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Mass Transport and Potential Distribution 

in the Geometries of Localized Corrosion 

John Newman 

Inorganic Materials Research Division, 
Lawrence Berkeley Laboratory, and 

Department of Chemical Engineering; 
University of California, Berkeley 

November, 1971 

Abstract 

LBL-408 

The principles of current and potential distTibution and mass 

transfer in electrochemical systems are developed with a view toward their 

application in analyzing and understanding the processes of localized 

corrosion, such as pitting and corro~ion in crevices, under deposits, 

and in regions near gas.,-liquid-solid contact. 

I 
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Introduction 

Frequently, the rate of a corrosion: process is governed by the 

transport of a species like oxygen to the corroding surface by diffusion 

and convection. Other corrosion processes, like pitting, involve mass 

transfer and fluid flow in the transport of products as well as reactants 

in such a way that the different parts of a surface are subjected to 

different environments, and a galvanic cell can be set up. 

When the surface is homogeneous and exposed to uniform mass 

transfer conditions, the process occurs uniformly and is governed 'by 

electrode kinetics and thermodynamics as well as mass transfer. No current 

flows inthe solution because the cathodic and anodic reactions are 

balanced everywhere on the surface. However, current and potential distri-

butions are involved when the anodic and cathodic reactions occur on 

different surfaces or on different parts of the same surface. Examples 

are inclusions, cathodic and anodic protection, and most cases of corrosion 

in local geometries: cracking, pitting, corrosion in crevices, under 

deposits, and at liquid lines. 

In cathodic prote~tion one first needs to calculate the rate of 

transport of oxygen to the surface. This is a mass-transfer limited 

process and determines the amount of current which needs to be supplied to 

each part of the protected surface. Next, the potential and current dis-

tributions in the solution need to be evaluated to ensur6 that the current 

will actually reach, in appropdate amount, each.part of the protected 

surface. Othen'lise, hydrogen will be evolved on some parts of the surface 

''hilG leaving other parts unprotected. 
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We want to consider first the fundamentals of transport 

. 1 1 . 1 . 1 • 2 processes 1n e ectro yt1c so ut1ons. This serves as an introduction 

to the discussion of current and potential distributions as well as the 

treatment of mass-transfer linii ted phenomena. These two subjects are 

h 1 . . . 2,3,4 f 1 b . t us 1m1t1ng cases· o t1e as1c transport processes. For problems 

of local corrosion, it will usually be necessary to consider simultaneously 

f f . d . 1 d' 'b . 2 •5 matters o mass trans.er an potent1a 1str1 ut1on. 

Transport processes in electrolytic solutions 

Mass transfer in an electrolytic solution requires a description 

of 

1. The movement of mobile ionic species. 

2. Material balances. 

3. Current flow. 

4. Electroneutrality. 

5. Fluid mechanics. 

The flux of a minor component is given by 

N = -z.u.Fc.V<P -i 1 1 l. 

flux migration , 

-D.Vc. 
1 1 

diffusion 

+ c.v. 
I.-

convection 

(1) 

The mass transfer of a g~ven consti1;:qent can p~ associateci with three 

mechanisms, ,known as migration, diffusion, and convection. The flux is 

the amount moving past a plane (oriented perpendicular to the direction 

of the flow) per unit times rneasGrcd in moles per square centimeter per 

second. This movement is due first of all to the motion of the fluid 

with the bulk velocity v. However, the movement of the §pecies·can deviate 
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from this average velocity by diffusion if there is a concentration 

gradient \/c. or by migration if there is an electric field ~V¢ and if 
. 1 . . 

the species is charged (z. is the nt~ber of proton charges carried by 
1 

an ion). Thus, z·.F is the charge per mole. 
1 

t-1ultipl ication by the 

electric field -\/¢ gives the force per mole. Multiplication by the ' 

mobility ur gives the migration velocity, ~nd finally multiplication by 

the concentration ci gives the contribution of migration to the flux of 

the species. 

This equation thus serves to define two transport properties, the 

diffusion coefficient D. and the mobility u.. The validity of this equa~ 
1 .1 

tion will be considered later. 

The current in an electrolytic solution is, of course, due. to the 

motion of charged particles, and we can easily express this quantitatively: 

i:::: F~z.N. 4 1-1 
1 

(2) 

Here ~is the current density expressed in amperes per square centimeter, 

and z. F is again the charge per mole. 
1 . .;.• 

Next we need to state a material balance for a minor component: 

dC. 
1 

at 

accumulation 

= -\/·N. 
-1 

net input 

+ R. 
1 

production (in homogeneous 

chemical reactions) 

(3) 

.. 
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In engineering parlance, accumulation is equal to input minus output plus 

production. For a differential volume element, accumulation is simply 

the tim~ rate of change ~f conceritration. For the net input it is nee-

essary to compute the net amount of material brought in by the different 

fluxes on the varimls faces of the volume element. 
i 

N. ,.--·-----·-----1 N . 
1X · 1X 

~>I I---> 
, ___________ ..1 

x x+bx 

V'·N. 
-1 

oN. oN. oN, 
= ~+ ~+ 1Z 

ox oy az 

The difference in fluxes contributes to accumulation or depletion: 

lim 
N. I -N. I 

1X X 1X x+/::,x 
, 

oN. 
IX 

llx = -ax 
llx -+ 0 

(4) 

(5) 

The llx in the denominator comes from dividing by the volume of the element. 

The production per unit volume R. involves chemical reactions in the bulk 
1 . 

of the solution, but not any electrode reactions, which occur at the 

boundaries of the solution. 

Finally, we may say that the solution is electrically neutral. 
I 

Lz.c. = 0 (6) 
. 1 1 
1 

This is not, however, a fundamental law of nature. Perhaps a more nearly 

correct realtionshjp would be Poisson's equation 

:L:z.c. 
1 ) 

(7) 

i 
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which relates the charge density to the Laplacian of the electric 

potential. The proportionality constant in this equation is the permit-

tivity or dielectric constant£ dividied by Faraday's constant F. The 

value of this proportionality constant is quite small, so that it is
1 
I 

usually permissible to set the charge density equal to zero. This, of 

course, does not mean that Laplace's equation is satisfied by the 

potential: 

(8) 

(We shall find later under what conditions Laplace's equation is applicable.) 

Another way of saying the same thing is that F/£ is so large that an 

appreciable separation of charge would require prohibitively large electric 

forces. Still another way is that the conductivity is so large that any 

initial charge density would be neutralized very rapidly or would rapidly 

£16w to the boundaries of the solution. 

On the other hand, it is not permissible to neglect the charge 

density in the electrode double layer since ~he electric field is indeed 

very large in this region. In extremely dilute solutions, the charge 

density may also be appreciable compared to the total ionic concentration. 

The double layer can legitimately be regarded as part of the interface and 

not part of the solution. This region is on the order of 10 to 100 angstroms 

thick. 

These four equations (1, 2, 3, and 6) provide a consistent descrip-

.tion of transport processes in electrolytic solutions. Note that in order 

to solv~ a mass-transfer problem it is necessary to know the convective 

velocity v. Thus, it is necessary to 1\'0rk with the equaU ons of fluid 

mechanics, 1vhich J shall not discuss here.' It is a1so necessary to 

j'l\ 
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specifycarefully the boundary conditions. We shall come to these presently. 

An understanding of the physical content of the four equations presented 

above provides a consistent picture of the field and allows one to follow 

more easily any discussion of the subject and to see what approximations 

are being made. 

We can also obtain physical insight by considering the validity 

of these equations themselves. , The validity of the el ectroneutrali ty 

equation has already been considered. We conclude that it is an accurate 

approximation. The current equation and the expression of conservation 

of matter are valid phy~ical la~s subject to little dispute. However, the_ 

uncertainty is in the rate processes, in the expression of the production 

rate and the flux. The production rate involves chemical kinetics, for 

which the rate expressions are not predictable or general. Fortunately, 

the production rate can be ignored in most electrochemical systems. We 

have attempted to expre~s the flux by the first equation, but even this 

breaks down in concentrated solutions for a number of reasons. 

As a point of historical perspective, it should be noted that 

these equations were known in 1890. Usually the convective term did not 

appear in the flux equation. It was also known that the flux equation 

~as valid only in dilute solutions. At that time its breakdown was 

attributed to incomplete dissociation of the electrolyte. 

The flux equation breaks down, fii·st of all, because we have not 

specified the fluid velocity. In a concentrated solution it is not just 

the solvent velocity which contributes to the average velocity. Further

more, this flux equation incorrectly defines the transport properties; 

in fact, it defjncs an incorrect riumbcr of transport properties. This 
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equation considers the interaction or friction force of an ion with .the 
,I 

solvent and essentially neglects interactions with the other ions. 

Finally, the correct driving force for ,diffusion and migration is the 

gradient of an electrochemical potential, and any decomposition of this 

into Vc. and c.V¢ is unnecessary. 
1 1 

We can avoid these difficulties by using the mul ticomponent · 

diffusion equation 

(9) 

where ll· is the electrochemical potential. Here c. Vp. is the driving 
1 . 1 1 

force for diffusion and migration, and it is equated to the interaction 

or friction force between species i and all other species j. This fric-

tion force is proportional to the difference of velocities v. - v. , and 
-] -1 

the question of the reference velocity is thereby avoided. For comparison, 

the first flux equation can be expressed as 

c. (v. -v) = N. 
l. -1 - -1 

vc. = - z. u. Fe. V¢ 
- 1 1 1 1 

D.Vc. 
1 1 

(10) 

The left side sh6w$ an interaction between the species and the fluid; the 

right side shows the driving forces for diffusion and migration and the 

corresponding transport properties. The multicomponent diffusion equa-

tion is some\vhat more general than the first flux equation because it 

relates the driving force to a linear combination of resistances instead 

of just to one resistance, that with the solv~nt. 

,II'·, 

.. 
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A similar multicomponent diffusion equation is necessary even 

for concentrated solutions of nonelectrolytes, so we shouldn't feel too 

bad about this one, 

Figure 1 shows multicomponent diffusion coefficients for the 

system KC1-H20 calcu:lated from literature values of the conductivity, 

diffusion coefficient, and transference number.~+ and /{;_, representing 

interactions of the ions with the solvent, .are relatively independent of 

concentration. Because of the strong electric interaction between ions, 

~- shows a strong concentration dependence. 

The mul ticomponent diffusion equation is essential to the ui1der-

standing of basic transport processes, but it is not widely used in the 

analysis of electrochemical ~ystems for a number of reasons: 

1. It complicates the analysis. Even the flux equation for dilute solu-

tions is frequently iimplified in applications. 

2. All the requisite transport properties are not known over a range of 

concentrations for any solution of two or more electrolytes. 

3. The flux equation for dilute solutions frequently gives an adequate 

account of the observed behavior of an electrochemical systeci. 

Let us now examine further the meaning and application of the 

basic transport relations. Let us expand the expression for the current 

density in the solution in terms of the species fluxes. 

i = -F2v<P"' z~u.c. - F"' z.D.Vc. + Fv"' z.c. 
- .. ~· 1 1 1 ~ l. l. .l. ~ l. l. 

(11) 
l. 1 l. 

By virtue of electroneutrality, the last term on the right is zero~ which 

is equivaicnt to s~ying that bulk motion of a fluid with no charge density 

can contribute qpthing to the current density. When there are no 
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Diffusion coefficient, cm 2 /sec 

.~ 9>o
~====~====~~t~==~====~~~· . . 

. G\· ~ 
·. Po+ 

MUL TICOMPONENT DIFFUSION 
COEFFICIENTS OF KCI -H 20 AT 25 ac 

lo-8 ~----~------~------~------~----~--~--~ 
10-5 10-4 10-3 10-2 10-1 1.0 10 

Concentration of KCI, moles/liter 

·M U B -10030 

Figure 1. ~1ulticornponent diffusion coefficients of KCl-I-120 at 25°C. 

• 

'i 

·! 
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concentration variations in the solution, this equation reduces to the 

common concept of electrolytic conductance . 

i = -KV¢ (12) 

where 

(13) 

is the conduct~vity of the solution. This is an expression. of Ohm's law, 

valid for ~lectrolytes in the absence of concentration gradients. 

where 

We may say that the current carried by species j is 

2 z.u.c. 2 2 t.i = -F z.u.c.V¢ - J J J 
-L;:z~u.c. J- J J J 

t. = 
J 

" 1 1 1 
1 

2 z.u.c. 
J J J 
2 

L).u.c. 
. 1 1 1 1 . 

i (14) 

(15) 

is the fraction of the current carried by species j and is also known as 

the transference number. 

The conductivity and the transference number are additional trans-

port properties, defined in terms of the ionic mobilities introduced 

earlier; These transport properties have relevance in solutions of 

varying composition, but Ohm's law is valid and the transference number 

has the physica.1 meaning of the fraction of the current carried by an 

ionic sped es ani y in the absence of concentration gradients. 
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It is a physical law of nature that electric charge is conserved, 

and this fact is already built into the basic transport relations. fvful ti-: 

plication of the material balance equation by z.F and addition over species 
l. 

yields 

'V·i = 0 (16) 

Since the charge density is zero, it cannot change with time, and it is 

appropriate ~hat the divergence of the charge flux or current density 

should 'be zero. Insertion of Ohm's law 

i ::: -K'V<J> (17) 

yields Laplace's equation for the potential 

if the conductivity is independent of position. Thus, Laplace's equation 

holds in a region of uniform composition. This justification of Laplace's 

equation is considerably different from the statement that electroneutrality 

implies Laplace's equation for the potential. The development of Laplace 1 s 

equation provides the basis for the determination of the distributions of 

current and potential in some corroding systems, which will be considered 

later in ~ore detaiJ. 

For the reaction of uncharged a~1d minor ionic species from a 

solution containing excess supporting electrolyte, it should be permissible 

to neglect the contribution of ionic migration to the flux of the reacting 

ions, giving 

N. = -D.Vc. + vc. 
-1 l. l. - l. 

(19) 

,., 

• 

<. 
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Substitution into the material balance gives the equation of convective 

diffusion (in the absence of homogeneous reactions). 

2 
= D.V c. 

1 1 
(20) 

··A similar equation applies to convective heat transfer and convective 

mass transfer in non-electrolytic solutions. Since these fields have 

been studied in detail, it is possible to apply many results to electro-
. ' 

chemical systems which obey this equation. This will occupy our attention 

in the next part of this paper. 

It should be pointed out that mass transfer in a solution of a 

single electrolyte also obeys the equation of convective diffusion. For 

the two ions we have 

ac v•l/c z u Fl/· (c'V<P) D v2c (21) -·- + = + at + + + 

ac 
V•I/C z _ u _ F'il· {c\/9) + D v2c (22) -· + = at 

where c = c /v = c !v and v and v are the numbers of moles of cations 
++-- + - . 

and anions per mole of electrolyte. Elimination of 1/ • (ci/<P) between these 

two equations yields 

(23) 
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This is the equation of convective diffusion, with however the diffusion 

coefficient of the salt 

z u D -z u D 
D = + + - + 

z u -z u (24) 
+ + 

appearing rather than an ionic diffusion coefficient. We mention this to 

bring out the fact that the measurement of the diffusion coeffici~nt of 

a salt does not yield directly the diffusion coefficient of either ion. 

We mentioned earlier that a single driving force, the gradient 

of the electrochemical potential of a species, is appropriate for diffusion 

and migration. We are thus led to expect that the ionic mobility and 

diffusion coefficient are related. The Nernst-Einstein equation provides 

this relationship 

D. = RT u. 
1 1 

(25) 

We now wish to. consider the magnitudes of the transport properties 

which have been introduced. Table 1 gives an indication of ionic diffusion 
I 

coefficients and mobilities. Ionic mobilities are usually not found 

directly in the literature; instead one finds ionic equivalent conductances. 

These are related to ionic mobilities by 

(26) 

The diffusion co~fficients were then calculated with the Nernst-Einstein 

relation 

D. = 
1 

RTI... 
1 

(27) 
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Table 1. Values of equivalent conductances and diffusion coefficients of 
selected ions ~t infinite dilution at 25°C. 

ion ).~ D.x105 ion J.? 5 z. z. D.xlO 1 1 1 1 1 1 

mho-cm2/equiv 2 
em /sec 

H+ .349.8 9.312 OH - -1 197.6 5.260 1 

Li+ 1 38.69 1.030 C1 -1 76.34 2.032 

Na+ 1 50.11 1.334 Br -,1 78.3 2.084 

K+ 1 73.52 1. 957 - I -1 76.8 2.044 

NH+ 
4 1 73.4 1.954 No; -1 71.44 1.902 

Ag+ 1 61.92 1.648 Hco; -1 41.5 1.105 

Tl+ 1 74.7 1.989 Hco; -1 54.6 1.454 

Mg++ 2 53.06 0.7063 cH3co; -1 40.9 1.089 

Ca++ 2 59.50 0.7920 so4 -2 80 1.065 

s ++ .r 2 59.46 0.7914 3-Fe(CN) 6 -3 101 0.896 

Ba++ 2 63.64 0.8471 4-Fe(CN) 6 -4 111 0.739 

Cu++ 2 54 0. 72 IO~ -1 54.38 1.448 

z ++ n· 2 53 0.71 C10~ -1 67.32 1. 792 
+++ 

La 3 69.5 0.617 Bro; -1 55.78 1.485 

C (NH )+++ 
0 3 6 3 . 102.3 0.908 I HSO~ -1 so 1.33 
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We see that most ionic diffusion coefficients are about 1 or 2 x 10- 5 

2 em /sec. Exceptions are hydrogen ions and hydroxyl ions for which D. 
l. 

. -5 2 
values are 9.3 and 5.3xl0 em /sec. 

The equivalent conductance of a single electrolyte is the sum of 

the values for the two lons 
' I 

A = A + A 
+ 

(28) 

The value of A wi11 thus be about 100 mho-cm2/equiv except for acids and 

bases. The conductivity will be given by multiplying A by the equivalent 

concentration, but this should be -in equivalents per cubic centimeter 

to have consistent units. ·Thus, the conductivity of sea water will be 

about 0.05 ohm- 1-cm- 1
• The transference number of an ion in a binary 

solution will be 

t = 1 - t ·+ 

A 
+ (29) = X +X 

+ 

and will be close to 0.5 except for acids and bases where t+ may be 0.8 

or 0.2. For solutions with an excess of inert electrolyte, the transfer-

ence number of a Jllinor ionic species will be proportional to its concentra-

tion and inversely proportional to the concentration of the supporting 

electrolyte and hence will be small. 

A rough guide to the temperature dependence is provided by the 

relationship 

D.~/T = constant, 
1 

(30) 

',, 
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\\'here ~ is the viscosity of the solution. Thus, ionic diffusion coef

ficients and conductivities can vary by 2 to 3 percent per degree C. 

This is a fairly strong temperature dependence. 

Mass transport controlled phenomena 

In an electr9chemical system, many processes occur simulta

neously, and the treatment of such problems involves consideration of 

the ohmic potential drop, concentration changes near electrodes, and the 

kinetics of the heterogeneous electrode reaction. Application of these 

principles has followed two main courses. 

There are systems where the ohmic potential drop can be neglected. 

The current distribution is then determined by the same principles which 

apply to heat transfer and non-electrolytic mass transfer. This usually 

involves systems operated at the limiting current with an excess of sup

porting electrolyte. Let us call these "convective-transport problems." 

At currents much below the limiting current it is possible to 

neglect concentration variations near the electrodes. The current dis

tribution is then determined by the ohmic potential drop in the s6lution 

and by electrode overpotentials. Mathematically, this means that the 

potential satisfies Laplace's equation, and many results of potential 

theory, developed in electrostatics, the flow of inviscid fluids, and 

steady heat conduction in solids are directly applicable. Let us call 

these "potential-theory problems;" The electrode kinetics provide 

boundary conditions which are usually different from those encountered 

in other applications of potential theory. 
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Problems have been treated which do not fall within either of 

these t\\'o classes. Some problems can be regarded as an extension of 

convective-transport problems. At the limiting current the ohmic potential 

drop in the bulk of the solution may still be negligible, but 'the electric 
/ 

field in the diffusion layer near electrodes may lead to an enhancement of 

the limiting current. The current density is then distributed along the 

electrode in the same manner as when migration is neglected; but the 

magnitude of the current density at all points is increased or diminished 

by a constant factor which depends upon the bulk composition of the 

solution. 

At currents below, but at an appreciable fraction of, the 

limiting current, diffusion and convective transport are essential, but 

neither concentration variations near the electrode nor the ohmic 

potential drop in the bulk solution can generally,_ be neglected. These 

problems are complex because all the factors are involved at once. 

In porous electrodes, convection may not be present, but it 

is usually necessary to consider the ohmic potential drop, concentration 

variations, and electrode kinetics. Most treatments, adopt a macro-

scopic modelwhich does not take account of the detailed, random geometry 

of the porous structure. Results of potential theory are then not applic-

able since Laplace's equation does not hold. 

In some cases it may be possible to take into accourit the 

concentration dependence of the transport properties. 

Let us now turn our attention to convective-transport problems. 
J 

As we. have said befdre, for the reaction of minor ionic species in a 

solution containing excess supporting electrolyt~, it should be pennissible 
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to neglect the contribution of ionic migration to the flux of the 

reacting ions, giving 

N. = -D.Vc. + vc. 
-.-1 1 1 - 1 

(31) 

I 
Substitution into the material balance gives the equation of convective 

diffusion: 

2 
= D.V c. 

1 1 
(32) 

A similar equation applies to convective heat transfer and convective 

mass transfer in nonelectrolytic solutions. Since these fields have 

been studied in detail, it is possible to apply many results to electro-

chemical systems which obey this equation. 

Essential to the understanding of convective-transport problems 

is the concept of the diffusion layer. Frequently, due to the small 

value of the diffusion coefficient, the concentrations differ signifi-

cantly fr6m their bulk values only in a thin region near the surface of 

an cl~ctrode (see figure 2). In this region the velocity is small, and 

diffusion is important to the transport process. The thinness of this 

region permits CJ. simplification in tl,w a11alysis, b4t it is erroneous 

to treat the diffusion layer as a stagnant region. Figure 3 shows the 

concentration profile in the diffusion layer, \vi th the electrode surface 

at the left.. Far from the surface, convective transport dominates, 

while at the sm•face itself there is only diffusion. 

-' 
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1:-LL ·~·~ Catho.de 
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<::: ¥& : ,. ·. t 
-------: - - - h . 

·/' 

* 
Anode 

~· 

XBL673-2382A 

Figure 2. Plane electrodes in the walls of a flow channel. 
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y, distance from cathode 

XBL692-2138 

Figure 3. Concentration profile in the diffusion layer. 
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To illustrate the current distribution obtained in this type 

of problem, consider two plane electrodes (figure 2) of length L and 

separated by a distance h and which form parts of the walls of a flow 

channel with othenvise insulating walls. For laminar flow from left to 

rig}Jt, with an average velocity <v), the limiting current density is 

highest, even infinite, at .the left edge of the electrode where fresh 

solution is brought in contact \vi th the electrode. The diffusion layer 

is sketched in exaggerated form on figure 2 and starts with a zero thick-

ness, becoming thicker farther downstream. 

By the limiting current we mean the highest possible rate of 

mass transfer to the sutface. This corresponds to a zero concentration of· 

the reactant along the entire length of the electrode. The limiting cur-

rent ~anifests itself i~ the current-potential curve for the electrode. 

This is sketched in figure 4. An increasing potential differen~e between 

the electrodes in a cell results in an increasing current .. However, as the 

concentration of the reactant approaches zero at the electrode surface, 

a further increase in potential can no longer produce an increase in 

current. Eventually, the electrode potential becomes so gr~at that a 

different process, say the evolution of hydrogen, begins to occur. This 

is also sketched on figure 4: 

For the system shown in figure 2, the lind ting current density 

-decreases with increasing x since the solution in the diffusion layer 

has already been depleted by the electrode reaction further upstream. 

The liiniting current density distribution is illustrated in figure S 

and is·given by 
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,_ 1.0 I 
/1 ., 

0.8 

""' (l) .. 

0.6 "tj' - 0 a. ~ 

E I ·-0 
0 ~ -

~ H 0.4 0.1 M CuS04 1.53M H2S04 I 

0.2 

Potential (volt) 

XBL692- 2139 

Figure 4. Current-potential curve fot an electrochemical ~ell. 
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,f.B 

1.4 Limited by 

convection and 
1.2 diffusion 

C' 
> 
0 

" c: 0.8 . -

0.6 ohmic drop 

L = 2h 
0.4 
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Figure 5. Current distribution on planar electrodes. 



i = 0.9783 
n 

-25-

nFD.c .. 
1 1 00 

s. 
1 ~(v) )1/3 

hD.x 
1 

, (33) 

where c. is the bulk concentration of the limiting re~ctant, D. its 
1 00 1 

diffusion coefficie,nt, and n and si are the number of electrons, transferred 
I 

and the stoichiomerric coefficient ~f the r~actant in the electrode reac-

tion 

""' z. L.,.,s.M:
1 

-+ ne 
. 1 1 
1 

(34) 

Tl1is distribution, limited by convection and diffusion, on the cathode is 

independent of the placement and size of the anode as long as the velocity 

profile is not disturbed. Later it will be instructive to compare this 

current distribution with that which would be obtained when the ohmic 

potential drop in the solution is controlling, as developed in the next 

section . 

. In the diffusion layer, at steady state, the equation of con-

vective diffusion reduces to the following boundary layer form 

dC. ac. 2 a c. 
1 1 D. 1 v -- + v a;= --2 

X ax y 1 ay 
. (35) 

or 

ac.v ac.v 2 a c. 
1 X 1 y D. 1 

ax + -a)-;- -2 1 ay 
(36) 

where y is the distance perpendicular to the electrode and x is the 

distance along the electrode mcasured·from its leading edge. I mention 
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this mainly to.discuss the mechanism of turbulent mass.transpo:rt. 

Turbulent flow is characterized by rapid and random fluctuations of the 

vel'oci ty, pressure, and concentrations. Usually one is interested only 

in average values of these quantities. However, the average of a non-

linear quantity like c.v , which enters into the above equation, cannot 
1 y 

be expressed simply in terms of the average concentration and velocity 

component. Let 

C. : C. + C ~· and V = V + VI 
1 1 1 y y y 

(37) 

where c. and v are the average values and c! and v 1 are fluctuating parts 
1 y 1 y 

whose averages arc zero. Hence 

c.v = (c. +c! ) (v +v 1
) 

l y 1 1 y y 

= c.v + C.V 1 + c!v + c!v 1 

1 y 1 y 1 y 1 y 

= c.v + c.V' + c!v + c!v 1 

1 y 1 y 1 y 1 y 

= c.v + c!v 1 (38) 
1 y 1 y 

The term c!v' is not zero and represents the turbulent contribution to the 
1 y 

flux of species i. This turb1,1lent flux is, in a sense, similar to the 

ordinary diffusion flux -D. ac. ;ay. Both arise f:rom fluctuati 011s about 
1 1 

average values, either on a molecular level or on the level of the 

turbulent fluctuations. Consequently, the turbulent transport term 

c!v 1 is frequently written in terms 'of an "eddy diffusivity" D(t): 
1 y 

Ct) a-ci 
c!v' = -D . --

1 )' · ay (39) 
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However, the eddy diffusivity is not a molecular parameter like the 

diffusion coefficient, and its value depends on the local level of tur-

bt.ilence. In particular, it depends on the distance from a solid wall and 

goes to zero at the wall itself since the level of turbulence is damped 

near a wall. This means that at the wall itself the flux is still given 

by 

a c. 
N .. = -D. --1 at y - 0 1y 1 ay (40) 

' but the turbu'lence in the diffusion layer can lead to a considerably 

enhanced overall rate of mass transfer. The turbulence makes the dif-

fusion layer thinner. 

After averaging, the boundary layer form of the equation of 

convective diffusion becomes 

ac. az. " c ) az. 
1 1 a (.D. +D t )-.2:.. 

v x ax + v y a; = ay 1 ay (41) 

One cannot go far in the study of convective-transport problems 

without realizing the value of dimensionless correlations based on 

dimensional analysis. They allow the behavior of similar systems to be 

expressed in the most economical manner. The object of our study here 

is the limiting current density. This is expressed in dimensionless 

form in terms of the Nusselt number 

N.d s.d i 
Nu(x) 1 e 1. c 

= - CD:- = nFD :-z- ( 42) 
oo 1 1 00 
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where C
00 

is the bulk concentration of the limiting reactant and de is a 

characteristic length of the system. For the present case of a flow 

channel with parallel walls, d is taken to be equal to 2h. 
e 

Clearly, the Nusselt humber or dimensionless li~iting.cur~ent 
should depend on the degree of stirring or convection, also expressed in 

dimensionless form~ For this purpose we use the Re~1olds number 

(43) 

where v is the kinematic viscosity of the fluid. The value of the 

Reynolds number determines the nature of the flow. For 

laminar flow is possible for Reynolds ·numbers less than 

the channe 1 , J 

2000 or 3000 ·i 

At higher Reynolds numbers, turbulent flow prevails. 

The Nusselt'number can also dependon the physical properties 

of the fluid, again cixpressed in dimensionless ratios. Relevant here 

is the Schmidt number 

Sc = v/D. (44) 
l. 

the ratio of the kinematic viscosity to the diffusion coefficient. The 

value of the Schmidt number determines the thickness of the diffusion layer 

relative to the nature of the hydrodynamic flow. For aqueous electrolytic 

solutions, the Schmidt number \vill generally be 1000 or higher. High 

Schmidt numbers favor thin diffusion layers, arid still further simplifi-

• f • I cat1.ons are possible in the boundary layer _orm of the equat1on of cbn-

vcctive diffusion. However, we shall not go into these ramifications here. 

For turbulent flm\ in the channel, the limiting current density 

will become relatively uniform a short distance from the edge of the 
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electrode, and the Nusselt number can be expressed as 

Nu = 0.023 Re0 · 8 Sc113 (45) 

and is independent of thedistance from the leading edge. However, within 

0.5 to 2 times d from the leading edge, the mass-transfer prdcess is not 
e 

yet_fully developed, and the Nusselt number should be expressed for short 

electrodes as 

Nu = 0.276' Re 0
· 58 sc 1

/
3 (de/L) 1/ 3 

avg (46) 

An advantage of the dimensionless correlations can be seen at this point. 

Dimensionless correlations for heat and nonelectrolytic mass transfer are 

expressed in the same form (with the Prandtl number replacing the Schmidt 

number for heat. transfer) and can be applied directly in electrochemical 

systems. The above equation for fully devel~ped mass transfer was 

developed by Chilton and Colburn in 1934 from the analysis of heat-

transfer data. 

The rotating disk electrode is of considerable interest in 

fundamental studies of electrochemistry since its hydrodynamic character-

istics in laminar flow are well known and the limiting current density is 

uniform on the surface of the disk. One usually has a disk electrode 

embedded in a large insulating plane. Rotation of the disk causes a 

swirling of the fluid. Fluid is thrown out along the radius and an axial 

flow toward the disk convects fresh reactant to the electrode. ·(See figure 

6.) The limiting current density in laminar flO\~ is given by 
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Figur~ 6. Rotating disk electrode. . ' 
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i = 0.62048 
n s. 

(47) 
1 

The flow becomes turbulent for a Reynolds number Re = r 2rt!v on the order of 

105 . H01vever, the.flow in the center of the disk remains laminar. The 

limiting current density is higher in the turbulent region than in the 

laminar region. Hence a large disk which includes a turbulent region 

will have a nonuniform limiting current density. Ellison and Cornet6 

provide us with the correlation 

Nu = 0.0117 Re
0

·
896 

Sc
0

· 249 
avg ( 48) 

for the rotating disk in turbulent flow. 

In many electrochemical processes no external means of stir-

ring the solution is provided; the convection which exists results from 

buoyancy effects and the density differences which are produced in the 

diffusion layer as a consequence of the electrode reaction itself. The 

stirring which results can be comparable to that in moderate forced 

convection. 

For free convection in laminar fl6w to a vertical electrode of 

length L, the limiting current density is 
I 

i avg = 0.66 
nFD.c 

1 00 

s. 
1 

(49) 

where g is the gravitational acceleration and p - p is the density 
co 0 

difference .between the bulk solution and the electrode surface. We 

' ' 
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I 

should also like tq express this as a dimensionless correlation. To 

characterize the stirring we no longer use the Reynolds number; instead 

we use a dimensionless density difference, since this is the driving 

force for fluid motion in a free convection system. This is expressed 

as the Grashof number: 

Gr = 
3 

g(p -p )L 
00 0 

In dimensionless form, the above expression becomes 

Nu avg 

s.Li 
= 1 avg = fr.66(ScGr) 114 

nFD.c--
1 00 

{50) 

{51) 

Here the electrode length enters as the characteristic length in the 

formation of the Nusselt number. 

For turbulent natural convection at a vertical plate, 

Nu = 0.31 (ScGr) 0 ' 28 
avg 

{52) 

This is applicable in the range 4xlo13 < ScGr < 1015
, while the laminar 

flow equrition ~as obtained for 

4 12 10 < ScGr < 10 {53) 

Thus we see that turbulent flow in natural convection results from high 

values of the Grashof number, just as high vjlues of ihe Re~tolds number 

favor turbulent ~low in forced convection. 
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For a horizorital, bounded plate with a stabilizing density 

gradient tt1ere is no chance for convection to result. With an adverse 

density giadient, turbulent flow is fuore likely than laminar flow, and 

the limiting current density can be expressed as 

i 
n = 0.19 

nFD.c 
1 00 

s. 
1 

for electrodes with a minimum dimension greater than 2 ern. 

(54) 

Now let us consider the limiting current for transport of 

oxygento a steel piling in the sea. Take a diameter of 30 em, or about 

1 ft, a velocity of SO em/sec or about 1 knot, and a kinematic viscosity 

bf 10-2 cm2/sec. Then 

Re = 50x30/l'o-2 .· 5 
= l.SxlO . (55) 

From correlations for heat and mass transfer past a cylinder7 we find 

Nu/Re Sc1
/

3 :::: 0.003 at Re 5 = 1. 5xl0 (56) 

Take the diffusion coefficient of oxygen in sea \vater to be about 2xl0-5 

2 em /sec, so that Sc = 500. Then 

Nu = 0.003xl.5xl05xl0/2 1
/ 3 = 3560 

= d s.i
1

/nFD.c. (57) e 1 , 1 1oo 
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For n = 4 and c. = 2.33~10-7 mole/cm3 , the average ,limiting current 
100 

density is 

. 5 . -5 . -7 ' ' 2 
iL = 3560x4x10 x2~10 x2.33x10 · /30 = 0.219 mA/c~ (58) 

The total limiting current for a 20 foot piling is thus about 

I = 0.219xl0-3xnx30x20x30 12.4 A. (59) 

This is the total current \vl')ich would be needed for cathodic protection. 

One might also wish to consider the distribution of this current. Around 

the circumference it would be expected to look like that sketched in 

figure 7, the distance from the circle to the curve representing the 

magnitude of the local limiting current density as a function of the 

angular position. If cathodic prot~ction were not supplied, one migh~ 

expect the piling to corrode at the rate corresponding to equation 59, 

with the anodic current supplied by the reaction 

++ Fe ~ Fe + 2e 

,, 
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. ' 

XBL 7110- 4607 

Figure 7. Limiting current distribution around a cylinder at high 
Reynolds number. 
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Distribution o'f current and potential 

In the preceding section, we considered the distribution of 

reaction rates in systems where migration effects could be ignored. Now 

let us turn our.attention to the other limiting case where concentration 
I 

variations in the solution can be ignored. In this case the current 

density is given by Ohm's law 

i = -K\lq, (60) 

and the potential distribution satisfies Laplace's equation 

(61) 

on- insulating surfaces, the boundary condition is that the 

normal component of the current density is zero, 

which implies that 

i = 0 y 

aq,;ay = 0 at y = 0 

(62) 

(63) 

On electrodes, it is necessary to define the surface overpotential, n : 
s 

ns = V - U0 
- ~0 at y = 0 (64) 

where V is the electrode potential, ~0 is the potential in the solution 

adjacent to the electrode measured with a reference electrode, and U0 is 

the equilibrium potential of the electrode· fo.r the reaction being 



-37-

considered~ measured relative to the reference electrode. 

In corroding systems we want to consider the possibility of 

several reactions ·occurring simultaneously. Then, the normal component 

of the current density is the sum of the currents for the several reactions: 

where the f's d~scribe the kinetics of the various reactions, relating 

the current to the surface overpotential. Laplace's equation for the 

potential must thus be solved in conjunction with these'boundary con-

ditions which relate the. normal component of the potential gradient to 

the potentjaJs of the electrodes and the poteritial in the solution 

adjacent to the electrodes. The pbtential~ of the electrodes are 

constant, but the potential in the ~olutl.on adjace11t to an electrode 

need not be constant since it depends on the local current density. 

For a· large class of electrode reactions, the current density 

ftepends exponentially on the surface overpotential in the following 

form.: 

a F 
c 

-RT 

where i
0 

is the exchange current density and depends on the concentrations 

of species adjacent to the electrode. Both a and a are kinetic param-a c 

eters called "transfer coefficients." 

llowcver, many reactions important in corroding systems exhibit 

a passivat5.on phenomenon. For large anodic overpotentials, an oxide film is 
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formed, and the dissolution process is suppressed. ·This behavior is 
I 

depicted in figure 8. In the passive region the·current density can be 

very small. 

We might also mention the current-potential 'behavior of an 

electrode which exhibits a limiting current. This is sketched in figure 

9. (Compare figure 4.) For large cathodic overpotentials, the rate of 

the oxygen reaction is dcitermined by the rate of mass transfer of oxygen 

to the electrode by diffusion and convection, as discussed in the preced-

ing section. Strictly speaking, a limiting-current reaction should not 

be discussed here since concentration variations in the solution cannot. 

be ignored. However, it is useful for indicating the nature of corrosion 

processes. The current-potential curve for a passivating reaction is 

also indicated on figure 9. When the corrosion process ~s such that the 

local currents balance, the current density f6r the anodic process must 

be equal and opposite to that.for the cathodic process, and the corrosion 

potential is determined accordingly, as shown on figuic 9. In this case, 

if the rate of stirring can be increased so that the limiting current fat 

the oxygen reaction is greater than the maximum current density for the 

anodic process, then the potential must shift nearly to the oxygen 

potential, and the anodic process is passivated. 

A corroding system in which the current densities are in 

local balance is not of interest here since no current flow~ in the solu-

tion, and the rate of corrosion is determined by the principles of mass 

transfer •. discussed in the preceding se~tion. The current 'and potential 

distributions are of inter~st ~ten the anodic and cathodic reictions 

occur on different surfaces, as in cathodic and anodic protection, or on 

.,, 
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Active electrode 

~Passivated electrode 

"'s 
XBL7110-4605 

Figure 8. Current~potential behavi<;>r of a passivating electrode, in 
contrast to a non-passivating electrode. 
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different parts of the same surface, as in the case of inclusions and 

pitting and on a surface formed of dissimilar metals. 

Let us conside~ the p~inciples of current and potential dis-

tribution in more detail. Take first the simple case of a rod in the 

center of a tube. Then the radial component of the current density is 

and the total current is 

i = -KCl<l>/Clr 
r 

I = 2rrrHi - -2rrrKHCl<fl/3r 

(67) 

(68) 

Since I is a constant, independent of r, this equation can be integrated 

to yield the potential distribution 

Hence, the ohmic potential drop is 

I 
A<I>ohm - 2rrKH 

and the ohmic resistance is 

R = 
1'14> h o m 

I 

r 
0 ln,r. 
1 

r 
0 

r 

1 
= 2n~I1 1 n 

r 
0 

r. 
1 

(69) 

(70) 

(71) 

These formulas would be useful to estimate the potential difference 

required to protect cathodically the inside of a pipe by means of a 
,, 

counter electrode consisting pf a rod in the center of the pipe. To the 

ohmic drop one would need to add the magnitudes of the surface over-

potentials at the anode and the cathode and the difference in equilibrium 
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potentials for the two electrode reactions. 

Next let us use an approximate analysis to indicate how well 

we could cathodically protect the inside of the pipe by means of a 

counter electrode at one end of the pipe. The current flowing in a 

section of the pipe is (see figure 10) , 

X 

f i 2nr dx = 
'w 0 

0 

. 2 
1 nr 

X 0 
(72) 

Here iw is the current density required for protection and is taken to 

be constant. Integration gives 

2nr X 
()¢ 0 

1 = - ax w 2 
7TT K 

(73) 

0 

A second integration gives the difference in <P over a distance L from the 

electrode. 

L ()¢ 1 2 L2 i L2· 
!J<P fax dx 

w w 
::: = ---- = --r K 2 r K 

0 0 
0 

(74) 

Now, we want to avoid hydrogen evolution at ·the end of the pipe near the 

counter electrode, and yet we want to ensure that the other end of the 

pipe is still protected. This fixes the maximum value of !J<P which can 

be tolerated. Hence, the maximum length of pipe 1~hich we can protect in 

this manner is 

(75) 

i. 
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Figure 10. 

XBL7110-4604 

Cathodic protection of a pipe by means of an electrode 
placed at the end. 
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The so-called primary current and potential distributions 

apply when there is one reaction and the surface overpotential can be 

neglected altogether. The.solution adjacent to an electrode is then 

taken to be an equipotential surface. Laplace's equation is not trivial 

to,solve, even for relatively simple geometries. We may note that the 

potential-distribu·tion problem is similar to the problem of the steady 

temperature distribution in solids, with the potential playing the rBle 

of the temperature, the current density that of the heat flux, and the · 

electrical conductivity that of the thermal conductivity. Consequently, 

many solutions can be carried over directly from that field of applied 

physics. Electrostatics and the irrotational flow of inviscid fluids 

also provide a wealth of solutions to Laplace's equation. 

Consider two electrodes in the walls of a flow channel. This 

is sketched in figure 11. Here current lines are represented by solid 

curves and equipotential surfaces by dashed curves. If the drawing were 

accurate, these two sets of curves would.be perpendicular to each other 

everywhere in the solution. The equipotential lines are close together 

near the edge of the electrode, and at this point the primary current 

den~ity is infinite. 

lhe primary current distribution on the electrode \vas shO\m 

in figure 5 for L = ~~ and is given by the equation (x being measured here 

from the center of the electrode) 

i 2 
n = £ cosh £/K(tanh E) 

i 
avg ~inh2 £ - sinh2 (2X£/L) 

(76) 

where £ = nL/2h and K(m) is the complete elliptic integral of the first 

kind. From the c01nplexity of this expression for the current density, 
\ 
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XBL7110-4608 

Figure 11. Two plane electrodes opposite each other in the walls of an 
in~ulating flow ch~nnel. 
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one can perhaps appreciate the_difficulty involved-in obtaining the 

potential distribution. For contrast, the mass~transfer limiting current 

distribution for laJninar flow, discussed in the preceding section, is 

also shown on figure 5. 

The p:-imary current distribution shown in figure 5 is independent 

of the flow rate since convection is great enough to eliminate concentra-

tion variations, and herice the distribution is symmetric. The current 

density is infinite at the ends of the electrodes since the current can 

flow through the solution beyond the ends of the e]ectrodes. This is a 

general characteristic of primary current distributions. The current 

density where an electrode meets an insulator is either infinite or 

zero unless they form a right angle (see figure 12). When the electrode 

and the insulator lie in the same plane, the primary current density is 

inversely proportional to the square root of the distance from the edge 

for positions sufficiently close to the edge. This behavior is exhibited 

by the above equation for the current density. 

The primary current distribution is determined by geometric 

factors alone. Thus, only the geometric ratios of the cell enter into 

the parameter £, _but the conduc:ti vi ty of the solution does not enter. 

The resistance for the cell in figure 11 is 

R --
1 K(l/cosh 2

£) 
K\V . 2 

K(tanh E:) 
(77) 

where.W is the width of the electrodes perpendicular to the length of 

the channel. 
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Figure 12. Behavior of the primary cu:rrent distribution near the edge of 
an electrode. 
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For a disk electrode of radius r .~ embedded in an infinite 
0 

insulating plane and with the counter electrode far away (see figure 6), 

the primary current distribution is given by 

i 
n 

-i-- = 
avg 

0.5 

A- (r/r ) 2 
0 

(78) 

and the equipotential and current lines in the solution are shown in figure 

13. Again, the equipotential lines are close together near the edge of 

the electrode, and at th~s point the current density is infinite, being 

proportional to the reciprocal of the square root of the distance from the 

edge near this point. Only geometric factors enter into the current dis-

tribution, and the resistance to a hemispherical counter electrode at 

infinity is 

R = l/4Kr 
0 

(79) 

When slow electrode kinetics are taken into account, the ' 

electrolytic solution near the electrode is no longer an equipotential 

surface, and the result of the calculations is the so-called "secondary 

current distribution." The general effect of electrode polarization is 

to make the secondary current distribution more nearly uniform than the 

primary current distribution, and an infinite current density at the 

edge of electrodes is eliminated. This can be regarded as the result of 

imposing an additional resistance at the elect-rode interface. 

In practice, the electrode kinetic equation 66 is frequently 

replriced by a linear or a logarithmic (Tafel) relation between thi surface 
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Figure 13. Potential distribution near an equipotential disk in an 
insulating plane. 
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overpotential ·and the potential derivative at the electrode. ·.In any 

case, addi.tional· parameters besides geometric ratios are r·equired to 

specify the current distribution. The advantage of the linear and 

logarithmic approximations is'that they add only one new parameter. 
1 

I 
Thus, fairly realistic cases can be treated without excessive compli 1

-

l 
cation .. ·· 

I 
For sufficiently small!surface overpotentials, the kinetic 

relation for active electrodes can be linearized to read 

i n 

di n 
= dnsln =O 

s 

(80) 

This provides a linear boundary condition for Laplace's equation. Further-

more, if the range of current densities at the electrode i~ sufficiently 

narrow, as. one wants to achieve in electroplating, it is, of course, 

justified to linearize the polarization equation about some other, non-

zero value of the surface overpotential. For a disk electrode, the 

additional parameter for linear polarization is 

(a +a )J = 
a c, 

(a +a ) a c 

i Fr 
0 0 

RTK 
(81) 

The second~ry current distribution for linear polarization on a disk 

electrode is shown in figure 14. For large values of J, one obtaiifls the 

primary current distribution .. Then the ohmic resistance dominates over 

the kinetic resistance at the interface.· For any finite value of J, the 

distribution is more nearly uniform and is finite at the edge of disk. 

· For J -+- 0, ·the distribution is uniform, but the averag.e current must be 

i 
·l 
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Figure 14. Secondary current distribution for linear polarization. 
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small in order for the linear law still to apply; Otherwise, the current 

distribution is still independent of the magnitude of the current. 

The .Tafel polarization law,. where· one of the exponential terms 

in the kinetic equation 66 for an active electrode is negligible, is, 

also popular in the literature. For a cathodic reaction we have 

(82) 

This is popular because, while being a fairly realistic polarization law, 

Tafel's equation introduces a minimum of additional parameters into the 

problem, as stated before. In addition to depending on the same geometric 

ratios as the primary current distribution, the current-distribution 

i /i now depends on the parameter 
n avg . 

o = li Ia Fr /RTK avg c o (83) 

where the characteristic length r is appropriate for the disk electrode. 
o I 

The current distribution now depends on the magnitude of the current, 

but it is independent of the value of the exchange current density i , 
0 

insofar as Tafel polarization is applicable only for current .densities 

appreciably above the exchange current density. 

The :;econdary current distrHmtion for Tafel polarization on 

a disk electrode is shown in figure 15. This is similar to the secondary 

current distribution with linear p6larization, but the parameter o .now 

plays the role of the parameter J. In particular, the primary current 

distribution is still approached as o becomes large. The parameter for 

polarization always is proportional to a characteristic length and 
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Figure 15. Secondary current distribution for Tafel polarization. 
I 



-54-

inversely proportional to the conductivity K and involves the nature of 

the polarization. Therefore, we may state as a general rule of thumb 

that for large systems the primary current distribution will be approached, 

independent of the nature of the polarization law. 

Applications to cathodic protection 

As we have said before, one is interested in solving Laplace's 

equation in corroding systems only if the cathodic and anodic reactions 

take place on different surfaces or on different parts of the same 

surface. First one calculates the limiting current for the corrosion 

agent; this gives the magnitude of the current source needed. Next one 

calculates the potential distributio~ for a possible placement of counter 

electrodes. It is not enough for the counter electrode to generate the 
"' 

requisite total current. An improper placement of the counter electrodes 

will result in hydrogen evolution on one part of the protected surface. 

This represents an unproductive comsumption of current and will leave other 

parts of the surface unprotected. 1be counter electrode on the left in 

figure 16 will be able to protect a greater length of the pipe line; 

without evolving hydrogen on the adjacent part of the pipe. line. Of 

course, the cell potential will be higher, as well as the magnitude of 

the useful current. 

Consider the current distribution on two parallel cylinders, 

sketched in figure 17. For the primary distribution, the equipotential 

lines will be circles, and the current lines will intersect them at right 

angles. Clearly, tl1e farther apart the cylinders, the more nearly uniform 

the current distribution will be, see figure 1a. H~nce, we can expect the 

cathodic protection to be more uniform. 
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Figure 16. Placement of counter electrodes in cathodic protection . 
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But does the nonuniformity of the primary current distribution 
,, . 

really give any indication of whether cathodic protection will reach all 

parts of a body? Clearly it cannot give the complete picture since tpe 

primary distribution is pur~ly geometric and does not depend upon the size 

of the system. The desired current distribution for cathodic protection 

is determined by a limiting current distribution, not by a primary current 

distribution. What one wants to.know from the potential calculations is 

whether the potential variation in the solution adjacent to the protected 

surface is greater than an allowed maximum, so that all parts are protected 

without hydrogen evolution. This cannot be obtained from a calculation 

which begins by assuming that 4> is uniform near the surface. To repeat, 

the size of the system is important in cathodic protection but not in the 

primary current distribution. (Incidently, it may not be obvious that a 

large surface cannot be protected even if one is willing to waste current 

in: hydrogen evolution.) 

We might ask how large a disk electrode can be protected 

cathodically by a counter electrode at infinity. we assume that the disk 

is rotated, the flow is laminar, and the limiting current for the oxygen 

reaction is uniform, as discussed in the section on mass transport 

controlled phenomena. Figure 19 show~ the potential distribution 4> 
0 

adjacent to the surface of the disk. This is made dimensionless with the 

total current I, the disk radius r , and the solution conductivity K
00

• 
0. 

This curve can be regarded as a plot of -4>
0

, since I is negative for a 
i 

cathode. Imagine that the top of the graph, at the ordinate value of 

1.8, represents the electrode potential V made dimensionless in the same 

<P • way as . 
0 

The electrode potential is uniform \vi th radial position 
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r since the disk material has a high conductivity. 

The difference between v and <P is the potential available for 
0 

carrying out electrode reactions, and we see that this difference varies 
I 

over the surface of the disk. At the center, this difference must be
1

• 

sufficiently cathodic to ensure that oxygen reduction occurs at the 

limiting current or, more precisely, so that the disk material does not 

corrode, say -0.1 V (versus the normal hydrogen electrode). Near the 

edge of the disk, we should like to avoid having this difference be so 

cathodic that hydrogen is evolved, say -1.0 V. The allowable variation 

ll~ in <P is thus 0.9 V. From figure i9, we see that the maintenance of 
0 0 

a uniform current density i (that required for cathodic protection for 

oxygen transport in laminar flow) produces a potential variation 

!J/p -- 0.363 r i/K 0 ' ' 0 ' (84) 

For a limiting current density of 0.7 mA/cm2 and a conductivity of 0.05 
. • I 

-1 ' ' 
.(ohm-em) , the largest disk which can be cathodically protected is 

r = 177 em. 
0 

This result can be contrasted with that represented by equation 
I 

75, Characteristic lengths enter into these formulas in different ways. 
' .) 

Equations 75 and 84 can also be used to estimate the size of objects which 

can be protected anodically (that is, by application of an anodic potential 

such that a passivated state is maintained). 
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Corrosion in local geometries 

Localized corrosion is a complicated situation, and all the 

factors discussed above can operat~ simultaneously: 

1. The anodic and cathodic reactions occur on different parts of the 

same surface; consequently, potential-distribution problems and the ohmic 

potential drop are of interest. The•conductivity of the solution deter

mines how far away the cathodic reaction site can be located from the 

anode. 

2. Nonuniform mass-transfer conditions are responsible, in many cases, 

for establishing the galvanic cell which allows the cathodic and anodic 

r~actions to occur in different places. Otherwise these reactions would 

be balanced locally, as sketched in figure 9. 

3. Theelectrochemical response of the interface is crucial in corrosion 

processes. Localized corrosion frequently involves a passivating surface 

(see figure 8), which adds to the variety of phenomena which can occur. 

In cracking, fresh surfaces have a different chara.cter from old surfaces. 

4. Not only do nonuniform concentrations set up the thermodynamic driving 

force for the gaivanic cell, but they also affect the kinetic or catalytic 

response of the surface. The chloride ion· concentration and the pH have:: 

particularly strong effects. 

An idealized representation of a localized corrosion process 

is a disk inclusion embedded in a metal surface. Levich and Frumkin
8 

treated the potential distribution for a uniform current density on the 

disk, which may be taken to be the anode, and a uniform potential in the 

solution adjacent to,the remainder of the surface, which acts as the 

cathode (see figure 20). The potential in the solution adjacent to the 
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inclusion 

XBL 7110-4624 

Figure 20. Potential diStribution and current lines for a disk inclusion, 
with a uniform current density, and an equipotential plane. 
Solid lines are equipotential surfaces and dashed lines show 
the direction of the current density. 

., 
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disk is ~xpressed as 

(85) 

This situation is similar to that represented by the uniform-current-

density curve in figure 19. For the inclusion, however, the counter 
' 

electrode is the plane surrounding the disk. At this counter electrode, 

the potential in the solution was assigned the. value ¢ = 0 in obtaining 

equation 85. Thus, concentration variations and electrode overpotentials 

have been neglected at this electrode . 

. ·In their original work, Levich and Frumkin intended that the 

inclusion should be the cathode, on which hydrogen evolves, while the 

remainder of the plane is the dissolving anode. We have reversed these 

r6les in order to introduce pitting, where the center of the pit is the 

anode and the surrounding surface is the cathode. Thus, the current in 

the solution is flowing from the pit to the surrounding plane, in a manner 

similar to that depicted in figure 20 for the inclusion, and the potential 

¢ adjacent to the surface must behave as shown in figure 21. ¢ is 
0 0 

more positive near the center of the pit. 

From figure 21, we see that the electrode potential is more 

C~fho~ic at the anode qnd more anodic at the cathode. T~is condition 

can persist only if there is a reaction exhibiting passivation, so that 

the anodic current decreases with increasing anodic overpotential, or 

there are concentration variations which establish a galvanic cell. On 

discharge, the anode of a battery is negative-relative to the cathode. The 

corroding pit is tl1us similar to a shorted battery. 
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The plane surrounding the pit is more accessible to the 

cathodic reactant, oxygen or hydrogen ions: 

(86) 

or 

(87) 

The anodic reaction 

++ 
Fe -+- Fe + 2e (88) 

tends to promote the reaction 

F 
++ 

e + 20H- -+- Fe(OH)
2 (89) 

in the vicinity of the anode. These factors tend to make the solution 

more acidic near the anode. The only mitigating circumstance is that H+ 

ions migrate toward. the cathode and OH ions toward the an()de; however, 

the transference numbers of these, ions are low in sea water and would not 

in any case reverse the effect. The effect of these variatiDns in pH is 

to promote anodic pas_sivation on the cathode and discourage it on the 

anode. 

Furthermore, chloride ions migrate toward the anode and away 

from the cathode. This is important since chloride ions are noted for 

their effect in preventing passivation. 

In several situations of localized corrbsion; crevice corrosion, 

pitting, and water-line corrosion; one can see how different conditions 

of mass transfer Eive rise to a galvanic cell, how the corrosion proces~ 



. I 

-66-

itself maintains and enhances the conditions for corrosion, and how active-

passive electrode kinetics play an important role. Pitting corrosion can 

occur in a stagnant fluid, under app,arently uniform conditions, by building 

on natural fluctuations to establish differential concentrations. The[ 
I 

mechanism for maintaining corrosion, once it has been started, has been 

described above. The development of pitting corrosion is discouraged in 

a well-agitated fluid. 

9 LaQue has called our attention to the fact that rotating iron 

disks corrode in sea water in a dramatically different fashion from copper 

disks. The copper disks corrode near the edge; the iron disks near the 

center. This is presumably due to the nonuniform mass-transfer conditions 

arising from the presence of turbulent flow near the edge of the disk and 

laminar flow near the center. 

These disks would appear to be the ideal situation for the 

theoretical study of localize.d corrosion. The hydrodynamic flow is 

reasonably well known near a rotating disk, even for turbulent flow. 

This is a prerequisite for the calculation of concentration distributions. 

The disk is also a geometry which permits the computation of potential !J 

distributions. These studies would then reveal how active-passive 

electrode kinetics interact with concentration variations and the ohmic 

potential drop to produce a situation typical of localized corrosion. 

! I 

... 
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Nomenclature 

3 molar concentration of a single electrolyte, mole/em 
I 

concentration of species i, mole/cm3 

. tbtal ~olution concentration, mole/cm3 

·equivalent diameter of annulus or channel, em 

2 
measured diffusion coefficient of electrolyte, em /sec 

diffusion coefficient of species i, cm2/sec 

eddy diffusivity, cm2/sec 

2 
diffusion coefficient for interaction of.species i and j, em /sec 

F Faraday's constant, 96,487 C/equiv 

g 

Gr 

h 

i 

i 
0 

gravitational acceleration, cm/sec 2 

Grashof number 

distance between walls of flow channel, em 

I 
2 current density, A em 

2 exchange current density, A/em 

I total current, 'A 

J dimensionless exchange current density 

L length of electrode~ em 

Mi symbol for the chemical formula of species i 

n number of electrons transferred in electrode reaction 

N. flux of species i, mole/cm
2
-sec 

1 

Nu Nusselt number 
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'\ 

r r_adial position coordinate' em 

r
0 

radius of disk electrode or pipe, em 

R universal gas constant, 8.3143 J/mole deg 

R resistance, ohm 
' ' 3 

homogeneous rate of production of species i, mole/em -sec 

s. 
1 

Sc 

t 

t. 
]. 

T 

u . 
. 1 

uo 

(v) 

v. 
-l. 

v 

X 

y 

Reynolds number 

stoichiometric coefficient of species i in electrode reaction 

Sc~midt number 

time, sec 

transference number of species i 

absolute temperature, deg K 

mobility of species i, crn2-rnole/J-sec 
·,< 

equilibrium electrode potential for a given reaction, V 

fluid velocity, em/sec 

average velocity, em/sec 

velocity of species i, em/sec 

potential of an electrode, V 

distance measured along an electrode surface, ern 

normal distance from the surface, ern 

z. charge number of species i 
]. 

a ,a transfer coefficients a c 

o dimensionless average current density 

£ permittivity, farad/em 

£ 1fL/2h 

n rotational elliptic co6rdinate 

ns surface overpotentia~, V 

,~ 



·~. 

K 

).. 
l. 

A 

}J. 
l. 

\) 

\) ,v 
+ -

~0 

n 

0 
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conductivity, mho/em 

ionic equivalent conductance, mho-cm2/equiv 
. 2 

equivalent conductance of single electrolyte, mho-em /equiv 

viscosity, g/cm-sec 

electrochemical potential, J/mole 

kinematic viscosity, cm2/sec 

. \ 

number of moles of cations and anions permole of electrolyte 

3 density, g/cm 

electric potential, v 

potential adjacent to electrode, outside diffusion layer, V 

rotational speed, radian/sec 

at the el~ctrode 

far from the electrode 
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