticity in classification,

What did subjects learn? The transfer results suggest that
the training effects were not merely about the trained
functions, such as sines. Transformations such .
compression, scaling and shifting have the same sorts of
effects across function classes. Initial performance levels of
subjects suggested that these generalities have not been well
learned from conventional mathematics instruction., Our
results showed enhancement of performance after training
even with new function families, suggesting that the
symbolic and graphical “meanings” of basic transformation
patterns were learned to some degree. The results suggest
that PLMs may have great promise for developing fluent
pattern processing in mathematics.

Experiment 2: Contrastive Feedback

Experiment | indicated the efficacy of perceptual
classification training, using several ingredients suggested
by earlier research and by intuition. Which ingredients are
crucial to the usefulness of this kind of training? These
questions have hardly begun to be addressed, especially in
the application of perceptual learning to complex skills,
such as doing mathematics. A goal of our research is to
determine systematically the effects of particular aspects of
training in order to optimize PLMs in education.

In Experiment 2, we examined whether the particular kind
of contrastive feedback used in Experiment | had important
effects on learning.  Recall that after each problem,
participants viewed the problem function superimposed on
the canonical function. If this particular type of feedback
facilitated discovery of relevant pattern transformations, then
eliminating it might reduce the success of training. In
particular, we hypothesized that this type of feedback might
have been especially helpful in producing transfer to new
function families. Eliminating it might therefore be
expected to reduce or eliminate transfer of learning to new
functions.

Method

Participants.  Twenty undergraduate students at the
University of California, Los Angeles, received credit units
for participation.

All aspects of the method were identical to Experiment 1
except that contrastive feedback was eliminated. Instead,
feedback screens indicated whether the response on the trial
had been correct and displayed the graph and correct
equation for that problem.

Results

Training, FFP and UFP Results. As in experiment I,
training produced highly reliable effects on accuracy (shown
in Figure 1) and RT. Subjects improved from about 50%
correct in the pretest to about 65% in the final block of
training. Response times decreased about 40% during
training. Both the accuracy and speed at the end of training
were maintained in the FFP.  In contrast to the results of
Experiment 1, there was little or no transfer of training to
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the UFP; training effects were largely confined to the
familiar (studied) function types. The control group, pretest
and UFP performance of the training group were very
similar.

These observations were confirmed by the analyses.
Accuracy and RTs were each analyzed using a 2 (functions
trained) X 4 (phase: Pretest, EOT, FFP, UFP) ANOVA,
with repeated measures on the latter factor, There were
reliable main effects of phase, for accuracy F(3,54) = 8.892,
p<0.001, and for RT, F(3,54) =8.405, p<0.001. Individual
comparisons showed that participants were significantly
better and faster at EOT than at the beginning (for accuracy:
t(19) = 3.507, p<0.002; for reaction time: t(19) = 3.816,
p<0.001). Accuracy and reaction time were better in FFP
than in the pre-test (accuracy: t(19) = 3.789, p<0.001;
reaction time: t(19) = 3.165, p<0.005) and also better than
in the UFP (accuracy: t(19) = 3.47, p<0.003; reaction time:
t(19) = 2.687, p<0.015). Accuracy did not reliably differ
between EOT and FFP, t(19) = 0.76, n.s. For reaction
time, there was a marginal advantage for the EOT problems
over FFP, t(19) = 1.96, .05<p<0.10. Subjects” UFP
performance did not differ significantly from the pretest
(accuracy: t(19) = 0.453, n. s.; reaction time: t(19) = 0.805,
n. s.).

Accuracy in the control group did not differ from either
the pretest (t(38) = -0.59, n.s.) or the UFP (1(38) = -0.192,
n.s). Reaction times in the control group were significantly
slower than in both the pretest, t(38) = -2.706, p<0.01, and
UFP, t(38) = -3.359, p<.002.

Remote Transfer Post-test Results. As in Experiment [,
performance on the two forms containing combination
functions did not differ depending on the trained function
families. Two 2 X 2 (functions trained by functions tested)
ANOVAs, one for accuracy the other for reaction time,
yielded no significant main effects or interactions.

Accuracy and reaction times on both forms (studied and
unstudied functions) of the RTP did not differ reliably from
a control group that received no training.

Cross-Experiment Comparisons

To more carefully assess the effect of contrastive
feedback, we performed several analyses including the data
from both Experiments 1 and 2.

Training, FFP and UFP Results. ANOVAs were
performed on accuracy and reaction time data. Each was a 2
X 2 X 4 (experiment by functions trained by condition)
design with repeated measures on the condition factor.
There was a strong main effect of condition (accuracy: F(3,
108) = 20.56, p <.001; RT: F(3,108) = 21.99, p <.001),
indicating the effects of training in both experiments. There
was also a condition by functions trained interaction for
accuracy, F(3, 108) = 4.188, p <.008, indicating that in
both experiments training effects were greater for subjects
trained on sines and exponentials. No other main effects or
interactions reached significance in the accuracy or RT
analyses.

The lack of a reliable experiment by condition interaction
for accuracy contrasts somewhat with a difference between



Experiment 1 and 2 observed above.  Specifically, in
Experiment 1, participants showed better accuracy on
unfamiliar functions (UFP) than in the pretest, (19) = -
2.281. p< 0.05. whereas no such difference appeared in
Experiment 2, t(19) = 0453, ns.

This difference suggests that contrastive feedback
produced better leamming of transformations that could be
applied to new function families. The lack of direct support
for this interaction in the combined analysis 1s probably due
to the greater variability present in between-subjects
comparisons.  Nevertheless, the mixed results suggest
caution. Fortunately, the cross-experiment comparisons of
RTP performance (below) provide some confirmation of the
difference in training effects between the two experiments.

Remote Transfer Post-test Results.  Remote transfer
effects of training appeared to be somewhat larger in
Experiment 1, which used contrastive feedback, than in
Experiment 2. which did not. Even though no reliable
differences were found between the studied and non-studied
functions within each experimental condition, a difference
was found in terms of accuracy when comparing
experiments | and 2. More specifically, subjects in
experiment | performed better than subjects in experiment 2
for the non-studied functions (t(38)=1.906, p<.05, one
tailed). The superior performance of experiment | subjects’
in the non-studied functions attests for the effect of the
contrastive feedback in producing better leaming of
transformations that can be applied to new function
families. No other comparisons reached significance.

General Discussion

Taken together, the results of experiments 1 and 2
indicate a clear training effect. Subjects in both experiments
substantially improved their accuracy and speed in relating
graphs and equations, as compared to a control group.
Subjects’ improvement extended beyond the specific
examples on which they were trained. They showed equally
good performance on new examples from the function
families on which they had trained, indicating that learning
did not depend merely on memorizing specific instances.

Subjects in Experiment 1 also transferred their leaming
to new function families. This result did not appear in
Experiment 2, however. These outcomes suggest that the
contrastive feedback used in Experiment 1 may have laid
the foundation for transfer by directing attention to the
relevant transformations in the stimulus patterns. The
results are consistent with the idea that perceptual learning
might be accelerated by augmented feedback that helps to
direct attention to relevant features and dimensions.

Our remote transfer test was difficult and showed modest
effects. Here again, however, a comparison between the two
experiments revealed that Experiment 1 produced more
gains in accuracy for the non-studied functions than
Experiment 2, which did not have contrastive feedback.

The contributions of other procedural ingredients remain
to be assessed. For example, it is often asserted that
perceptual learning depends on an active classification task
(e.g., Karni & Sagi, 1993), but there have been few careful
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tests of this idea. In the present work, both groups were
given active classification tasks. Currently we are studying
whether mere exposure in short episodes to corresponding
graphs and equations produces learning and transfer.

In summary, our results indicate that a brief period of
perceptual training can substantially improve subjects’
performance in processing mathematical structures expressed
in graphs and equations. Contrastive feedback -
highlighting the dimensions of difference between a basic
function and transformations of it -- enhances the learning of
relationships that transfer to novel function families.
Perceptual learning modules may have great promise in
accelerating the development of components of expertise
that do not arise easily from traditional instruction.
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