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| Abstract
The principleé of curfcnt and potential distribution»énd mass
transfer in electrochehical systems are deVéIopedbwith a view toward,their
application in énélyzing and understanding the processe; of localized
- corrosioh, sucﬁ as ﬁitting and corrosion.in crevices, under deposits,

and in regions near gas-liquid-solid contact.



.IntrOductiOn

.Ffequently, the rate of a corfosion pfocess is governed by ﬁhe
transport of a species like oxygen to the cofroding surface By.diffdéion
and'éonVection;' Other ‘corrosion processes, like pitting, invbiVe mass
transfer'and'fluid'flow in the tféﬁsport’of pfoducts as wéll'as réatténfé
in such a'way that the different pérts of a_surfaCe are subjécted‘t§
different envirbﬁmehts,'aﬁd a'gaIQanic cell can be set up;

_ When the surface is homogeneous and expgsed to uniform mass
 transfer'¢onditiohs, thé process occurs uniformly and is governed by
electrode:kinetits énd thermodynamics as well as mass transfer. No_Eurr¢nt
flows in the solution because the cathodic and'anodic reactions are.
balancedveverywhere on the‘surfacei However, curreht and pofeﬁtialfdistri—
.Butions are iﬁvolved'whén the anodic and cathodic.reactioﬁs occur on
'different_éurfaces'or on different parts of.the same surface. Examples
‘are incluéions, cathodic and anodic protection, and mdsf céses of éqrrosion
'_ih-iocél geometries: cracking, pittiﬁg,.corrbsion in crevices,. under
déposifs, and at liquid lines.

| In cathodic protection one first needs to calculate_the rate of
transport of oxygen to the ;urféce.- Thisbis é masthransfef limited
broceSs'and:determines the amount of current which needs to be supplied to
pach parf of the protected surféce. “Next, the potential and éurrent dié-
tributioﬁs in the solution need tovbe evaluated to énSuré tﬁat the current
will actually reach, in appropriate amount, each part of the protected
surfacé; Otherwise, hydfogen willvbe evoiVed on $6mé pafts of the surfaée

whiléﬂleaving other parts unprotected.

et



We want to consider first the fundamentals of transport
processeS'in electrqutic solu’cions,ll’2 This.serves as an introduction
.té the discussion of curréﬁt and potential diStributionS as well as the
tréétmént of mass-transfer limited phenomena.\ These,two;subjects are
thus liﬁitipg casesz’s’4 of tﬁe baéic transport processes. For problems

of local corrosion, it will usually be necéssary-to consider simultaneously

- ‘ . . s 2
matters of mass transfer and potential distribution. >

Transport processes in electrolytic solutions.

Mass tranéfer in an electfolytic solution requires a description
of

1. The movement of mobile ionic species.

z,b.Material balances.

3. Current flow.

4. Electroneutrality. .

5. Fluid mechanics.

The flux of a minor component is given by
5 - “z3uFes Ve DT+ v W)

flux migratibn} diffusion convection

The mass transfer of a given constituent can be éSsocigteq Qi;h three
méchanisms,\known as migratioﬁ, diffusion,‘énd Qonveétion. ”Tﬁé flux is
"the amount méviﬁg past a-plané (oriented perpendiculai to tﬁg direction
of the_flow)'perfunit time, measured in moles per sqﬁaf¢ centimetér per
second. This movement is dﬁe first of all to the motioh of the fluid

with the bulk velocity v. However, the movement of the Species‘can deviate



 from this average velocity by d1ffu51on if there is a concentration
gradlent Vc. or by mlgratlon if there is an electric field V@ and if
the species is charged (zi is the number of proton charge; carried by
an ion). Thgs, ziF is the charge per mole. Multiplication by the |
velectricefield -Vo gives the force per mole. ”Multiplication by the 1
'mobility ug gives the migration veloeity, and finally mpltiplication by

the concentration N gives the contribution of migration to the flux of

the species.

This eqﬁatien‘tﬁus serves eo define two transport properties, the
diffusion:coefficient/bi and the mobility u; - The Validity ef Fhis equa-
tion‘will be considered leter. |

The curreht in an electrolytic solution is, of course, dge‘to the

motion of charged particles, and we can easily express thiquuantitatively:
.:E. = FZ 1.._1 -' - (2)

Here i is the current density expressed in amperes per square centimeter,
and z,F is again the charge per mole.

Next we need to state a material balance for a minor component:

Bcii ' ) o _ :
T o * AL T ™
accumulation net input production (in homogeneous

chemical reactions) .: -



. In engineering parlance, accumulation is equal to input‘minus’output plus
production. For a differential volume element, accumulation is simply
the time rate Qf>Change-of concentration. Forvthe'net input it is nec-

essary to compute the net amount of material brought in by‘the different

fluXes on. the variods faces of the volume element. -
Nix Iy, | '
‘, : I V:N. = == + + . (4)

| S

X - x+Ax

The difference in fluxes contributes to accumulation or depletion:

; Nixl —Nix| N : T
lim X x+Ax ix ] (5)
Ax o oex ’

Ax + 0

~The Ax in the denominator comes from dividing'by‘the-iolume,of thé-élement;
1The production.per unit‘Qpiume Rivipvdlves chemicalvfeactioﬁs ih the bulk
of-the soiution, but not any’electrode reactiéns, which occur at the.

~ boundaries of the sélution;

"Finally, we may say thatvthe solution is electrically ﬁfutral.

v: ' o R
z;zi_ci=° S e (6)

This is not, however, a fundamental law of nature. Perhaps a more nearly

'Correctvrealtionship would be Poisson's equation

<« e : R o '
Z‘z‘ici =-gVie . o

i



whiqﬁ rélates the charge density to the Laplacian of the electric - - o
potenfiai. ‘The proportionality conétant:in this equation iS'thé-permit-
tiVity or dielectric constant €'di§idpd by Faradayfs'constant F.‘ The . D
vaiue'of‘tﬁis-proportibnality constahf is quite small, sb that it’is| _ E
ﬁsuaiiy permissible to set the'chargé density equal to zero. .This,'of o :
course, doés not mean that Lablace's equation is satisfied byvthe

poténtial:

vVe =0 . . S ®)

(We sh311 find latér under what cbnditibns Laplace's equation is applicable.) |
Another way of saying tﬁe séme thing’is thaf F/e ié S0 iargé that an
appreciabié separation of‘chérge wquld:require prohibitively large electriq
fofces. Still another way is that the conductivity_is e} lérge thaf any g
initial charge denSify would be neutralized véfy rapidly or‘would‘rapidly

flow to the»boundafies of the solution.

On ‘the other-hand, it is not permissiblertd negléct the charge
dénéity~in the électrdde double layér'éince tﬁc electric field is'indeed
Veryvlérgevinwthis regipn.. In‘exfremely'dilute SOIutions,.thevchafgg
density may also be appreciablé compared to the total ioniéjconcentrétidn.

The double layer can iegitimatcly be regarded as part of the'interféce-and
not-paif of the solution. Thisbregion is oh the_bfder'of ld-to 100 angstroms -
thick. - | |

| These four équatioﬁs (1, 2, 3, and 6) provide avconsistént deécrip~ ’
‘tion of transpbrt.proéeSSes in electrolytic solutions. Note that in order

,:to solve:a’mass-tranéfer proBlém it is necegsary té‘know thé éonﬁective

velocity V. Thus, it isvhe§es$éry tb work with the equations of fluid 7'_ i

" mechanics, which T shall not discuss here.® It is also necessary to

[T



:specify-éérefully'thé.bQUndary conditibns. We shall come to these presently.
‘An.understanding.of the'physiéal_éonten£>0f the four équaticns presented
above provide§ a consistent picture of the field andiailows'one to follow
more easily any discussion of the Subject_and to see what approiimations
are being made. | |
>We can'alsovobtain'physical insight by’considerihg the validity
of these equations themselves. "fhe validity of the electroneﬁtfality
equation has already been'COnsiderpd. We conclude that it is an accurate
;approximation. The current equation énd the expression of conScrvation
of matter are valid physiéal laWS subject ‘to little dispﬁte.' HoweVér, the
uﬁcertéinty is in the rate érocesses, in the expressiqn:of the production
rate and the flux. The production réte involves chemical_kinetiés, for
which the rate expféssionS'are not predictable or general. Fortﬁnétély,
‘the produétion fate can be ignored ih most electrochgmical'systéms; We
“have attémpted to express the flux by the first_équation, but e?en this
~ breaks down in concénttated solutions for a‘humbér’df reasons.
As a point of historical perspective, it should be notéd that
. these.equatioﬁs were known in 1890. Usually fhe convective term did not
appedr in’fhe flux equation. . It was also known that the flux equation
 was valid.only in dilute éolutioﬁs. At‘that time its breakaownvwas.
v_attributed to incomplete disscciétion of tﬁe_electrolyte.- |
| :The flux equation breaks down, first of all, becaus?i&é'have.not
specified the fluid veIocity. In a concentréted solution it is not just
the solvent velocity wﬁich contributes to the average_velocity, fUTther-
_moré,-this flux Qquation incorréttlyvdefines the’transport properties;

in faet, it defines an incorrect number of transport propertics. This



eQuatioﬁstonsiders the intéfactioh of frictién force of an iOn.Qith.the
solvenf>and-essentially neglectsIintéfactions>with the ofher;ibns.
Flnally, the correct dr1v1ng force for dlffu51on and mlgratlon is the
gradlent of an electrochemlcal potentlal and any decomp051t10n of thls'
in‘to‘Vc‘i and civ¢ is Unnecessary. ' X |

Wé can‘avoid;thése difficulties By using the multicombbhent‘

diffusion éequation

c. Wy RTjg:Eiz%;-(v - vy) o .i : .-FQ)
~where My is the élcctrochgmical potential? Hére ciVui is the driving
force for diffusioh and migration, and it is‘equated to the interaction
or friction force between species i and all other species j. This fric-

tion forcs is froéortional to the difference qf velocities !5 - !i; and

:the'question of the reference velocity is fhereby avoided. For comparison,

“the first flux equation can be expressed as
ci(zi-!)_= N, - Xpi f -ZiutiiVQ - Dchi . : S - Q10)

The left side shows an interaction between the species and the fluid; thev
'rlght side shows the driving forces for diffusion and migration and the
correspondlng transport properties. he multlcomponent dlffu510n equa-
.'tion isvsomewhat mo}é general than the first flux equation because it
.relates ﬁhe driving force to a linear combihation_sf resisfances:instead

of just to one resistance, that with the solvent.

A

0



A ‘similar multicomponent diffusion eqﬁétion'is necessary even
for coﬁcentrated solutions of‘nonelectrblyteé, SO we shauldn‘t feel too' 
‘bad aboUtvthis one;- | |

‘Figure 1 shows mﬁlfiéomponent diffusion COefficienfs'for the

0 calcullated from literature values of the conductivity,

system KCl—-H2
diffusion'coefficient;‘and transference-number.lzi_and [%l;'representing
interactions of the ions with the.soivent,iare rélatively independent of
concentration. Because of the strong electric interaction befween ions,
Cﬁ_'sﬁowé a’strong concentration dependence. |
.vThe mulficomponent diffusion equation is essential to the under-
standing of’bqsic transport processes, but it is not widely used'iﬁ the
énalyéis of clectrochemical systems for a number of reasons:
1, If complicates the”anélysis. Evenlthe flux equation for dilute solu-
'ftions is frequently Simplifiéd in appliéatiohs.‘
‘ 2. .A11 the requisite transport propérties are not known over a:range of
concentrations for any 561utioﬁ of two or'moré electrolYtes.
3. The flux équafipn for diiﬁté-solutions freqﬁently gives an adequate
baccount of the observed behavior of an electrochemical system.
Let us now examine further the meaning and appligétion of the
basic:tfansport relations. Let us expaﬁd the expression for the current

density in the solution in terms of the species fluxes.
i= -F;V®:§:ziuici - F:;:ziinci f:f“ Eizici < | 3(11)

By virtue of electroneutrality, the last term on the right is zéro; which
is equivalent  to saying that bulk motion of a fluid with no charge density

can contribute nothing to the current density. When there are no -
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Diffusion coefficient, cm?/sec

B ___ | l | Do | - —
- _ _ ”T -1 -t
_ "'53§+, .
10T — =
- MULTICOMPONENT DIFFUSION | 4
— COEFFICIENTS OF KCI-H,O AT 25°C —
F ' -
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- -
1077 |- -
B i
- -
~ ~
10°° d , | |
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- Figureil. Multicomponent diffusion coefficients of KCl-H2O at'25°C.
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concentration variations in the solution, this equation reduces to the

common concept of electrolytic conductance. .

. Iﬂ""’
]

Ve o, o a2

where .

, , . o
K = F z;u.c. o | - (13)

'is the conductivity of the solution. . This is an expression of Ohm's law,
valid‘for_Clectrolytes in the absence of concentration gradients.

i

- We may say that the current carried by species j is

t-i.= —FZZZ.U.C.V(I) = 3 3] : 1 s - ) (14) .
)= J 1) 22u R = .
’ adiF SR |
i :
>':where’
2 )
z.u.c. _
%}iulcl o

‘is the fraction'of fhe current carried by species j and is élso known as
fhe'transferencelnumber..A |
vThe';onductivity aﬁd_the transferencéinuﬁber are additional tranéQ
;port pioperties,vdefiﬁed in terms of’the.ionic mobilities iﬁtréduced
'éarlier;v.Thesé transport properties have relevance in SOIutions'of
.}varying'cbmposition,vbut Ohm's law is valid and the transferénge number.
‘has the physical meaning of the fraction of the current carfied{by an

‘ionic species only in the absence of concentration gradients.



~12-

It is a physical law of nature that electric charge is consérved;
and this fact is alrecady built into the basic transport relations: Multi-
plication of the material balance equation by ziFvand addition over species

yields |

!

Vi=o0 . _ _ (16)
Since the charge density is zero, it cannot change with time, and it is
appropriate that thévdivergence of the chérge flux or current d¢nsityf'

shogldlbe.zero. Insertion of Ohm's law

L=k o an
'figids‘Laplace's equation fquthe potential
ve-0 .:(18)

if the conauctivity.is independent'of position. _Thus;'Lapléce's.eqUation

holdé'in”a regibnvbf uﬂifOrﬁ compoéition.. This justification of-Lapléce's

" equation is considerably different from the statement that electroneutrality .

implies-Laplace's equation for the potentia1. The devélopment of Laplace's

equagionvprovides the basis for the determination of the distributions of

current and potential in some corroding systems, which will be considered

later in more detéil. R | i
For the reaction of uncharged and minor ionic species from a -

~solution containing excess supporting electrolyte, it should'be permissible

‘to neglect the contribution of ionic migration to fhe flux éfvthe reacting

ions, ‘giving

N, = -D.Vc, + vc. O a9
-1 1 1 1 :
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\

.substitution into the material balance gives the equation‘of'éonvective

diffusion (in the absence of homogeneous reactions).

+v-Ve, =DV, . o (20)

A éimilar equation applies to gonvective heat transfer and éonvective'
mass transfer in non—elecfrblytic solutions. Since these fields have
‘been studied in detail, it is'poésible to apply many results tove1¢ctro-
.chemiéai'systems which obey this eqﬁation. This will occupy:our attehtion
in the next part of this paper. |

.It should be pointed out that-hass transfer in a‘solutioﬁ of a
'single electrolyte also obeys the equation of cénvective diffuéion. For

"the two ions we have

3¢ ‘ - A | o2 : Y
ks y_Vc = z+.u+FV- (cVd) +7D+V c , . (21)
ac . ' FaTEY 4 2 .
— +.yv.VYc = Z_U_FV' (CVQ) +. D_V_ c . : (22)

where ¢ = c+/v+-;'c;/v_ and'v+ and v_ are the numbers of moles of cations
and anions per mole of electrolyte. Elimination of V- (cV®) between these

“two ‘equations yields

o 4 v.ve = DV . : - : N (23)
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This is the equation of convective diffusion, with however the diffusion
coefficient of the salt
zubD-zub .
o+ Ty

D= —vzo o ' . - (24)
e T . . |

i
appearing rather than .an ionic diffusion coefficient. We mention this to
bring out:the fact that the measurement of the diffusion coefficient of
a salt does not yield directly the diffusion coefficient of either ion.

We méntioned earlier that a single driving force, the gradient

of the electrochemical potential of a species, is appropriate for diffusion

and migration. We are thus led to expect that the ionic mobility and
diffusion coefficient are related. The Nernst-Einstein equation provides

~ this relationship
D, =RTu, . O (25)

We now wish to consider the magnitudes of the transport properties
which have been introduced. Table 1 gives an indication of ionic diffusion

coefficients and mobilities. Ionic mobilities are usually not: found

directly in the literature; instead one finds ionic equivalent conductances.

These are related to ionic mobilities by A /

Ay = |z, [Fo, . , (@8
”_Thefdiffusion coefficients were then calculated with the Nerﬁst—Einstein
relation
D, = —— . ) ' (27)

Rl



“Table 1.

ion

+++

+++

e (NH3)6

3
mho-qmz/equiv
349.8
38.69
150.11
73.52
73.4
61.92
74.7
53.06
59.50.
59.46
63. 64
54
53
69.5

102.3

-15-

D.x10™
1 .

cmz/sec

9.312

1.030 -
1.334
1.95?'f
1.954
1.648
1.989
0.7063
0.7920
0.7914
0.8471

0.72

0.71

0.617

- 0.908

ion z;
o o
1 -1
Br~ -1
VI- -1
NO; -;
HCO, -1
HCO, -1
CH3C05 -1
soz -2
Fé(CN)6 -3
Fe(CN)6 -4
IQ;, -1
€10, -1
Brb;' -1
HSO, -1

A°
M

S 197.
76.
78 .
76.
71.
41.

- 54,
40.

80

101

11
54,

67,

55

50

6

34

44

6 -

38

32

.78

Values of equ1va1ent conductances and dlffu51on coeff1c1ents of
selected ions at infinite d11ut10n at 25°C.

D.x10
i”

v5.260
2.032
2.084
'2.044
1.902
'1.105
1.454
1.089
1.065

0.896

- 0.739

1.448
1.792

1.485
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We see that most ionic diffﬁsion coefficients'are about 1 or 2'xv:10-5
cmz/seé. Exceptions are hydrogen ions and hydrdxyl iqnérfof_whiﬁthi R
values are 9.3 and 5.3x10°° cmz/sec. |
The. equivalent conductance of a:single electroiyté is the sum of
the'vélues for thé two ions |

1

A=A+ . - o (28)

" The value of A will thus be abégt 100 mho—cmz/equiv except for acids and
bases;.iThe conductivity wili'be given by multiplying A by the eQuivaient
concehtfation, but this should be-in equivalents per'cubié centimeter
to héQe consistent units. :Tﬁus, thg'conducfiVity of sea water will be

-1

about 0.05 ohm l-cm™l. The transference number of an ion in a binary

solution will be

tsleticygye @)

- ~and will be q;osé,to.O.S-ex;ept for acids and Eases where t;_may be 0;8
or 0.2.- For solutions with:an eXcess of inert electrolyte,_fﬁe transfér»
ence nﬁﬁber of a minor ionic speéies will be proportional to its conceﬁtra-'
“tion and inversely proportiénal'to the concentration of thevsuppofting
~electrolyte and hence will be small. |
A rough guide'to the temperature dependence is proyided by the

relationship

Diu/T = constant, : - : (30)



-17-

where pis the viscosity of the solution. Thus, ionic diffusion coef-
ficients and conductivities can vary by -2 to 3 percent per degree C.

This is a fairly strong temperature dependence.

' Mass transport controlled phenomena
vIﬁ én-electfgéhemical_system, many processes occur simulta-

neously, and the treafmentvof‘such probléms involvéé consideration ofk
the 6hmic'then£iéi arop, concentration changes near electrodés, and the
kinetité»bf the heterogeneous electrode reaction. Application of these
principles has followed'two main coﬁrses."v |

| ,There are systems where the ohmic potentigl drop can be neglected,.
The current diStribution is then determined by the same principles which
‘apply to heat transfet and non-electrolytic mass transfer. This usually
'iinv01vé§ Systems‘opérated at the limiting current with an excess of sup-
'porting electfolyté} Let us cali these ”cohvective-transportvproblems."
R At currents much below the limiting'currentkit is possible to
neglect concentration variations near tﬁe electrodes. The current dis-
itfibution is then determined by thé ohmic potential drop in the solution
and by éléctrodé overpétehtiéls.' Mathematically, this means that the
"potential satisfies Laplaée's equation, ahd:ﬁany resﬁits-of potential
' thcory,-qeve1oped'in eleétrosfatiés,lthe fiow’of inviscid fluids,'and
Tsteady heat conduction in solids are directly applicable. Let us call
‘these‘”potential—theory'problems;" Thé electrode kinéticslprovide
Boundary'qonditiéhs wﬁich éfé usually different from those cncountered

in other applicatioﬁs of potential theory.

‘
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'; Prob1ems have beén_treated which do not fall within either 6f
ﬁhesé two classes.. Some_pt@blems can béiregardediaé an:ekﬁensioﬁ of
convective-transport problems. At‘thé iimiting current the ohmic potential |
bulk of the solution may still be negligible, but the electric

/ o
field in the diffusion layer near electrodes may lead to an enhancement of -

drbp in the

vthe,limiting current. Thé'cﬁrrent density-is. then distributed'along the
eiectrode in the same manner as wﬁenfmigiation is neglected, but the
magnitude of the current density at all points is increaged.o: diminished
by a conSfant factor which depends upon the builk compositién of the .
solution.j

At currents below, but at an appre;iable ffaction of, the
limitiﬁg current, diffﬁsion and convective trénsport are essentiai, but

.-neither eoncentration.variafions near the electrode nor the ohmicr
potenfial'drop in the bulk so}ﬁtion can generaily‘be neglected. These
_probléms are complex becaﬁse all ‘the factors are involved at once.

In poroﬁs electrodes, convection méy not be present, but it -
is usually necessary to consider the ohmic potential drop, concentration
variations, and electrode kinetics. Most treatments, adopt a macr¢- .
scopic modelwhich does not take account of the detailéd, randomvgeOmetry
of thezpofous structure. Results of pdtentiai theory are then not applic-
able.siﬁce Laplace's equation does not hold. |

In some cases it may be possible to take into account the
concentration dependence 6f‘the transport properties. .

'Lef us now turn ouf attention to convective-transport problems.
As wé.héve said befdfe, for the.reaction of minor ionic speéies in a

solutioh‘containing excess supporting electrolyte, it should be permissible

e

i
|
|
i
1
t
¥
!
i
i
!
;
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.to neglect the contribution of ionic migratién to the flux of the

reacting ions, giving

N. = -D.Ve, + ve, . ' . (31)
: N AR R T :

] - ‘
Substitution into the material balance gives the equation of convective

diffusion:

oc.

i _. 2 |
vl !;Vci = DiV ci . _ | (32)

A similér equation applies to convective heat transfer and cénvéctive
mass>transfer'in‘nonélectrolytic solutions. Since theseifields_have
been studied in detail, it is poSSible to apbiy mény results to electro-
chemical systems which obey this equation.

Essential to the understanding of cqnvective-tranéport problems
s the_coﬁéept of the diffusion layer. Frequently, due to the small
value of the‘diffusibn coefficient, the coﬁcentrations differ signifi-
cantiy from their bulk values only in a thin fegion near tﬁe surface of
~an electrode (see figure 2). - Ih this region the velocity is Small,_and
diffusion is important,to the transport pfocess. The thinﬂess of this
region permits a simplification in the analyéis, b@t it is erroneous
to:treat_fhé diffusion layer as a stagnaﬁt region. Figure 3 shows the
concentration profile in the diffusion layer, with the eleéfrode surface -
'at.the left., Far from the‘surface, convective traﬁspoftbdominates,

while at the surface itself there is only diffusion.



o ~ Figure 2. Plane electrodes in the walls of a flow channel.
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Figure"3.‘ Concentration profile in the diffusion layer.
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To illustrate the currentvdiStribution obtained.invthis:type
of'problem con51der two plane electrodes (flgure 2) of length L and
separated by a dlstance h and which form parts of the walls of a flow
channel with otherW1se 1nsulat1ng walls. For laminar flow from left to
rlght w1th an average velocity <§/, the 11m1t1ng current den51ty is
hlghest, even 1nf1n1te, at -the left edge of the electrode where fresh
solutlon is brought in contact with the electrode. . The d1ffus1on layer
is sketched'in exaggerated form on‘figure 2 and starts with a zero thick—
neSs,xhecoming thicker farther downstream.

d:_By the limiting current we mean the highest possible rate of -

mass transfer to the surface. This corresponds to a zero concentration of -

“the reactant along the entire length of the electrodel The limlting cur-
rent’nanlfests itself in the current-potential curve for the electrode.
This is sketched in figure 4. An increasing potential difference between“
* the electrodes in.a cellvresults in an increasing current.‘hhonever, as the
‘concentration of the reactant approachee Zero at:the electrode surface,

a further increaee in potential can no longer‘produce an increase in
.current.',Eyentually, the electrode'potential becomes so-great that a
different process, say‘the evolution of hydrogen, begins to occur. This
'is also sketched on figure 47 |

| For the system_shown in figure 2, the limiting current density
decreases-wlth increasing x since the solotion in the diffueion la&ér
has.already becn depleted by theheleCtrode reaction further'upetreamf
“The llﬁiting,corrent density distribution is'illustrated in'flgurevsv

and is given by

'
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R nfD.c. _ , I .
. Hitie o ) 1/3
i - 0.9783 S (;Dix> T (33)_

" where C.q 15 the bulk concentration of the limiting reactant, D, its
diffusion coefficient, and n and s; are the number of electrons, transferred
and the stoichiometric coefficient of the reactant in the electrode reac-

tion
i - ' '
E:s.M. -+ ne . ' : (34)

This distribdtion, limited by conveétion and diffusion, on the cathode is
'independent of the piaéement and size of the anode as long as_the velocity
vprofile.is not disturbed; Latef it will be instructive to.comparefthis
'currént distribution with that which onld.be obtained when the ohmic
,‘botential drop in the‘solutién is controlling, as developed in the next
Sectioﬁ. |
| In the diffusion layef, at steady'state?;the equation of con-

‘vective diffusion reduces to the following boundary layer form

2.

Bci Bci 9 s ‘ ,
v + VvV = =D, . : (35)
oX - ) i 2 :
X ‘< y oy % : :
S.or
oc Vo vlacivy : Bzci )
x "y bz L Ge)
. oy SN

whéie y is the distance perpendicular to the electrode and x is the

distance along the electrode measured from its leading edge. I mention

!
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this mainly to discuss the mechanism of turbulent mass.tranéport,'

”

Turbulent flow is characteriied by rapid and random fluctuations of the -
velocity, pressﬁre, and concentrations, Usﬁally one isbinterésted'only
in average values of these quantities; Howevér, fhe average of a non- '
lineér.qééntity like civ;; which‘ehtefs into thé gbove equation, canﬁét ;
be expreséed simply in terms of the average concentration and velocity

'compdnént. Let
c. =c, +clandv_=v_ +v' , 37)
1 1 Y : y

where E; and V&'are the average values and c! and v; are fluctuating parts o

whose averages are zero. Hence

O
<
n

(Ei +c1 ) (;/_y*-V)',’)

+ Cc.v! + ¢!V + clv!
1y 1y 1y 1y

[
ol
<|

+ C.V +

1] . .
1y iy -1y iy ' ‘ ;

"
0]
<|

"
o|
<

i y“+ civy . o . (38)

Th¢ tgfm EIV; is not zero and‘represents theftgrbulent CQﬁtributioh to.the‘
flux-éf species i. This turbulent ‘flux is, in a sense, similar to the
érdinary.diffusion flux'—Diaci/Sy. Both arise from flﬁctpations about
éverage values, either on a molecﬁlar levél or on the level of‘the

- turbulent fluctuations. Consequently, the turbulent transport term .

(t),

Civ;vis‘frequently written in terms ‘of an "eddy diffusivity' D

' oc.
= . _nt) 1 - :
“i'y T p'®) o ' _ (39)
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waéver, the eddy difquivity is not a molecular parameter likévthe
aiffusion chfficient, and its value dépends On.the iocal ievei of tur-
.‘bu1enc¢. In partiéular, it depends on the aistance from a solid wall and
‘goes to zero at the wéll'itself since the level ofiturbulence-is damped

near a wall. This means that at the wall itself the flux is still given

by
N. = D, —,aty=20 , o o (40)

but the'tufbdlencejin_thevdiffusion'layer'can 1éad to a considerably
.ehhancedvoverall raté of mass transfer. The turbulence makes the dif-
fusion'iayer thinner,

After aVeraging, the boundaryvlayer form of the equation of

convective diffusion becomes

c.
i

5 (41)

' , : d
= 8
+ V. —x— = 5;—(Di D )-

One cannot go far in the'Study of convective-transport problems‘
‘without realizing the value of dimensionless corrclations based on
‘diménsional analyéis.  They ailow_the behavior of similar systemé to.be
expre§sed in the.mpst economiéaixmanﬁer.' Thé object of our study here
is:the limiting current density. This is expressed in'dimeﬁsionless

form in terms of the Nusselt number

, @)
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where-cw.is the bulk concentration of the limiting reactant and de'is a
' characﬁefiéti; length of the system. For the present case of a'flow
" channel Qifh paréllel walls,,de is taken to be equal to Zh{
Clearly, the Nu;selt number or dimghsionless liﬁitingpqurﬂeqt.
shoqld_depend on’the degree of stirring or convéttion, also expresséd in

dimensionless form. For this purpoée we use the Reynolds number -

CRe =N, ()

wheréuvv is tﬁe kinematic viscosity of the fluid. The valuevofvthe
_ Reynoids number determines the nature of the flow. For the cﬁannel,
laminar floQ‘is possible for Reynolds numbers less than 2000 or 30004
At‘higher Reynolds numbers, turbulent flow prévails. : -
| Thé Nusselt' number can also depend'on the physical prdpérties

of the fluid, again éxpreSsed in dimensionless ratios. Relevant here

is the Schmidt number
s¢ = v/b, , | S (44)

the ratio of the.kinematic viscosity to the diffusion coefficient. The -
value of the Schmidt number determines the thickness of fhe_diffusion layer
 ‘re1afive to the nature of the hydrodynamic flow. For aqﬁeous electrolytic
solutions, the Schmidt‘number will generally be 1006 or higher.'-ﬂigh
Schmidt ﬁuﬁbers favor thin diffusion layers, and still further simplifi-_v
,‘cationS-ére possible in the boundary léyer form of thg equation of cbh-
vectiQe diffusion. However, we shall not'go into these ramifications hére.
~For turbulent flow in the chanﬁel, the limiting currént dénSity -

will become relatively uniform.a short distance from the edge of the
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electrode, and thé'Nusselt number can be expreSsed'as

eNu_ . O.OZSvRéO'S S»cls/?)v ’ : _ | (45) .
“and is iﬁdépendent of'thé'distance frombthé iéading edge. However, within
'0.5 tQ 2'tiﬁes delfrom fhe iééding edge;,the masS—trénsfef process is not -
yet fully developed, and the Nusselt number should be expressed for shorf
electrqdés'as | |
_Nua_vg - 0.276 Re¥+58 Scl/s (.de/L)l/sv S (4_({)

An advahtage of the dimensioﬁleés_éorrelations can be scen at this point..
DimenSionless'éorrelations'for heat and nonelectrolytic mass transfer are
-expressed in the same fqrm (with the Prandtl number ré?lating the Schmidt
number for heat transfer) and can be applied directly in electrochemical
ISystems.; The above équation for fully developed méss transfer was
..developéd‘by Chilton and Colbufn in 1934 from the analysis of heat-
:[tfansfer daté. | |

The rétating disk electroae is of éqnsiderable intérest:in
fundaméntai studies of elettrochémistry since its hydrodynamic character-
,istics in’ laminar flow-areiwell known and the limiting current dens;ty is
fﬁniform on the surface of the'diék; One ‘usually has a disk'électroae
:pﬁbcddéd'in a large insulafing plané. “Rotation ofbthe diskrcaﬁses a
»?swirling of the fluid. Fluid is thrown out‘aloﬁg the radiué and:an axiai
fiow towa?d,the disk conVectsvfresh rééctant to tﬁe électrode. "(See figure

6.) The limiting current density in laminar flow is given by
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- Figuré 6. Rotating disk electrode.
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~ .nFc,, D.\2/3 :
i = 0.62048 — oo = . 47)
n : s W o _

i

Thevflqw becomes turbulént for a Reynolds number Re = rZQ/v on the order of
105. Howé?er, the;flow'in the center of the disk:remains laminar. The‘
limitipg.current density is higher in the tﬁrbuient region than in the
laminar fegion. lHeﬂcebavlarge disk which inclqdés_a turbulent region

will have a nonuniform'limiting currenf'density. Ellison and Cofnet6
.'providé.us with the correlétionv. |
0.896 ¢ 0.249

Nu__~ = 0.0117 Re S

avg :‘(48)

for the rotating disk in turbulent flow.

In many electrochemical processéé no external meéns of stif—
ring the solution is provided; the éonvection which.exists results from
bﬁoyancy'effects.and the déﬁsity diffeiénces Which are produced in the
diffﬁsion layer as a consequence of fhe electrode feaction itself.' The
kstirfiné which resulté can be éomparable to that in moderate forced
- convection. |

| For free convection in laminar flow to a vertical éléctrode of ;
,vlehgth L, the limiting ;urrent density is |

f

(49)

i = 0.66 .
Tavg N waivL

nFD.c,, [gcow—oo)]m o

“where g 1s the gravitational ac'celeratibnvand"poo - Py is the density

difference .between the bulk solution and the electrode surface. We
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should also like tq express this as a dimensionless correlation. To
characterize the stirring we no longer use the Reynolds number; 'instead
we use a dimensionless density difference, since this is the driving

force for fluid motion in a free convection system. This is expressed

as the Cféshof‘number:

) g(p,-p )L

Gr - 2 R . (50)
: oV ,
In dimensionless form, the above expression becomes
s.Li : o a
_ _ - i "avg ; 1/4 ‘
Nuavg = nFchm = (0.66(5cGr) . _ (51)

Here the electrode length enters as the characteristic length in the
formation of the Nusselt number.

- For turbulent natural convection at. a vertical plate,

o 0.28 S o
Nuavg = 0,31 (ScGr) . v | | (52)

This is applicable in the range 4x1013v< ScGr < 1015, while the laminar

~ flow equation was obtained for
10% < scar < 1012, ’ B S (83)

Thus we sec that turbulent flow in natural convection resulﬁs'from’high
values of the Grashof number, . just as high values of the Reynolds number

favor turbulent flow in forced convection. i




For a horizontal, bounded plate with a stabilizing density
gradient there is no chance for convection to result. With an adverse
deﬁsity gradient, turbulent flow is more likely than laminar flow, and

the limiting current density can be expressed as

n (54)

nFD.c [%(om‘po)] /3

i %,0°19 S prDi

i
for electybdes Qith é'minimum dimension gfeéter than 2 cm.
- Now let us consider the limiting current fdrvtfahsport of
: 6xygen't6'a steel piling in th¢ sea, Take a diameter.of’SO,cm, or about
1 ft, aivelocity of 50 cm/sec or about 1 knot, éndva‘kinematic viscosity
_6f 10i2-ém2/sec. Then | |

Re = SOxSO/lO-? - 1.5x10°. - (55)

From correlations for heat and mass transfer past a cylinder7‘we find

Nu/Re Scl/s_z 0.003 at Re = 1.5x105' . (56)

vTake the diffusion coefficieht of ongen_in sea water to be abou‘c-leO-S

~

vcm2/sec, so that Sc = 500. Then"

Nu

i

0.003x1.5x10°x10/21/3 < 3560

f

desilL/nFDicioo . o (57)
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For n = 4 and €1 o0 ='2.33X10—7 mole/cms,'the'avérage,limiting current

density is

L= 3560x4x10°x2x10 x2.33x1077 /30 = 0.219 mA/cn’ . (58)

\

The totalf]imiting current for a 20 foot'piling is thus about
I = 0.219x10 x7x30x20x30 = 12,4 A. o (59)

This is the total current which’would be needed for cathodic protection.
dne might-also wiéh-to consider the distribution of this curreﬁt. _Around
the circumference it would be expected to look like that skctched‘in
figure 7, the distance from the circle to the curve representiné the
magnitude of the local iimiting‘current densify éé a functién-of_the
angular poéition.- If:cathodic protéction were not supplied, one might
expect: the piling to corrode at the rate cofregponding to edﬁétion'sg,

with the anodic current suppiied by the reaction

Fe » Fe' ' + 2¢”
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Flow

XB8L7110-4607

Figure 7. -Limiting current dlstrlbutlon around a cyllnder at high
" Reynolds number..
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Distribution of current and potential
In the preceding section, we considered the distribution of
reaction rates in systems where migration effects could be ignored. Now

let us turn our attention to the other limiting case where cohcentrat%on

variations in the ‘'solution can be ignored. In this case the current

density is given by Ohm's law
Ci= -kVO , o (60)
and.the'potential distribution satisfies Laplace's equation

- Ve -0 . | (e

On" insulating surfaces, the boundary condition ié that the

normal component of the current density is zero, -
i=0 L (62)
which implies that

\ /3y =O0aty=0 . ‘ . (63)

On elettrodeé, it-is'necessary to define the surface overpotential, ns

= _°-(I) .= a ¥
n, vV-u o at y o , | (64)
where V is the electrode potential, Qo is the potential 'in the solution
“adjacent to the electrode measured with a reference eléctrodé, and U° is

the equilibrium potential of the electrode for the reaction being

\
e
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. considered, measured relative to the reference electrode.
In corroding systems we want to consider the possibility of
several reactlons occurrlng 51mu1taneously Then, therhormal component

of the current density is the sunm of the currents: for the several reactions:

1y = -k80/0y = £1(ngy) + Frlngy) 4 e at y = 0, (65)

whereetﬁe-f's describe the kinetics of the’varioue‘reaceions, relating»
‘the cufrent to the surface overpotential. Laplace's equatien for.the
potentiéi must thus be solved in conjunction with theee’boundary con-
dltlons whlch relate theAnormal component of the. potential gradient to
the potent:a]s of the electrodes and the potentlal in the solution
adjacen{ to the electrodes, The potentials of the electrodes are
eonstant, but the potent{al in the SOIutioniadjaeent to an electrode
.need not be censtantbsince it depehdé on the local current density.

For a large class of electrode reactions, the current density
gepends eiponentially on: the surface overﬁotential in the follo@ing

form:

g aaF- o GCF 1 v
f = i fexp T ns> - expl\- 7 N s o (66)

where i0 is the exchengeecurrent deﬂsity and depends on theicohCentfations
'ef‘species adjacent fo-the.electrode. Both da and ae are kiﬁetic param-
eters called '"transfer coefficienps.ﬁ |

However, many reactions important in cerfoding systems exhibit

-a passivation phenomenon. For large anodic overpotentials, an oxide film is
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formed,vand the dissolution process is suppressed. ’This'behavior is
depipted in figure 8; .In the passive region thggcur;entrdenéity_canibev
very small. | o
f.We_might also mention thé current-potéhtiai'beﬁavior bf an
electrode which exhibits a limiting current.  This is éketched‘iﬁ figure
9. (Cémpare figure 4.)  For largé cathodic overpotenfials,'the rate‘qf
the o*Ygén reaction is determined by the_ratefbf mass transfer’of.okygen
to the.e]eCtrode byvdiffusion ahd conVection, as‘discﬁSSed invthe'pfeced-
ing section. Sfrictly speaking, a limiting-current reaction should not
be‘discussed here sincébéoncentration variations iﬁ the solution cannot.
"bé ignor¢d. However, it is useful for indicating the nature 6fvcorrosion
processes. The current-potential curve for é passivating reactidn ié

also indicated on figure 9. When the corrosion process is such that the

local currents balance, the current density for the anodic process must

be equalvand opposite,to‘that-fof the cathodic process, and-the corrosion

Poteﬁtidl”is.determined accordingly, as shown on figure 9. In thié case,
“if the rate of stirring can bg incréaéed so thét'the 1imitiﬁg current for
the oxygen reaction is greater than the maximum current densify_for the
anodic process, then the potential must sﬁift nearly to the oxygen
potential, and the anodic-proceés is péssivated.

| A corroding system in which the current densitieé arefin
local balance is not of interest here since no current flows in the solu-
tion, and the rate of cofrosion is determined‘by the principles of mass. -
transfer, discussed in the preceding section. The current ‘and poténfial
distr%butioﬁs are of interest when the anodic and cathodic feactiqns

occur on different surfaces, as in cathodic and anodic protection, or on

i
]
i



-39.

, i | -
y . ll"'— Active electrode

'Pa ssivated electrode

s

XBL7110- 4605

Figure 8. Current-potential behavior of a passivating ¢1ectrode, in
C contrast to a non-passivating electrode.



_-:4 _0—"; .

e
. :
. W .
.

V-,

/

Figure‘ga

'Lirhiﬁng ’current B A/nghf rate
oz+ 2H20+4e -«-40H -, stirring

" XBL7I10-4606

. Reaction exhibiting a limiting current.
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diffefent parts of the same surface, as in the.case of inclusions and
pitting and on é sufface fbrhed'of dissimilar metals;‘

| | ‘Let us consider the principles of current and potential dis- -
tribution in more detail. Take first»the‘simplé cése of a rod in the

center of a tubé. Then the radial componeﬁt of tﬁe current density is
i =.—K3¢/3?’ . 1 - ©

énd Fﬁé”fofal ;urrent is

I = 2nrHi = -27rkH3®/dr | . R S .(68)

‘Since I is-a constant, independent of r, this equétion can be integrated

to yield the potential distribution
¢ - d(r=r ) = N (1)

Hence, the ohmic potential drop is

. T ‘ '
B I o] N : .
Bon = zmem ™y, (70)
and the ohmic resistance is
A® T '
v ohm 1 o) .
R..— T = el In ;: ) . . . (71)

These formulas w§u1d be usefﬁlvtO'estimateithe potential difference
iequiréd to protect cathodically the inside of a pipgvby means of a
- counter electrode consiStihg,of a rod in tﬁe center of the pipé. To the
'ohmic'd;op one WOuld need to add the magnitudes of the sﬁrface over-

pbtentials-at the anode and the cathode and the difference in equiiibrium



42~

f potenfialsffor‘the two electrode reactioﬁsf

vNext let us use an approximatélanalySis to indicaté'th'Weli
we could cathodically pfotect the insid§ of the pipe by means of a
counter electrode at one end of the pipe. The current flowing in a

section of ﬁhe pipe is (see figure 10) -

X

{. .2 2 3 o
.ZT;WZWrde = }xﬁro = -Tr K X ‘ (72)

Here iw_is the current density required for protection and is taken to

be constant. Integration giVes

2mr X , : _ .
e ik~ I | 73)
%rr()’K_ x

\

A second ‘integration givés the difference in ¢ over a distance L from the

electrode.

- L o i2 L i B -
A@:v[@dx=l—74 L (78
A _

Now, we want to avoid hydrogen evolution at the end of the pipe near the

“counter electrode, and yet we want to ensure that the other end of the

_'pipe is still protected. This fixes the maximum value of A9 which can

- be tolerated. Hence, the maximum length of pipe which we can protect in-

this manner is

L = »rOKAQ/lw . : o (75)
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Figure 10. Cathodic protection of a pipe by means of an electrode
: ' placed at the end.
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The stcalled pfi&ar;_éurrent and potential distributions
apply whén'there is one reaction and the‘surface'ovérpotential-¢aﬁ:5é
.neglectedialtogether.-vThGSSOIUtiOH adjaﬁent to an‘electrode is then
taken to be'dﬁ‘equipotential Surface; Laplace's edﬁation is nbt ffivial
to,$oive, even for relatively simple geometries. We may note that the
poteﬁtial—distribution problem is siﬁilar to the problem of the steady‘
temperaturevdistribution in solids, with the potentiél playiﬁg the réle
of the temperature, the cﬁffent density that of thevheat fiux, and the
electrical conductivity that of‘the thérmallconductivity. Consequently,
many édlﬁtions can be carried over directly‘frém that field of applied
physics.. Electrostatics and the irrotational flow of inviscid fluids
‘also prévide a wealth of solutions to Laplace's equétidn.‘.
| | Consider two electrodes in thevwalls of a flow.channel. VThis :

'is sketched in figure 11. Here current lines are represented by‘soiid
curves and eQuipotentiéi surfaces by dashed éurves. If the drawing were
'aééuréte,'these £WO sets of curves would be pérpehdicular'to'eéch other
everywhere in the solution. The equipptehtial lines are close togetherv
near the edge of the electrodé, and at this point the primary current
density is infinite.

The primary current distribution.on the electrode was shown
in figuré 5 for L= 2H_and is given by~thé equation (X being»measured here

from the center of the electrode)

h _ € cosh s/K(tanhze) _ o ' .(76)
T : : : > b
avg  JeinnZe - sinh? (2xe/L)

where € =YWL/2h and K(m) is the complete elliptic integral of the first

kind, From the complexity of this expression for the current density,
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Two plane electrodes opp051te each other in the walls of an
1nsu1at1ng flow channel
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one can.pe?haps appreciate the;difficulty'involVed-in obtainipg the
pOtentialfdistribution, For contrast, the magsltransfer limitiﬁg éﬁrrent
‘distribution for laminar flow; diécuésed in the preceding‘section;vié
also'sﬁown'oﬁ figure 5. |

. Theprimary currént diStfibution shown in figure 5 is indépendent
of the fiow rate since convection is”great enough-to eliminate concentra-
tion variatiqns;vand henbe the distribution.isisymmetric. The.cﬁrreﬁt
densiﬁy is infinite at the ends of the electrodes sincé thé current can

flow through the solution beyond the ends of the electrodes. This is a

general characteristic of primary current distributions. The current

. . . -
density where an electrode meets an insulator is either infinite or

zero unless they form a right angle  (see figure 12). When the electrode
~and the insulator lie in the séme plane, the primary current density is
. inverseif proportional to the sqﬁare root of<theAdistance from the edge
fof positions sufficientiy cloéé fo the edge. This behévior is.exhibited
by the above equation for the current dehsity; |
The pfiméry current distribution is determined by geometfic
factors alone. Thus;'only the geometric ratios of the cell enter into

the parameter €, but the conductivity of the solution does not enter.

' The resistance for the cell in‘figure 11 is

[N

. ' 2 C o
R Z,E}w_ K(l‘/cosg €) , _ (77)
K(tanh™e) C :

2

where W is the width of the electrodes perpendicular to the length of

the channel.
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Figure 1'2. Behavior of the primary cui‘rent distribution near the edge of
‘an electrode. v '
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‘For a disk electrode of radius réfembéddedfin‘aﬁ infinite
‘insulating plane and with the counter electrode far away (seé figufé 6),

the primary current distribution is given by

n o, 0.5 | | (78)

i
gvg /l-(r/ro)2

and the éQuipotential'and current lines in the Solutioﬁ are shown in figure
13. Again, the equipotential iines are close éogethér near the edge of
the electrode, and at this point the current density is infinite, being’
proportionél'to the feciprocal of the square root of the distance ffom the
‘edge near this point. Only géometric factors énter into the'current dis-
 tribution, and the resistan;e'to a hgmisphefical'gounter eleétrode.at

infinity is
R = 1/akr_ . S @9

When slow eléctrode kiﬁetics afe taken into'aécount, the ’
eiectrolytic solution ﬁear the electrode is no ionger an equipotential
sufface, and the result of the calculations is the.sq—called ”secondéfy
éurrent distribution." The general effect of electrode polarizatidn is
to make the secondary current distribution more.nearly uniform than the
primary_current diStribution; and an'infinite current density at. the
edgejofvelectrodes is eliminated._ This can be rcgardea as the result of
vimposing an additional resistance at the electrode interfa;é; |
| In practiqe, the élecfiode kihétic equation 66 isAfrequently

replacéd by a linear or a logarithmic (Tafcl) relation between the surface
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. MU.37125

Figure 13, Potent1a1 dlstrlbutlon near an equ1potent1a1 disk in an
‘ 1nsu1at1ng plane.
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:overpotentiai'and the potential derivative.ét_the elecfrdde. - In any
case, addiiional'parameteié besides geometric ratios are required.to .

'.spécifyitﬁe current distribu;ion. iThe adyahtage:df the linear and
.lbgarithmic approiimétions is'that they add only one new parametef.I

: : : : , _ N
Thus, fairly realistic cases can be treated without eXCessive'compliL
, D 1
cation.
| ' . . . .
"~ For sufficiently smalllsurface overpotentials, the kinetic

relation for active ‘electrodes can be linearized to read

di N iF
o T aﬁ;.n =0 ng = (o *a)—gF Ng = Ky sty =0 . . (80)
s

This pro?ides a liﬁear boundary condition forvLaplace's equation, ‘Furthef_
more, if the rangerf current den;ities at‘thé electrode is sufficiently
narrow, és,dne wants to aChieve in electroplating, it is, of éourse,
juSiifiéd fo lineéarize the polarizatidn_eqﬁation"ébout some other, non-
zero Yalue of the sprface'overpo£ential. For a disk'electrodé,‘the

additional parameter for linear polarization is

o ioFro
(aa+qc?J - (aafac) "ﬁTEf‘ . (81)

The Secondary §urrent distribution'for linear polarization on a disk
electrode is shown in figure 14. For large values of J, ‘one obtains the
“primary éurrent distfibution., Then the ohmic resistaﬁce dominates over
‘the kinetic reéistance at the interface. Pof any finite value df'J, théf
' distribution is more nearly uniform and isrfinite at'tﬁe edge of disk.

fFoer"é'O,'the distribution is uniform, but the average current must be
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Figure 14. Secondary current distribution for linear polarization.
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:smalilin erAer for.the iinearflaw Still to apply; 'Otherwise. the current
dlStrlbuthH is st111 1ndependent of the magnltude of the current, ‘l

The Tafel polarlzatlon law,. where one of the exponentlal terms
in the kinetlc equation 66 for an act1ve electrode is negllglble,vis.

- also popular in the literature. . For a cathodic reaction we have

ns'= - BI-[1n( i ) - '1n i ] . o (82)
a.F

This is popular‘beCAuse, while being a fairIY”realistic polarizétion law,

Tafel's equation introduces a minimum of additional parameters’into the

:problem, as stated before. In addition to depending on the same geometric

ratios as the primary current distribution, the current distribution

i_/i__  now depends on the parameter
n’/ Tavg T °© e .

|o Fr o/ RTK s - (83)

= 11, avg' ¢

where the;charecteristic length T, is appropriate for the disk.electrode.
AThe.current diStribution now depends on the magnitude of the current,
but it is 1ndependent of the value of the exchange current den51ty i o’
insofar as Tafel polarlzatlon is appllcable only for current den51t1es
apprec1ab1y above the exchange current density.

The secondary current dlstrlbutlon for Tafel polarlzatlon on
a disk electrode is shown in figure 15. This 1s 51mllar to the secondary_
current dlstrlbutlon with 11near polarization, but the parameter § now
plays the rdle of the parameter J. In partlcular, the primary current
distribution is stillvapproached as 8 becomes larée. The paraneter for

po]arizétion_alWays is proportional to a eharaeteristic length and
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Figuré 15. -Secondary curfént'distribution for Tafel pbiérization}
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‘inversely proportional to the conductivity x and involves the nature of

the polarization. Therefore, we may state as # general rule of thumb,

that for large systems the primary current distribution willvbe approached,

independent of the nature of the polarization law.

ApplicatiOng to.cathodic protectioﬁ

;i  ~As.we have said before, one is'intereSted in Sdiving:ﬁaplace's
equétion_in corroding systems ohly if the cathodic and anodic'reaqtions
take piace on different sqrfaces of on differen£fpérts of the same
surface. First one calculates the 1imiting current for the_corrosién
agent; this gives the magnitude of the currentisource needed. .Next;dne‘
galcuiates the potential distribution:for a pdssible placeméht of counfer
electfoﬁés.' It is.hot enpugh'fér the counter electrodg\tb generate the
 requisite totalvcurrent. An improper placemént‘of the>counf¢f elé;trodes
will result in hydrogen evolution on one part of the prdtected sutféée.‘
" This represents an unproductive éomsumption of current and Qili leave 6ther
parfs of the surface unproteéted. The counter. electrode bn'the leff iﬁ
figureilé wiil be -able to protect a gréater length of thevpipé lihéj \
without.evolving hydrogen on the adjacent paft'bf the pipe,liﬁe. ,Of
course, the cell potential will be higher; aé well as the magnitude of
fthe useful current. |

Consider thevcurrent.distribution on two parallel cylinders, .

sketched in figure 17. For the primary distribution, the equipotential
‘lines will be circles, and the CUrrenf lines will intersect them atyfight
angles. 'Clearly, the farther aparf‘the cylinders, the more nearlyfﬁniform
the é@rféht distributidn will be, see figure 18.. Hénce,'we can expect the

cathodic protection to be more uniform. - _ - -
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'Figure 16. Placement of counter electrodes in cathodic protection(»



~.Figure 17. Parallel _cylin‘defs‘.‘
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»'Figure 18. Sketch of the primary current distribution on parallel cylinders.
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‘But does the nonuniformity of the_primary'current distribution
really give any indication of whether cathodic protection will'réach all

: partsvof a body? Cleariy it cannot give thevcomplete picture since the

primary distribution is purely geometric and does not depend upon the size

of the system. The desired current distribution for cathodic‘prdtection'

is determined by a limiting current distribution, not by a primary current

distribution. What one wanfs to know from the pdtential calculatidns is
whetherrthevpdtential variation in the solution adjacent to the prdteCted
‘surface is greater than an allowed makimum; sd that all parts are protected
~ without hydrbgen evolution. This cannot be obtaineq from a calculation
which begins by_assﬁming that ¢ is uniform near the surface.‘ To repeat,
‘the size of the system is important in cathodic protection but not in the
v primary current distributiqn. (Inéidently, it may not be obvious that~a.
.lérge surface cannot be protected even if one is willing to waste ¢ﬁrren£_
in hydrogen evolution:) | |

| We might ask how large'a disk eleétrodevcan be prbteéted
cathodically by'a co;nter electrode at.infinity. We éssumé'thét the disk
ié rotéted, the flow is laminar, and thé limiting cuireﬁt f&r tﬁe okygen_
‘reaction is uniforﬁ, as discussed in the section on mass tranéporf'
'controlléd phenomena. Figure 19 shows the potential distribgtion Qo
vadjacent‘to the surface of the disk. This is made dimensionless with the
'ftbtal cﬁrrent I, the disk radius'ro} and the,sglution condubtivity Koo
This curve ¢an be regarded as a plot of -@o, Since I is negative fdr a
cathode, Iﬁagine that the top of the graph, at the_ordinéfe value of
'1.8; représents fheAelectrode pdtential Vrmade‘dimensionlessvin tﬁe,Sﬁme

way as Qo. The electrode potential is uniform with radial position
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Figure 19. Pfimary‘Current_distribution and potential distribution for a
uniform current density. . S
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T since.the disk mate;ia1=has a highicondu;tivity;

The differencé befwéen.v andl¢é isvfhe pbtentiailévgilable for._
. carrying out electrode reactions, and we see that this differénce Varies
over theASUrfaCe‘of the djék:-vAt thé center, this differeﬁée mﬁst.be
1sﬁfficiéﬁtly cafhodié tb ensure that oxygen reduction occurs at the
.vlimiting curfent or, more precisely, so that the .disk métérial'does not
_corrodé;'say -0.1 V (versus the normal.hydrogeﬁ”electrodé).;'Near the
edge of‘thé disk, we shouldilike to avoid having this difference,be‘so
cathodic that hydrogen is evolved, say -1.0 V. The allowable_variétion
-AQo_in @o is thus O.9-V. From figure 19, wevsee that the maintenance of
a.uniformicurrent_density i (that required for cathodic'prqtection for»

oxygeﬁltranspbrt in laminar flow) produces a'poteﬁtial variation
A@o = 0.363‘r01/K . ; (84)

- For é'iimiting current density of 0.7 mA/cm2 and a conductivity of_O.?Sv
l(ohm-cm)—l,'the largest disk which can be cathodically protected is ‘
r_ =177 cm. i | | B l
This result can be contrasted with that represented by equation
: |
75, Characteristig lengths enter into these formulas in different ways.
quuations 75 and 84 can also be used to estimate the size of objects which
"can be protected anodically (that is; by application of an‘énodic potential

"such that a passivated state 1s maintained).
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Corrosion in local géométries

Localized corrosion is'a'complicated.situation,_and all the
factors_diséussed above can‘operété simultaneously:_ ‘

. _ / . : .

1. Thé anodic and cathodic reactions occur on different parts of the
same surfacé; consequently, potentialeistfibutibn probleﬁs and the ohmic
pétentiél dfop are of interest. 'The\conductivity‘of the 501ution deter-
mines how far away the cathodic reaction site can be located from the
~anode.
2. Nonuniform mass-transfer conditions are respOnsible; in many casés,
for establishing the galvanic cell which éllowé’fhe cathodic and anodic
reactions to occur in different places.: Otherwise these reactionsvauld
be baiénced locally, as sketched in figure 9.
 _3. ‘The'eiectrOChemicai response of the inferféce is crucial in éorrosion
.prbcesses;v Localized corrosion frequently involves a passivating surface

(see figure 8), which adds to the yarietyvof phénomena which can occur.

In cfacking, ffesh surfaces have a different charapter from‘old surfaces.
4. Not only do nOﬁuniform‘c0ncentrations Sét-up the thermodynamiCSQriving
._force for the galvanic cell, but they also affect the kinetié oT éatalytic
response 6f the surface. The cﬁloride ion- concentration ahd’the pH‘havew
particularly stréng~effec£s. |

: An_idealized representation of a localized corrosion process
»is a disk inclusion embedded in é metal sufface. Levich and Frumkin

,;reated_the potential distribution for a uniform current.density on the

disk, which may be taken to be the anode, and a uniform potential. in the

solution adjacent to:the remainder of the surface, which acts as the

cathode (see figure 20). The potential in the solution adjacent to the



Figure 20.
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{lDisk-ifnclusion
XBL7110-4624

Potential distribution and current lines for a disk inclusion,
with a uniform current density, and an equipotential plane. |
Solid lines are equipotential surfaces and dashed lines show
the direction of the current density.

~
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disk is expressed as
7

| (85)

This'situation is siﬁiiaf to ‘that represented By thé_uhifofchurrent—
'density:cﬁrvé in figure 19. Fof the inclusion,\hoWever, the counter
électrodeﬂis the plane surroundihg the disk. Af this counter elecérode,
the potential in the solﬁfioﬁ was assigned the value ¢ = 0 in obtaining
equation 85. Thus,'goncentrationvva;iationé.and électrode.overpotentialé
have been neglected at this electrode.

| -In their origihal wdrk,’Levich andvFrumkin.intended that the
inclusiOh>Should be the éathode,von which hydrogén evolves,‘while the
iemaindér of the plane is the dissoiving anode. We have reversed these
_rbles in:brder to'intfoduce pitting, wherejthé cenferiof thé pit is the
. ahode_and the surrouhding surface is the cathodg. ‘Thus, the“cufrent in-
the solution is flowing from the pit to the surrounding pléﬁe, in a manner
similar’to that'depicted in figuré 20 for the inclusion;_and the potential
‘féo adjacént to the surface must behave as shown'iﬁ figure 21..:<I>0 is
‘more positive near the‘center of the‘pit.
| From'figufe 21, we see that the électrodé'potential is more
.§§§h0§ié at tﬁe anqde and more anodic éﬁ the cathode."ThiS'cdndition
can pérsisf bnly if there is a reaction eihibiting passivation, so thaf
'the.aﬁodic current decreases with inéreaéing anodic ovérpotentiai,VOr
‘there are concehtrétion vafiations which eStabiish‘a galyanié cell: On
dischargé, the anodé of a battery is_negativé'félatiVe to the cafhode. The

corroding pit is thus similar to a shorted battery.

{
i
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Pofe:ntial

XBL7110-4623

Figure 21. Electrode potential V and adjacent-solution potential &5
» .. for pit corrosion. . Note that the electrode pofc_en-_t'i_ali is . |
more cathodic at the ‘anode and more anodic at the cathode.'
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The pIAne surrounding the pit»is more accessible to the
- cathodic reactant, oiygen»or'hydrogen ions:
2 2

0, + 2H,0 + 4e” » 40H™ B (86)

or -

jzuf +2¢7 > H, . (87)
:The anodié.reactioﬁ

Fevf Fe+fv+ 2¢” ) ' | | (58)
_tends to promote the fgaétigﬁ

rett L 2QH? N pg(bu)z ’_, ‘. - (89)

in the vicinity of the anode. These factors tend to make the solution
s ' P U . I
more acidic near the anode. The only mitigating circumstance is that H

ions migrate'toward.the cathode and OH  ions toward the énpde; however,

‘the tratherence numbers of these ions arelow in seavwater and would not
‘ .in any case reverse the effect. -The effect of these variations in pH is
ﬁo promqté anodié paSsiVatioh on the cafhode and discourage.it'on the
.anode; ~

Furtherﬁore, chloride ions migrate towafd,the anbde andvahay
ffom the cathode. This is important since chipride iéns_are.noted for
éheir_efféét in preventing passivation. | |

| In sevefal éituations of iocalizea EorrOSion; crevice corrosion,

pittiﬂg; and waier—line corrosion; one-cah_seevhow.differeht conditions

of mass transfer give rise to a galvanic cell, how the corrosion process



 een

itself maintains and enhances the conditions for corrosion, and how active-

passive electrode kinetics play an important r8le. Pitting corrosion can

- occur in a stagnént fluid, under apparently uniform.conditions, by building .

on natural fluctuations to7establi§h differentialvconcentrations. ‘The |
mechanism for maintainingvéorrosibn, once it haslbeen started, hasvﬁeen
déscribed above. The development of pitting COrroéion is'discouraged in
a,w¢11~agitated fluid.

- 'LaQue9 has ‘called our attention to the fact that_rotating iron
disks cbrrode in sea water in a dramatically different fashion ffoh copper
.disks. The coppér disks corrode near the edge; the iron disks near the
cénter.'_This is presumably due to the nonuniform mass-transfer cdnditions
arisingffrém the presence of furbﬁlent fiow near the edge of fhé‘disk ;nd
laminaf flow néar the center. |

| These disks would'appeéf té be the ideal sitﬁation‘forvthe .
theoreticél study of localized corrosion. The hydrodynamic fiowvis ?
reasonably well known near a rotating disk, eveh-for'turbuleﬁt‘flow;
'Tﬁié is a prerequisite for the calculation of conéentfation disfributiohs.
The disk is ‘also a geométry.which’permits the computation of potentiall
distributions. Thesé studies wbuld then reveal hoﬁ active-passive .
electrode‘kinetic$ interact with:concentration variations and the ohmic

pdtential drop to produce a situation typical of localized corrosion.

Y
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Nomenclature
molar concentration of é single electrolyte, mole/cms
concentration of specie$ i, mole/cm’

total 501utiOn"conCentration, mole/cm3

-equivalent diameter of annulus or channel, cm

‘measured diffusion coefficient of electrolyte,»cmz/sec

diffusion coefficient of species i, cm’/sec

eddy diffusivity, cmz/sec

Nt e Co " . . . . 2
“diffusion coefficient for interaction of species i and j, cm”/sec

Faraday's constaﬁt,i96,487 C/equiv-

. RN : A , 2
gravitational acceleration, cm/sec”

Grashof number

distance between walls of flow channel, cm _

current density,~A/cm2

3exchangé current den#ity; A/cm2

',fotal curreﬁt,'AV  |

- dimensionlesé ekchange curfent density :
';1ength of electfodg; cm |

_$Ymbdl.fqr»the chemicéllqumula_of species i

number- of electrons transferred in electrode reaction

“fiux of species i, mole/cmz-sec

~Nusselt number |



charge number of species i
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radial position coordinate, cm

-radius of disk electrode or pipe, cm

_uniVersal gas gonstant,‘8.3143 J/mole dég

N

resistance, ohm

N . . . ‘v . : . . ‘- T ' r' 3 ..
homogeneous rate of production of species i, mole/cm™-sec

Re&ﬁolds number

stoichiometric coefficient of species i in electrode reaction

'Schﬁidt number . -

time, sec

transference number of species i

' absolute temperature, deg K

mobility of species i, cmz-mole/J-sec

_equilibrium electrode pofentialbfor a given reaction, V.

fluid Velqcity, cm/sec.

average velocity, cm/sec

~velocity of species i, cm/sec ’

“potential of an electrode, V .

distance measured along an electrode surface, cm

normal distance from the surface, cm

“.transfer coefficients

dimensionless average current density

permittivity, farad/cm

" wL/2h

rotational elliptic codrdinate

- surface overpotential, V. - T



-

viscosity, g/cm-sec

~density, g/cm3
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‘conductivity, mho/cm

s e _ 2, .
ionic equivalent conductance, mho-cm /equiv

equivalent conductance of single electrolyte, mho-cmzlequiv

-
!

electroqhemical'potential, J/mole
kinematic viscosity, cmz/sec

number of moles of cations and anions per mole of electrolyte

il

- electric potential, V

potential adjacent to electrode, outside diffusion layer, V

'rotationai speed, radian/sec

" at the eléctrode

far from the electrode
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