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Age-related changes in brain structure result from a complex interplay among various neurobiological
processes, which may contribute to more complex trajectories than what can be described by simple
linear or quadratic models. We used a nonparametric smoothing spline approach to delineate cross-
sectionally estimated age trajectories of the volume of 17 neuroanatomic structures in 1100 healthy
adults (18e94 years). Accelerated estimated decline in advanced age characterized some structures, for
example hippocampus, but was not the norm. For most areas, 1 or 2 critical ages were identified,
characterized by changes in the estimated rate of change. One-year follow-up data from 142 healthy
older adults (60e91 years) confirmed the existence of estimated change from the cross-sectional anal-
yses for all areas except 1 (caudate). The cross-sectional and the longitudinal analyses agreed well on the
rank order of age effects on specific brain structures (Spearman r ¼ 0.91). The main conclusions are that
most brain structures do not follow a simple path throughout adult life and that accelerated decline in
high age is not the norm of healthy brain aging.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The volume of most brain structures shrinks with age, but the
degree of change is highly heterogeneous across different struct-
ures (Allen et al., 2005; Raz and Rodrigue, 2006). Also, age-related
changes result from a complex interplay among various neurobio-
logical processes, which is likely to have different impact in different
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phases of life. This is likely to produce more complex trajectories
thanwhat can be described by linear or the usually employed higher
order polynomial (quadratic or even cubic) models (Fjell et al.,
2010b). The present study was undertaken with the purpose of
estimating trajectories across the age of 17 brain structures in a large
cross-sectional sample (n ¼ 1100). Parts of these data have been
previously published (e.g., Fjell et al., 2009c), and we now reanalyze
them by applying a statistical approach (the smoothing spline)
sensitive to local changes in estimated rate of change (Fjell et al.,
2010b). This makes it possible to identify critical ages where life
phases characterized by relative stability are followed by periods
where estimated atrophy accelerates or critical ageswhere periods of
estimated reduction eventually level off. The cross-sectional results
were comparedwith longitudinal atrophy rates from a sample of 142
healthy elderly drawn from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (previously presented in Fjell et al., 2009b).
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Table 1
Sample split by decade and sex

Age (y) Total sample, n (%) Female, n (%) Male, n (%)

<30 315 (28.6) 186 (27.5) 129 (30.4)
30.1e40.0 121 (11.0) 72 (10.7) 49 (11.6)
40.1e50.0 154 (14.0) 94 (13.9) 60 (14.2)
50.1e60.0 159 (14.5) 107 (15.8) 52 (12.3)
61.1e70.0 187 (17.0) 114 (16.9) 73 (17.2)
71.1e80.0 123 (11.2) 74 (10.9) 49 (11.6)
>80.1 41 (3.7) 29 (4.3) 12 (2.8)
Total 1100 (100) 676 (100) 424 (100)
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Previous literature, including the reports based on samples
overlapping the present, indicates inverse U-shaped trajectories
for hippocampus, cerebral white matter (WM), cerebellum WM,
and the brain stem (Allen et al., 2005; Lupien et al., 2007;Walhovd
et al., 2011), whereas U and J forms have been reported for the
caudate and the ventricular system (Good et al., 2001; Sullivan
et al., 1995; Walhovd et al., 2011). In contrast, mainly linear
trajectories have been reported for amygdala, thalamus, accum-
bens, and putamen (Abe et al., 2008; Alexander et al., 2006; Allen
et al., 2005; Curiati et al., 2009; Greenberg et al., 2008; Gunning-
Dixon et al., 1998; Jernigan et al., 2001; Nunnemann et al., 2009;
Raz et al., 2003; Sullivan et al., 2004; Walhovd et al., 2011). Both
linear and quadratic reductions have been found for pallidum (Abe
et al., 2008; Walhovd et al., 2011). The rational for the present
study was to go beyond these general trends, by more accurately
delineating the trajectories for the different structures across
adult life and to identify critical ages characterized by changes in
estimated rate of atrophy. We included volume for 17 major
regions and structures estimated from the whole-brain segmen-
tation approach in FreeSurfer (Fischl et al., 2002). Surface-based
cortical thickness results were presented in a previous publica-
tion (Fjell et al., in press).
2. Materials and methods

2.1. Samples

2.1.1. Cross-sectional sample
A total of 1100 healthy adults (424men and 676women), with an

age range of 76 years (18e94 years,mean¼ 48, standard deviation¼
20) were included, pooled from 5 independent studies. Distribution
of participants across decades is shown in Table 1. All the healthy
samples were screened for diseases and history of neurologic
conditions and dementia, and none of the participants showed signs
of cognitive dysfunction. The details of each of the subsamples are
described in Supplementary Table 1, but a brief description is
provided here: sample 1 (Walhovd et al., 2005), n ¼ 69, age 20e88
years (mean 51.3); sample 2 (Espeseth et al., 2008), n ¼ 208, 19e75
years (46.8); sample 3 is from the Open Access Series of Imaging
Studies (http://www.oasis-brains.org/, Marcus et al., 2007), n¼ 309,
18e94 years (44.5); sample 4 (Raz et al., 2004), n¼ 191,18e81 years
(47.3); and sample 5 (Fjell et al., 2008;Westlye et al., 2010b), n¼ 323,
20e85 years (50.8).

2.1.2. Longitudinal sample
The longitudinal sample consisted of 142 (60e90 years, mean

age ¼ 75.6 years, 48% females) participants from the Alzheimer’s
Disease Neuroimaging Initiative database (http://www.loni.ucla.
edu/ADNI), followed for 1 year. The raw data were obtained
from the ADNI database, Principal Investigator Michael W. Weiner,
VA Medical Center and University of California-San Francisco. The
sample is identical to that included in a previous publication
(Fjell et al., 2009a) and is included to allow direct statistical
comparisons with the cross-sectional results. ADNI eligibility
criteria are described at http://www.adni-info.org/scientists/
ADNIGrant/ProtocolSummary.aspx.

2.2. Magnetic resonance imaging processing

All scans were obtained from 1.5-T magnets from 2 different
manufacturers (Siemens, Erlangen, Germany and General Electric
CO, Milwaukee, WI, USA) and from 5 different models (Siemens:
Avanto, Symphony, Sonata, Vision/GE: Signa). All participantswithin
each sample were scanned on the same scanner. For details of the
sequences, please consult Fjell et al. (2009b).

Cross-sectional data were processed and analyzed with Free-
Surfer 4.01 (http://surfer.nmr.mgh.harvard.edu/) (Fischl et al., 2002).
A neuroanatomic label is automatically assigned to each voxel in
a magnetic resonance imaging volume based on probabilistic
information automatically estimated from a manually labeled
training set (Fischl et al., 2002). The training set included both
healthy persons in the age range 18e87 years and a group of Alz-
heimer’s disease patients in the age range 60e87 years, and the
classification technique employs a registration procedure that is
robust to anatomic variability, including the ventricular enlarge-
ment typically associated with aging. The technique has previously
been shown to be comparable in accuracy tomanual labeling (Fischl
et al., 2002, 2004). Anatlas-basednormalizationprocedureusedwas
shown to increase the robustness and accuracy of the segmentations
across scanner platforms (Han and Fischl, 2007). For samples 1, 2, 3,
and5, 2e4magnetization-prepared rapid acquisitionswith gradient
echo (MPRAGEs) were averaged before preprocessing to increase
signal-to-noise ratio and contrast-to-noise ratio (CNR). The
following structures/areaswere included in the analyses: total brain
volume (TBV), cerebral cortex and WM, hippocampus, amygdale,
pallidum, caudate, putamen, thalamus, accumbens, brain stem,
cerebellum cortex and WM, lateral ventricles, inferior lateral
ventricles, and third and fourth ventricles. All segmentations were
manually inspected for accuracy by an experienced operator and
corrected in case of errors. Minor manual edits were performed on
most participants (>80%), usually restricted to removal of nonbrain
tissue, typically dura/vessels adjacent to the cortex. Additionally,
presence of local artifacts sometimes caused small parts ofWMtobe
segmented as graymatter. Such errors were routinely corrected. For
21 participants, the final segmentations were judged to be of
insufficient quality, and these were thus excluded from all analyses,
reducing the sample from an initial 1121 to the reported 1100.

Intracranial volume (ICV) was estimated by the use of an atlas-
based normalization procedure, where the atlas scaling factor is
used as a proxy for ICV, shown to correlate highly with manually
derived ICV (r¼ 0.93) (Buckner et al., 2004). In previous publications
with an overlapping sample pool, the results for the pooled samples
were replicable in each of the subsamples (Fjell et al., 2009b;
Walhovd et al., 2011), indicating that the sensitivity of detecting
effects are upheld and the statistical power are increased manifold.
Thus, we are convinced that the approach of pooling data from
different samples yields valid results. To remove any offset effects of
scanner, all analyses were done on the residuals after scanner was
regressed out (see Section 2.3).

Longitudinal change was calculated by the use of Quarc, previ-
ously demonstrated to be highly sensitive to longitudinal volu-
metric changes based onmagnetic resonance imaging (Holland and
Dale, 2011; Holland et al., 2012). Two MPRAGEs at each time point
were averaged to increase the signal-to-noise and contrast-to-noise
ratio. An increase in signal-to-noise ratio/CNR is expected to yield
more accurate change estimates. Labeling was done as described in
Fischl et al. (2002) with FreeSurfer 3.0.2.

http://www.oasis-brains.org/
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.adni-info.org/scientists/ADNIGrant/ProtocolSummary.aspx
http://www.adni-info.org/scientists/ADNIGrant/ProtocolSummary.aspx
http://surfer.nmr.mgh.harvard.edu/
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2.3. Statistical analyses

To reduce the number of comparisons, mean values for left and
right hemispheres were used in all region-of-interest (ROI) anal-
yses. Analyses were performed on residuals after the effects of
sample/scanner and ICV were removed. ICV was regressed out
to remove the effects of the slight age differences in head size
(r ¼ �0.12, p < 10�n).

For the cross-sectional analyses, a nonparametric local smoothing
model, the smoothing spline, implemented in Matlab, was fitted to
the data. We have previously shown that this approach gives less-
biased solutions than the more commonly employed higher order
polynomial functions (Fjell et al., 2010b) and that caution should be
exerted in inferring trajectories from global-fit models, for example
the quadratic model. For instance, the peaks of quadratic functions
will inherently depend on the age range sampled. The quadratic
function is always a parabola, which sometimes causes the model to
indicate a nonmonotonous age relationship when nonlinear but
monotonous trajectories are amore likely. Also, for quadraticmodels,
the second derivative is assumed to be constant across the life span
and hence the point of maximum acceleration of slope change
cannot be determined.

We used an algorithm that optimizes smoothing level based on
a version of Bayesian Information Criterion (BIC), that is, the
smoothing level that minimizes BIC for each analysis was chosen.
BIC offers a relative measure of the amount of information lost
when a model is used to describe a set of data and thus describes
the trade-off between bias and variance in the construction of
models. BIC rewards goodness of fit but includes a penalty that is an
increasing function of the number of estimated parameters. Thus,
BIC attempts to find the model that best explains the data with
a minimum of free parameters, that is, with a largest possible
smoothing level. With no smoothing, the smoothing spline will
yield an extremely good apparent fit to the data, but the model
would not be generalizable (overfitting). BIC takes this into account
by penalizing for loss of degrees of freedom. As BIC contains scaling
constants, the absolute BIC values are irrelevant. To ease compar-
ison of BIC between ordinary least-squares linear models and
smoothing spline models, we used DI, which is the difference
between BIC for the model and the lowest BIC and in this case the
difference between the smoothing spline model and the linear
ordinary least-squares model. As a rule of thumb, DI �2 would
indicate that the 2 models are essentially indistinguishable with
regard to goodness of fit, DI �4 would indicate considerable
differences between themodels, and DI�10would indicate that the
linear model has essentially no support.

We calculated the ages where the slope of the local smooth-
ing curve changed (the second derivative), using the expres-

sion �d2f ðageÞ
d age2

. We named these age points as critical ages and

identified 0, 1, or 2 critical ages for each brain structure.
There were no clear differences in age distribution across

samples (see Supplementary Fig. 1). To avoid possible bias resulting
from uneven age distribution across samples that could not be
resolved by regressing out linear effects of sample and scanner, the
main smoothing spline analyses were also run for the main struc-
tures in a subset of participants without any sample � age inter-
action. For each sample, an equal number of participants were
chosen for each decade, before the data were pooled. This sample
included 522 participants, with a perfect distribution of partici-
pants across decades and samples.

For the longitudinal analyses, annual percentage change was
calculated for each ROI. These results have previously been reported
(Fjell et al., 2009a) but were included to allow direct compa-
rison with the cross-sectional results. Correspondence between
longitudinal data and the smoothing spline models based on the
cross-sectional data was assessed in 2 ways. First, we tested
whether the structures or regions that showed increases or
decreases in the full cross-sectional sample also showed longitu-
dinal increases or decreases, respectively, in the independent ADNI
sample. Second, we tested to what extent the pattern of estimated
change across structures was the same in the cross-sectional and
the longitudinal data. Unfortunately, the ADNI database contains
only data for the latter part of the age range (60e91 years); so,
comparisons with the cross-sectional results cannot be done
throughout the adult life span. Because the methods used to
calculate longitudinal change and to fit the cross-sectional trajec-
tories differ in important aspects and the samples do not overlap,
direct comparisons of estimations of absolute rates of atrophy
between the longitudinal and cross-sectional results were not
performed. Longitudinal reductions were measured as proportion
of change between time points and further converted to annual
percentage volume change. Brain volumes in the cross-sectional
data were regressed on sample and ICV, and age reductions esti-
mated from the cross-sectional data were measured in standard
deviation decline in volume in the age range 60e90 years.

3. Results

3.1. Cross-sectional data

To compare the linear and the smoothing spline models, we
calculated BIC for the relationship between each brain volume and
age (Supplementary Table 2, also including the quadratic model for
comparison purposes). Scatterplots illustrating the estimated
trajectories are presented in Fig.1 (structures) and Fig. 2 (ventricular
system). Of the 17 tested regions, a nonlinearmodel represented the
data best for 13 (TBV, cerebral cortex and WM, hippocampus,
caudate, cerebellarWM, brain stem, pallidum, putamen, and lateral,
inferior lateral, third, and fourth ventricles). The linear model
showed the best fit for 4 regions (nucleus accumbens, cerebellar
cortex, amygdala, and thalamus). For the putamen, BIC indicated
that the smoothing splinemodelwasmarginally better than a linear
model (BIC ¼ 4.16), but deviation from linearity was minute. To test
the stability of the results, a split-half analysis was performed
for WM volume (Supplementary Fig. 2), yielding identical spline
curves.

Inspections of the plots revealed substantial differences in
estimated trajectories for the nonlinear models. Especially, there
were large differences in curvature. For some structures, there was
a peak or an inflection point after which the age relationship
increased in strength (cerebral and cerebellar WM and hippo-
campus, to some degree TBV and the brain stem). For cerebral WM,
a nonmonotonous, inverse U-shaped relationship was observed.
For other structures, advanced age was accompanied by reduction
in estimated change (caudate and all ventricular cavities, to some
degree cerebral cortex and pallidum). Validation analyses in the
subset of participants perfectly distributed across decades in all
samples confirmed the results (Supplementary Fig. 3).

For the structures that showed deviations from linearity (except
putamen), critical ages, that is, the ages where estimated atrophy
started to accelerate or decelerate, were identified. For some
structures, 1 critical age was identified, whereas 2 were found for
others (referred to as early and late critical age, see Fig. 3). Early
critical age varied greatly across structures, from 31 to 59 years, and
volume-age correlations differed between the defined periods. For
the regions best described by a linear fit, age correlations were as
follows: amygdala r ¼ �0.56, putamen r ¼ �0.69, thalamus
r ¼ �0.65, nucleus accumbens r ¼ �0.70, and cerebellum gray
matter r ¼ �0.52.



Fig. 1. Scatterplots of age-brain structure relationships. The individual data points and the cross-sectionally estimated trajectories for the 13 brain structures of interest based on the
smoothing spline are shown. Y-axis values represent mean volume across hemispheres, corrected for the influence of sample and intracranial volume (z scores). The right bottom
image shows some of the segmented structures of the average brain of sample 2. The 3-dimensional renderings illustrate the average shape, extension, and relative position within
the brain. The cerebral cortex and underlying white matter are made transparent to allow visualization of the underlying subcortical structures. Abbreviations: TBV, total brain
volume; WM, white matter.
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3.2. Longitudinal validation

All ROIs showed significant longitudinal change at p < 0.05. This
confirmed the finding of substantial atrophy/ventricular expansion
observed cross-sectionally for all ROIs, except the caudate nucleus.
For caudate, aweak positive correlationwith agewas observed after
59 years in the cross-sectional data, which was not found in the
longitudinal analyses.
Next, we studied how well the pattern of cross-sectionally
estimated change matched the longitudinal findings. In the age
range 60e90 years, Spearman r between the cross-sectional esti-
mate of shrinkage and the longitudinally measured volume loss
was 0.91 (p < 10�5). In the cross-sectional analyses, the regions
with the steepest estimated decline between 60 and 90 were
cerebral WM (z ¼ �2.20), hippocampus (z ¼ �2.05), cerebellum
WM (z ¼ �1.29), and thalamus (z ¼ �1.14). In the longitudinal



Fig. 2. Scatterplots of age-ventricular system relationships. The individual data points and the cross-sectionally estimated trajectories for the ventricles based on the smoothing
spline are shown. Y-axis values represent mean volume across hemispheres, corrected for the influence of sample and intracranial volume (z scores).
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analyses, the hippocampus showed the fastest shrinkage rate
(�0.83% annually), followed by amygdala (�0.81%), thalamus
(�0.69%), cerebral WM (�0.58%), accumbens and cerebellum
WM (�0.57%), putamen (�0.43%), pallidum (�0.40%), cerebellar
cortex (�0.35%), the brain stem (�0.31%), and the caudate (�0.24%).
For the ventricles, there was perfect overlap between the cross-
sectionally and longitudinally estimated expansion, in that the
inferior lateral ventricles (cross-sectionally estimated z ¼ 2.92
versus longitudinally estimated percent annual change ¼ 5.47)
showed the largest effects, followed by the lateral ventricles
(z ¼ 2.15 vs. 4.40%), the third ventricle (z ¼ 1.8 vs. 3.07%), and the
fourth ventricle (z ¼ 0.59 vs. 0.71%). Thus, although there was not
a one-to-one correspondence between the pattern of change across
structures from the large cross-sectional sample and the longitu-
dinal sample, there was still substantial overlap.
4. Discussion

There were 3 main findings: first, a heterogeneous pattern of
discontinuous age correlations in different age spans characterized
the majority of brain regions, and critical ages for changes in esti-
mated rates of atrophy could be identified. Second, accelerated
estimated reduction with advanced age is not the norm of brain
aging. Rather, different structures showed a mix of trajectories.
When more negative (positive for cerebrospinal fluid) age-volume
correlations were seen in the last part of the age span, this would
typically start inmidlife. Finally, the longitudinal analyses in general
supported the cross-sectional results, with a reasonably coherent
pattern of atrophy across structures.
4.1. Trajectories of estimated change across the adult life span

Cross-sectional studies have shown nonlinear age relationships
for the volume of several brain structures (Allen et al., 2005; Lupien
et al., 2007; Raz et al., 2004), including studies with samples over-
lapping the present (Walhovd et al., 2011). There have, however,
been few attempts to describe the trajectories in detail (for excep-
tions, see Fjell et al., 2010b; Jernigan et al., 2001; Schuff et al., 2012).
We identified 3 basic types of trajectories:

(1) Linear reduction: amygdala, putamen, thalamus, accumbens,
and the cerebellar cortex were all linearly related to age (all
r values less than �0.52), confirming previous findings (Allen
et al., 2005; Curiati et al., 2009; Gunning-Dixon et al., 1998;
Jernigan et al., 2001; Walhovd et al., 2011).

(2) Stability followed by decline: hippocampus, the brain stem, and
cerebellar WM exhibited initial weak age correlations but with
acceleration of estimated decline from around midlife. Hippo-
campus is especially important because of its role in memory
and early Alzheimer’s disease (AD) (de Leon et al., 2006; Du
et al., 2007; Fennema-Notestine et al., 2009; Jack et al., 2008;
McEvoy et al., 2009). Cross-sectional studies have shown pro-
longed development (Ostby et al., 2009) and a marked
nonlinear pattern of estimated change in adulthood (Allen
et al., 2005; Fjell et al., 2010b; Jernigan and Gamst, 2005;
Kennedy et al., 2009;Walhovd et al., 2005). We found that after
a period of relative stability during midlife, accelerated esti-
mated reductions started at about 50 years of age, followed by
a strongly negative linear age relationship from 60 years.
Cerebral WM was the only structure positively correlated with
age in the earliest part of the age range, followed by a strong
negative relationship. This pattern is in line with a previous
publication reporting multimodal imaging data from 8 to 85
years, partly overlapping sample 5 (Westlye et al., 2010b). The
ventricles showed modest estimated increase or slow decrease
until 50e60 years, followed by steep estimated expansion
during the last phase of life.

(3) Steep, nonlinear decline: TBV, cerebral cortex, and pallidum
showed 2 critical ages with slight differences in estimated
decline. TBV correlated stronger with age after 60 years than in
the preceding life phases (p < 0.05, by use of t tests of Fisher
z-transformed correlations). In contrast, pallidum and the
cerebral cortex correlated stronger with age early (p < 0.05).

Caudate was the most deviant structure, best described by a U-
shaped trajectory. We advise to interpret this with great caution, as
this result was not in coherence with the longitudinal analyses and
we have no reason to expect an increase in volume in the latter part
of the life span.

4.2. Critical ages in estimated regional brain change

The trajectory of a neuroanatomic volume across age represents
the additive combination of several neurobiological processes. We
suggest that changes in the relative impact of these can be observed
as turning points in the estimated change in brain volumes, what
we refer to as critical ages (see Fig. 4). For instance, WM increases in
volume well into adulthood (Giedd, 2004; Pfefferbaum et al., 1994;
Westlye et al., 2010b; Wozniak and Lim, 2006), with myelination
being 1 likely underlying factor. After midlife, volume decreases
(Allen et al., 2005; Walhovd et al., 2011), likely partly caused by loss
of small myelinated fibers and myelin breakdown (Meier-Ruge
et al., 1992; Peters et al., 2000). This will be affected by medical
conditions such as hypertension, cholesterol, diabetes, or meta-
bolic syndrome; genetic variations such as apolipoprotein E; and



Fig. 3. Estimated age trajectories and critical ages. The estimated age trajectories from the cross-sectional analyses for the 12 areas that deviated from linearity, based on the
smoothing spline, are shown. Critical ages, identified by changes in the second derivative, are displayed. Pearson correlations between brain volume and age are shown for each age
phase separated by the critical ages. All correlations were significant at p < 0.05, except for pallidum in middle age (0.01), cerebellum white matter in young age (�0.02), and brain
stem in young age (0.01). Because of small age variance, correlations are not presented for age phases defined by critical ages �80 years. Critical ages are indicative of phases where
estimated changes in brain volumes are in transitions. Abbreviations: inf lat, inferior lateral; TBV, total brain volume; WM, white matter.
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variables such as cognitive activity and education. Processes with
opposite effects on WM volume probably work concurrently, for
example, redundant myelination (Peters et al., 2000) and fluid
bubbles in the myelin sheet with higher age (Peters and Sethares,
2002). The relative impact of each of these processes likely
changes across the age span. To speculate, 1 scenario may be as
follows: the additive effects of developmental processes cause the
observed WM volume growth in the first half of the age span.
However, after a certain age, myelin breakdown and loss of small
myelinated fibers play increasingly important roles, likely before
the developmental processes have come to an end. Eventually, the
degenerative processes will impact the WM volume to such an
extent that yearly growth is no longer linear but is gradually
reduced. At this point, the second derivative of the age-volume
trajectory will change, representing a critical age. As such, the
estimated volume of a brain structure alone reflects the sum of
many concurrent developmental and degenerative biological
processes. We believe that identification of turning points may add
to our understanding of the trajectories of brain volumes across the
adult life span. The trajectory depicted in Fig. 4 is meant to illustrate
the principle of how accumulated influence of opposing factors
affects volume, but is not intended to accurately depict the life
course of any single structure.

The differences in the slope of the curves between the critical
ages varied greatly between structures.Whereas the cerebral cortex
was almost linearly related to age, cerebral WM and the hippo-
campus showed large slope differences in the age ranges on each
side of the critical age. Although not estimated in the present study,
confidence intervals for the critical ages will likely be larger for the
more linear slopes than for the distinct nonlinear and even non-
monotonous slopes.

4.3. Cross-sectional versus longitudinal results

It is impossible to infer changes in brain structures based on
cross-sectional data alone (Raz and Lindenberger, 2010), as this
depends on assumptions of no cohort effects and selection bias.
These assumptions may generally not be valid and cross-sectional
estimates of change diverge substantially (Raz et al., 2005) and
sometimes even oppose longitudinal observations (Nyberg et al.,



Fig. 4. A hypothetical model for discontinuous change in rate of atrophy. The figure
represents a simplified attempt to visualize how 2 sets of age-dependent degenerative
effects can affect the age trajectory of a brain volume and how timing of critical ages
reflects the start and end point of these effects. The blue line represents the volume of
a brain structure through life, for example white matter volume. In the first part of life,
volume increases, caused by the sum of progressive events, for examplemyelination and
axonal growth (green line). Before the maturational changes caused by the progressive
events have come to an end, degenerative events starts, for example selective loss of
small-diameter myelinated axons (primary degenerative event) and demyelination of
larger connections (secondary degenerative event). The onset of these processes will
affect the growth rate of the curve, detected as a change in the second derivative, and this
change can be termed early critical age. After this point, the volume increase slowly
decelerates. After continuous impact on the volume from these 2 processes, 1 of them
eventually burns out in higher agewhereas the other continues further. This causes a late
critical age,where the volume reduction slowly starts to level off. This is of course a gross
simplification of the processes in the brain and the trajectories that may characterize
them. Themain point is to illustrate that critical agesmay be used in the characterization
of estimated age trajectories of brain volumes and that theymay be related to underlying
neurobiological events, both developmental and degenerative.
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2010; Raz and Lindenberger, 2011). Therefore, longitudinal data
from an independent sample (Fjell et al., 2009a) were included in
the present paper. With the exception of caudate volume, the
direction and statistical significance of the age relationships in the
cross-sectional data were confirmed by the longitudinal analyses.
Further, although far from perfect, there was a reasonably coherent
relationship between the pattern of atrophy between cross-
sectional and longitudinal results: the structures with the largest
age correlations in the cross-sectional material tended to show the
highest rates of annual atrophy/ expansion. The rank-order corre-
lation was 0.91. Thus, at least in their rank order of magnitude, the
cross-sectional results for the age range >60 years seem to be
largely in coherence with independent longitudinal data.

Nonetheless, caution must still be exercised in interpreting the
results, as longitudinal data were available for the oldest part of the
sample only. The observed correlation between age and ICV indi-
cates that cohort differences may indeed exist in the sample. Age
accounted for only 1.4% of the variance in ICV, and all analyses were
performed on residuals after ICV was regressed out. As the main
determinant of ICV is the lifetime maximum size of the brain, ICV
corrections reduce the impact of cohort effects. Some evidence even
suggests that cross-sectional studies may underestimate the extent
of regional brain shrinkage in some regions (Raz et al., 2005).

Of more general concern is that the inherent problem of
mapping life-span trajectories from cross-sectional examinations
cannot easily be resolved with longitudinal data because longitu-
dinal examinations of brain structures over decades are not fea-
sible and longitudinal studies have methodological problems of
their own (e.g., selective recruitment and attrition). Adding to this,
most longitudinal studies are limited in age span, sample size, and
number of follow-ups. To some degree, combined cross-sectional
and longitudinal designs can alleviate the concerns raised above.
For instance, accelerated hippocampal atrophy with age has been
demonstrated (Driscoll et al., 2009; Fjell et al., 2009a; Raz et al.,
2005, 2010). However, all these studies except Raz et al. (2005)
comprised middle-aged and elderly participants only, and the
results thus inform us less about life-span trajectories.

It is important to keep inmind that brain volumes changewithin
relatively narrow time windows. As long as we do not know the
true shape of these processes, it is unclear to know how many
critical turning points are there in brain development and aging. An
ideal approach to reproduce the dynamic process of change would
be longitudinal studies with high density of measures and assess-
ment of multiple time windows across the life span (Raz and
Lindenberger, 2011; Raz et al., 2010).

Several factors affect the estimated trajectories at the group
level and the actual trajectories at the individual level. These
include genetic variations such as apolipoprotein E, and medical
factors such as hypertension, cholesterol, and diabetes (for a review,
see Raz et al., 2012). In addition, cognitive activity or training may
impact brain structure even in older age (Zatorre et al., 2012).
Future studies should further explore the impact and interactions
between genetic, environmental, and medical factors on brain
structure throughout the adult life. More knowledge about these
processes will increase our understanding of normal brain aging.
Also, possible influence of presymptomatic AD can be difficult to
disentangle from normal age changes in the older participants, as
follow-up examinations over several years are necessary to exclude
subjects with incipient disease. However, although this factor is
difficult to completely rule out from the present results, there are
indications that this is not likely to have affected the trajectories to
a substantial degree. Although hippocampal volume is the structure
that distinguishes best between AD patients and healthy elderly,
amygdala is also affected in early stages of the disease (Fjell et al.,
2010a). Whereas the age slope for hippocampus is much steeper
after 60 years, this is not seen for amygdala, which would be ex-
pected if incipient AD was a major factor in shaping the estimated
trajectories. Even if a few of the participants had incipient AD and
consequently abnormal volume decline in select structures, the
smoothing spline approach is relatively robust to the influence of
outliers as long as the sample size is large.

4.4. Conclusions

The present study shows that the majority of brain structures
follow complex, nonlinear volumetric trajectories through adult
life. Important next step to increased understanding of the mech-
anisms of brain aging will be to conduct large-scale, multimodal
imaging studies combining, for example, volumetry, diffusion
tensor imaging, and intensity/contrast measures (Fjell et al., 2008;
Westlye et al., 2010a, 2010b) and also longitudinal studies with high
density of measurements to examine the trajectories across age
with regard to the critical phases proposed on the basis of the cross-
sectional analyses.
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