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Summary

A study is made of the behavior of mechanical models made of elements
(springs and dashpots) vhose properties (stiffness and ¢wmnﬂmw&%u vary in
time. A particular distinction is mede between elastic and hypoelastic be-
havior of aging springs. A further distinction is shown between modelis
described by differential and by integro-differential equationg, and a
clagssification is made of the types of differential equations that may be

cbtained. Several examples of model behavior are studied in detail.




1. Introduction

While it igs well established that the integral, or wowwwamﬁwu<opﬁmwwmu
Tepresentation of the behavior of linear viscoelastic continua is more gen-
crel than the @wwwmummﬂwmwumﬂcmwwoﬁ wmﬁwmmmuwmdwomeu the latter is stijl fre-
quently used; and though the rrinciples of thermodynamics have been used in
establishing Mdiu the starting mend is usually an analysis of the behavior

of spring-~dashpot anmwmeurv. The response of a model of any degree of

complexity can be determined by superposition of the responses of the elements

comprising it, starting from the equations governing the behavior of the

hasic slements - dashpot and spring - which are, respectively,

U= ME (1)

and
o- Ee, (2)

where < and £ denote stress ang strain, which we shall use ag the mechani -
cal varisbles in place of force and extension. A4 Superposition of the
Tircises given by egs. (1) and (2) (parsliel combination) results in the
Voigt element. The Maxwell element consists of a spring and a dashpot in
series; the Superposition, however, is not of strains, but of strain rates,

wedoy. (2) must be used in its differentisted form
c=E¢, (2')
Provided E is constent, eq. {(2') is equivalent to {2) if it is supplemented

by the usual initial condition of zero strain at Zero stress {definition of
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initial state)}. For more complex models, the bagie equetions need to be

differentiated several times, but the correspondingly more complicated ini-

tial conditions first rroposed by the author (quoted in Ref. 35) may be

obviated by letting stress ang strain vanish smoothly as - eo.

On the other hand, no study appears te have been made of the behavior

of mechanical models whose properties mdwmnOme%u stiffness) vary in time,

. ) . . . . 6
i.2. models Tepresenting aging viscoelastic materiagls, )

Hansen implicitly

used such a model in studying the treep of conecrete, but on the apparent
assumption that the equation of the model was analogous to that of the non-

aging model. Virtually all workers in the rheology of concrete have used

the Volterrs amwwmmmSﬁmﬂmommVumwﬁmv“ and the differential-equation approach

has only recently begun to be mxwwowmmwov
11)

> though both have long been usegd
in systems theory

elasticity™2), wnich is, in fact,

The same may be largely said of work in thermovisco-

& branch of the study of aging visco-
elestic media (or :Mmsmwmw.ﬁwmcamwmmwwawﬁ%;wuwv (2ging induced by tempers-

ture variation).

2. Elastic angd Hypoelastic Bodies

Let us consider a linear spring with stiffness varying in time. 1In

this case, the two forms of Hooke's law corresponding respectively to (2)

and (2'), namely

c= £ (&) e (3)

gnd

= EME (1)




W
.

This may be immediately generalized to an aging medium by replacing MWNW..ﬂu

with the more general R(¥,1):

W, = \,,\Mm?@m.m\a BORICIELS ) |

The mechanical work done on a general viscoelastic body may be given by

t
W = \ﬁ S(TYE(T)dT

e (10)

£
= Hsn.i\& [€(t)- ¢ (t]dr,

the two forms being equivalent if stress and strain vanish smoothly z2s € =- oo

For the elasgtic and hypoelastic spring, respectively, we have

£
r\u_.\ E(t)e () () dn (11)

£
W = ER)E(D)[e®)-e)] . (12)

When thus see that the work done on a hypoelastic spring equals its Volterra
potential energy. Hence, an aging hypoelastic medium is nordissipative in

the Volterra sense. Indeed, the rate of Gisgipation is

. t
D=c¢- s\_u = - Muo\w.%\.ﬁd E)[e@-e(dt, (13)

and this vanishes for an arbitrary strain history if and only if

mew“u .

2t
i.e., if the body is hypoelastic. The Volterra dissipation is therefore a
measure of energy loss Sue to relaxation, regardless of whether this takes

place because of viscous mechanisms or of aging.




3. Models with Dashpots

An aging viscous body AammWMOdv may be uneguivocally characterized by

S = g (08 ()

this follows from the definiiticn of dwmnOmMﬁ%.hﬂu Models may be constructed
with dashpots and either hypoelastic or elastic springs {or voth).
A Maxwell element with a hypoelastic and an elastic spring is described,

respectively, by

[ Owl al

€= Ery + \......@ v (15)
= - Y (16)
= m@ 575 dt mm@ &op

Both equations (15) and (16) may be written .n the standard form

9,(e)c + 9,(+)T (17)
with .wemﬁvunwuﬂﬁw independent functions of time. Consequently, a body
cbeying a constitutive law given by (17) may be represented by a Mexwell
model with either an elastic or a hypoelastic spring.

A Voigt element with an elastic spring is described by

Qum@m +1$w. ﬁmv
Yith o Lj,celastic spring, on the other hand, we have
G = _.nm?‘u..:aam.w%m ..w.,wzmwvm (19)

Equation (18} and (19) are rot equivalent. Indeed, the body described by

(18) nas the property that in a creep test, i.e., under a stress Tp applied
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at time T and maintained thereafter, the ultimate strain is O.o\m ﬁﬁﬂpu
independent of the loading time “T. This property Astow is rot in general
possessed by actusl aging meterials, such as concrete) is, in fact, common
te all bodies described by mwwwmwmnﬁwmw eguations in which the lowest order
of strain derivative is zerc (except, possibly, for differential equeations
with singular behavior at infinity). Equation (19), on the other hand,
leads to an ultimate strain equal to O.O\M.?.uu.

Let us turn, now, to & model consisting of two springs and a dashpot.
In the classical thecry of viscoelasticity it is well known that such a
model may be made by placing a Maxwell element in paralliel with, or a Veigt
element in series with, = spring, both combinations leading to the same
differential equation (the "standard solid" equation). With aging models,
however, the number of possible combinations is greatly increased. Let us
denote an elastic and & hyposlastic spring by E and H, respectively; a
Voigt element with an elastic and gz hypoelastic spring d%‘<m and ¢wm and &
Maxwell element by M (we have already seen that either kind of spring mey
be used in the latter).

Furthsr, let a= and _# denote series and parellel connections, re-

spectively. Then we may have

S
v) Vv - E
() Wi — H
(@) vo — H
(el M WE
(£} M
Let us consider case (a), i.e. a Voigt model with an elastic spring of stiffness




mmdv and a dashpot of viscosity w,mﬁuq in series with an elastic spring of

stiffness E'(t). Let €, and €, denote the strain of the spring and of the

Voigt element, respectively, then

mH m_.ﬂ. E.
H.nﬂ\\muﬁm

£ (t) &, + YTLM.V
Eliminating € and £, , we obtain

F B
Since this equation coniains the three %wamﬁmmmmbw functions w»mwv E{t)

and E'{t}, it is the most general first-order differential constitutive

equation, and may be written in the form

£ + P ()= q,) & + 9,(€)s (20)

with p, (+), 9, () and 9, ?@ independent.

A similar synthesis of models AUVVAOV and {d) leads, respectively, to
. * s _ s R %

(Etp) € +pé 1q+mm+EMmﬁfv+7%¢ WQV )

(E+1E rpE [l p& (2] + B, (o)

= 4+ 4 N_. d /e g S (a)
ErEEY-L(FEE) T T
In dealing with models {e} and (£} we shall use, for simplicity, the

© Maxwell model with a hypoelastic spring (stiffness E). We then have, re-

spectively,




and

EE e Al E)pe] = or 2 (Lg)  ©

Equation {e) is HMWmi.mm of the form (20). Equations (c) and (£) may be

written in the form

£+ pPME =9 WS +9,(1)& (21)
with *u.:uuu %% {¢£\ and m~ (t), again, independent,

Equations {b) and (d) are of the form

E T P)E - 9% 1 g 0)f ro T @

of the four funetions P m.nw:. @p. ?&u only three are independent: +there

exXists & differentisl equation among them which is, in general, different for

models (b} and (d). In voth cases, however, &Nﬂ& vanishes as t-90e if the

the unctions are bounded.

Let us come, next, to the model composed of two springs and two dashpots

which, in rheclogy, is known as a Burgers body; it may be nOE@Ommm of o

standard solid and = dashpot in series or of two Maxwell elements in parallel,

The governing differential equation has the form

* & g LY
€ +a,& = b,& +h3 + b, (23)
where DC._. @V are positive constants,

If, now, we build a model composed of two aging Maxwell elements in

@mHmHHmH (as before, we need not distinguish between elastic and hypoelastic




springs), we find

- S
¢ E® 7 M) )
mw - ammrfi + ||mmwru

fd
[
'..Ja
4]

immedistely apparent that S, and nuw cannot be eliminated from the

above equations without leading %o an integro-differential equation in @& and

Turning, then, to the alternative construction of the aging Burgers
model, we see that we can place a dashpot in series with any one of the
three standsrd solid models described, respectively, by equations (20), (21)

and {22). It is remarksble that each choice leads to a differentisl equation

of the form

E+pt)E= onm +9,4)8 +9, (D, (2h)
with w&my;.&vm%u independent functions of time. Equation (24) is the
generalization of (23) with varisable coefficients, and a recent mﬁsa%wovwmm
shown it to be a 4mHmdem.5mmsm of describing the behavior of actual aging

materials, such as concrete.

k. Generalizations

For non-aging bodies, a differential consgtitutive equation of the form

Au; g
||I+ —re
g pm@z..w:.:.*,mqm b, .oﬂn.;+-,-.+v;uq (25)
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with W’ﬂ 0» will always be cbtained from spring-dashpot models, and, in
particular, from a generalized Maxwell or Voigt umwwmmmnwmdwomwv. Eguation
(25}, in fact, represents four stendard types of behavior, corresponding
to (2) @,= 0= wgm.owf%@nvo» {c} D;..nO*vow (d}a, 20O ﬁm@, In terms of =
generalized Maxwell representation, for example, the corresponding model
consists (&) n-1 Maxwell bodies in parallel with a dashpot, (b) n-1 Maxwell
bodies in parallel with a Voigt body (c) n Mexwell bodies, (d) n Maxwell
bodies and & gpring.

For esging bodies, a general differential constitutive equation may be

written in the form

&5

d"! _ dq"
ar TROIm ot paw)er [aE 4+ g, 1o (26)

We have seen, however, that the remarks applied to (25) do not hold for

(26). In particular, we may have &xamYnnunmm in (21)). Furthermore, =
generalized model having two or more Maxwell elements in parallel, or Voigt
elements in series, will not, in general, lead to a differential equation at
all, but to an integro-differential equation. Let us call such a model "bag".
A "good" model (i.e. one leading to a differential equation of the form (26))
can be constructed only by placing a simple element (spring or dashpot) in
series or in parallel with a "good" model. (The resulting "good" model may,
of course, be degenerate.) For example, the differential equation (25) of
type (2) with n = 3 will be cbtained from any one of the six models shown in
the Figure, but the rheologist would in a1l likelihood use only models I and

II, the generalized Maxwell and Voigt models, respectively. If, however, the




models shown have time-variable elements, then, in general, models I, II
and IIT are "bad", while IV, V and VI are "good".

Cf course, the differential equation obtained from 2 "good" model wiil
depend on whether the springs in it are elastic or hypoelastic., The dis-
tinction is immaterial only in the case of models in which every force
path goes through a dashpot (e.g. the dashpot, Maxwell element, gurgers
model}, which lead to differential equations of the form (26) with
p(t)= O .mmmﬁv“ this last function being independent of the others. In all
other models there exists a force path m@umm entirely through springs (only
one such path if the model is nondegenerate in the usual sense); then, de-
pending on whether the springs in the path are (a) all elastic, (b) all hypo-
elastic, or (c) mixed, we have (a) Pa Y+ 0+ Q, ﬁWuv ﬂvu Pa Tuu =
0= q. Tnvw or (c) T;TG =0 = ﬂ:m.ﬁv. In case {a) OT, A.mg is an
independent function. In case {c¢) it is not, end, in particular, it vanishes
mm.m\¢n8 if all spring compiiances remain finite, so that singular behsvior

of the differential egustion may be expected.
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