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Abstract Forward solutions with different levels of com-
plexity are employed for localization of current generators,
which are responsible for the electric and magnetic fields
measured from the human brain. The influence of brain
anisotropy on the forward solution is poorly understood.
The goal of this study is to validate an anisotropic model
for the intracranial electric forward solution by comparing

with the directly measured ‘gold standard’. Dipolar sources
are created at known locations in the brain and intracranial
electroencephalogram (EEG) is recorded simultaneously.
Isotropic models with increasing level of complexity are
generated along with anisotropic models based on Diffu-
sion tensor imaging (DTI). A Finite Element Method based
forward solution is calculated and validated using the
measured data. Major findings are (1) An anisotropic model
with a linear scaling between the eigenvalues of the
electrical conductivity tensor and water self-diffusion tensor
in brain tissue is validated. The greatest improvement was
obtained when the stimulation site is close to a region of high
anisotropy. The model with a global anisotropic ratio of 10:1
between the eigenvalues (parallel: tangential to the fiber
direction) has the worst performance of all the anisotropic
models. (2) Inclusion of cerebrospinal fluid as well as brain
anisotropy in the forward model is necessary for an accurate
description of the electric field inside the skull. The results
indicate that an anisotropic model based on the DTI can be
constructed non-invasively and shows an improved perfor-
mance when compared to the isotropic models for the
calculation of the intracranial EEG forward solution.

Keywords Forward solution .White matter anisotropy .

Intracranial EEG . Validation . FEM . Finite element model .

Source localization

1 Introduction

The simulation and calculation of the electromagnetic fields
for a given head geometry and source distribution inside the
brain is known as the forward problem or the forward
solution. Localization of brain sources from measured
bioelectromagnetic fields is carried out using an inverse
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procedure, which incorporates a forward solution, and is
dependent on its accuracy. The primary question in volume
conductor modeling is how accurate a description of the
geometry and conductivities of the tissues inside the head is
necessary for accurate forward solutions and as a result for
accurate source localizations. In this paper, we address this
issue primarily for the intracranial domain by comparing
the intracranial forward solutions of progressively detailed
realistic models to experimental data obtained with known
source locations.

Experimental studies have been carried out in ‘tank’
models of the head and in vivo. A tank model study
(Henderson et al. 1975), using a skull filled with saline and
an artificial “scalp,” obtained localization accuracy of about
1 cm. A human skull phantom implanted with multiple
dipoles was utilized to examine the effects of forward
methods on EEG and Magnetoencephalography (MEG)
localization accuracy by using a locally fitted sphere model
and Boundary Element model (BEM) (Leahy et al. 1998).
Spherical model was found to generate slightly greater error
than the BEM except for locations such as the frontal
dipolar region where the localization error was about 1 cm
greater than the BEM due to poor spherical fits in the
region. Smith et al. (Smith et al. 1983) passed a rectangular
pulse through depth electrodes in vivo, and compared the
measured intracerebral potentials to analytically calculated
values using different values for conductivities. Results
were found to be consistent with homogeneous medium.
However, a detailed quantification of the differences
between measured and calculated values was not carried
out for this study, and an inhomogeneous model was not
tested. Further analysis of these data using inverse solutions
gave a localization accuracy of about 2 cm when performed
using a spherical forward solution (Smith et al. 1985).
Localization accuracy ranging from 0.5 to 2 cm was
obtained for artificial sources from subdural electrodes
placed on the surface of the brain (Salu 1990). A
homogeneous spherical model with no correction for the
skull defect was used for the forward solution. A direct
comparison between MEG and EEG localization accuracy
using implanted sources in vivo found an average error of
0.8 cm for MEG and 1 cm for EEG using a multi-layered
spherical forward model (Cohen et al. 1990). An average
localization of about 1 cm was also obtained from scalp
potentials recorded during depth stimulation irrespective of
whether the forward model was a multi-layered spherical
model (Cuffin et al. 1991) or the more realistic boundary
element model (Cuffin et al. 2001). Surprisingly, the
spherical model produced nearly the same localization
accuracy as the realistic shaped brain model suggesting
that several other modeling errors other than the non-
spherical shape of the head could be involved. Possible
modeling errors could be inaccurate tissue conductivity

values, tissue anisotropy, variations in tissue thickness and
conductivity inside the head. In all of the previous
experimental studies, a spherical or BEM model has been
used and the measurements have been extracranial with the
sole exception of (Smith et al. 1985). This study did record
intracranial potentials in vivo but with a spherical forward
solution which did not model the actual shape of the head
and its compartments, nor the inhomogeneity, and anisot-
ropy known to occur within the head volume. There has
been no study to quantify the accuracy of a realistic
anisotropic forward solution with actual experimental data,
in particular with intracranial measurements. Some recent
studies have shown the clinical utility of advanced source
imaging techniques in localizing epileptogenic loci using
BEM (Cuffin 1998) and finite element models (FEM)
(Plummer et al. 2007). However these methods are not yet
routinely used in clinical settings due to their high
computational cost and the lack of direct validation of
these techniques with experimental data.

In this paper, patient-specific FEM-based head models
generated using multimodal images are utilized for validat-
ing a realistic head model for the intracranial forward
solution using intracranial electric field measurements from
the human brain. Isotropic models with increasing level of
detail as well as multiple anisotropic models to incorporate
white matter conductivity information non-invasively are
tested for accuracy by directly comparing model results
with the intracranial potentials obtained from in vivo depth
stimulation in human subjects. We know that the electric
field measured on the scalp is likely to be influenced by
anisotropy in both the skull and the brain, whereas the
electric field inside the cranial cavity is likely to be
influenced only by anisotropy of the white matter. Thus,
the use of intracranial rather than scalp measurements helps
to segregate the effects of the two sources of anisotropy in
human head (the white matter and the skull) and investigate
the influence of brain anisotropy more closely.

Also, with the aid of novel visualizations we present
some unique insights into the influence of the underlying
tissue conductive properties on the bioelectric field quali-
tatively. Reductions in forward model errors using FEM
could lead to improved source localizations of seizures with
the eventual goal of surgery without the need of invasive
EEG monitoring. In addition to its application in source
localization, this could provide vital insights when utilized
to study deep brain stimulation (DBS), which is commonly
used for treatment of Parkinson’s disease, as well as brain
mapping to define eloquent tissue prior to surgical resec-
tions. DBS is also being actively evaluated for application to
other diseases including stroke, coma, addiction, pain,
depression, and epilepsy. The underlying hypothesis in our
models is that details do matter, and with the aid of
experiments in human subjects, we investigate the degree
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of anatomical detail necessary in the forward model for EEG
to improve the predictive value of the model.

2 Materials and methods

2.1 Experimental methods: human subjects, dipole
generation set-up and intracranial EEG measurement set-up

The 4 subjects (BI14, BI15, BI17 and BI18) were patients
with medically intractable epilepsy who underwent moni-
toring with intracranial depth electrodes for a period of 2–
4 weeks prior to surgery at the Beth Israel Deaconess
Medical Hospital (Boston, MA). Informed consent was
obtained from the subjects (four females aged between 24
and 50 yrs) and the experimental protocol was approved by
the subcommittee on human studies at the Beth Israel
Deaconess Medical Hospital (BIDMC). The implanted
electrodes were cylindrical platinum-iridium contacts
mounted on hollow plastic catheters with wires connecting
to each contact. The contacts were 1 mm in diameter and
2 mm in length and were spaced 5 mm apart on each
catheter. Each subject had 5 catheters on each side of the
head with 7 contacts on each catheter. The catheters passed
through the skull through electrically non-conducting
plastic plugs which completely filled the 3 mm diameter
holes used to insert the catheters into the brain. The dipolar
source was created in the brain by passing a biphasic square
current pulse through alternating contacts on the implanted
catheter (See Appendix A for additional details on the
biphasic pulse generation). 3-D representation of implanted
electrodes locations are shown in Fig. 1(b) and (c).

The schematic of the experimental set-up is given in
Fig. 1(a). Each artificial dipole (stimulation) is referred to
by the electrode name followed by the contact numbers (1–
7 where 1 refers to the deepest contact) for the monopolar
source and monopolar sink (e.g. LA12). For subjects BI14,
BI15 and BI17 the current waveform had a total duration of
42.5 ms and amplitude of 8μA. For subject BI18, the
waveform had a total duration of 37.5 ms and the current
amplitude was increased to 100μA (to increase signal-to-
noise ratio). The charge density (charge/cm2/ph) used in
this study (maximum of ∼ 25μC/cm2/ph at ∼1.7 μC/ph) was
below the critical level of 40 μC/cm2/ph for neural damage
(Mccreery et al. 1990; Merill Merill et al. 2005). The
current levels were well below the stimulation levels used
in later clinical stimulation sessions to elicit a discharge
(Tehovnik 1996) and too low to produce any sensations.

The intracranial potential was obtained while passing a
biphasic square wave current pulse using a recording
system developed by Ulbert et al. (Ulbert et al. 2001).
The intracranial potential was recorded using a high-
impedance preamplifier and band-filtered by the main

amplifier (0.1–500 Hz) with 16-bit resolution and a digitiza-
tion rate of 2000 Hz. The intracranial measurements were
done in a bipolar fashion (between alternate contacts) and then
converted to a referential montage offline. A sample stimula-
tion pulse and intracranial potential waveform recorded during
dipole stimulation from subject BI18 is shown in Fig. 1(d) and
(e) respectively. 3-D locations of the intracranial electrode
contacts are obtained accurately by aligning the post-
implantation CT images with the MRI images.

A summary of total number of stimulation sites,
recording electrodes and average SNR across all stimula-
tion sites for the 4 subjects is given in Table 1. Measure-
ments with an SNR>5 are used for comparisons with the
model predicted values (See Appendix A for the method
used for calculating the SNR). For subject BI18, all
recording electrodes had the required SNR due to the
higher current amplitude whereas for subjects BI14, BI15
and BI17 electrodes from same side of the brain as the
stimulation site had the requisite SNR.

2.2 FEM model types

A detailed description of the development of a FEM model
from multimodal imaging methods (Computed Tomography
[CT], T1-MRI, Proton Density [PD]-MRI and Diffusion
Tensor Imaging, DTI) is described elsewhere (Bangera et al.,
manuscript in submission). The resultant FEMmodel for BI18
has 256772 nodes and 1488774 linear (first order) tetrahedral
elements (243711 nodes and 1415024 elements for BI17;
272380 nodes and 1569546 elements for BI15; 273230 nodes
and 1574629 elements for BI14). The isotropic and aniso-
tropic models generated for each subject are listed below.

2.2.1 Isotropic models

& Model ISO_I has 3 tissue types (1 intracranial tissue
type): Brain, Skull and Scalp.

& Model ISO_II has 4 tissue types (2 intracranial tissue
types): Brain, CSF, Skull and Scalp.

& Model ISO_III has all 15 unique tissue types (6
intracranial tissue types) as listed in Table 2.

2.2.2 Anisotropic models

Specification of the anisotropy in each voxel was based on
each individual patient’s DTI. Following the proposition by
Basser et al., we assumed that the conductivity tensor and
diffusion tensor share common eigenvectors, i.e. Vσ=Vd

(Basser et al. 1994). The eigenvalues for conductivity
tensor are different from the diffusion tensor eigenvalues
and are simulated to create multiple anisotropic models as
shown below. The eigenvalues along the transverse direc-
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tion (perpendicular to the fiber direction) are denoted as
s trans1
l and s trans2

l . s long
l is the eigenvalue along the fiber

direction (also called the longitudinal direction) such that
s long
l > s trans1

l � s trans2
l .

& ANISO_WM_I

The linear anisotropic white matter model ANI-
SO_WM_I is based on an empirical study relating the
conductivity and diffusion tensors (Tuch et al. 2001). In this

model a linear relationship between the conductivity tensor
eigenvalues (σλ) and diffusion tensor eigenvalues (dλ) is
assumed for white matter.

sl ¼ kdl 8 l ¼ 1; 2; 3 ð1Þ

The scaling factor ‘k’ is determined by optimizing the
error cost function as function of ‘k’ using intracranial
measurements during dipole stimulations (see method for

Table 1 Summary of total number of stimulation sites, recording electrodes and average SNR across all stimulation sites for all subjects in this
study (LA: Left Amygdala, LH: Left Hippocampus, LS: Left Supplementary Motor, LC: Left Cingulate, LO: Left Orbito-frontal, RA: Right
Amygdala, RH: Right Hippocampus, RO: Right Orbito-frontal, RS: Right Supplementary Motor, RC: Right Cingulate)

Subject Number of dipole sites Recording electrodes Average SNR across all stimulation sites

Bl14 6 RO,RS,RC,LC,LO 34

Bl15 16 RO,RS,RC,RA,RH,LO,LA,LS,LC,LH 22

Bl17 16 RO,RH,RC,LC,LO 50

Bl18 23 RO,RS,RC,RH,LO,LA,LS,LC,LH 124

Fig. 1 Experimental set-up. (a) Overall schematic shows the dipole
generation set-up and the intracranial potential recording set-up. (b)
Anterior view showing left side electrodes in subject BI18 with
respect to the ventricles (colored in blue), right cortex (in gray) and
cross-section of skull (O: Orbito-frontal, C: Cingulate, S: Supplemen-

tary Motor, A: Amygdala, H: Hippocampus). (C) Anterior view of
right side electrodes. (d) Sample injected current pulse shows 100μA
biphasic current pulse with a upslope setting of 25 to compensate for
“droop” (e) shows a sample waveform measured from contact number
7 on intracranial depth electrode RC (Right Cingulate)
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optimization below). Remaining tissue types are identical to
ISO_III.

& ANISO_WM_II

The second anisotropic model is based on the reported
conductivity measurements of white matter anisotropy
(Nicholson 1965) of 10:1 ( parallel to perpendicular to
fiber direction). For white matter elements, the conductivity
eigenvalues for directions perpendicular to the fiber
direction are assigned equal values:

s trans1
l ¼ s trans2

l ¼ s trans
l ð2Þ

and a scaling between the eigenvalues along the fiber
direction to eigenvalues in transverse direction is given by
the scaling factor k:

s long
l ¼ ks trans

l ð3Þ

Due to a lack of conclusive measurement of the anisotropic
ratio, ANISO_WM_II was generated with different scaling
values (k=2, 5, 7, 10) and are listed as model types

ANISO_WM_II_a, ANISO_WM_II_b, ANISO_WM_II_c
and ANISO_WM_II_d respectively. For an applied ratio
s long
l : s trans

l , the eigenvalues are constrained using a ‘Volume
constraint’ put forth by Wolters et al. (Wolters 2003) , which
retains the geometric mean of the eigenvalues and the
volume of the conductivity tensor between the isotropic and
anisotropic case.

& ANISO_IC

This model is an extension of model ANISO_WM_I.
In addition to anisotropy in the white matter, this model
also assumes a linear scaling between conductivity
tensor eigenvalues σλ and diffusion tensor eigenvalues
dλ for mesh elements labeled as gray matter and
subcortical.

2.3 Optimization of electrical conductivity of head tissue

There is a large variability in reported values for tissue
conductivities with a dependence on frequency and tem-
perature of measurement for tissues such as gray matter,
white matter and the skull (Akhtari et al. 2002; Baumann

Table 2 Optimized Tissue Conductivities for isotropic model types ISO_I, ISO_II and ISO_III

Tissue name Model type ISO_I:3 tissue Model type ISO_II:4 tissue Model type ISO_III: all tissue

Material
assigned

Starting
value S/
m

Optimized
value S/m

Material
assigned

Starting
value S/
m

Optimized
value S/m

Material
assigned

Starting
value S/
m

Optimized
value S/m

Gray Matter (GM) Brain 0.33 0.3373622 Brain 0.33 0.19129234 GM 0.3521 0.297268568

White Matter (WM) Brain 0.33 0.3373622 Brain 0.33 0.19129234 WM 0.1466 0.154717786

Cerebrospinal Fluid
(CSF)

Brain 0.33 0.3373622 CSF 1.79 1.58388257 CSF 1.79 1.584524266

Ventricles Brain 0.33 0.3373622 Brain 0.33 0.19129234 CSF 1.79 1.584524266

Cerebellum GM Brain 0.33 0.3373622 Brain 0.33 0.19129234 Cerebellum 0.154 0.154

Cerebellum WM Brain 0.33 0.3373622 Brain 0.33 0.19129234 Cerebellum 0.154 0.154

Sub-Cortical Brain 0.33 0.3373622 Brain 0.33 0.19129234 Brain_general 0.25 0.225913002

Skull Skull 0.015 0.0059406 Skull 0.015 0.00661725 Skull 0.015 0.004119296

Soft bone Skull 0.015 0.0059406 Skull 0.015 0.00661725 Soft_bone 0.04 0.009467393

Sinus Skull 0.015 0.0059406 Skull 0.015 0.00661725 Air 1.00E-17 1.00E-17

Air pockets Skull 0.015 0.0059406 Skull 0.015 0.00661725 Air 1.00E-17 1.00E-17

Optic chiasm Skull 0.015 0.0059406 Skull 0.015 0.00661725 Brain_general 0.25 0.225913002

Muscle Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Muscle 0.1 0.200025083

Fat Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Fat 0.0367 2.76756041

Eyes Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Eyes 1.55 6.519239245

Spinal cord Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Spinal_cord 0.5714 0.5714

Teeth Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Teeth 0.020028 0.020028

Blood Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Blood 0.6667 0.6667

Scalp Scalp 0.44 0.5065091 Scalp 0.44 0.50357474 Scalp 0.44 0.518011512

Sagittal Sinus Brain 0.44 0.3373622 Brain 0.33 0.19129234 Blood 0.6667 0.6667
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Baumann et al. 1997; Burger and Van Milaan 1943; Gabriel
et al. 1996; Geddes and Baker 1967; Latikka et al. 2001;
Law 1993; Lindenblatt and Silny 2001; Okada et al. 1994;
Oostendorp et al. 2000; Ranck and Be Meritt 1965). To
overcome the problem associated with the uncertainties
in measured values, a multi-dimensional optimization
strategy is employed to find a ‘best-fit’ conductivity
value (See Appendix B for the formulation of the
optimization problem). Optimized conductivities for iso-
tropic models are listed in Table 2. For anisotropic models
ANISO_WM_I and ANISO_IC, an optimized scaling
k=0.5708 between conductivity tensor eigenvalues σλ
and diffusion tensor eigenvalues dλ of white matter is
empirically obtained. For the four sub-types of model
ANISO_WM_II, the white matter conductivities (eigen-
values) are listed in Table 3. The isotropic tissues in the
anisotropic models are assigned isotropic conductivities
identical to model ISO_III.

2.4 Error criteria for forward solution accuracy

The Relative Difference Measure (RDM) is used to
quantify the comparisons made between the model pre-
dicted field values and experimental data. If Vcalc and Vmeas

are the calculated and measured vectors of length M (M is
the number of sensors) respectively then:

RDM Vcalc;Vmeasð Þ%

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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RDM is a measure of topography error introduced by
Meijs et al. (Meijs et al. 1989). Minimum error corresponds
to a RDM of zero. RDM is unaffected by scaling in
amplitude between two datasets being compared which
makes it a better choice as compared to the Goodness of Fit
(GF) measure to compare topographical differences be-
tween two EEG datasets. The goodness of fit (GF) is
defined in Eq. (B.2) (See Appendix B).

2.5 Visualization techniques for volume currents

The volume currents (electric current density vector fields)
are visualized as a texture in 2-D and as illuminated stream
Tubes in 3-D by using the ‘PlanarLIC’ and ‘DisplayISL’
modules respectively in AMIRA (Visage Imaging 2007).
The ‘PlanarLIC’ module intersects an arbitrary 3D vector
field and visualizes its directional structure in the cutting
plane using a technique called line integral convolution
(LIC). The LIC algorithm works by convolving a random
noise image along the projected field lines of the incoming
vector field using a piecewise-linear hat filter (Visage
Imaging 2007). The synthesized texture clearly reveals the
directional structure of the vector field inside the cutting
plane. The ‘DisplayISL’ visualizes a 3D vector field using
so-called illuminated field lines (Malte Zöckler and Hans-
Christian 1996). The module computes a large number of
field lines by integrating the vector field starting from
random seed points. The lines are displayed using a special
illumination technique, which gives a much better spatial
understanding of the field structure than ordinary constant-
colored lines (Visage Imaging 2007).

3 Results

It should be noted that subject BI18 injected with a current
dipole with moment 500 nA-m provided the best data-set as
the higher current amplitude made it possible to obtain
measurements with high SNR from recording electrodes on
both sides of the head (60 sensor locations for each of the
23 stimulation sites). For subjects BI17, BI15 and BI14
some of the measurement electrodes were excluded from
analysis as the minimum SNR requirement (SNR>5) was
not met due to a smaller current injection (dipole moment
40 nA-m). The recording electrodes used for each stimu-
lation site in subjects BI17, BI15 and BI14 are listed in
Supplementary Fig. 2.

3.1 Validation with experimental data

The intracranial forward solution obtained using the
isotropic and anisotropic models were compared to the

Volume constraint: White matter (S/m)

Model type s long
l : s trans

l σISO_WM s long
l s trans

l

ANISO_WM_II_a 2:1 0.1547 0.2456 0.1228

ANISO_WM_II_b 5:1 0.1547 0.4524 0.0905

ANISO_WM_II_c 7:1 0.1547 0.5662 0.0809

ANISO_WM_II_d 10:1 0.1547 0.7181 0.0718

Table 3 Simulated values of
White Matter Eigenvalues in S/
m along the longitudinal (along
fiber direction) and transverse
directions (perpendicular to fiber
directions) for a given aniso-
tropic ratio
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Fig. 2 Accuracy of different
models compared to actual
measurements. Accuracy is
quantified as the Relative Dif-
ference Measure (RDM); Lower
values indicate greater model
accuracy. (a) Plot of RDM be-
tween intracranial potentials
predicted by a head model and
measured potentials averaged
across 61 stimulation sites in 4
subjects. Isotropic FEM models
differ in their numbers of tissue
types (3, 4 and 15 for models
ISO_I, II and III; in columns 1-3
from left). In some anisotropic
models the anisotropy is as-
sumed to be uniform (middle);
these differ in the conductance
increase parallel to the fiber
direction (parallel/transverse ra-
tios of 2, 5, 7, and 10 for models
ANISO_WM_II_a, b, c, and d;
in columns 4-7). In other aniso-
tropic models, the degree of
anisotropy is estimated from
DTI data, and applied to the
white matter only (ANI-
SO_WM_I; column 8), or to
both white and gray matter
(ANISO_IC; column 9). Model
types are color-coded as indi-
cated below the bar-chart. (b)
Error (color-coded RDM) for 7
different model types (columns)
and 23 different stimulation sites
(rows) in BI18 (averaged across
all recording electrodes). Stimu-
lation site is given as the elec-
trode name followed by the
contact numbers for monopolar
source and sink. (C) RDM be-
tween model and experiment
when averaged over the 23
stimulation sites in BI18. In both
group and individual subject
experiments, the highest accura-
cy was obtained with the ANI-
SO_IC model, which estimated
anisotropy for both gray and
white matter from individual
subject DTI. Individual data for
subjects BI14, BI15 and BI17
are shown in Supplementary
Figure 1
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experimental data obtained from stimulation of an artificial
dipole. Figure 2(a) plots the RDM between the model-
predicted potentials and those actually measured, as
averaged across 4 subjects. Figure 2(b) plots the RDM
between the potentials calculated using each of the nine
models, and the experimental data collected from subject
BI18 for each stimulation site in the brain over all sensor
locations (See Fig. 1(A, C, E) in the supplementary section
for the same measures plotted in subjects BI17, BI15 and
BI14, respectively). Figure 2(c) plots the RDM averaged
across all stimulation sites for the different models for BI18
(See Fig. 1(B, D, F) in the supplementary section for the
same measures plotted in subjects BI17, BI15 and BI14,
respectively). For a closer inspection of the errors between
the model and the experimental data, we also plot the
RDM’s for individual electrode and for each stimulation
site in BI18 in Fig. 3 (See Fig. 2 in supplementary section
for RDM’s at individual electrodes in subjects BI17, BI15
and BI14).

3.2 Comparison between isotropic models

RDM between the model and experimental data was ∼25%
for isotropic models ISO_II and ISO_III in BI18 (See Fig. 2
(c)). Contrary to expectations, results from Fig. 2(c) show
that the 3-tissue isotropic model (ISO_I) on an average
performs slightly better (error reduced by ∼3%) than the 4-
tissue model (ISO_II) and the 15 tissue isotropic model
(ISO_III). The results were similar in BI17, BI15 and BI14
where ISO_I performed better than other two isotropic
models (ISO_II and ISO_III). However this represented the
overall errors and did not show the improvements provided
by the model ISO_II and ISO_III at specific sites due to
inclusion of ventricles and CSF. The presence of stimula-
tion and measurement electrodes on opposite sides of the
hemisphere in subject BI18 made it possible to obtain some
quantitative evidence of the benefits of inclusion of CSF in
the model. We study the case of stimulation at a site RS12
which is close to the inter-hemispherical space (filled with
CSF) in subject BI18 and measurement at electrode LS
lying in the opposite hemisphere of the brain. Electrode LS
has contacts close to CSF (See Fig. 4(a)) which makes it a
good candidate to study the effects of CSF. Figure 4(c) and
(d) provide visualizations of the volume currents generated
in a 3-tissue isotropic model and 15-tissue isotropic model
respectively on an axial plane containing the electrode LS.
The impact of CSF between the hemispheres can be seen
from the pattern of increased current densities in the areas
surrounding electrode LS. RDM at electrode LS due to
stimulation at RS12 reduced from 21% for ISO_I to ∼7%
and 8% for both ISO_II and ISO_III respectively (See
Fig. 3(f)). For the same case the RDM at electrode LS was
7% in model ANISO_WM_I, which suggests that the

improvement could be as a result of the inclusion on
anisotropy. To differentiate between the effects of CSF and
anisotropy, we generated a modified version of ANI-
SO_WM_I where the CSF was removed and substituted
as GM. RDM for the modified version of ANISO_WM_I
(without CSF) now increased to 16%; thereby suggesting
that the improvements are primarily due to the addition of
CSF. Similar improvements were obtained for stimulations
at sites RC12 and LC12 for measurements at electrodes in
the opposite hemisphere at LS and RS respectively. For
stimulation at RC12 (also near the inter-hemispherical CSF)
the RDM at LS dropped from a large 62% error generated
by ISO_I to ∼ 17% generated by ISO_III (See Fig. 3(d)).
For the case of stimulation site LC12, RDM at electrode RS
dropped from 16% for ISO_I to 8% for ISO_III (See Fig. 3
(a)). These findings highlight the value of including a CSF
compartment in the head model.

3.3 Isotropy vs. Anisotropy

Results from Fig. 2 show that the linear anisotropic model
ANISO_IC generates the least errors of all the models when
the RDM was averaged across all subjects. The biggest
impact of ANISO_IC is seen in subject BI18 (Compare
Fig. 2(c) with Supplementary Fig. 1(A, D and F)). This can
be attributed to the inter-subject variability in electrode
locations as well as larger number of stimulation sites and
measurement electrodes with high SNR (due to higher
current) in BI18 as compared to the other three subjects
(BI17, BI15 and BI14). RDM for individual stimulation
sites in Fig. 2(b) show that ANISO_IC gives smaller errors
when compared to ISO_III for all stimulation sites in BI18.
Similarly when compared to model ISO_I, ANISO_IC
shows improved performance for all 23 stimulation sites in
BI18 except at RS45 (see Fig. 2(b)). The difference
between the average RDM’s generated by different groups
in BI18 was found to be statistically significant (P<0.01).
Pairwise comparisons between model types in BI18 also
found ANISO_IC to perform significantly better than other
models (P<0.01). To understand the reductions in RDM’s
between the model and experimental data due to anisotropy,

Fig. 3 Intracranial distribution of accuracy of different models.
Accuracy (RDM) of different models (columns 1-9) from each
stimulation bipolar pair (indicated in boxes on the left of the graphs),
to the average across the 7 contacts of each recording electrode
(indicated as rows), are shown for subject BI18. (a, b, c): RDM’s for
stimulation locations in the left side of the brain on electrodes LC, LO
and LA, respectively. (d, e, f) The RDM’s for right sided stimulation
on electrodes RC, RO and RS, respectively. These data are the same as
those shown in Figure 2(b), except that RDM of responses recorded in
different electrodes are presented separately here, while they are
calculated over all recorded electrodes for each dipole in Figure 2(b).
Individual data for subjects BI14, BI15 and BI17 are shown in
Supplementary Figure 2

b
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we look closely at stimulation sites where the anisotropic
model ANISO_IC produced a smaller RDM than the
isotropic model when compared to experimental data.
Figure 5(a) shows that the fractional anisotropy is highest
at contact 1 on electrode LC and is also closest to region
of high anisotropy (corpus callosum) in subject BI18.
High correspondence between experiment and model was
obtained in BI18 for the dipole at LC12 where the RDM
dropped from 15.5% for ISO_I and 20.2 % for ISO_III, to
∼7% for ANISO_IC, with accurate fits at all electrode
sites (<10% RDM). Similar improvements were also
found at other stimulation sites in BI18 (such as RC23,
RC45, RC67, RO23, RO45, RO56, LA12, LO12 and
LO23) but the reduction in RDM when compared to
isotropic case was one of the highest for site LC12. We
now take the case of dipole at LC12 to study the
differences in the current field between the isotropic and
anisotropic models.

In Fig. 5(c, d and e) we plot the electric current density
vectors using the LIC (linear integral convolution tech-
nique) due to a dipole at LC12 in isotropic models ISO_I,
ISO_III and anisotropic model ANISO_IC, respectively.
The direction of the volume currents can be seen from the
texture using the LIC technique. Diffusion tensors, which
define the anisotropic conductivity directions, are rendered
as ellipsoids in Fig. 5(b). The figure shows a coronal plane
containing the contacts LC1 and LC2. Regions of high
anisotropy close to the stimulation site such as the corpus
callosum and superior region of the corona radiata are
marked in the figure. ISO_I clearly shows the classical
dipolar pattern inside the intracranial volume. ISO_III now
has a distortion in this pattern due to presence of CSF,
ventricles and addition of gray matter (GM) and white
matter (WM) as separate tissue types. At first glance,
ANISO_IC looks very similar to the pattern generated by
ISO_III; however a closer inspection shows the influence of

Fig. 4 Influence of CSF on the
volume currents. The electric
current density vector in an axial
section is shown using LIC
technique for a dipole at RS12
in subject BI18. The image is
color coded with the magnitude
of the current density vector and
the direction is indicated by the
texture. (a) Electrodes LS and
RS are shown on coronal and
axial T1-weighted MR images.
Contact numbers 1 and 7 are
marked. (b) Electrode LS shown
on an axial T1-MRI scan; Con-
tact numbers 1 and 7 are
marked. (c) Current density in
ISO_I: 3-tissue model shown in
an axial plane containing elec-
trode LS. (d) Current density in
ISO_III: 15-tissue model shown
in an axial plane containing
electrode LS. Influence of CSF
can be seen from the increased
current density in regions con-
taining CSF in ISO_III. Magni-
tude of the current density is in
mA=mm2
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anisotropy in the medium. Current lines bend and bunch
together to flow along the white matter fiber in the regions
marked with the two arrows in Fig. 5(b) which represent the
corpus callosum running in the mediolateral direction and
the superior region of the corona radiata which runs in the
superoinferior direction. To visualize the current lines
closely, projections of the current density vectors in the
vicinity of the two anisotropic regions are drawn on a
coronal plane in Fig. 5(g and i). The diffusion tensor
ellipsoids are shown in Fig. 5(f and h) to visualize the
direction of the white matter fibers. Current vectors in
isotropic model ISO_III are marked in red whereas the
current vectors in ANISO_IC are marked in white. When
compared to the direction of the isotropic current vectors
(red arrows) in the corpus callosum for model ISO_III
(Fig. 5(g)) addition of anisotropy in the model causes the
anisotropic current vectors (white arrows) to deviate
upwards in the mediolateral direction. Similarly in the
superior region of the corona radiata, the anisotropic
current vectors follow the direction of the fibers in the
region and are deviated towards the center when com-
pared to the isotropic current vectors in the same region
(Fig. 5(i)).

To provide more support to the observations made
above, in Fig. 6 we plot the cosine of the angle between
the primary eigenvector of the white matter conductivity
tensor and the electric current density vector (volume
current vector) due to dipole at LC12 on a coronal section,
which contained the stimulation electrode LC. The cosine
(scaled between 0 and 1) is used as a similarity measure
where 1 represents perfectly aligned vectors. In the
isotropic case this alignment is by chance, but in the
anisotropic case the cosine indicates close alignment
between the current vector and white matter fibers. As
seen from the figure, comparisons in the region bound by
the rectangular box corresponding to the superior region of
the radiata corona between the isotropic and anisotropic
model shows that the alignment is largest for ANISO_IC
and covers the whole region. The region in corpus callosum
close to LC12 also shows increased alignment for ANI-
SO_IC as compared to ISO_I and ISO_III (however the
effect is less noticeable in the figure due to thresholding of
the image between 0.7 and 1). This change of current
direction in the superior region of the radiata corona
explains the better fits at electrode site LS using the
anisotropic model ANISO_IC for stimulation at site LC12
(since it lies between the 2 electrodes). Electrode RC was
located on the opposite side of the corpus callosum from
electrode LC with its first contact around 2-3 mm away
from the corpus callosum in BI18. Figure 3(a) shows that
ANISO_IC provided improved fits for measurements at
electrode RC (3% RDM) when compared to ISO_I/ISO_III
(10%/7% RDM) for stimulation at LC12. Similarly, for

stimulation at RC12 the RDM at electrode LC reduced
from 21% (for ISO_I) to 3% (for ANISO_IC). Figure 3(d)
shows similar reductions in RDM at electrode LC for model
ANISO_IC due to stimulations at RC23; thereby suggesting
that the presence of anisotropy near the stimulation site has
an influence on the forward solution. For subject BI15, and
stimulation at contact RC12 (within few millimeters to
corpus callosum with FA around 0.7), the anisotropic model
ANISO_IC again provided with the largest reduction in
RDM over all sensor locations (from 15% for both ISO_I
and ISO_III to 8% for ANISO_IC; see Fig. 1C in
supplementary section). Visualizations of current density
vectors for stimulation site RC12 in BI15 (see Fig. 3 in
supplementary section) yield observations similar to those
made for site LC12 in subject BI18. Current lines follow
white matter more closely in ANISO_IC (see current lines
in corpus callosum marked in blue) than the isotropic
models and thus deviate from the fields predicted by
isotropic models.

We also observed decreases in RDM using ANISO_IC
when the source was further away from regions of high FA
for stimulation locations such as dipoles at RO23, RO45,
RO56 and RO67 in BI18 (see Fig. 2(b)). RDM’s show
improved fits using ANISO_IC when compared to their
isotropic counterparts. For example, there was a reduction
in RDM from ∼20% (ISO_III)/∼21% (ISO_I) to ∼9%
(ANISO_IC) for dipole at RO23; reduction from ∼27%
(ISO_I)/∼36% (ISO_I) to ∼13% (ANISO_IC) for dipole at
RO45; reduction from ∼37% (ISO_I)/∼37% (ISO_III) to
∼13% (ANISO_IC) for dipole at RO56 and reduction from
∼15% (ISO_I)/∼16% (ISO_III) to ∼9% (ANISO_IC) for
dipole at RO56 (See Fig. 2(b)). Although these stimulation
locations had a relatively low FA, these sites were
embedded in the white matter. Electrode RO had contacts
2, 3 and 4 embedded in the white matter and is close to
anterior region of the corona radiata. This suggests that
white matter present in the pathway of the currents between
the stimulation and recording site also influences the
intracranial forward solution. For subject BI17, similar
improvements were observed for sites on electrode LO with
contacts 2 to 7 embedded in white matter with low FA. For
site LO23, errors reduced from 32%/10% (ISO_III/ISO_I)
to 6% (ANISO_IC) whereas for site LO45, errors reduced
from 12%/9% (ISO_III/ISO_I) to 8% (ANISO_IC) (See
Supplementary Fig. 1A). Similarly for subject BI15, we
found reduction in errors at electrode RC from ∼11% ISO_I
and ISO_III to 3% (ANISO_IC) for stimulation site RO12
embedded in white matter (See Supplementary Figure 2C).
Finally, for stimulation at site RC12 in BI15, the errors
reduced from ∼22%/∼24% (ISO_III/ISO_I) to 10% (ANI-
SO_IC) at electrode RO (See Supplementary Figure 2C).
Both electrode RC and RO in BI15 had first 6 contacts in
the white matter with contact 1 in electrode RC very close
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(within 2 mm) to corpus callosum. Thus, there was a
systematic improvement in accuracy from using anisotropy in
the model, especially when the stimulating dipole or recording
contacts, or intervening tissue, exhibited high anisotropy.

3.4 Comparison between anisotropic models

Assigning a constant value to the anisotropy produced
models (ANISO_WM_II_abcd) with generally poor perfor-
mance. Anisotropic model ANISO_WM_II_d had the worst
performance of all the anisotropic models in all subjects as
seen in graph plotted in Fig. 2. Conversely, the anisotropic
models assuming a linear relation between diffusivity and
conductance (ANISO_WM_I and ANISO_IC) had excel-
lent performance, clearly out-performing the models with
constant anisotropy. Some evidence was found in subject
BI18 for more accurate modeling when including aniso-
tropic information for gray matter and sub-cortical elements
from DTI in ANISO_IC. Electrode LH had its four contacts
embedded in tissue labeled as ‘sub-cortical’ while electrode
LA had first 2 contacts embedded in tissue labeled as ‘sub-
cortical’. This ‘sub-cortical tissue’ is assumed isotropic in
model ANISO_WM_I whereas ANISO_IC incorporates the
linear anisotropic model for the sub-cortical elements using

Fig. 6 Alignment of current
flow with white matter fiber
direction under different models.
(a) Coronal section containing
electrode LC shows fractional
anisotropy (FA) in the white
matter. Superior region of coro-
na radiata is marked by the
rectangular box and labeled as
‘S.C.R’. (b) Alignment of the
current vectors with the white
matter fibers is visualized by
calculating the cosine of the
angle between the primary ei-
genvector of the conductivity
tensor and the electric current
density vector calculated due to
dipole at LC12 in the anisotrop-
ic model, ANISO_IC. (c) Same,
using the 15 tissue isotropic
model, ISO_III. (d) Same, using
the 3 tissue model, ISO_I. Co-
sine values closer to 1 indicate a
higher degree of alignment

Fig. 5 Influence of anisotropy on the intracranial current flow. (a)
Coronal view of implanted depth electrode contacts in subject BI18 as
spheres colored coded with the Fractional Anisotropy (FA) at the
contact location. The spheres are rendered along with the ventricles (in
white) to assist visualization of their approximate spatial locations. The
deepest contact of the LA electrode is in or near the Left Amygdala,
LH: Left Hippocampus, LS: Left Supplementary Motor, LC: Left
Cingulate, LO: Left Orbito-frontal, RH: Right Hippocampus, RO:
Right Orbito-frontal, RS: Right Supplementary Motor, RC: Right
Cingulate. (b) DTI tensors in a coronal plane containing electrode LC
in subject BI18, visualized as 3D ellipsoids color coded with FA
values; the Corpus Callosum (C.C) and Superior region of corona
radiata (S.C.R) are labeled. (c, d, e): Current density vectors in the
region inside the white rectangular box in (B) are visualized using the
LIC (Linear integral convolution) technique for a dipole at LC12 in
model types ISO_I, ISO_III and ANISO_IC, respectively. The
direction of the current is indicated by the texture. (f, h) 3-D renderings
of diffusion tensor ellipsoids near stimulation site LC12 in C.C. and S.
C.R., respectively. (g, i) Electric current density (ECD) vector near
stimulation site LC12 in C.C. and S.C.R., respectively. White arrows
indicate the current flow in the anisotropic white matter model
ANISO_IC whereas red arrows indicate the direction of the current in
the isotropic model ISO_III. Red dots in panels B-I indicate contacts
LC1 and LC2. Another example is shown in Supplementary Figure 3
(dipole RC12 in subject BI15)

R
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DTI information (identical to the proportional constant used
for white matter in ANISO_WM_I). We found reductions
in the overall RDM for stimulation at LA12 from 20%
(using ANISO_WM_I) to 9% (using ANISO_IC) as seen in
Fig. 2(b). A closer inspection of the RDM’s at each
electrode in Fig. 3(c) shows that for stimulation at LA12
inclusion of anisotropy in the sub-cortical elements causes
reduction of errors at LH from ∼21% to ∼8%. There was a
marked reduction in errors due to stimulations at LO12
using ANISO_IC when compared to ANISO_WM_I,
which was due to improved fits at electrode LA and LH
(see Fig. 3(b)). Thus, modeling of intracranial electric field
is more accurate when the level of anisotropy is estimated
in each voxel using information from DTI.

4 Discussion and conclusions

In this paper, we presented the validation of a realistic
anisotropic model for brain tissue using electric potentials
generated by stimulation of an implanted artificial dipole in
human subjects. We examined differences in the electric
current flow within the head between a variety of models,
varying in the compartments they contained, whether they
included anisotropy, and if so, how the anisotropic
conductivity was estimated. A combination of CT, T1-
MRI, PD-MRI and DTI was used to generate the head
models. Quantitative measures like RDM and novel
visualization tools are used to complement and understand
the differences between the models in a more comprehen-
sive manner. Previous studies have provided meaningful
insights to the influence of anisotropy on EEG fields using
simulations (Haueisen et al. 2002) as well as advanced
visualization techniques (Wolters et al. 2006) but have
lacked experimental data to support their conclusions. To our
knowledge, the study presented in this paper is first of its kind
to investigate in a detailed fashion the electric fields generated
intracranially due to a current dipole in a human subject using
a realistic FEM model which includes brain anisotropy. The
measurements at the depth electrodes represent a sparse
sampling of the field. However our previous simulation study
(Bangera et al., manuscript in submission) using a large
number of randomly selected locations as well as the limited
experimental sensor locations in subject BI18 suggested that
it was feasible to make reliable observations using the
experimental electrode locations. The simulation study,
which also involved comparisons between different forward
models showed large differences in the electric fields. These
changes were caused as a result of adding more detail in the
model particularly the CSF and anisotropy. Experimental data
helps us clarify which of the models predict fields that match
reality. By observing the tissue environment around specific
dipole locations and measurement locations affect the

correspondence between model predicted values and exper-
imental data, we can infer the characteristics needed for an
accurate forward model.

4.1 Linear anisotropic model more accurate than global
anisotropic model

An anisotropy ratio of 10:1 between the conductivity along
the white matter fiber directions, versus perpendicular to
that direction, has been reported in literature (Nicholson
1965). This ratio has been used for conducting simulation
studies of the effects of anisotropic white matter in the brain
on EEG topography (Wolters et al. 2006). The model
ANISO_WM_II_d that utilized this anisotropic ratio had
the worst performance of all the anisotropic models in our
study. This is not a surprising result, since the 10:1 ratio can
be considered as an upper bound on the anisotropy ratio for
white matter fibers. The failure of ANISO_WM_II to
provide good fits confirms that the assumption of a global
anisotropic ratio of 10:1 for white matter in EEG/MEG
forward models is erroneous. In contrast, the anisotropic
model ANISO_IC provided the best fit of all the models.
This provides an experimental validation for the assumption
that the conductivity tensor and diffusion tensor share
eigenvectors. Further, the success of a model that assumes a
linear relationship between their eigenvalues sl=dl �ð
0:5708Þ supports the method of quantitatively inferring
the conductivity anisotropy from non-invasive DTI meas-
urements of the water self-diffusion process in the human
brain as proposed by Tuch et al. (Tuch et al. 2001).
isualizations in Fig. 5 clearly show that anisotropy in white
matter influences the return currents when the activated
dipole is close to a region of high anisotropy. Return
currents are not aligned completely with fiber directions but
are rather diverted in the general direction of the fibers with
more alignment than the isotropic case. Thus changes in
potential topography generated by ANISO_IC when com-
pared to ISO_III are not as drastic as the one that would
occur in models where a strong anisotropic ratio is assumed
(such as in ANISO_WM_II). Error reductions were also
observed at measurement locations embedded in white
matter with low FA. Additional specific improvements were
found when anisotropy was modeled in gray matter
including subcortical structures as well as white matter (i.e.,
in the model ANISO_IC in comparison to ANISO_WM_I).
These results agree with the observations made in previous
simulation studies (Haueisen et al. 2002; Wolters et al. 2006)
which found appreciable changes in intracranial potential
topography inside the brain for deep sources embedded in
the white matter. The two studies however used two different
models for anisotropy; the study by Haueisen et al. (2002)
utilized the linear anisotropic model whereas the study by
Wolters et al. utilized the global anisotropic model.
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4.2 Role of CSF

Along with anisotropy, inhomogeneity also plays an
important role in defining the EEG topography. CSF
provides regions of higher current density, which was
visualized in Fig. 4. These agree with the observations
made using similar visualizations by Wolters et al. (2006).
By using a measurement electrode with multiple contacts
in CSF (LS) and a stimulation dipole location closer to
CSF (RS12, which is close to the inter-hemispheric space
filled with CSF), the improvements in RDM using ISO_III
over model ISO_I show that the CSF layer is crucial for
accurate predictions of intracranial potentials in these
regions. Inspite of the improvements in predicted values
due to the inclusion of CSF in isotropic models ISO_II
and ISO_III, experimental comparisons show that on the
whole, average errors in isotropic model without CSF
(ISO_I) are smaller than the errors using isotropic model
with CSF (ISO_II and ISO_III). We speculate that the
removal of CSF compensates for the lack of anisotropy in
ISO_III and results in an “average” potential topography
that is closer to the actual topography and provides
improved performance of ISO_I (compared to ISO_III)
at certain locations.

4.3 Limitations

Accurate representation of the electrical properties of
cortical tissue in forward models for extracellular fields is
still a challenge due to its dependence on measurement
frequency and variability in values reported in literature.
Recent studies (Bédard et al. 2004; Butson et al. 2006) have
suggested that inclusion of reactive elements in a forward
model with inhomogeneous media might be necessary to
mimic the frequency dependence of extracellular media and
explain the frequency-dependent attenuation of extracellu-
lar potentials in cortex. Due to a lack of provision to
include reactive elements in the FEM software used in our
analysis and also to keep the computational burden at a
manageable level, our model was limited to include purely
resistive elements. Thus, the representation of electrical
properties of tissues in the model can be improved upon
and this will be investigated in a future study. The
resolution of the linear anisotropic model used in this study
was limited by the resolution of the diffusion tensor images
(2 x 2 x 2 mm voxel) and the resolution of the FEM
element size (average edge length of 2.5 mm). A further
reduction in the errors can be expected by obtaining DTI
information at 1 mm3 voxel size and generating smaller
FEM elements (with an average edge length of 1 mm). The
linear scaling used between the eigenvalues of the
conductivity and water self-diffusion tensors is assumed to
be a constant for each FEM tetrahedral element used in the

model. This is still an approximation, since a variation in
the scaling factor for each element can be expected based
on variations in the volume of each element in the model.
Although the meshing algorithm generates mesh elements
of approximately the same size, there is a small amount of
variability in the element size, which is not taken into
account. There was inter-subject variability in our results
with the major findings obtained from subject BI18. As
mentioned before, this discrepancy is attributed to the
improved experimental protocol used for subject BI18 as
compared to the other three subjects, which led to a wider
coverage of stimulation and measurement sites in BI18. In
general, experimental evidence at several locations in the
three subjects did support the importance of including
anisotropy for accurate models; however we expect that the
impact of anisotropy on the average errors would have been
larger if all subject had a complete data set. The only
previous intracranial study by Smith et al. (Smith et al.
1983) based on measurements over a single electrode
claimed that a homogeneous model can be used for
accurate calculation of fields at distances greater than
2 cm from the source. Our results clearly do not support
that claim since effects of anisotropy and inhomogeneity
were observed for distances over 2 cm from the source. The
study by Smith et al. (1983) however clearly demonstrates
the pitfalls of using a sparse recording montage in testing
the nature of electric fields in an inhomogeneous and
anisotropic medium such as the brain. Considered as a
whole, the results from our study support the hypothesis
that a detailed description of intracranial tissue including
inhomogeneity and anisotropy is necessary to generate
accurate intracranial forward solutions. Incomplete models
could possibly lead to higher errors when certain details
(such as anisotropy) in the model (ISO_III) are ignored.
With the aid of advanced visualization tools and experi-
mental data, we substantiate the need for further studies
using realistic head models for improved source recon-
structions in the field of bioelectric source imaging.
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Appendix A

Biphasic pulse generation

The biphasic square pulse was generated via software, which
provided control on the flat portions of the square wave with
rounding of edges of the square waves (to avoid stimulus
artifacts). A simple rectangular pulse passed through an EEG
amplifier would produce a recorded waveform with decreas-
ing amplitude during the pulse. The ‘droop’ of the square
pulse refers to this change in slope of flat portions of the
square pulse due to the high pass filtering effects of the
amplifiers. The software provides a compensating ‘upslope’,
which counteracts the droop imparted by the amplifiers and
helps in generating square pulses with flat portions during
voltage measurements. With this waveform (see Fig. 1(d)), it
is possible to average the amplitude across the constant
portions of the recorded pulse thereby improving the signal-
to-noise ratio of the recorded signals.

Signal to Noise Ratio (SNR) calculation

SNR of the signal is calculated using the same method as
that used by Cuffin et al. (Cuffin et al. 2001). For the square
pulse shown in Fig. 1(e), samples are averaged over the
positive and negative phase of the pulse. The signal is taken
as the difference of the averages sampled over the positive
and negative phases of the pulse. For a sampling rate of
2000 Hz and pulse duration/per phase of 15 ms, this
corresponds to an average of 30 samples over each phase.
The noise is defined as the RMS values of 30 samples in
the pre-pulse interval. The SNR is calculated as the average
of the SNR calculated as above for all channels.

Appendix B

Optimized conductivity was obtained by minimizing the
forward solution cost function (error variance between
model predicted value and experimentally measured
electric potential values). The average conductivity value
for each intracranial tissue in the frequency range of
interest for bioelectric activity (<1 kHz) was obtained
from literature and used as the seed point for optimization.
The damped Newton’s method was employed for the
optimization routine. The optimization problem is formu-
lated as below:

s� ¼ argmin s f sð Þ where f : R00 7!R ðB:1Þ

f s1; s2; . . . ; snð Þ ¼ GF2 where GF Vcalc;Vmeasð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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