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Abstract
The velocity-space observation regions and sensitivities in fast-ion Dα (FIDA) spectroscopy
measurements are often described by so-called weight functions. Here we derive expressions
for FIDA weight functions accounting for the Doppler shift, Stark splitting, and the
charge-exchange reaction and electron transition probabilities. Our approach yields an
efficient way to calculate correctly scaled FIDA weight functions and implies simple analytic
expressions for their boundaries that separate the triangular observable regions in
(v‖, v⊥)-space from the unobservable regions. These boundaries are determined by the
Doppler shift and Stark splitting and could until now only be found by numeric simulation.

Keywords: fast-ion D-alpha spectroscopy, FIDA, charge-exchange recombination
spectroscopy, fast ions, velocity space

(Some figures may appear in colour only in the online journal)

1. Introduction

Fast-ion Dα (FIDA) spectroscopy [1–3] is an application
of charge-exchange recombination (CER) spectroscopy [4, 5]
based on deuterium [6–11]. Deuterium ions in the plasma
are neutralized in charge-exchange reactions with deuterium
atoms from a neutral beam injector (NBI). The neutralized
deuterium atoms are often in excited states, and hence they can
emit Dα-photons which are Doppler-shifted due to the motion
of the excited atoms. As the excited atoms inherit the velocities
of the deuterium ions before the charge-exchange reaction,
spectra of Doppler-shifted Dα-light are sensitive to the velocity
distribution function of deuterium ions in the plasma. The
measurement volume is given by the intersection of the NBI
path and the line-of-sight of the CER diagnostic. Dα-photons
due to bulk deuterium ions typically have Doppler shifts of
about 1–2 nm whereas Dα-photons due to fast deuterium,
which is the FIDA light, can have Doppler shifts of several
nanometers. This paper deals with FIDA light but as the
physics of Dα-light due to bulk deuterium ions is the same,

our methods also apply to deuterium-based CER spectroscopy.
The FIDA or CER-Dα light is sometimes obscured by Doppler
shifted Dα-light from the NBI, unshifted Dα-light from the
plasma edge, bremsstrahlung or line radiation from impurities.

FIDA spectra can be related to 2D velocity space by
so-called weight functions [2, 3, 12]. Weight functions have
been used in four ways: first, they quantify the velocity-
space sensitivity of FIDA measurements, and hence they also
separate the observable region in velocity space for a particular
wavelength range from the unobservable region [2, 3, 13–29].
Second, they reveal how much FIDA light is emitted resolved in
velocity space for a given fast-ion velocity distribution function
[2, 3, 24–30]. The ions in the regions with the brightest FIDA
light are then argued to dominate the measurement. Third,
weight functions have been used to calculate FIDA spectra
from given fast-ion velocity distribution functions [14, 31–33],
eliminating the Monte-Carlo approach of the standard FIDA
analysis code FIDASIM [34]. Fourth, recent tomographic
inversion algorithms to infer 2D fast-ion velocity distribution
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functions directly from the measurements rely heavily on
weight functions [12, 31–33, 35].

Here we present a comprehensive discussion of FIDA
weight functions and derive analytic expressions describing
them. FIDA weight functions have often been presented
in arbitrary units, relative units or without any units
[2, 3, 15–28, 30] which is sufficient for their use as indicator of
the velocity-space interrogation region or of the velocity-space
origin of FIDA light. However, correctly scaled FIDA weight
functions, which are necessary to calculate FIDA spectra
or tomographic inversions, have only been implemented in
the FIDASIM code recently [13, 14, 29, 31–33]. Weight
functions are traditionally calculated using the FIDASIM code
by computing the FIDA light from an ion on a fine grid in
2D velocity space and gyroangle. It is then counted how
many photons contribute to a particular wavelength range for
a given observation angle and point in velocity space using
models for the Doppler shift, Stark splitting, charge-exchange
probabilities and electron transition probabilities.

In section 2 we define weight functions and motivate their
interpretation in terms of probabilities. Our viewpoint provides
insights into functional dependencies between wavelength
space and 2D velocity space that are not revealed by the
traditional numerical calculation approach using FIDASIM.
As a consequence we demonstrate how Doppler shift,
Stark splitting, charge-exchange probabilities as well as the
electron transition probabilities contribute to the velocity-
space sensitivity of FIDA measurements. Section 3 focuses
on weight functions implied by the Doppler shift alone as a
relatively simple approximation. In section 4 we additionally
treat Stark splitting and in section 5 the charge-exchange
and the electron transition processes. In section 6 we
present full FIDA weight functions accounting for these four
effects. In section 7 we deduce exact analytic expressions
for the boundaries of FIDA weight functions. We discuss the
applicability of our results to CER spectroscopy and other fast-
ion diagnostics in section 8 and conclude in section 9.

2. Definitions of weight functions

The velocity-space interrogation or observation regions of
FIDA diagnostics are described by weight functions wvol which
are determined by charge-exchange probabilities, electron
transition probabilities, Stark splitting and the Doppler shift.
They thereby depend on position space and velocity space.
Weight functions are defined to obey [2, 3, 12]

I (λ1, λ2, φ) =
∫

vol

∫ ∞

0

∫ ∞

−∞
wvol(λ1, λ2, φ, v‖, v⊥, x)

×f (v‖, v⊥, x)dv‖dv⊥dx. (1)

I (λ1, λ2, φ) is the intensity of FIDA light in the wavelength
range λ1 < λ < λ2 with a viewing angle φ between the line-of-
sight of the FIDA diagnostic and the magnetic field. (v‖, v⊥)

denote velocities parallel and perpendicular to the magnetic
field, respectively, and x denotes the spatial coordinates. Here
we use (v‖, v⊥)-coordinates rather than the more widespread
(E, p)-coordinates (energy, pitch) since our mathematical

expressions are simpler in (v‖, v⊥)-coordinates. The energy
and the pitch are defined as

E = 1

2
mD

(
v2

‖ + v2
⊥
)

(2)

p = −v‖
v

(3)

where mD is the mass of a deuteron and v =
√

v2
‖ + v2

⊥
is the velocity magnitude. Note that the pitch is positive
for co-current particles as usual. Key expressions are
given in (E, p)-coordinates in the appendix. We assume
wvol(λ1, λ2, φ, v‖, v⊥, x) and the fast-ion distribution function
f (v‖, v⊥, x) to be spatially uniform within the small
measurement volume V . This may be violated near the foot
of the pedestal where the density gradient length scale could
be comparable with the mean free path of the emitters, but it
should be fulfilled in the core plasma. With

w(λ1, λ2, φ, v‖, v⊥) = V wvol(λ1, λ2, φ, v‖, v⊥, x) (4)

equation (1) becomes

I (λ1, λ2, φ)

=
∫ ∞

0

∫ ∞

−∞
w(λ1, λ2, φ, v‖, v⊥)f (v‖, v⊥)dv‖dv⊥. (5)

Weight functions w relate the FIDA intensity I (λ1, λ2, φ) with
units [Nph/(s×sr×m2)] to the 2D fast-ion velocity distribution
function with units [Ni/(m3 × (m/s)2)]. The units of FIDA
weight functions w are hence [Nph/(s×sr×m2 ×Ni/m3)], i.e.
FIDA weight functions w quantify the FIDA intensity per unit
ion density in the wavelength range λ1 < λ < λ2 for a viewing
angle φ as a function of the ion velocity (v‖, v⊥). The units of
FIDA weight functions wvol are [Nph/(s × sr × m2 × Ni)], i.e.
the FIDA intensity per ion in λ1 < λ < λ2 for a viewing angle
φ as function of (v‖, v⊥). We will split FIDA weight functions
w into a FIDA intensity function R(v‖, v⊥) and a probability
prob(λ1 < λ < λ2|φ, v‖, v⊥) according to

w(λ1, λ2, φ, v‖, v⊥)

= R(v‖, v⊥)prob(λ1 < λ < λ2|φ, v‖, v⊥). (6)

R(v‖, v⊥) determines the total FIDA intensity for any
wavelength of the photons per unit ion density. It depends only
on the charge-exchange and electron transition processes, but
not on the Doppler shift or Stark splitting that only change
the wavelength of the photons. prob(λ1 < λ < λ2|φ, v‖, v⊥)

determines the probability that a randomly selected detected
photon has a wavelength in a particular range λ1 < λ < λ2

for a given projection angle φ and (v‖, v⊥)-coordinates. The
conditioning symbol ‘|’ means ‘given’. The subject of this
paper is the derivation of this probability. prob(λ1 < λ <

λ2|φ, v‖, v⊥) depends on the Doppler shift and Stark Splitting
as well as on the charge-exchange and electron transition
processes which in turn all depend on the gyroangle γ of
the ion at the time of the charge-exchange reaction. We treat
γ ∈ [0, 2π ] as a random variable since we do not know the
phases of all ions in the plasma, i.e. the initial conditions of
any set of equations determining the ion motion are unknown
as always in problems with a very large number of degrees
of freedom. Since λ is determined by γ , it is also treated

2
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Figure 1. The FIDA intensity function R shows the total FIDA intensity per unit ion density as function of (a) (v‖, v⊥)-coordinates and (b)
(E, p)-coordinates. The units are [Nph/(s × sr × m2 × Ni/m3)]. The Balmer-alpha photons can have any Doppler-shifted wavelength. We
computed R using FIDASIM for NBI Q3 at ASDEX Upgrade. Q3 has an injection energy of 60 keV.

as random variable. Probabilities are always dimensionless
numbers in the interval [0,1], and hence the FIDA intensity
function R(v‖, v⊥) has the same units as weight functions.

R(v‖, v⊥) is a common factor of all weight functions for
a given φ at any wavelength. On the contrary, the probability
function depends on the wavelength range and the projection
angle φ and hence contains the spectral information. We
compute R(v‖, v⊥) using FIDASIM by modeling the charge-
exchange and the electron transition processes. Examples
of the FIDA intensity function for NBI Q3 at ASDEX
Upgrade, which is used for FIDA measurements, are shown in
figure 1(a) in (v‖, v⊥)-coordinates and in figure 1(b) in (E, p)-
coordinates. The sensitivity of FIDA is low for very large ion
energies where few photons are generated per ion. Ions with
positive pitch generate more photons per ion than ions with
negative pitch for Q3.

Usually one measures spectral or specific intensities Iλ, i.e.
the intensity per wavelength with units [Nph/(s × sr × m2 ×
nm)]. The intensity and the spectral intensity are related by

I (λ1, λ2, φ) =
∫ λ2

λ1

Iλ(λ, φ) dλ. (7)

The spectral intensity Iλ(λ, φ) can likewise be related to
f (v‖, v⊥) by a probability density function pdf(λ|φ, v‖, v⊥)

that then leads to a differential weight function dw as

Iλ(λ, φ) =
∫ ∞

0

∫ ∞

−∞
dw(λ, φ, v‖, v⊥)f (v‖, v⊥) dv‖ dv⊥ (8)

with

dw(λ, φ, v‖, v⊥) = R(v‖, v⊥)pdf(λ|φ, v‖, v⊥). (9)

However, the weight functions we discuss here are related
to a wavelength range rather than a particular wavelength
since FIDA intensity measurements can only be made
for a wavelength range and not for a single wavelength.
Mathematically this is reflected in the always finite amplitudes
of w whereas dw is singular at its boundary.

3. Doppler shift

An approximate shape of FIDA weight functions can be found
by considering only the Doppler shift λ − λ0 where λ0 =
656.1 nm is the wavelength of the unshifted Dα-line and λ

is the Doppler-shifted wavelength. In this section we derive
this approximate shape by neglecting Stark splitting and by
assuming that the Dα-photon emission is equally likely for all
gyroangles γ of the ion at the time of the charge-exchange
reaction. The probability density function in γ of randomly
selected detected Dα photons is

pdfDα
(γ | v‖, v⊥) = 1/2π. (10)

Stark splitting and an arbitrary pdfDα
describing charge-

exchange and electron transition probabilities will be
introduced into the model in the next two sections. The
Doppler shift depends on the projected velocity u of the ion
along the line-of-sight according to

λ − λ0 = uλ0/c (11)

where c is the speed of light. Equation (11) assumes u � c.
Consider a gyrating ion with velocity (v‖, v⊥) in a magnetic
field. The ion is neutralized in a charge-exchange reaction
which ultimately leads to emission of a Dα-photon. We define
a coordinate system such that for γ = 0 the velocity vector of
the ion is in the plane defined by the unit vector along the line-
of-sight û and B such that v · û > 0. Then the ion velocity is

v = v‖B̂ + v⊥ cos γ v̂⊥1 − v⊥ sin γ v̂⊥2 (12)

and the unit vector along the line-of-sight is

û = cos φB̂ + sin φv̂⊥1. (13)

The velocity component u of the ion along the line-of-sight at
a projection angle φ to the magnetic field is then given by [12]

u = v · û = v‖ cos φ + v⊥ sin φ cos γ. (14)

3
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Figure 2. Projection of the ion velocity (v‖, v⊥) and the unit vector v̂ × B̂ onto the line-of-sight. The latter is required for the treatment of
Stark splitting discussed in section 4.

The projections of the ion velocity v and the unit vector
v̂ × B̂ (relevant for Stark splitting) onto the line-of-sight in
this coordinate system are illustrated in figure 2. Equation (14)
shows that u is a random variable which depends on the random
variable γ ∈ [0, 2π ]. We now calculate the probability
prob(u1 < u < u2|φ, v‖, v⊥) that the ion has a projected
velocity between u1 and u2 at the time of the charge-exchange
reaction and therefore a Doppler-shifted Dα-line wavelength
between λ1 and λ2 according to equation (11). For given
(v‖, v⊥) with v⊥ �= 0 and projection angle φ �= 0, the projected
velocity depends on the gyroangle γ . Conversely, we can
calculate the gyroangles that lead to a given projected velocity
u by solving equation (14) for γ :

γ = arccos
u − v‖ cos φ

v⊥ sin φ
. (15)

The arccos function is defined for 0 < γ < π , and a second
solution in π < γ ′ < 2π is given by

γ ′ = 2π − γ. (16)

Using equations (15) and (16) we can calculate gyroangles γ1

and γ2 and γ ′
1 and γ ′

2 corresponding to the limits u1 and u2 and
transform the calculation of the probability to γ -space:

prob(u1 < u < u2|φ, v‖, v⊥)

= prob(γ2 < γ < γ1|v‖, v⊥) + prob(γ ′
1 < γ < γ ′

2|v‖, v⊥)

=
∫ γ1

γ2

pdfDα
(γ | v‖, v⊥)dγ +

∫ γ ′
2

γ ′
1

pdfDα
(γ | v‖, v⊥) dγ.

(17)

As we here assume a uniform probability density, we can
integrate equation (17) analytically:

prob(u1 < u < u2|φ, v‖, v⊥) = γ1 − γ2

2π
+

γ ′
2 − γ ′

1

2π

= γ1 − γ2

π
. (18)

The probability prob(u1 < u < u2|φ, v‖, v⊥) is thus the
fraction of the gyro-orbit that leads to a projected velocity

between u1 and u2. Substitution of γ using equation (15)
gives

prob(u1 < u < u2|φ, v‖, v⊥)

= 1

π

(
arccos

u1 − v‖ cos φ

v⊥ sin φ
− arccos

u2 − v‖ cos φ

v⊥ sin φ

)
.

(19)

Equation (19) is singular for v⊥ = 0 or φ = 0. If φ = 0, the
projected velocity is just the parallel velocity as equation (14)
reduces to u = v‖. Then the probability function becomes

prob(u1 < u < u2|φ = 0, v‖, v⊥) =
{

1 for u1 < v‖ < u2

0 otherwise

(20)

which is identical to equation (19) in the limit φ → 0. For
v⊥ = 0, i.e. on the v‖-axis corresponding to ions not actually
gyrating, equation (14) reduces to u = v‖ cos φ, and the
probability function becomes

prob(u1 < u < u2|φ, v‖, v⊥ = 0)

=
{

1 for u1/ cos φ < v‖ < u2/ cos φ

0 otherwise.
(21)

Lastly, we note that the argument of the arccos function
is often outside the range [−1;1]. In this case the
arccos is complex, and we take the real part to obtain
physically meaningful quantities. Equation (19) is a weight
function describing just the projection onto the line-of-sight.
We have previously derived the corresponding probability
density function pdf(u|φ, v‖, v⊥) to describe the velocity-
space sensitivity of collective Thomson scattering (CTS)
measurements [12]. The pdf can be found from the probability
function by letting u1, u2 → u:

pdf(u|φ, v‖, v⊥) = lim
u1,u2→u

prob(u1 < u < u2|φ, v‖, v⊥)

u2 − u1

= 1

πv⊥ sin φ

√
1 −

(u − v‖ cos φ

v⊥ sin φ

)2
. (22)

Equations (19) to (22) have been used to interpret CTS
measurements at TEXTOR [36] and should have great utility

4
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Figure 3. Probability functions after ((a)–(d)) equation (24) and ((e)–(h)) equation (68) for various Doppler shifts and a narrow wavelength
range λ2 − λ1 = 0.1 nm. The projection angle is φ = 10◦. The colorbar shows the base ten logarithm of the probability function
log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

for CTS measurements at ASDEX Upgrade [37–39], LHD
[40, 41] or ITER [42–44].

To obtain the probability function in λ-space, we first find
the integration limits by substituting u in equation (15) using
equation (11):

γ = arccos
c
(

λ
λ0

− 1
) − v‖ cos φ

v⊥ sin φ
. (23)

Hence the probability function in λ-space becomes

prob(λ1 < λ < λ2|φ, v‖, v⊥) = γ1 − γ2

π

= 1

π

(
arccos

c
(

λ1
λ0

− 1
) − v‖ cos φ

v⊥ sin φ

− arccos
c
(

λ2
λ0

− 1
) − v‖ cos φ

v⊥ sin φ

)
. (24)

This is a simple approximation to the probability part of
FIDA weight functions neglecting Stark splitting and non-
uniformity in pdfDα

due to charge-exchange and electron
transition probabilities.

Figures 3((a)–(d)) show prob(λ1 < λ < λ2|φ, v‖, v⊥)
for a narrow wavelength range of 0.1 nm at various Doppler
shifts. Figures 3((e)–(h)) show the corresponding probabilities
prob(λ1 < λ < λ2|φ, E, p). The observable regions or
interrogation regions are colored whereas the unobservable
regions are white. The viewing angle is φ = 10◦. The
wavelength interval width λ2 − λ1 = 0.1 nm is comparable
to the achievable spectral resolution of FIDA measurements at
ASDEX Upgrade and is typical for tomographic measurements
of 2D fast-ion velocity distribution functions [33]. The shape
of the probability functions is triangular and symmetric in
(v‖, v⊥)-coordinates, but the very tip of the triangle is cut
off by the v‖-axis as we will show more clearly in figure 5.
The opening angle of the triangles is 2φ = 20◦ as the
two sides have inclination angles of ±φ with respect to
the v⊥-axis [12]. The location of the interrogation region
changes substantially with the magnitude of the Doppler

shift. In figures 3((e)–(h)) we show the same probability
functions in (E, p)-coordinates since FIDA weight functions
are traditionally given in these coordinates. The probability
functions have more complicated shapes in (E, p)-coordinates.
In figure 4 we vary the viewing angle φ. The larger the viewing
angle, the larger the opening angle (2φ) of the triangular
regions in (v‖, v⊥)-space, and the lower the probabilities that a
detected photon has a wavelength in the particular wavelength
range. These probabilities decrease for increasing projection
angle φ since the spectrum of projected velocities of the ion
and therefore wavelengths of the photons broaden according to
equation (11) while the integral over the spectrum is the same.
Figure 5 shows probability functions for broader wavelength
ranges up to λ2 − λ1 = 1 nm typical for the traditional use of
weight functions as sensitivity or signal origin indicators. The
inclinations of the sides of the triangle are not affected by the
larger wavelength range, but a larger tip of the triangle is now
cut off by the v‖-axis as figure 5(d) shows most clearly. The
larger the wavelength range, the larger the probabilities become
since larger fractions of the ion orbits can produce Doppler
shifts within the wavelength limits. In the limit of wavelength
ranges covering very large red- and blue-shifts, the probability
function becomes unity. Figures 3–5 show that patterns in the
velocity-space sensitivity of FIDA measurements are easier to
spot in (v‖, v⊥)-space where FIDA weight functions always
have triangular shapes.

Equations (14), (15) and (16) transform the problem of
finding a probability in λ-space into the simpler problem
of finding a probability in γ -space. We will use this
transformation when we account for Stark splitting and non-
uniform charge-exchange and electron transition probabilities
in the next two sections.

4. Stark splitting

An electron Balmer alpha transition from the n = 3 to
n = 2 state of a moving D-atom in the magnetic field of a
tokamak leads to light emission at 15 distinct wavelengths

5
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Figure 4. Probability functions after ((a)–(d)) equation (24) and ((e)–(h)) equation (68) for various projection angles φ and a narrow
wavelength range λ2 − λ1 = 659.1 − 659.0 nm = 0.1 nm. The colorbar shows the base ten logarithm of the probability function
log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).
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Figure 5. Probability functions after ((a)–(d)) equation (24) and ((e)–(h)) equation (68) for various wavelength ranges λ2 − λ1. The
wavelength ranges are centered at 659.1 nm. The projection angle is φ = 45◦. The colorbar shows the base ten logarithm of the probability
function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

λl . This is referred to as Stark splitting since the splitting
occurs due to the electric field in the reference frame of
the moving D-atom. Zeeman splitting is negligible in the
analysis of FIDA measurements as it is much weaker than
Stark splitting [34]. In this section we treat Stark splitting
of the Dα-line. For this we find the integration limits for
the 15 lines, find their probabilities and then sum over all
possibilities. The magnitude of the Stark splitting wavelength
shift is proportional to the magnitude of the electric field Ẽ in
the reference frame of the neutral:

λl = λ0 + slẼ (25)

where l is a number from 1 to 15 corresponding to the 15 lines
and the constants sl are [45, 46]

sl=1,...,15 =
(

− 220.2, −165.2, −137.7,

−110.2, −82.64, −55.1, −27.56, 0, 27.57, 55.15,

82.74, 110.3, 138.0, 165.6, 220.9
)

× 10−18 m2

V
. (26)

Lines 1, 4–6, 10–12 and 15 are so-called π -lines, and lines 2,3,
7–9, 13 and 14 are so-called σ -lines. Line 8 is the unshifted
wavelength with s8 = 0. The electric field Ẽ in the reference
frame of the neutral is

Ẽ = Ê + v × B. (27)

where Ê is the electric field in the lab frame. In components
this is

Ẽ⊥1

Ẽ⊥2

Ẽ‖


 =


Ê⊥1

Ê⊥2

Ê‖


 +


v⊥ cos γ

v⊥ sin γ

v‖


 ×


0

0
B




=

 Ê⊥1 + Bv⊥ sin γ

Ê⊥2 − Bv⊥ cos γ

Ê‖


 . (28)

The magnitude of the electric field in the frame of the neutral is

Ẽ =
√

Ê2 + v2
⊥B2 + 2v⊥B(Ê⊥1 sin γ − Ê⊥2 cos γ ). (29)
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Suppose we make a FIDA measurement at a particular
wavelength λ. The photon could have been emitted from
any of the 15 lines with wavelength λl that is then Doppler
shifted. Each of the 15 lines has a particular Stark wavelength
shift corresponding to a particular Doppler shift with projected
velocity ul to be observable at λ. The 15 Doppler shift
conditions are

λ = λl

(
1 +

ul

c

)
(30)

which in combination with equation (25) yields

λ =
(
λ0 + slẼ

) (
1 +

ul

c

)
. (31)

The projected velocity ul and the electric field in the frame
of the particle Ẽ depend on the gyroangle. Substitution of Ẽ

using equation (29) and of ul using equation (14) shows the
relation between λ, φ, v⊥, v‖, γl and sl :

λ =
(

λ0 + sl

√
Ê2 + v2

⊥B2 + 2v⊥B(Ê⊥1 sin γl − Ê⊥2 cos γl)

)

×
(

1 +
1

c

(
v‖ cos φ + v⊥ sin φ cos γl

))
. (32)

This relation describes not only the Doppler effect but also
Stark splitting, the two effects changing the wavelength of a
detectable photon. It can be used to transform integration limits
in λ to γ -space where the integration is easier to do. Here
we include Stark splitting neglecting any electric field in the
laboratory frame of reference. This reveals the most important
effects and is often a good approximation in a tokamak as
|Ê| � |v × B|, in particular for fast ions with large v⊥. In
FIDASIM simulations this approximation is usually made. If
there is no electric field in the laboratory reference frame, the
electric field in the reference frame of the particle is

Ẽ = v⊥B (33)

and the Stark shift is just proportional to v⊥:

λl = λ0 + slv⊥B. (34)

The functional dependence between λ and γ in equation (32)
simplifies, and λ becomes a cosine function of γ as in the
relation between u and γ in equation (14). Equation (32)
becomes

λ = (λ0 + slv⊥B)

(
1 +

1

c

(
v‖ cos φ + v⊥ sin φ cos γl

))
. (35)

Equation (35) implies an equation for the exact shape of FIDA
weight functions neglecting the electric field in the lab frame
but accounting for Stark splitting as we will show in section 7.
The inverse function is

γl = arccos
c
(

λ
λ0+slv⊥B

− 1
)

− v‖ cos φ

v⊥ sin φ
(36)

which gives a solution for 0 < γ < π . A second solution is
given by equation (16). These are integration limits in γl for
each of the 15 lines. The relative intensities Il(γ ) of π -lines

and σ -lines depend on the gyroangle γ and can be written
as [14]

σ : Il(γ ) = Cl(1 + cos2(û, v̂ × B̂)) = Cl(1 + sin2 φ sin2 γ )

(37)

π : Il(γ ) = Cl(1 − cos2(û, v̂ × B̂)) = Cl(1 − sin2 φ sin2 γ )

(38)

where û, v̂ and B̂ are unit vectors and the constants Cl are
[14, 45, 47]

Cl=1,...,15 =
(

1, 18, 16, 1681, 2304, 729, 1936, 5490,

1936, 729, 2304, 1681, 16, 18, 1
)
. (39)

The expression of the projection of v̂×B̂ onto the line-of-sight
vector û in terms of the gyroangle γ is illustrated in figure 2.
The probabilities prob(l|γ ) that a detected photon comes from
line l given the gyroangle γ can be calculated from the relative
intensities:

prob(l|γ ) = Il(γ )∑
Il(γ )

. (40)

Since
∑

Il(γ ) = 18860 is a constant independent of γ , we
can write the probabilities of line l as

prob(l|γ ) = Ĉl(1 ± sin2 φ sin2 γ ) (41)

where the plus is used for the σ -lines and minus for the π -lines
and

Ĉl = Cl∑15
n=1 Cl

. (42)

The probability part of full FIDA weight functions accounting
for Doppler and Stark effects for arbitrary pdfDα

can now be
calculated according to

prob(λ1 < λ < λ2|φ, v‖, v⊥)

=
15∑
l=1

( ∫ γ1,l

γ2,l

prob(l|γ )pdfDα
(γ | v‖, v⊥) dγ

+
∫ γ ′

2,l

γ ′
1,l

prob(l|γ )pdfDα
(γ | v‖, v⊥) dγ

)
. (43)

We will discuss the nature of the pdfDα
in FIDA measurements

in the following section. Here we study basic effects by
assuming a uniform pdfDα = 1/(2π) for which we can solve
the integrals in equation (43) analytically:

prob(λ1 < λ < λ2|φ, v‖, v⊥)

=
15∑
l=1

1

2π

( ∫ γ1,l

γ2,l

Ĉl(1 ± sin2 φ sin2 γ ) dγ

+
∫ γ ′

2,l

γ ′
1,l

Ĉl(1 ± sin2 φ sin2 γ ) dγ

)

=
15∑
l=1

Ĉl

(
γ1,l − γ2,l

π
± sin2 φ

2

×
(

γ1,l − γ2,l

π
− sin(2γ1,l) − sin(2γ2,l)

2π

))
. (44)
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Figure 6. The probability functions prob(λ1 < λ < λ2 | φ, v‖, v⊥) for pdfDα
= 1/(2π): (a) without Stark splitting (equation (24)), (b) with

Stark splitting (equation (44)). The wavelength range is λ2 − λ1 = 0.1 nm. The magnetic field is 1.74 T. The projection angle is φ = 30◦.
The colorbar shows the base ten logarithm of the probability part of the weight function log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

We leave the probability function in this form as substitution of
the gyroangles using equation (36) provides no new insights.
The probability function is calculated as a weighted sum over
the 15 Stark splitting lines. The first fraction accounts for
15 different probability functions for the uniform distribution
where the integration limits change for each Stark splitting line.
The second term is a small correction due to the changing
relative intensities of the 15 Stark splitting lines over the
gyroangle. The corrections due to σ -lines and π -lines have
different signs and hence partly cancel. For φ = 0 this
correction disappears.

Figure 6 demonstrates the effects of Stark splitting for a
uniform pdfDα

and a magnetic field of 1.74 T. The observation
angle is φ = 30◦ and the wavelength range is 658.0–658.1 nm
in both figures. Stark splitting widens the interrogation
region and changes the probabilities. The effect of the 15
Stark splitting lines shows most clearly close to the boundary
of the observable region where several local maxima in
the probability are formed. Since Stark splitting can be
calculated accurately, it actually does not limit the spectral
resolution of FIDA measurements as was sometimes asserted
[3, 15, 16, 24, 48, 49] but rather just changes the velocity-space
sensitivities.

5. Charge-exchange reaction and Dα-emission

The probability density pdfDα
(γ | v‖, v⊥) is in fact not

uniform as we assumed until now but is a complicated
function depending on the charge-exchange probabilities and
the electron transition probabilities and hence ultimately on the
particular NBI as well as on the ion and electron temperatures
and drift velocities. We hence find pdfDα

(γ | v‖, v⊥) and
the FIDA intensity per unit ion density R(v‖, v⊥) irrespective
of the detected wavelength by numeric computation using
FIDASIM. Here we discuss the nature of these contributions.

The probability of a charge-exchange reaction between an
ion and a neutral depends on their relative velocity as well as
on the particular charge-exchange reaction. For an ion with
given (v‖, v⊥), the probability density of a charge-exchange
reaction pdfCX(γ | v‖, v⊥) therefore depends on the gyroangle
γ . Since FIDA light comes from a fast neutral that has been
created from a fast ion in a charge-exchange reaction, FIDA
does not sample the gyroangles of the ions uniformly, but favors

those gyroangles for which the ion velocity vectors are similar
to those of the neutrals. The charge-exchange probability
density depends on the distribution of injected neutrals and halo
neutrals and therefore on the particular NBI heating geometry.

The gyroangle probability densities that an ion at a
particular gyroangle ultimately leads to a detection of a
Dα-photon are further influenced by the electron transition
probability densities pdfm→n(γ | v‖, v⊥) from energy level
m to n. The n = 3 state can be populated and depopulated
from any other energy state whereas only the n = 3 → 2
leads to Dα-emission. These electron transition probabilities
also depend on the velocity due to collisions. The probability
density pdfDα

(γ | v‖, v⊥) is hence found numerically using
FIDASIM.

Before we proceed to such a full numeric computation
of the relevant charge-exchange reactions and electron
transitions, we study essential features using a simplified
model. We consider the charge-exchange reaction

D+ + D(n) → D(n = 3) + D+ (45)

where the donor neutral D(n) is in the nth excited state and
the product neutral D(n = 3) is in the n = 3 state and so can
directly emit a Dα-photon. We emphasize that the n = 3 state
can also be populated via any electron transition. However,
in our simplified model we neglect electron transitions and
consider only the direct population of the n = 3 state via
the charge-exchange reaction. The charge-exchange reaction
cross sections σ and the reactivities σvrel strongly depend on
the relative velocity vrel which is usually expressed as the
relative energy

Erel = 1
2mDv2

rel. (46)

Figure 7 illustrates the cross sections σm and the reactivities
σmvrel for charge-exchange reactions with a donor neutral
in state m directly resulting in an excited n = 3 neutral
[14, 50–52]. In these reactions the donor neutral was in one of
the first six excited states. The reactivities strongly depend on
the relative velocities which in turn depend on the gyroangle.
For simplicity, we treat a single source of injected neutrals
neglecting that in reality there are sources at full, half and
third injection energy. In the coordinate system from figure 2
the velocity of the beam neutrals is

vb = vb,‖B̂ + vb,⊥1v̂⊥1 + vb,⊥2v̂⊥2 (47)
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Figure 7. Cross sections and reactivities σvrel of the charge-exchange reactions of ions with donor neutrals in the first six excited states
directly resulting in an excited neutral in the n = 3 state.
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Figure 8. Reaction rates σmvrelnneut,m as function of the gyroangle γ for an energy of E = 60 keV and pitches of p = ±0.5. The donor
neutral population is here from the full injection energy peak of NBI Q3 while we neglect donor neutrals from half or third injection
energies. Here we show rates for reactions with these beam neutrals in the first six excited states directly resulting in an excited neutral in
the n = 3 state.

and the fast-ion velocity is given by equation (12). The relative
velocity is then

vrel = (48)√
(vb,‖ − v‖)2 + (vb,⊥1 − v⊥ cos γ )2 + (vb,⊥2 − v⊥ sin γ )2.

To find extremal values in vrel , we set

dvrel

dγ
= 0 (49)

and find that the gyroangle γ is then given by

tan γ = vb,⊥2

vb,⊥1
. (50)

If the reactivity σmvrel were monotonic in the range of interest,
the extrema of σmvrel would correspond to the extrema of vrel.
However, figure 7 shows that the reactivities in particular of
the charge-exchange reactions 1 → 3 and 2 → 3 are not
monotonic but have maxima in the energy range of interest.
Since the density of neutrals nneut,m=1 in the first energy state is
by far largest, this charge-exchange reaction often dominates.
The reaction rates per ion are given by

rm = σmvrelnneut,m. (51)

In figure 8 we show these reaction rates for the six charge-
exchange reactions for an energy of E = 60 keV and pitches

of p = ±0.5. The reaction rates strongly depend on the
gyroangle and have local maxima and minima. The dashed
line shows the minima of the relative velocities given by
equation (50) which coincides well with the local minima or
maxima in the corresponding reaction rates. An extreme case
is illustrated in figure 8(a) where the relative velocity goes
to zero for a particular gyroangle. Figure 8(b) illustrates the
reaction rates for velocity space coordinates far away from the
donor neutral velocities.

Up to now we have not considered electron transition
processes. In the following we calculate the full pdfDα with
FIDASIM where we model the important charge-exchange
reactions and electron transitions as well as the beam geometry
and energy distribution. Figure 9 shows such numerically
calculated pdfDα for a few energies and pitches. They
often coarsely resemble phase-shifted cosine curves if one
disregards local minima and maxima and Monte-Carlo noise.
To study the effects of the non-uniform gyroangle distributions
by simple models, we assume a model pdf to take the
form

pdfDα
(γ | v‖, v⊥) = 1/2π + a cos(γ + γ̄ ) (52)

where a < 1/2π is an amplitude and γ̄ is a phase shift. The
integrals in equation (17) can be solved assuming pdfDα

from
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Figure 9. Probability density functions pdfDα
at various positions in (E, p)-space (energy, pitch). The functions have been computed with

FIDASIM. The NBI Q3 has an injection energy of 60 keV and an injection angle of about 120◦. The thin dashed line is the uniform
distribution assumed up to now.

equation (52):

prob(λ1 < λ < λ2 | φ, v‖, v⊥)

=
∫ γ1

γ2

1/2π + a cos(γ + γ̄ ) dγ

+
∫ γ ′

2

γ ′
1

1/2π + a cos(γ + γ̄ ) dγ

= γ1 − γ2

π
+ 2a cos γ̄

(
sin γ1 − sin γ2

)
. (53)

Again we leave the probability function in this form and do not
substitute the gyroangles. The first term in equation (53) also
appears for the uniform pdf whereas the second term accounts
for cosine shape. It is proportional to the amplitude a and
to the cosine of the phase shift cos γ̄ . We can also integrate
our model pdf accounting for Stark splitting. Equation (43)
becomes

prob(λ1 < λ < λ2|φ, v‖, v⊥)

=
15∑
l=1

( ∫ γ1,l

γ2,l

Ĉl

(
1 ± sin2 φ sin2 γ

)

×
( 1

2π
+ a cos(γ + γ̄ )

)
dγ

+
∫ γ ′

2,l

γ ′
1,l

Ĉl

(
1 ± sin2 φ sin2 γ

)( 1

2π
+ a cos(γ + γ̄ )

)
dγ

)

=
15∑
l=1

Ĉl

(
γ1,l − γ2,l

π
± sin2 φ

2

×
(

γ1,l − γ2,l

π
− sin(2γ1,l) − sin(2γ2,l)

2π

)

+2a cos γ̄

(
sin γ1,l − sin γ2,l ± sin2 φ

3

×
(

sin3 γ1,l − sin3 γ2,l

)))
. (54)

Equation (54) contains all terms of equation (44) as well as
the term accounting for the cosine shape from equation (53).
Additionally, another correction term arises accounting for
changing intensities of the Stark splitting lines and varying
amplitude due to the cosine function. This term has again
different signs for σ -lines and π -lines and disappears for
φ = 0.

As already mentioned, the phase shift γ̄ in equation (52)
can be found approximately from geometric considerations.
Further, we construct a model for the amplitude so that it
increases with energy and decreases with the magnitude of
the pitch as motivated by figure 9 where these trends appear:

a = E

E0
(1 − p2) = v2

⊥
v2

⊥0

. (55)

This model for the amplitude has E0 as the only free
parameter. It has units of energy to non-dimensionalize the
energy coordinate. The amplitude a of the cosine function in
equation (52) is inversely proportional to E0. For E0 = 1 MeV
the amplitudes of the probability density functions roughly
correspond to the FIDASIM calculation over the relevant
energy range up to 90 keV as we show in figure 10. Figure 11
shows that the typical large-scale cosine-like shape of pdfDα

leads to lopsided probabilities. In this particular case ions close
to the right side of the triangular weight functions have higher
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Figure 10. Comparison of pdfDα
as computed with FIDASIM with the cosine model pdfDα

(equation (52)) at various positions in velocity
space. The thick dashed lines are the model cosine, and the thin dashed line is the uniform distribution.

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [

10
6  m

/s
]

−3

−2

−1

0

(a)

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [

10
6  m

/s
]

−3

−2

−1

0

(b)

Figure 11. The probability functions prob(λ1 < λ < λ2 | φ, v‖, v⊥) for pdfDα
given by equation (52): (a) without Stark splitting

(equation (53)), (b) with Stark splitting (equation (54)). The wavelength range is λ2 − λ1 = 0.1 nm. The magnetic field is 1.74 T. The
projection angle is φ = 30◦. The colorbar shows the base ten logarithm of the probability part of the weight function
log10(prob(λ1 < λ < λ2|φ, v‖, v⊥)).

probabilities to emit light in the particular wavelength range
than those close to the left side of the triangle. The phase
angle γ̄ determines how lopsided the probability function
becomes. In figure 11(a) we show one of the extreme cases
as cos(γ̄ ) = 1. For cos(γ̄ ) = 0 the probability function is
symmetric and the same as that for the uniform distribution.
Figure 11(b) shows the probability function for the model
pdfDα

given by equation (52) and accounting for Stark splitting.
The effect of Stark splitting is similar to that observed for the
uniform pdfDα

. Lastly, we note that any arbitrary pdfDα
can

be expanded into a Fourier series and then analytical, smooth
FIDA weight functions could be constructed from the Fourier
components which each can be integrated as in equation (54).

6. Full FIDA weight functions

Substitution of equation (43) into equation (6) gives an analytic
expression for full FIDA weight functions accounting for
Doppler and Stark effects and allowing for arbitrary pdfDα:

w(λ1, λ2, φ, v‖, v⊥) = R(v‖, v⊥)

×
15∑
l=1

( ∫ γ1,l

γ2,l

prob(l|γ )pdfDα
(γ | v‖, v⊥) dγ

+
∫ γ ′

2,l

γ ′
1,l

prob(l|γ )pdfDα
(γ | v‖, v⊥) dγ

)
. (56)

Equation (56) is general whereas the assumptions of the
FIDASIM code are used to calculate R and pdfDα

[14, 34]. In

particular, the calculation of the weight functions assumes that
the FIDA emission comes from a small volume in configuration
space. Practically, R and pdfDα

are calculated from the
distribution function fDα

(γ | v‖, v⊥) of the FIDA intensity
per unit ion density over γ which we calculate numerically
using FIDASIM. Then

R(v‖, v⊥) =
∫ 2π

0
fDα

(γ | v‖, v⊥) dγ, (57)

pdfDα
(γ | v‖, v⊥) = fDα

(γ | v‖, v⊥)

R(v‖, v⊥)
. (58)

We prefer not to substitute equation (58) into equation (56) to
emphasize that R is a factor common to any weight function
with any wavelength range. We compare full FIDA weight
functions as computed with our formalism with the traditional
weight function as computed with FIDASIM in figure 12.
The two approaches give the same result within small and
controllable discretization errors and Monte Carlo noise from
the sampling of the neutral beam particles in FIDASIM below
5%. This shows that our new formalism is consistent with
the traditional FIDASIM computation as expected since the
physics assumptions are the same. However, our approach
provides additional insight into functional dependencies not
revealed by the traditional brute-force computation. It
also leads to faster computations if weight functions in
several wavelength ranges are to be computed since the
time-consuming collisional–radiative model only has to be
evaluated once to find R and pdfDα

, and weight functions
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Figure 12. Full FIDA weight functions as computed with (a) traditional FIDASIM, (b) equation (56) for numerically computed pdfDα
using

FIDASIM, (c) equation (56) for the cosine model pdfDα
, (d) equation (56) for the uniform model pdfDα

. The projection angle is φ = 155◦.
The wavelength range is 660–661 nm. The magnetic field is 1.74 T.

for any wavelength range can then be computed rapidly using
equation (56). Additionally, we compare these full FIDA
weight functions based on numerically computed pdfDα

using
FIDASIM with full weight functions given by the uniform
pdfDα

and the cosine pdfDα
which match the full computation

to within 20%.

7. Boundaries of FIDA weight functions

Often it is useful to know the velocity-space interrogation
regions of FIDA measurements. Until now these observable
regions in velocity space had to be found by numerical
simulations with the FIDASIM code. Here we show that these
velocity-space interrogation regions are in fact completely
determined by a simple analytic expression accounting for the
Doppler shift and Stark splitting. The boundaries of FIDA
weight functions are found by solving equation (35) for v‖ and
setting cos γ = ±1 and l = 1 or l = 15 which gives the
largest possible Doppler shift and Stark splitting wavelength
shift, respectively. The boundaries for arbitrary l are

v‖ = ±v⊥ tan φ +
c

cos φ

(
λ

λ0 + slv⊥B
− 1

)
. (59)

This is a hyperbolic equation. Nevertheless, for v⊥ � c we
have slv⊥B � λ0, and we can expand the right hand side in a
Taylor series:

v‖ ≈
(

± tan φ − c

cos φ

λ

λ0

slB

λ0

)
v⊥ +

c

cos φ

λ − λ0

λ0
. (60)

For v⊥ � c the FIDA weight functions are thus approximately
bounded by straight lines in (v‖, v⊥)-coordinates. The
v‖-intercept is c

cos φ

λ−λ0
λ0

and the slope is given by the term
in the bracket. In figure 13 we compare the outer boundary
given by equation (60) with the corresponding FIDA weight
function in (E, p)-coordinates. The outermost boundaries are
found for l = 1 and l = 15. However, since the outermost
three lines on each side correspond to Stark lines with tiny
intensities (see equation (39)), the effective boundaries of the
velocity-space interrogation region could be considered to be
defined by l = 4 and l = 12 as indicated by dashed lines.
Stark splitting has always been neglected in previous work
where boundaries of weight functions or minimum energies
below which the weight function is zero have been discussed
[2, 3, 15, 16, 18, 19, 22, 28]. Figure 13 demonstrates that the
effect of Stark splitting can be substantial as it decreases the
minimum energy below which the weight function is zero by

12



Plasma Phys. Control. Fusion 56 (2014) 105005 M Salewski et al

0 50 100
−1

−0.5

0

0.5

1

Energy [keV]

P
it

ch
 [

−]

−6

−5

−4

−3

−2

−1

0

Figure 13. Boundaries of a FIDA weight function compared with
the corresponding weight function for φ = 80◦, 662–663 nm, and
B = 1.74 T. For each of the 15 Stark splitting lines there is a
boundary shown by thin black lines. The thick black line denotes
l = 8 (no Stark shift). The thick dashed black lines denote l = 4 and
l = 12. Note that here we show probabilities down to 10−6.

10–20 keV depending on whether we define the boundary by
l = 1, 15 or by l = 4, 12. In Figure 13 the thick lines
correspond to previous models with no Stark splitting (here
l = 8). The outermost lines set the interrogation region
accounting for Stark splitting (l = 1, 15), and dashed lines
correspond to the Stark lines l = 4, 12.

8. Discussion

8.1. Fast-ion studies

ASDEX Upgrade has five FIDA views. Correctly scaled FIDA
weight functions, as we present here, allow measurements
of 2D fast-ion velocity distribution functions by tomographic
inversion [33]. This will allow velocity-space studies of fast-
ion distributions which are generated by up to 20 MW of neutral
beam injection power and 6 MW of ion cyclotron heating
power [53–55]. Moreover, weight functions are not specific
to FIDA and have also been given for CTS [12], neutron
count rate measurements [2], neutral particle analyzers (NPAs)
[2], fast-ion loss detectors [56], neutron spectroscopy [57, 58]
and beam emission spectroscopy [59]. If weight functions
for the other diagnostics are correctly scaled, as those for
FIDA and CTS [12], the fast-ion diagnostics can be combined
in joint measurements of 2D fast-ion velocity distribution
functions using the available diagnostics [32]. For example,
ASDEX Upgrade is equipped with fast-ion loss detectors
(FILD) [26, 60, 61], fast-ion Dα (FIDA) [13, 27, 29, 33], CTS
[31, 32, 37–39, 62, 63], neutron energy spectrometry [64, 65],
NPAs [66, 67], and γ -ray spectrometry [68].

8.2. CER spectroscopy of the bulk ions

Weight functions describing FIDA diagnostics will also
describe Dα-based CER spectroscopy of the bulk deuterium
ions [6–11] and would then also be applicable to CER
spectroscopy based on impurity species [4, 5] if the path of

the emitter from the charge-exchange reaction to the photon
emission does not curve significantly. Hence we could
also show velocity-space interrogation regions of particular
wavelength intervals in CER spectroscopy with our approach,
estimate where in velocity space most signal comes for a given
ion velocity distribution function, calculate spectra, and—
perhaps the most interesting application—calculate velocity-
space tomographies of bulk-ion velocity distribution functions
of the emitting species. A temperature, density and drift
parallel to the magnetic field could be found by fitting a
2D Maxwellian to the tomography of the ion distribution
functions, and this could provide an alternative to standard
methods. This method would be even more interesting if
parallel and perpendicular ion temperatures are discrepant as
sometimes observed in MAST [69] or JET [70] or if the ions
do not have a Maxwellian distribution.

9. Conclusions

The velocity-space sensitivity of FIDA measurements can
be described by weight functions. We derive correctly
scaled expressions for FIDA weight functions accounting for
the Doppler shift, Stark splitting, and the charge-exchange
and the electron transition probabilities. Our approach
provides insight not revealed by the traditional numerical
computation of weight functions implemented in the FIDASIM
code. By using simple analytic models we show how these
physical effects contribute to the velocity-space sensitivities
of FIDA measurements. The Doppler shift determines an
approximate shape of the observable region in (v‖, v⊥)-space
which is triangular and mirror symmetric. Stark splitting
broadens this triangular observable region whereas the charge-
exchange and electron transition probabilities do not change
the boundaries of FIDA weight functions separating the
observable region from the unobservable region in velocity
space. Our approach implies exact analytic expressions for
these boundaries that take Stark splitting into account and
therefore differ by up to 10–20 keV in (energy, pitch)-space
from similar expressions in previous work. We show that
Stark splitting changes the sensitivity of the measurement,
but this does not limit the achievable spectral resolution
of FIDA measurements as has sometimes been asserted
[3, 15, 16, 24, 48, 49]. Weight functions as we deduce here
can be used to rapidly compute synthetic FIDA spectra from
a 2D velocity distribution function. This lays the groundwork
for the solution of the inverse problem to determine 2D velocity
distribution functions from FIDA measurements. Lastly,
our methods are immediately applicable to charge-exchange
recombination spectroscopy measurements of Dα-light from
the bulk deuterium population to determine their temperature
and drift velocity as well as any anisotropy.
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Appendix

Here we give key expressions in the widespread (E, p)-
coordinates (Energy, pitch) that are used in the TRANSP code.
They can be obtained by substituting

v‖ = −p
√

2E/m (61)

v⊥ =
√

(1 − p2)2E/m (62)

into the corresponding expressions in (v‖, v⊥)-coordinates.
Weight functions in (E, p)-coordinates are defined as

I (λ1, λ2, φ) =
∫ ∫ ∫

w(λ1, λ2, φ, E, p)f (E, p) dE dp.

(63)

They can be written as

w(λ1, λ2, φ, E, p) = R(E, p)prob(λ1 < λ < λ2|φ, E, p).

(64)

The projected velocity u along the line-of-sight is

u =
(

− p cos φ +
√

1 − p2 sin φ cos γ
)√

2E/m. (65)

If there is no static electric field, the observed wavelength as
function of gyroangle becomes

λ =
(
λ0 + slB

√
(1 − p2)2E/m

)
(66)

×
(

1 +
1

c
(−p cos φ +

√
1 − p2 sin φ cos γl)

√
2E/m

)

and the inverse function is

γl = arccos

c√
2E/m

(
λ

λ0+slB
√

(1−p2)2E/m
− 1

)
+ p cos φ√

1 − p2 sin φ
. (67)

The probability function for a uniform gyroangle distribution
and no Stark splitting becomes

prob(λ1 < λ < λ2|φ, E, p)

= 1

π

(
arccos

c√
2E/m

(
λ1
λ0

− 1
)

+ p cos φ√
1 − p2 sin φ

− arccos
c√

2E/m

(
λ2
λ0

− 1
)

+ p cos φ√
1 − p2 sin φ

)
(68)

and the pdf is expressed in (E, p) as

pdf(λ, φ, E, p)

= 1

π
√

2E/m(1 − p2) sin φ

√
1 −

(
c√

2E/m

(
λ1
λ0

−1
)

+p cos φ√
1−p2 sin φ

)2
.

(69)

For an arbitrary gyroangle distribution and no Stark splitting
the probability function becomes

prob(λ1 < λ < λ2|φ, E, p)

=
∫ γ1,l

γ2,l

pdfDα
(γ | E, p) dγ +

∫ γ ′
2,l

γ ′
1,l

pdfDα
(γ | E, p) dγ.

(70)

The general expression of the probability function for an
arbitrary gyroangle distribution and accounting for Stark
splitting is

prob(λ1 < λ < λ2|φ, E, p)

=
15∑
l=1

( ∫ γ1,l

γ2,l

prob(l|γ )pdfDα
(γ | E, p) dγ

+
∫ γ ′

2,l

γ ′
1,l

prob(l|γ )pdfDα
(γ | E, p) dγ

)
. (71)

The general expression of FIDA weight functions is

w(λ1, λ2, φ, E, p) = R(E, p)

×
15∑
l=1

( ∫ γ1,l

γ2,l

prob(l|γ )pdfDα
(γ | E, p) dγ

+
∫ γ ′

2,l

γ ′
1,l

prob(l|γ )pdfDα
(γ | E, p) dγ

)
(72)

and their boundaries are given by

E = mc2(λ − λ0)
2

2(1 − p2) ×
(
λ0 cos φ

(
± tan φ − p + cλslB

λ2
0 cos φ

))2 .

(73)
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[67] Äkäslompolo S, Hirvijoki E, Kurki-Suonio T and the ASDEX
Upgrade Team 2010 Europhysics Conference Abstracts vol
34A, p P5.113

[68] Nocente M et al 2012 Nucl. Fusion 52 094021
[69] Hole M J, von Nessi G, Fitzgerald M, McClements K G and

Svensson J 2011 Plasma Phys. Control. Fusion
53 074021

[70] von Hellermann M G, Core W G F, Frieling J, Horton L D,
Konig R W T, Mandl W and Summers H P 1993 Plasma
Phys. Control. Fusion 35 799–824

15

http://dx.doi.org/10.1088/0029-5515/50/8/084002
http://dx.doi.org/10.1063/1.3495768
http://dx.doi.org/10.1088/0741-3335/53/8/085007
http://dx.doi.org/10.1088/0741-3335/55/9/095007
http://arxiv.org/abs/arXiv:1401.6864
http://dx.doi.org/10.1063/1.2956828
http://dx.doi.org/10.1063/1.3080724
http://dx.doi.org/10.1088/0029-5515/51/10/103013
http://dx.doi.org/10.1088/0741-3335/53/6/065010
http://dx.doi.org/10.1088/0741-3335/54/2/025006
http://dx.doi.org/10.1063/1.4829481
http://dx.doi.org/10.1063/1.4803930
http://dx.doi.org/10.1088/0029-5515/52/10/103008
http://dx.doi.org/10.1088/0029-5515/53/6/063019
http://dx.doi.org/10.1088/0029-5515/54/2/023005
http://dx.doi.org/10.1088/0029-5515/51/6/063014
http://dx.doi.org/10.1063/1.2989140
http://dx.doi.org/10.1088/0029-5515/50/3/035012
http://dx.doi.org/10.1088/1742-6596/227/1/012010
http://dx.doi.org/10.1063/1.3481165
http://dx.doi.org/10.1088/0029-5515/54/2/023006
http://dx.doi.org/10.1063/1.2956961
http://dx.doi.org/10.1088/0029-5515/49/2/025006
http://dx.doi.org/10.1088/0741-3335/51/3/035006
http://dx.doi.org/10.1002/andp.19263851302
http://dx.doi.org/10.1103/PhysRev.28.695
http://dx.doi.org/10.1098/rspa.1929.0058
http://dx.doi.org/10.1063/1.1784533
http://dx.doi.org/10.1063/1.3475367
http://www.adas.ac.uk
http://dx.doi.org/10.1088/0029-5515/47/10/S11
http://dx.doi.org/10.1109/TPS.2011.2179068
http://dx.doi.org/10.1088/0029-5515/53/10/104003
http://dx.doi.org/10.1063/1.4731655
http://dx.doi.org/10.1063/1.4885477
http://dx.doi.org/10.1088/0029-5515/52/6/063019
http://dx.doi.org/10.1088/0029-5515/47/7/L03
http://dx.doi.org/10.1088/0029-5515/49/8/085014
http://dx.doi.org/10.1063/1.3675886
http://dx.doi.org/10.1088/1748-0221/7/02/C02039
http://dx.doi.org/10.1063/1.3660811
http://dx.doi.org/10.1088/0029-5515/52/9/094021
http://dx.doi.org/10.1088/0741-3335/53/7/074021
http://dx.doi.org/10.1088/0741-3335/35/7/002 

	1. Introduction
	2. Definitions of weight functions
	3. Doppler shift
	4. Stark splitting
	5. Charge-exchange reaction and D-emission
	6. Full FIDA weight functions
	7. Boundaries of FIDA weight functions
	8. Discussion
	8.1. Fast-ion studies
	8.2. CER spectroscopy of the bulk ions

	9. Conclusions
	 Acknowledgments
	 Appendix
	 References



