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SUMMARY

The transcriptional activation of one out of �2800 ol-
factory receptor (OR) alleles is a poorly understood
process. Here, we identify a plethora of putative OR
enhancers and study their in vivo activity in olfactory
neurons. Distinguished by an unusual epigenetic
signature, candidate OR enhancers are character-
ized by extensive interchromosomal interactions
associated with OR transcription and share a similar
pattern of transcription factor footprints. In partic-
ular, we establish the role of the transcription factor
Bptf as a facilitator of both enhancer interactions
and OR transcription. Our observations agree with
the model whereby OR transcription occurs in the
context of multiple interacting enhancers. Disruption
of these interchromosomal interactions results in
weak and multigenic OR expression, suggesting
that the rare coincidence of numerous enhancers
over a stochastically chosen OR may account for
the singularity and robustness in OR transcription.
INTRODUCTION

The olfactory system has the ability to detect and distinguish

among an astounding number of olfactory stimuli (Bushdid

et al., 2014). This vast receptive field is afforded by the large

repertoire of olfactory receptors (OR), which, in most mammals,

are encoded by more than a thousand genes located in

numerous genomic clusters throughout the genome (Buck and

Axel, 1991; Sullivan et al., 1996; Zhang et al., 2004). ORs are

expressed in olfactory sensory neurons (OSNs) in a monogenic,

monoallelic, and seemingly stochastic fashion (Chess et al.,

1994) in such a way that each neuron expresses only one out

of the �2,800 available alleles. For each OSN, the identity of

the expressed OR determines the spectrum of chemicals that
it responds to and its connectivity to the brain (Wang et al.,

1998). The dual role of ORs in odor detection and axon guidance

makes the singularity of their expression critical for olfactory

perception; were multiple ORs coexpressed in each OSN, the

topographic map of OSN projections to the olfactory bulb would

be perturbed, likely resulting in reduced olfactory sensitivity and

resolution.

The continuous transcription of a single OR is maintained by

an OR-elicited feedback signal that stabilizes the expression of

the chosen OR and prevents the activation of additional ones

(Ferreira et al., 2014; Lewcock and Reed, 2004; Serizawa

et al., 2003; Shykind et al., 2004). In mammals, this feedback

uses components of the unfolded protein response (UPR) to

detect the newly translated OR in the endoplasmic reticulum

and to induce transient translation of transcription factor Atf5

(Dalton et al., 2013). Atf5 orchestrates, among others, the

expression of Adcy3, the major adenylyl cyclase in the OSNs

that is necessary for stable OR transcription and OSN differenti-

ation. Adcy3 expression makes OR choice permanent by

signaling for the downregulation of Lsd1, a lysine demethylase

with dual coactivator and corepressor activities that regulate

OR expression (Lyons et al., 2013). This feedback system is

only possible because OR silencing, via the hallmarks of consti-

tutive heterochromatin, occurs early, during OSN differentiation,

and before the onset of OR transcription (Magklara et al., 2011).

This epigenetic silencing is reinforced by the nuclear conver-

gence of OR loci into a few, OR-specific heterochromatic foci

(Clowney et al., 2012). Active OR alleles escape these foci, sup-

porting a role of the spatial compartmentalization between active

and inactive OR alleles to the singular OR expression (Armelin-

Correa et al., 2014). Indeed, disrupting the nuclear architecture

of OSNs violates the ‘‘one receptor per neuron’’ rule, causing co-

expression of multiple OR alleles per neuron, albeit at reduced

levels (Clowney et al., 2012).

These observations provide the molecular underpinnings of

the feedback signal and emphasize the importance of gene

silencing in OR gene regulation; however, they do not explain

how a single OR allele is selected for transcriptional activation
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Figure 1. An Epigenetic Signature for Putative OR Enhancers

(A) Sequencing tracks for DHS-seq and ChIP-seq. Each row displays the number of reads for each track. Triangle indicates H enhancer.

(B) DHS-seq and ChIP-seq tracks over potential OR enhancer Sfaktiria (coordinates are mm9).

(C) Aggregate plots of ChIP-seq and DHS-seq reads over all potential OR enhancers (left) and all potential MOE enhancers (right). y axis is RPKM, and error is

bootstrapped 95% confidence intervals. x axis is centered at DHS peaks.

(legend continued on next page)
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at the beginning of this process. We previously hypothesized

that an intergenic OR enhancer, H, could provide this singularity

because it frequently associates with transcriptionally active OR

alleles from the same or different chromosomes (Lomvardas

et al., 2006). However, deletion of the H enhancer affects only

the expression of three linked and proximal ORs (Khan et al.,

2011). Redundancy for the function of H as a trans enhancer,

provided by additional H-like elements, could explain why the

physical association with H appears to be genetically superflu-

ous for the transcription of most ORs (Williams et al., 2010).

This model, which predicts an intricate network of genomic inter-

actions (Bargmann, 2006), ascribes two distinct roles to each

intergenic OR enhancer: a critical function as a cis regulatory

element, which may open up the local chromatin architecture,

orchestrating the first step of OR choice, and a redundant func-

tion as a trans enhancer which, together with other enhancers,

facilitates high rates of OR transcription.

To identify elements that may provide redundancy for H as a

trans enhancer, we performed a genome-wide search for inter-

genic OR enhancers. DNase I hypersensitivity (DHS)-sequencing

(DHS-seq) and chromatin immunoprecipitation sequencing

(ChIP-seq) experiments uncovered 35 predicted enhancer ele-

ments linked to OR gene clusters. Reporter assays in zebrafish

embryos, followed by transgenic and knockout experiments in

the mouse, support the function of at least 12 elements as

OSN-specific enhancers that likely regulate OR transcription.

Importantly, circularized chromosome conformation capture

sequencing (4C-seq) analyses of sorted OSNs, combined with

two- and three-color DNA fluorescent in situ hybridization

(FISH) experiments, demonstrate the convergence of multiple

enhancers over the chosen OR. Hi-C analysis with chromatin

from the whole main olfactory epithelium (MOE), along with

DNA FISH experiments, revealed extensive inter- and intrachro-

mosomal interactions between most of these elements in olfac-

tory neurons. Finally, two independent genetic manipulations

that disrupt robust OR expression, ectopic expression of Lbr in

mature OSNs and conditional deletion of Bptf, a transcription

factor predicted to bind to these enhancers by in vivo footprint-

ing experiments, result in significant decrease of trans enhancer

interactions accompanying the significant reduction of OR tran-

scription. Our experiments, which reveal the regulatory land-

scape of OR enhancers, propose a model of singular OR choice

that depends upon the convergence of multiple enhancers in a

three-dimensional nucleoprotein complex that regulates robust

OR expression.

RESULTS

To examine the epigenetic state of theH enhancer and to use this

information for the identification of novel OR enhancers, we per-

formed DHS-seq (Thurman et al., 2012) and ChIP-seq for

H3K4me1 and H3K27ac (Table S1 available online). DHS and
(D) Schematic depicting the E1b-tol2 expression construct.

(E) Zebrafish embryo injected with Sfaktiria-GFP at 24 hr postfertilization (hpf). O

axons expressing GFP.

(F) Results of zebrafish enhancer screen. Percent of injected zebrafish embryos w

See also Figure S1 and Tables S1 and S2.
enhancer mark enrichment is observed at enhancers of OSN-

transcribed genes, such as the protocadherin alpha enhancers

(Ribich et al., 2006) (Figure S1A). The H enhancer sequence is

also enriched for H3K4me1 and H3K27ac and has a well-defined

DHS peak (Figure 1A), suggesting that H is transcriptionally

engaged in more cells than the small fraction of neurons that ex-

press the proximal OR genes on which we do not detect acti-

vating histone marks in whole MOE preparations. The second

known OR enhancer, the P element (Khan et al., 2011), also

has the same features as H.

To identify additional elements that share the chromatin

pattern of the H enhancer, we performed a computational search

for intergenic ChIP-seq and DHS-seq peaks using SICER (Zang

et al., 2009). To remove enhancers that might generally specify

neuronal cell types, we filtered out regions that overlapped with

H3K4me1 andH3K27ac peaks fromcerebellumChIP-seq exper-

iments that we performed in parallel (Figure S1B). However, even

upon this filtering, there are 4,750 intergenic sequences that have

these characteristics in a MOE-specific fashion. To reduce this

number, we restricted the search to only intergenic regions

residing within OR gene clusters (and 100 Kb upstream and

downstreamof these clusters). This strategy reduced the number

of positive hits to 35, with an average distance of ��35 Kb from

the nearest OR (Figure S1B and Table S2).

We also searched for other epigenetic marks that may be

used to distinguish OR enhancers from the rest of the MOE-spe-

cific regulatory elements. Two histone modifications associated

with repression, H3K79me3 and H3K27me3 (Barski et al., 2007;

Ernst et al., 2011), have a unique distribution at the H locus—they

are missing from the actual enhancer sequence but are enriched

in the flanking sequences (Figure 1A). Visual inspection of the

remaining OR enhancer candidates shows that this pattern is

shared among 23 of the 35 potential enhancer elements (ex-

ample in Figure 1B). Aggregate plots comparing ChIP-seq and

DHS-seq reads on OR proximal elements and predicted MOE

enhancers located outside OR clusters highlight the specificity

of this epigenetic signature (Figure 1C). Indeed, although 65%

of predicted OR enhancers overlap with regions of H3K79me3

enrichment, only 2.6% (126/4,750) of all the predicted MOE

enhancers show this overlap (Figure S1B). Interestingly, in

Drosophila embryos, H3K79me3 enrichment is found on devel-

opmentally regulated enhancers (Bonn et al., 2012).

Functional Analysis of Predicted OR Enhancers
We sought a functional assay that is appropriate for a high-

throughput in vivo enhancer screen. We performed transient

reporter assays in zebrafish embryos and scored for MOE-spe-

cific reporter expression as previously described (Booker et al.,

2013). Although the predicted OR enhancer sequences are not

conserved to zebrafish, the H element supports reporter expres-

sion in zebrafish OSNs (Nishizumi et al., 2007), suggesting that

this assay is appropriate for the functional identification of OR
lfactory epithelium is indicated with dotted lines. Bottom, OSN cell bodies and

ith GFP-positive olfactory neurons at 48 hpf for each OR enhancer candidate.
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enhancers. Inspired by a previous description of enhancers as

‘‘islands’’ composing a ‘‘regulatory archipelago’’ (Montavon

et al., 2011), we named the potential OR enhancers after Greek

islands, a nomenclature that will be followed throughout the

manuscript. We cloned the DHS peaks of 32 islands into a

Tol2 retrotransposon-based reporter vector with a minimal pro-

moter and GFP (Figure 1D and Table S3B) (Li et al., 2010). Each

construct was injected into one-cell stage zebrafish oocytes,

and GFP expression was monitored during embryogenesis at

24 and 48 hr postfertilization. Specific GFP expression was

observed in OSNs of the olfactory epithelium for 12 of the se-

quences screened (Figures 1E, 1F, S1C, and S1D). Empty vector

controls do not support GFP expression in zebrafish OSNs.

To identify potential differences between active and inactive

enhancers, we summarized the levels of histone modifications

around DHS peaks using principal component analysis. The first

principle component (PC1) of each modification robustly repre-

sents its overall level at each enhancer locus. Ordering candidate

OR enhancers by H3K79me3 PC1 grouped together enhancers

that were active in zebrafish OSNs, as well as the H and P

elements (Figure S1E). This set of enhancers had high levels of

flanking H3K79me3. Ordering by H3K4me1 PC1 shows that en-

hancers that were active in zebrafish OSNs had relatively lower

levels of H3K4me1 (Figure S1F). Interestingly, OR genes prox-

imal to these 11 elements are more highly expressed than the

average OR by RNA-seq of mouse OSNs (Figure S2A).

To further validate the zebrafish reporter assay, we generated

transgenic b-galactosidase (b-gal) reporter lines using a reporter

vector driven by the hsp68 minimal promoter (Kothary et al.,

1988). We tested three zebrafish-positive elements, Sfaktiria,

Lipsi, and Kefallonia (Table S2), referred to as Sfaktiria-lacZ,

Lipsi-lacZ, and Kefallonia-lacZ in the rest of the manuscript.

Whole-mount x-gal staining of these transgenic mice shows

widespread reporter expression specifically in the MOE similar

to the H-lacZ transgenic, which we generated as positive control

(Figures 2A–2D and S2B). Immunofluorescence (IF) for b-gal in

the MOE of the Sfaktiria-lacZ mouse also shows widespread

expression (Figure 2E). In the olfactory bulb, b-gal-positive axons

target multiple glomeruli and express the glutamate transporter

Vglut2 (Figures 2F and 2G), indicating that this enhancer drives

expression inmatureOSNs. In contrast, there is no b-gal IF signal

in Neurogenin-1 positive neurons (Figure S2C), which suggests

that enhancer activity is synchronous to OR expression. Similar

results were obtained from Lipsi-lacZ and Kefallonia-lacZ

transgenics (data not shown). In contrast, b-gal is coexpressed

with olfactory receptor Olfr1507 in Sfaktiria-lacZ transgenics

crossed to Olfr1507iresGFP knockin mice (Barnea et al., 2004)

(Figure 2H).

These transgenic reporter assays demonstrate an OSN-spe-

cific enhancer activity for the candidate OR enhancers. To test

the requirement of these elements in OR expression, we deleted

one of them, Lipsi, which is located on chromosome 2 between

Ofr362 and Olfr364. Our targeting strategy deleted, by homolo-

gous recombination, 1,000 bp of conserved sequence corre-

sponding to the DHS peak at this location (Figure 2I). qRT-PCR

analysis on RNA prepared from wild-type and Lipsi KO litter-

mates shows marked reduction in expression of the eight ge-

nomically linked ORs that reside within this genomic cluster on
546 Cell 159, 543–557, October 23, 2014 ª2014 Elsevier Inc.
chromosome 2, whereas ORs from a distant genomic cluster in

the same or different chromosomes are unaffected (Figure 2J).

RNA in situ hybridization (ISH) analysis in MOE sections from

Lipsi KO and wild-type littermates confirms that expression of

ORs from this genomic cluster is abolished (Figures 2K and S2D).

Multiple Enhancers Interact in trans with a
Transcriptionally Active OR
Our data thus far provide a comprehensive epigenetic and ge-

netic characterization of intergenic DNA elements that may act

as OR enhancers. To examine whether these elements associate

with active OR genes in trans, like the H enhancer (Lomvardas

et al., 2006), we performed 4C on an isolated population of

OSNs expressing Olfr1507. We chose Olfr1507 for this experi-

ment because its expression depends on the genomically linked

H enhancer. Thus, it provides an ideal gene locus for testing the

hypothesis that a cis enhancer may act in concert with trans en-

hancers. 4C was performed on fluorescence-activated cell

(FAC)-sorted neurons from Olfr1507iresGFP knockin mice, and

libraries were amplified with inverse PCR primers anchored at

the Olfr1507 promoter as previously described (Clowney et al.,

2012). 4C libraries from GFP+ and GFP� cells were analyzed

by qPCR to quantitate the relative enrichment of various DNA

loci. Several of the newly identified sequences are enriched in

the library corresponding to GFP+ cells at levels approaching

the enrichment levels of H (Figure 3A). Enrichment is significantly

reduced in GFP� cells, which suggests that these associations

are restricted to cells that transcribe Olfr1507. Two-color DNA

FISH analysis (Figure 3B) verified that the Olfr1507 locus

frequently colocalizes in trans with the three most highly en-

riched elements, Lipsi (chr2), Sfaktiria (chr6), and Crete (chr11),

in OSNs immunolabeled with an anti-Olfr1507 antibody (�63%

of Olfr1507+ OSNs, n = 124 for each pair). Similar results were

obtained by FISH in Olfr1507iresGFP MOEs using anti-GFP im-

munolabeling (Figure S3A). Three-color DNA FISH (Figure 3C) re-

vealed that Olfr1507 colocalizes with both Lipsi andCrete in 16%

of Olfr1507+ OSNs, a highly significant increase over the fre-

quency of colocalization of the three loci in Olfr1507� OSNs

(0.2%, n = 406, p = 2E-10, chi-square test) (Figure 3D). Thus,

as the network of enhancer interactions becomes more com-

plex, it remains associated with OR transcription.

To explore the long-range interactions of Olfr1507 in an unbi-

ased fashion, we generated 4C-seq libraries generated from

GFP+ and GFP� cells from Olfr1507iresGFP mice (Figure S3B).

In agreement with our qPCR analysis, 4C-seq revealed multiple

contacts between Olfr1507 and 15 candidate OR enhancers,

nine of which are functional in zebrafish OSNs (Figures S3C–

S3E and Table S5). Interactions with OR enhancers were signif-

icantly (p < 0.01, Wilcoxon t test) stronger in Olfr1507+ OSNs

compared to the negative population (Figure 3E). The network

of interchromosomal interactions between Olfr1507 and pre-

dicted OR enhancers is depicted in Figure 3F.

Extensive cis and trans Interactions between Potential
OR Enhancers in OSNs
To examine the extent of putative enhancer interactions in OSNs,

we performed Hi-C analysis in the whole MOE. To specifically

interrogate the interactions of OR enhancer candidates, we
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Figure 2. Genetic Verification of Enhancer Function in Mouse OSNs

(A–D) Whole-mount x-gal staining of MOE from H-lacZ, Sfaktiria-lacZ, Kefallonia-lacZ, and Lipsi-lacZ enhancer transgenic mice, respectively.

(E) IF for b-gal (red) in Sfaktiria-lacZ olfactory epithelium. DAPI nuclear stain (blue).

(F) IF for b-gal (red) in Sfaktiria-lacZ olfactory bulb.

(G) IF for b-gal (red) and Vglut2 (green) in Sfaktiria-lacZ olfactory bulb.

(H) IF for b-gal (red) and GFP (green) in Sfaktiria-lacZ; Olfr1507iresGFP olfactory bulb. DAPI nuclear stain (blue).

(I) Targeted deletion of Lipsi allele on chromosome 2. 998 bp were replaced with a floxed neo cassette via homologous recombination. Coordinates are mm9.

(J) RT-qPCR from Lipsi KO and Lipsi WT adult MOE. RT-qPCR levels for each primer set were normalized to OMP, and the results are shown as fold difference of

Lipsi KO over Lipsi WT. Error bars represent SEM over duplicate experiments.

(K) RNA ISH for Olfr361 and Olfr362 pooled probes and Olfr364 in Lipsi KO and WT MOE at P1.

See also Figure S2 and Tables S2 and S3.
performed a modified Capture-C protocol (Hughes et al., 2014)

(see Extended Experimental Procedures). Our analysis revealed

that 32/35 elements associate in high frequency with other en-

hancers from this repertoire. These interactions appear to be

highly specific; there is a significant (p < 0.01, Wilcoxon t test)
20-fold enrichment for reads that span two different potential

OR enhancers compared to reads that span an OR enhancer

and one of the other MOE enhancers (Figure 4A). Within the

observed repertoire, there are ‘‘promiscuous’’ enhancers that

form frequent interactions with many other elements (Evia and
Cell 159, 543–557, October 23, 2014 ª2014 Elsevier Inc. 547
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Gavdos), whereas others form fewer interactions (Nimos and

Lemnos). A contact matrix depicting the pairwise frequencies

of these interactions organized by hierarchical clustering reveals

the existence of four clusters of potential enhancers exhibiting

similar frequencies of interactions (Figure 4B). Enhancers

located on chromosomes 2, 3, 7, and 16make the most frequent

contacts with each other andwith enhancers from other chromo-

somes (Figure 4C).

To independently verify the Hi-C data, we performed two-co-

lor DNA FISH analysis on sections of the MOE (Figures 4D, 4E,

and S4). DNA sequences that interact infrequently by Hi-C,

like Nimos, exhibit a low frequency of colocalization with other

OR enhancers both in OSNs and in sustentacular cells, a non-

neuronal cell type of the MOE that we used as an internal

control (Figure 4D). In contrast, increased Hi-C interactions

generally correspond to frequent colocalizations by DNA FISH

that are restricted to OSNs. On average, enhancer-enhancer

colocalizations are �6 times more prevalent in OSNs than in

sustentacular cells (n = 3,264 nuclei; p = 10�44, chi-square

test). As in the Hi-C experiment, enhancer-enhancer interac-

tions are specific to OR enhancers, as colocalizations with pre-

dicted MOE enhancers are not significantly increased in OSNs

compared to sustentacular cells (Figure 4D). It is worth noting

that sequences engaged in interchromosomal contacts include

those that were not functional in the zebrafish reporter assay,

suggesting that they may have functional regulatory roles in

the mouse.

The Regulatory Landscape of OR Enhancers
Because enhancer-bound transcription factors mediate long-

range genomic interactions (Nolis et al., 2009), we searched for

proteins that bind on candidate OR enhancers in order to obtain

mechanistic insight into the formation of these intricate in-

terchromosomal associations. For an unbiased search of re-

gulatory sequences, we sought to isolate DNase I protected

sequences on the candidate enhancers. In vivo footprinting by

DHS-seq was recently used to identify, in a high-throughput

fashion, regulatory sequences and factors that control cell-

type-specific differentiation (Neph et al., 2012a, 2012b). To in-

crease the depth of our DHS-seq reads on the 35 putative

enhancers, we employed a similar sequence capture strategy

as done for Hi-C, using oligos tiling the OR enhancer candidates

(Figure 5A) and modifying a recently published enrichment strat-

egy (Stergachis et al., 2013).
Figure 3. Multiple Enhancers Interact in trans with a Chosen OR

(A) 4C fromOlfr1507iresGFP FAC-sorted cells, library constructed by inverse PCR

OMP in GFP+ and GFP� cells. Error bars display SEM between triplicates.

(B) IF staining for Olfr1507 (green) and two-color DNA FISH for Olfr1507 DNA (gree

of Olfr1507-positive cells containing colocalized red and green probes is indicat

(C) IF staining for Olfr1507 (green) and DNA FISH for Olfr1507 (green), Lipsi (red

containing three-color colocalization is indicated.

(D) Quantification of (C). Percent Olfr1507+and Olfr1507�OSNs containing three-

(E) 4C-seq from Olfr1507iresGFP-positive and -negative cells, library constructed

enhancers are plotted. y axis is RPKM that span two different putative enhancer

(F) Circos plot (Krzywinski et al., 2009) of OR enhancer chromosomal locations

weighted by frequency of interaction (RPKM that span two different putative enha

and interaction frequencies.

See also Figure S3.
After enrichment, DHS-seq read coverage of the OR en-

hancers increased �10,000-fold (Figure 5A). Mapping DNase I

cleavage sites across the H enhancer revealed multiple se-

quences that are protected from DNase I digestion (Figure S5A)

and that can be computationally identified as footprints (Neph

et al., 2012b). We performed a motif search of footprinted se-

quences in the 12 enhancers with confirmed zebrafish activity

using MEME (Bailey and Elkan, 1994). This analysis revealed

four protected sequence motifs, which match predicted binding

sites for Atf5, Evx2/Lhx2, Olf/Ebf, and Hdx (Figures 5B and

S5B). Interestingly, three of these factors, Atf5, Olf/Ebf, and

Lhx2, have reported roles in OR gene regulation (Dalton et al.,

2013; Hirota and Mombaerts, 2004; Rothman et al., 2005).

ChIP experiments for Lhx2, for which we were able to obtain

a ChIP-quality antibody, revealed enrichment on OR enhancers

containing Lhx2 motifs (Figure S5C, see Extended Experimental

Procedures), providing independent verification of the in vivo

occupancy data.

Next, we expanded our search to the complete repertoire of

enhancers identified by epigenetic analysis. Across the 35 po-

tential enhancers, 1,040 footprints were identified with signifi-

cant footprint occupancy scores (FOS < 0.5) (Table S4A). Eleven

TF motifs from the TRANSFAC database had median footprint

scores of less than one, indicating DNase I protection (Figure 5C).

Homeodomain TFmotifs comprise themajority of the footprinted

motifs. Four TF motifs (Nobox, Foxj2, Cdx, and C/EBPgamma)

have p values < 0.05 and exhibit protection of the consensus

sequence across all OR enhancers (Figure 5D). Among con-

sensus sequences with reduced FOS, the predicted binding

motif for transcription factor Bptf (bromo and PHD-finger tran-

scription factor) (Jordan-Sciutto et al., 1999) appeared as a

promising candidate protein that may be involved in the forma-

tion or stabilization of long-range genomic interactions. As the

histone binding component of the NURF chromatin remodeling

complex, Bptf binds acetylated and methylated histone tails

from different histones through the bromo and PHD-finger do-

mains, respectively (Ruthenburg et al., 2011), which could po-

tentially mediate the bridging of chromatin fibers from different

chromosomes. Bptf has previously been shown to facilitate

expression of Hox genes via chromatin remodeling at cis-regula-

tory sequences (Wysocka et al., 2006) but has yet to be impli-

cated in OR expression.

To examine the functional significance of Bptf binding on OR-

proximal enhancers, we conditionally deleted Bptf in theMOE by
offOlfr1507 promoter. qPCR enrichment of candidate OR enhancers relative to

n) and Lipsi, Sfaktiria, and Crete DNA (red). DAPI is nuclear stain (gray). Percent

ed for each pair.

), and Crete (blue) DNA. DAPI is nuclear stain (gray). Percent of Olfr1507+cells

color colocalizations.

by inverse PCR from Olfr1507 promoter. Average number of contacts for OR

s at an expected ligation site.

and 4C-seq contacts with the Olfr1507 promoter in Olfr1507+ cells. Lines are

ncers at an expected ligation site). See Table S5 for enhancer names, locations,

Cell 159, 543–557, October 23, 2014 ª2014 Elsevier Inc. 549



A B

C D E

Figure 4. An Intricate Network of Enhancer Interactions in Mouse OSNs

(A) Average Hi-C connectivity of OR enhancers with other OR enhancers compared to average connectivity of OR enhancers to MOE enhancers. y axis is reads

spanning two different genomic regions normalized to the total number of reads.

(B) Contact matrix depicting interaction frequency between candidate OR enhancers (red, highest interaction frequency; blue, lowest interaction frequency).

Normalized read counts spanning two enhancer regions were divided into 20 bins, with 5 bins representing each color shade (color key provided for quantitation).

Interactions between enhancers are hierarchically clustered.

(C) Circos plot of OR enhancer chromosomal locations and Hi-C contacts. Lines are weighted according to frequency of enhancer-enhancer interactions.

(D) Results of DNA FISH screen. x axis is percent nuclei containing two-color colocalization between OR enhancer candidates, and y axis is enhancer candidate

pairs tested. OSN and sustentacular cell nuclei indicated. Vertical line is baseline OSN colocalization frequency. Ios and Ikaria were not significantly reduced in

(legend continued on next page)
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crossing a floxed Bptf allele (Landry et al., 2011) to a Foxg1-Cre

driver that is expressed before the onset of OR expression (Hé-

bert and McConnell, 2000). We refer to the Foxg1-cre, Bptf flox/

flox mouse as the Bptf KO. These mice die perinatally, thus re-

stricting our analysis to E18.5 embryos. IF for Olfr1507 in sec-

tions from Bptf KO and control MOEs showed complete loss of

expression of this OR in the Bptf KO (Figure 6A). RNA ISH using

a complex probe detecting several hundred ORs (see Extended

Experimental Procedures) also showed a dramatic reduction

in OR expression (Figures 6B and 6G). GAP43 and Ncam1,

markers of immature OSNs that are synchronous to OR expres-

sion (Lyons et al., 2013), are still expressed in Bptf KO MOEs,

suggesting that the loss of OR expression is not caused by

loss of the OSN lineage (Figures 6C and 6D). Finally, a general

deficit in OR expression is corroborated by the loss of mature

OSN markers, such as OMP, Adcy3, and Vglut2, in the Bptf

KO MOE (Figures 6E and 6F).

To test whether Bptf participates in the establishment or main-

tenance of associations between potential OR enhancers, we

performed two-color DNA FISH in sections of control and Bptf

KO MOEs. This analysis revealed a significant decrease in the

frequency of interactions between H-Lipsi and H-Sfaktiria in

Bptf KOOSNs (Figure 6H; p = 0.0005 and p = 0.002, respectively,

chi-square test; n = 356 nuclei). Importantly, the overall chro-

matin architecture of Bptf KO OSNs remains intact, and the ag-

gregation of OR foci is not impaired (Figure 6I), suggesting a

rather specific role of this protein in enhancer interactions and

OR gene activation.

OR Gene Aggregation Facilitates Enhancer
Interactions in trans

An important question emerging from our analyses is whether

frequent enhancer interactions are a consequence of OR gene

aggregation in OSN nuclei. The fact that we detect enhancer co-

localization withOlfr1507more frequently in Olfr1507+ cells sug-

gests that these associations would preferentially occur outside

the repressive OR foci, which is where the transcriptionally active

ORs also reside (Clowney et al., 2012). Two-color DNA FISH

shows that 60% of H or Lipsi alleles colocalize with a complex

DNA FISH probe that recognizes most OR loci (panOR probe)

(Figure 7A). However, three-color DNA FISH shows that H and

Lipsi colocalization occurs preferentially outside the OR foci

(p < 10�12; n = 1,530; chi-square test) within euchromatic nuclear

territories (Figures 7A and 7B). Thus, enhancer interactions in

trans may be favored by—but are not a simple product of—the

convergence of linked ORs, a result that is consistent with the

observation that Bptf deletion impairs enhancer interactions,

but not OR aggregation.

It is possible that the differentiation-dependent aggregation of

OR loci instead facilitates enhancer interactions by bringing the

elements into close proximity. To test this, we analyzed the fre-

quency of interchromosomal associations between potential

OR enhancers in OSNs that express Lamin b receptor (Lbr).
sustentacular cells, probably due to the genomic linkage of these DNA elements, w

multiple sections of the MOE.

(E) Representative DNA FISH for H (red) and Lipsi (green) in OSN nucleus. The b

See also Figure S4.
We previously showed that ectopic Lbr expression in OSNs

disrupts the aggregation of OR genes and the interaction of the

H enhancer with OR genes in trans, but not in cis (Clowney

et al., 2012). 4C-qPCR analysis of control and Lbr+ FAC-sorted

OSNs revealed significant reduction in the frequency of trans in-

teractions between potential OR enhancers upon Lbr expression

(Figure 7C), supporting a role for the unusual nuclear architecture

of OSNs, and possibly for the aggregation of OR loci, in the

frequent association of predicted OR enhancers from different

chromosomes. Importantly, because OR transcription is signifi-

cantly reduced in Lbr+ OSNs (Clowney et al., 2012), these data

provide an independent genetic manipulation whereby the spe-

cific disruption of trans enhancer interactions reduces OR tran-

scription rates. Thus, the same process that contributes to the

effective silencing of OR transcription, the aggregation of OR

genes in heterochromatic foci, may also facilitate the activation

of a single allele by increasing the probability of enhancer-

enhancer interactions.

DISCUSSION

Our experiments revealed 35 intergenic OR-linked sequences

that share common epigenetic properties with the H element,

the prototypical OR enhancer. In addition to common enhancer

features, these sequences are characterized by high flanking

levels of H3K79me3. Currently, it is not clear whether these

epigenetic marks coexist on the same enhancer alleles or

whether they reflect different states of these elements in the total

cellular population. In any case, our reporter screen showed that

12 of the 32 elements that were tested regulate OSN-specific

expression in zebrafish OSNs and revealed a positive associa-

tion between flanking H3K79me3 enrichment and enhancer ac-

tivity. We demonstrated the activity of three of these elements

(Lipsi, Sfaktiria, and Kefallonia) as OSN enhancers in the mouse,

and we showed that Lipsi is necessary for the expression of

proximal OR genes. Because zebrafish reporter assays for

mammalian enhancers generate false negatives (Ariza-Cosano

et al., 2012; Booker et al., 2013; McGaughey et al., 2008), it is

likely that many of the DNA elements that did not activate tran-

scription in zebrafish OSNs are mammalian or mouse-specific

OR enhancers, especially in light of their extensive interactions

with verified enhancers. It is worth noting that our screen is far

from being saturated because enhancers that are transcription-

ally engaged in a smaller cell population would not meet our

computational thresholds, and enhancers with a different epige-

netic signature would be ignored.

Our experiments revealed an unusual network of genomic in-

teractions occurring predominantly between putative OR-asso-

ciated enhancers from different chromosomes. Interactions

identified by Hi-C were verified by extensive DNA FISH experi-

ments, which demonstrated that sequences from different chro-

mosomes colocalize in up to 35% of OSN nuclei. 4C-seq from

FAC-sorted OSNs and three-color DNA FISH experiments
hich both reside on chromosome 7 at 9 MB distance. Error bars are SEM from

lue nuclear stain is DAPI.
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Figure 5. Shared Transcription Factor Footprints on OR Enhancers

(A) Schematic of sequence-capture-based method of DNase I library construction.

(B) DNase I cleavages mapped over OR enhancer candidates Rhodes, Tinos, and Ios. Blue bars indicate footprints containing ATF5, HDX, EVX2/LHX2, and EBF

motifs.

(C) Transcription factor (TF) motifs from the TRANSFAC database that are enriched on OR enhancer candidates and average footprint score for each TF motif.

Low FOS scores indicate greater footprint occupancy. TF motifs are color coded according to TF family.

(D) Average DNase I cleavages for TRANSFACmotifs on 35 candidate OR enhancers. The x axis is centered at the consensus sequence (shaded box). Fraction of

OR enhancers containing each TF motif is indicated in parentheses. Error is bootstrapped 95% confidence intervals.

See also Figure S5 and Table S4 for footprint and motif locations.
suggest that more than one enhancer colocalizes with an OR

gene in the neurons that transcribe that OR. Previous work

showed that H interacts in cis and in trans with the transcription-
552 Cell 159, 543–557, October 23, 2014 ª2014 Elsevier Inc.
ally active OR allele (Lomvardas et al., 2006). Because the inac-

tive Olfr1507 allele is epigenetically similar to other silent ORs in

Olfr1507+ OSNs (Magklara et al., 2011) and likely spatially
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Figure 6. Bptf Is Required for OR Expression and Enhancer Interactions

(A) Olfr1507 IF (green) in Foxg1-Cre; Bptf flox/+ (heterozygote) and Foxg1-Cre; Bptf flox/flox (KO) MOE at e18.5. DAPI is the nuclear stain (blue).

(B) PanOR RNA ISH in Bptf heterozygote and KO.

(C–E) ISH for developmental markers in Bptf het (top) and KO (bottom).

(F) Adcy3 IF (red) and Vglut2 IF (green) in Bptf het (top) and KO (bottom). DAPI (blue) is nuclear stain.

(G) Quantification of OR ISH experiment (B) in Bptf het and KO. Error bars represent the variance over duplicate experiments.

(H) Quantification of DNA FISH colocalizations betweenH and Sfaktiria BAC probes and between H and Lipsi BACprobes in Bptf het and KO. The y axis is percent

OSN and sustentacular cell nuclei containing colocalized probes.

(I) DNA FISH with complex pan olfactory receptor (PanOR) probe (red) in Bptf het and KO OSNs. DAPI is nuclear stain (blue).
indistinguishable from them (Armelin-Correa et al., 2014), the

parsimonious assumption is that multiple OR enhancers also

coalesce over the transcriptionally active OR allele.
A question emerging from our observations regards the func-

tional significance of the convergence of multiple enhancer ele-

ments over the chosen OR. Recent data revealed that many
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Figure 7. OR Gene Aggregation Promotes Enhancer Interactions

(A) Percent of OSN nuclei in which individual BAC probes for H and Lipsi are colocalized with PanOR probe (two-color DNA FISH) and in which colocalized H and

Lipsi BAC probes are colocalized with PanOR probe (three-color DNA FISH).

(B) Three-color DNA FISH with PanOR probe (magenta), H BAC (red), and Lipsi BAC (green). DAPI is nuclear stain (gray). Arrow indicates colocalized enhancer

probes located outside of OR foci.

(C) 4C-qPCR analysis in Lbr-overexpressing mice (orange bars) and control mice (blue bars). 4C library is generated by inverse PCR from the H enhancer.

Enrichment of candidate OR enhancers and OR promoter sequences on different chromosomes are normalized to control gene OMP. Error bars are SEM from

duplicates.

(D–F) A model for essential and redundant functions of an OR enhancer in cis and in trans respectively. Schematic representations of different states in the OSN

nucleus (left) and corresponding transcriptional outputs (right). An OR gene (orange box) located proximal to an enhancer (orange circle) is repressed by

H3K9me3 (red flag, D). The cis-proximal enhancer may facilitate derepression of the OR chromatin landscape (green flag, E) but is not sufficient for OR tran-

scription. Multiple trans-interacting enhancers (colored circles) aggregate around the transcribed cis-proximal OR (orange box, F).
developmentally regulated genes require numerous enhancers

for their proper expression. Experiments in the developing

mouse embryo have shown that multiple enhancer sequences
554 Cell 159, 543–557, October 23, 2014 ª2014 Elsevier Inc.
act in a coordinated fashion to activate Hox genes in various tis-

sues, and similar observations have beenmade for the activation

of protocadherin gene clusters (Andrey and Duboule, 2014;



Delpretti et al., 2013; Guo et al., 2012; Montavon et al., 2011;

Noordermeer et al., 2014). Thus, enhancers may act in an addi-

tive or even synergistic fashion to increase transcription rates.

Given that ORs likely represent the most abundant protein-

coding mRNAs in OSNs, it is possible that the convergence of

multiple enhancers contributes to the robustness of OR tran-

scription. Coordinated action between multiple loci in trans has

been also described for the activation of the human IFNb gene,

which is also expressed in a stochastic but robust fashion

upon virus induction (Apostolou and Thanos, 2008). Finally, ge-

netic experiments suggest that a DNA sequence may act as a

trans enhancer during the stochastic photoreceptor gene choice

in Drosophila ommatidia (Johnston and Desplan, 2014). Thus,

while the Hox genes, with restrictive spatiotemporal expression

requirements, use an ‘‘archipelago’’ of cis regulatory elements to

achieve precise expression patterns, systems that tolerate or

even seek stochasticity may utilize trans interactions to obtain

robust but low probability transcriptional outputs.

Currently, there is no direct evidence of a role of these interac-

tions in OR transcription. Previous work showed that deletion of

H does not affect expression of more than three proximal OR al-

leles, despite the physical association of this enhancer with mul-

tiple other ORs. Similarly, deletion of P or Lipsi appears to affect

the expression of linked OR alleles only, a result also observed in

H,P double-KO mice (Khan et al., 2011). However, with at least

15 enhancer elements interacting frequently with the Olfr1507

promoter in Olfr1507+ OSNs, it is expected that deletion of a sin-

gle trans enhancer does not elicit transcriptional consequences.

In contrast, if each of these elements is required for a critical step

in the transcriptional activation of cis-linked OR genes, such as

orchestrating the desilencing of the linked ORs, then each indi-

vidual deletion may be sufficient for a detectable transcriptional

effect in cis (Figures 7D–7F), explaining why these enhancers are

required in cis but are redundant in trans.

To test this model of trans enhancement, we perturbed the

ability of these elements to interact with each other in trans.

Two independent experiments, deletion of Bptf and expression

of Lbr in OSNs, resulted in significant downregulation of OR tran-

scription, to the extent that ORs are not detectable by RNA in situ

hybridization (ISH) or IF in the mutant OSNs. Although in both

cases we cannot directly attribute the downregulation of OR

transcription to the reduced frequency of trans interactions,

these results are consistent with our model. Recent experiments

showed that an increase in the number of homeodomain andO/E

sites on the promoters of transgenic ORs increases the fre-

quency by which they are transcribed (Vassalli et al., 2011).

Because the only way to increase the local concentration of

binding sites for these transcription factors near an OR promoter

is to recruit sites from other genomic regions, this result is

consistent with the hypothesis that each enhancer on its own

is required, but not sufficient, for the expression of proximal ORs.

There are alternative interpretations of our data that do not

invoke coordinated action between distant OR enhancers. For

example, enhancer convergence may reflect the existence of

specialized nuclear bodies or factories with high affinity for these

enhancers and for the protein complex that supports OR tran-

scription. Such a nuclear body is described in the regulation of

VSG genes in trypanosome (Navarro and Gull, 2001). Moreover,
sequestering these putative enhancers into distinct nuclear terri-

tories may primarily prevent them from interacting with their

proximal ORs, essentially ‘‘decommissioning’’ a large number

of elements in each OSN. Thus, enhancer convergence may

serve two functions: to eliminate the possibility of simultaneous

choice of multiple ORs and to ensure robust expression of the

single active OR.

In summary, our data are consistent with a model in which the

robust transcription of an OR requires an enhancer in cis and

numerous enhancers in trans. High levels of OR expression

may be necessary for activation of the Perk pathway via ER

stress, and it is likely that only ORs expressed above a certain

threshold can elicit this feedback. This prediction is consistent

with the observation that transgenic ORs expressed at low levels

from heterologous promoters can be coexpressed with endoge-

nous ORs (Zhou and Belluscio, 2012). Because the vetting

mechanism that stabilizes OR choice may screen for both the

quality and quantity of OR protein, ORs transcribed at subopti-

mal levels will be turned off by sustained Lsd1 expression. If

the number of enhancers associating with an OR promoter

indeed determines expression levels, then stable OR expression

will occur only once a sufficient number of enhancer elements

associate with an OR promoter. Simple modeling of the ob-

served experimental frequencies of pairwise enhancer interac-

tions predicts that the colocalization of 16 different enhancers

from a repertoire of 35 will occur only once in each OSN nucleus

(see Extended Experimental Procedures). Thus, depending on

the actual number of enhancers needed to achieve feedback-

eliciting levels of OR transcription, the limited, or even unique

generation of a nucleoprotein complex with sufficient number

of enhancers may provide the elusive singularity of OR choice.

It seems counterintuitive that a sensory system critical for sur-

vival and reproduction would rely on a molecular mechanism as

inefficient and probabilistic as the interchromosomal conver-

gence of a large number of enhancer elements. However, unlike

most developmental systems that are built upon tight spatiotem-

poral regulation, the peripheral olfactory system may be able to

tolerate such a variable and often nonproductive process

because an efficient feedback mechanism is in place to ensure

that terminal OSN differentiation occurs only upon OR choice.

This mechanism is compatible with the rapid evolution of the

OR gene family, which is characterized by significant copy num-

ber variations among closely related species and significant

polymorphisms within species in accordance with the essential

function of this gene family in adaptation. It remains to be seen

if other fast-evolving gene families involved in the perception

of—and the protection from—the constantly changing external

environment (Clowney et al., 2011) may be employing similar

radical mechanisms for stochastic and mutual exclusive gene

expression.

EXPERIMENTAL PROCEDURES

Mouse Strains

Mice were treated in compliance with the rules and regulations of IACUC. The

Lipsi enhancer knockoutmousewas generated by homologous recombination

in embryonic stem cells (ESCs) (see Extended Experimental Procedures).

Other mouse strains used are described in the Extended Experimental

Procedures.
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ChIP-Seq and DHS-Seq

Nuclei from the olfactory epithelium of 6- to 8-week-old wild-type mice were

isolated, and native chromatin ChIPs were performed as described (Magklara

et al., 2011). For DHS-seq, nuclei from the olfactory epithelium were isolated

and digested briefly with DNase I (Ambion). For Illumina sequencing, 100–

500 bp fractions were gel extracted and prepared. See Extended Experimental

Procedures for more detailed protocols.

ChIP-Seq and DHS-Seq Analysis

Sequencing reads were mapped to the mouse genome using Bowtie2 (Lang-

mead and Salzberg, 2012). SICER (Zang et al., 2009) was run on reads that

mapped to OR clusters or the whole genome to identify OR andMOE potential

enhancers, respectively. OR clusters were defined as genomic regions con-

taining one or more OR genes extending to the nearest non-OR Refseq

gene. Peaks located within 5 kB of a Refseq gene or an OR promoter (Clowney

et al., 2011) were subtracted. DHS peaks that intersected H3K4me1 or

H3K27ac peaks were selected, and DHS peaks that intersected with cere-

bellum H3K4me1 or H3K27ac peaks were subtracted.

Transgenic Zebrafish and Mouse Assays

Enhancer candidate sequences were amplified from mouse genomic DNA

using primers targeting DHS peaks (Table S3B). PCR products were cloned

into the E1b-GFP-tol2 vector (Li et al., 2010) containing aminimal promoter fol-

lowed by GFP and injected using standard protocols into at least 75 one-cell-

stage zebrafish oocytes per construct as described in Smith et al. (2013). GFP

expression was observed at 24 and 48 hpf. Embryos containing at least one

GFP-positive OSN were counted. Embryos with GFP expression in other tis-

sues were excluded. For transgene reporter mice, the same PCR products

were cloned into a vector containing the Hsp68 minimal promoter followed

by the lacZ reporter gene (Kothary et al., 1988).

DHS-Seq Sequence Capture

DHS-seq library was further amplified for 10 PCR cycles, and 1 mg was hybrid-

ized to Seqcap EZchoice probes (NImblegen, Roche) designed to target and tile

OR enhancer regions (Table S3A). See also Extended Experimental Procedures.

ChIP qPCR

Crosslinked ChIPs were performed on chromatin isolated from MOE of

3-week-old wild-type mice using anti-Lhx2 (kind gift from Mark Roberson).

See Extended Experimental Procedures for detailed protocols.

ACCESSION NUMBERS

Raw sequencing data can be accessed at Gene Expression Omnibus (GEO)

GSE55174 and GSE52464.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and five tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2014.09.033.
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