UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title

Sample-Specific Cancer Pathway Prediction From Genomic, Transcriptomic and
Phosphoproteomic Data

Permalink
https://escholarship.org/uc/item/8w52m1l7d
Author

Paull, Evan Oliver

Publication Date
2015

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/8w52m17c
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

SAMPLE-SPECIFIC CANCER PATHWAY PREDICTION FROM
GENOMIC, TRANSCRIPTOMIC AND PHOSPHOPROTEOMIC
DATA

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in
BIOMOLECULAR ENGINEERING AND BIOINFORMATICS
by
Evan O. Paull

March 2016

The Dissertation of Evan O. Paull
is approved:

Professor Joshua M. Stuart, Chair

Distinguished Professor David Haussler

Professor Todd Lowe

Dean Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright (©) by
Evan O. Paull

2016



Table of Contents

List of Figures
List of Tables
Abstract
Acknowledgments

Introduction
1.1 Detecting Impactful Genomic Alterations . . . .. ... ... ... ..
1.2 Pathway Methods . . . . . .. ... .. ... o .

1.3 Connecting Genomic Changes to Transcriptional State of Cancer Cells .

TieDIE: An Algorithm for Sub Network Search and Discovery
2.1 Introduction . . . . . . . . . ...
2.2 The TieDIE Algorithm . . . . . . . .. ... .. .. ... ........
2.2.1 Problem Statement . . . . . . .. ... L oL
2.2.2 Relevance Functions . . . . . . . ... ... ... .. ...
2.2.3 Extracting Logically Coherent Paths . . . . . .. ... ... ..
2.2.4  Algorithm Summary . . . . . ... ... ... ... ... ...
2.2.5 Null Model/Significance Test . . . . .. ... ... ... ....
2.3 Validation on Synthetic Data . . . . . . ... ... ... ........

2.4 Validation on genomic and transcriptomic data from patient breast-cancer

2.4.1 Tied diffusion predicts breast-cancer related genes with higher

precision than single diffusion approaches . . . . . .. ... ..
2.4.2 Basal-luminal breast cancer networks on tumor samples. . . . .

2.5 Visualization of Molecular Mechanisms Distinguishing Basal and Luminal

Breast Cancer Samples: . . . . .. . ... ... ... ... ... ...,
2.6 Application to Therapeutic Targets . . . . . . . . . .. .. ... ....
2.7 Sample-specific networks in Breast Cancer . . . . . . . ... ... ...
2.7.1 Computational Analysis . . . . . . .. ... ... ... .....

i

xvii

xviii

33

33
37

40
42
45
45



2.7.2 Mapping the network of an abnormal luminal A tumor . . . . . . 47

Network Analysis and Applications of the TieDIE Algorithm 57
3.1 TieDIE finds effects linking histone modification to transcriptional changes
related togrowth . . . . . . . ..o L o7
3.1.1 Imtroduction . . .. . .. . ... ... ... 57
3.1.2 Kidney Cancer . . . . . .. ... . ... 59
3.1.3 Bladder Cancer . . . . . . . . . .. ... 66
3.1.4 Discussion . . . . . . . ... e e e 73
3.2 TieDIE identifies key kinase and scaffold proteins in BRAF and RAS
mutated thyroid carcinoma samples . . . . . . ... ... ... ... .. 75
3.3 TCGA PanCancer Dataset . . . . .. .. ... .. ... ... ...... 80
3.4 TieDIE Cytoscape Implementation . . . . . .. ... ... ........ 86
Patient-Specific Network Analysis and Applications 88
4.1 Introduction . . . . . . . . . . .. 88
4.2 Tissue-Specific network inference in cell-line model systems . . . . . .. 90
4.2.1 Inference of gene regulatory networks with phosphoproteomic data 90
4.2.2 Gene-Essentiality Prediction in cell-line model systems . . . . . . 98
4.3 Patient-Specific Networks in Metastatic Prostate Cancer . . . . . . . . . 103
4.3.1 Results . . . ... e 105
4.3.2 Methods . . . . . . . . . . e 124
4.3.3 Discussion . . . . . . ..o 130
Future Directions 134
Bibliography 139
A Appendix 179
A.1 Measuring Biology: Biological Networks and Data Types. . . . . . . .. 179
A.1.1 Signaling Interaction Types . . . . . . . .. ... ... ... ... 180
A.1.2 Genome Sequencing and Variant Analysis . . . . . ... ... .. 181
A.1.3 Gene Expression Microarrays and Analysis . . . . ... ... .. 182
A14 RNA-Seq . . . . . . 183
A.1.5 Reverse Phase Protein Arrays (RPPA) . . . . .. ... ... ... 183
A.1.6 Mass Spectrometry for Protein Phosphorylation Quantification . 184
A.1.7 RNAI techniques for drug target identification . . . .. ... .. 185
A.2 Sub network Computation . . . . . .. ... ... .. ... ... ... .. 186
A.2.1 Algorithms for sub network extraction . . . . . .. ... ... .. 186
A.3 Master Regulator Analysis / VIPER Analysis . . . ... ... ... ... 188
A.4 Probabilistic Graphical Models . . . . . ... ... ... ... ... .. 191

iv



List of Figures

1.1

1.2

2.3

A) Oncoprint (www.cbioportal.org) summary of genomic and transcrip-
tional alterations in GBM tumor samples: each sample is a column, and
each row corresponds to one of 4 genes. Frequent amplification and
mRNA over-expression of receptor tyrosine kinase Epidermal Growth
Factor Receptor (EGFR) displays a tendancy towards mutual-exclusivity
with activating mutations in PI3K pathway genes and loss-of-function
mutation in the PTEN tumor-supressor gene [30]. B) Pathway interac-

tions between frequently altered genes (reacts with: EGFR-PIK3CA,PIK3R1,
PIK3CA-PIK3R1; same component: PTEN-PIK3CA,PIK3R1; other: EGFR-

PIK3R1) illustrate different ways the cancer can alter key mechanisms of
tumorogenesis. . . . . ... L Lo e
Schematic overview of MAPK pathways [60]. extra cellular signals are
linked through a three-tier kinase pathway where MAPK is activated

upon phosphorylation of mitogen activated protein kinase kinase (MAPKK),

which is in turn activated by MAPKKK citedhillon2007map. The cellu-
lar processes listed below are essential “hallmarks” of tumorogenesis [85]
and their state can be assessed by measurement of gene expression, using
technologies such as RNA-Seq A.1.4. . . . . . . .. ... ... .. ....
TieDIE: heats are diffused from source and target sets. “Linker” genes
that include heat from both source and target nodes are drawn in purple
as the intersection between diffused sets. TieDIE attempts to maximize
this intersection while maintaining specificity of the diffused source and
target sets (see methods 2.2.5). (Below) Linker genes are used to find
a compact sub network solution that connects source to target nodes.
I then find paths connecting source to target nodes that are logically
consistent with both the perturbation or expression status of each gene
pair, and the type of interaction between each edge in the path. . . . . .



2.4

2.5

2.6

2.7

2.8

Visualization of the TieDIE Diffusion process. Relevant genes from two
separate sets are shown as nodes colored by dyes diffusing on a network
(e.g. mutated genes; red nodes) and target set (e.g. TFs; blue nodes).
Linker genes (purple nodes) residing between the source and target sets
are revealed through a diffusion process evolved over time; two time slices
are shown as stacked layers of the same network [165] . . ... ... ..
Extracting sub networks with a logical consistency filter. Interlinking
sub-networks are extracted and logically consistent paths are identified.
Boxplot of the precision of Single Source Diffusion (SDS) and TieDIE at
finding linking genes in the core network on 20,000 simulated data sets,
compared with a simple k nearest neighbors (KNN) classifier. Recall is
fixed at 4/6 signaling genes in simulated trials, and linking genes outside
of the core set of 6 are considered false positives. Jitter was added to
the x-axis of the points as well as a small amount to the y-axis to allow
viewing the quantized values of precision obtained across solutions. The
width of the overlaid violin plot silhouettes is drawn proportional to the
density of points for the corresponding value of precision. Drawn using an
R script calling the geom_violin function available in the ggplot2 library
version 0.93 (Wickham, 2009) [165]. . . . . ... ... ... ... ....
Frequency of a discovered core and off-core genes in single-source and
tied-diffusion in a simulated network. (A) Single-source diffusion over
the synthetic network. Darker colors indicate genes in a larger fraction
of network solutions in repeated simulated trials at a fixed recall of 4
of 6 signaling genes. (B) The corresponding tied-diffusion frequencies at
identical recall and test conditions [165] . . . . . . ... ... ... ...
Accuracy of single and tied-diffusion approaches to recover known cancer
genes. A) Known cancer genes used as positive controls were derived from
COSMIC and WikiPathways collections. Any linker gene not in the input
sets that was recovered in a diffusion solution was considered to be a true
positive, if present in one of these validation sets. B) Accuracy of tied-
diffusion (blue) compared to single-source diffusion (orange) in recovering
breast cancer-associated genes as recorded in COSMIC measured in terms
of precision (y-axis) plotted against recall (x-axis). C) Same as in B but
using WikiPathway genes [165]. . . . . . . ... ... ... ... .....
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2.9

2.10

2.11

2.12

2.13

2.14

Precision of single-source (blue points) and tied-diffusion (orange points)
with different relevance scores 2.2.2 for identifying pathways in a breast
cancer. Any paths containing even a single randomly injected ‘decoy link
were considered false positives. Recall measures the number of logically
consistent paths (Methods 2.2.3) out of the total possible; precision mea-
sures the number of such consistent paths in the total number returned.
Relevance scores tested are heat diffusion (circles), personalized PageR-
ank (triangles) and SPIA (green circles). For comparison, included are
all-pairs shortest paths (APSP; blue circle) and prize-collecting Steiner
trees (PCST; red dot). Randomly generated networks of various sizes
were obtained to estimate the background distribution (gray dots). Dif-
ferent levels of precision and recall were obtained by varying algorithm
parameters (e.g. the o parameter for single and tied diffusion; [165] . . .
Ratio of overlap scores under the null model, for the Basal vs. Luminal
network. The score for the real (non-permuted) network is shown as a
green vertical line. . . . . .. ... ... L
Tied-diffusion result for luminal A versus basal breast cancer subtypes.
The inner coloring of the rings represents the differential expression in
luminal A as compared with basal samples. The outer ring represents
differential frequency of genomic perturbations in luminal samples as
compared with basal samples: differential mutation (upper right), am-
plification (lower right), deletion (lower left) and DNA-methylated CpG
islands near the promoter (upper left) [165]. . . . . . .. ... ... ...
Figure S5: Overlap between TCGA sample- (yellow circle) and cell line-
derived (blue circle) networks. All numbers reflect the number of network
proteins. A. Comparison of transcription factors differentially active in
tumors (yellow) compared to cell lines (blue). B. Comparison of linker
genes uncovered by TieDIE for tumor- (yellow) versus cell line-derived
(blue) solutions . . . . . . ... Lo
Precision/Recall for various “master regulator” algorithms, in the cell-
line specific breast cancer network. A) Precision of two master regulator
node-importance ranking algorithms (SPIA, PageRank) as well as node
out-degree. A node is considered a true positive if it was found to cause
a significant growth defect in the siRNA inhibition dataset (Turner et
al., 2008). Grey boxplots show multiple random orderings of genes in
the network. B) Precision of master regulators from the TieDIE network
plotted against rankings generated from the entire SuperPathway.

Precision of patient-specific paths over the SuperPathway and TieDIE
networks of varying size. The plot of precision over the entire SuperPath-
way network is shown on the left; on the right, precision for 5 TieDIE
networks of increasing size is shown. The number of linker genes in each
TieDIE solution, relative to the number of genes in the input sets, is
shown in the x-axis and ranges non-linearly from 0.01 to 1.0. . . . . ..
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2.15 Histogram of the fraction of differentially expressed genes (downstream
of our initial set of transcription factors) that are explained by genomic
perturbations in that same sample. For most samples, we found logically
consistent paths explaining 20 - 80% of the differentially expressed genes.

2.16 Luminal A sample TCGA-BH-AOBR specific network reveals basal-like
molecular behavior. The network connects genomic perturbations in the
sample, red or blue rings around nodes, to transcriptional changes in the
same sample, inner node coloring. Red and blue colors indicate higher
and lower cohort mutation rates in luminal A samples as compared with
basal, outer ring; overall cohort differential expression of luminal A com-
pared with basal samples, second ring; individual sample expression, in-
ner circle. Transcriptional interactions, solid lines; post-transcriptional
interactions, dashed. Activating interactions, arrow at the target node;
inactivating, flat bars. . . . . ... ... L L L

3.17 sub network Describing the Impact of Chromatin-Related Mutations in
Kidney Cancer. TieDIE was used to assess the impact of mutations in
genes known to participate in chromatin-remodelling processes (PBRM1,
ARIDIA, BAP1, SETD2, KDM5C), and identified as significant by Mut-
Sig, in a TCGA study of clear cell renal carcinoma [150]. TieDIE iden-
tified a significant sub network connecting 3 of these genes (PBRMI,

95

ARID1A, BAP1) to active transcriptional hubs as identified by the PARADIGM

method. Each gene is shown as a multi-ring circle with multiple levels of
data, so that each ‘spoke’ in the ring represents a single patient sample.
PARADIGM ring, bioinformatically inferred levels of gene activity (red,
higher activity); Expression, mRNA levels relative to normal (red, high);
Mutation, somatic event; centre, correlation of gene expression or activity
to mutation events in chromatin-related genes (red, positive). . . . ..
3.18 Chromatin-related TieDIE solution, alternate view showing the original,
non-discriminant data and inference levels. Same solution as in figure
3.17 with an expanded view by searching all paths from mutated genes
to transcriptional targets up to depth 4 (vs. 3), and original pathway
inferences and gene expression levels are shown instead of the differential
levels. . . . . . e
3.19 Genomic perturbations in kidney cancers are significantly associated with
downstream transcriptional changes through known and novel pathway
circuitry. The TieDIE algorithm was used to identify a network con-
necting the top 19 significantly mutated genes to transcriptional hubs
identified from the identification of transcription factors with targets sig-
nificantly up- or down-regulated in tumors relative to normal controls. .
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3.20

3.21

3.22

Genomic perturbations in bladder cancers are significantly associated
with downstream transcriptional changes through known and novel path-
way circuitry. A) The TieDIE algorithm was used to identify a network
connecting the top 29 significantly mutated genes to transcriptional hubs
identified from the identification of transcription factors with targets sig-
nificantly up- or down-regulated in tumors relative to normal controls.
These inputs sets are significantly close in pathway space, under 1000
random permutations of the input sets; blue bars are the scores of the
permutations, the green line represents the score of the real network.
B) The TieDIE algorithm was applied to connect 23 mutated histone-
modifying genes, weighted by mutation frequency, to transcription fac-
tors with differential activity in histone-gene mutated and non-mutated
samples. . . ... e
TieDIE network connecting Significantly Mutated Genes (SMGs) to tran-
scription factors with altered activity in tumor samples. SMGs (orange)
are shown as part of a network that connects these mutated genes to
transcription factors (green) with altered activity. Solid lines indicate
transcriptional regulation and dashed lines indicate protein regulation,
and dotted lines indicate HPRD-PPI interactions or component associa-
tions. Size of the node reflects the betweeness centrality measure of the
genes position in the network with larger nodes as more central to the
network solution. . . . . . ... ...
The network connecting mutated histone-modifying genes to transcrip-
tion factors with differential activity. Each gene is depicted as a multi-ring
circle with various levels of data, plotted such that each ‘spoke in the ring
represents a single patient sample (same sample ordering for all genes).
‘PARADIGM ring, bioinformatically inferred levels of gene activity (red,
higher activity); ‘Transcriptional activity, mean mRNA levels of all of the
targets of each transcription factor; ‘expression, mRNA levels relative to
normal (red, high); Mutation in gene, somatic mutation; ‘Mutation in
histone modifier genes, somatic mutation in at least one such gene; ‘IPL
anticorrelation, genes with PARADIGMintegrated pathway levels (IPLs)
inversely correlated with histone-gene mutation status. Genegene rela-
tionships are inferred using public resources [151] . . . . . . .. ... ..
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3.23

3.24

TieDIE networks connecting BRAF/RAS mutated genes to transcription
factors and signaling proteins with altered activity in tumor samples. A)
The “core” network of genes connecting mutant genes NRAS and BRAF
to inputs generated with RNA-Seq (ERK1-2-active complex) with paths
of length up to 3. Nodes correspond to proteins or complexes in the
TieDIE solution; the size of the label text indicates the influence at-
tributed to each node, in relation to the three input data sets. Solid
lines indicate transcriptional regulation and dashed lines indicate protein
regulation, and dotted lines indicate HPRD-PPI interactions or com-
ponent associations. Each tick-mark in each circle represents a single
patient sample. Circles represent genomic perturbations, PARADIGM
inferred activities, RPPA and expression for proteins and complexes.
Outer ring represents mutation status for BRAF and NRAS genes; for all
other genes it represents the PARADIGM inferred activity levels. Sec-
ond most outer ring represents RPPA activity level, and the inner ring
represents the gene expression. All rings are sorted in the same order and
according to the presence of a mutation in BRAF or RAS-related genes
(NRAS/KRAS/HRAS/EIF1AX), and secondarily according to the activ-
ity of BRAF within mutant samples, as measured by RPPA. B) The larger
TieDIE network generated by allowing all paths between BRAF/NRAS
to RNA-Seq generated inputs with paths of length up to4. . . . .. ..
Genomic perturbations in mutation clusters 8 and 13 are significantly
associated with downstream transcriptional changes in the squamous ex-
pression subtype, through known and novel pathway circuitry. A) The
TieDIE algorithm was used to identify a network connecting 75 mutated
genes within mutation cluster 8 to transcriptional hubs identified from
the identification of transcription factors with targets significantly up- or
down-regulated in tumors relative to normal controls, within the squa-
mous mRNA cluster 2. These inputs sets are significantly close in path-
way space, under 1000 random permutations of the input sets; blue bars
are the scores of the permutations, the green line represents the score of
the real network. B) The TieDIE algorithm was applied to connect 80
altered genes in the mutation cluster 13 to the same set of transcriptional



3.25

3.26

3.27

TieDIE networks connect genomic perturbations in mutation clusters 8
and 13 connect to downstream transcriptional changes in the “squamous’
expression subtype. A) The TieDIE algorithm was used to identify a con-
necting network between 75 perturbed genes within mutation cluster 8
to transcriptional hubs identified from the identification of transcription
factors with targets significantly up- or down-regulated in tumors rela-
tive to normal controls, within the “squamous” mRNA cluster 2. Node
and label font size represents the genomic alteration frequency within the
sample group; brighter shades of red represent genomic alterations more
exclusive to the mutation cluster 8, as compared with mutation clus-
ter 13. Genes commonly mutated in both networks are removed (TP53,
CDKN2A) for contrast. B) The TieDIE algorithm was applied to connect
80 altered genes in the mutation cluster 13 to the same set of transcrip-
tional hubs. Brighter shades of blue indicate genomic alterations more
exclusive to mutation cluster 13, as compared with mutation cluster 8.

To visualize the result in Figure 3.26, a tag cloud (word cloud) represen-
tation was used with free online software from http://www.wordle.net/.
Font sizes were scaled linearly either by frequency of genomic alteration
(top left, top right clouds), linker gene importance from the TieDIE algo-
rithm (middle left, middle right clouds), and by the significance of GSEA
scores for each transcriptional hub (bottom cloud). Font color gradients
represent differential frequency of genomic perturbation (top left, right
clouds) and differential linker gene importance (middle left, right), with
bright red representing a gene fully exclusive to mutation cluster 13, or
a linker gene in the corresponding TieDIE network that is not found in
the mutation cluster 8 TieDIE network. Similarly, bright blue words rep-
resent genes fully exclusive to mutation cluster 8 and its corresponding
TieDIE network . . . . . . . . . . . . ..
TieDIE is available as a plugin application to the Cytoscape software
[188]; developed in collaboration with Java software engineer Srikanth
Bezawada and the 2014 Google Summer of Code (GSoC). Top left: the
TieDIE control panel allows users to select input data from tables loaded
into the Cytoscape software; radio buttons allow the user to select either
the heat-diffusion kernel or personalized pagerank methods for informa-
tion diffusion over their selected network. The rectangular button below
starts the TieDIE algorithm as an a-synchronous background process,
producing a sub network (top right) on completion, as well as highlight-
ing the source (red outline), linker (yellow outline) and target (red center)
nodes, as shown in the bottom figure. . . . . . ... .. ... ... ...

xi

84



4.28

4.29

4.30

a). Prophetic Granger Causality method description taken from the team
paper [55]. The method is given a set of probes (rows; y-axis) measuring
the level of a particular phospho-protein state at particular time points
(columns; x-axis). Fach probe value p at each time point t (green) is
considered in turn as a linear regression of all other feature times and
probes. Probe A is being considered at time T. The penalty parameter
L1 is chosen such that autoregression contributions (red) are set to zero.
Any remaining non-zero regression coefficients for other probes suggest
causality; past or concurrent time point probes (blue) are considered
causal of the target; future time point probes (yellow) are considered to
be caused by the target. The different inhibitor conditions are treated as
different examples in the regression task. This process was repeated for
each time and probe, with each regression task contributing to the final
connectivity matrix [55]. b) Overview of the overall PGC plus network
prior approach for the HPN DREAMS submission [55]. Prediction for a
single (cell line, ligand) pair task. (i.) 263 Pathway Commons pathways
having at least two proteins in the DREAM dataset (colored shapes). (ii.)
Heat diffusion kernel used to measure closeness between the proteins in
each individual pathway. Pathways were combined into a single weighted
biological prior adjacency matrix. (iii.) The Prophetic Granger solution,
obtained as shown in part A. (iv.) The final solution for the (cell line,
ligand) pair produced by averaging the heat diffusion kernel with the
absolute value of the Prophetic Granger solution [55]. . . ... .. ...
Summary of subchallenge 1A result for all models submitted to the HPN-
DREAMS network inference challenge. The prior network (2) scored
higher than all other submitted models; combining with the Prophetic
Granger Causality (PGC) regression predictions further increased the
performance (1, left) [197].. . . . . . . . .. ...
Experimental setup for prostate cancer phosphoproteomic data collec-
tion, designed and collected by Justin Drake and Owen Witte ??. (A) Di-
agram depicting the workflow for phosphopeptide enrichment and quan-
titative mass spectrometry as described in [63]. (B) Unsupervised hier-
archical clustering heatmap of phosphoserine and phosphothreonine pep-
tides identified from prostate cancer cell lines and tissues. Over 3,900
unique phosphopeptides were significantly identified from over 36 sam-

xii



4.31

4.32

4.33

4.34

Pipeline for omic dataset integration. (A) Flow diagram depicting the
integration pipeline. Gene expression and phosphoproteomic datasets
were integrated with mutational data and combined using TieDIE to
generate the resulting integrated network. (B) Overlay of input gene
expression and kinase master regulators and phosphorylated kinases and
the identification of each of these genes via a heatmap (C). The 6 patient
samples used for individual pathway networks are displayed as a group
on the right side of the heatmap. Yellow = hyperphosphorylation, Blue
= hypophosphorylation [13]. . . . . . . ... ... ... ... ...
(A) TieDIE “Scaffold” network components centered on each of 6 can-
cer hallmark categories: for each, the set of genes in both the hallmark
and the scaffold network are shown (colored) along with all adjoining
edges, as well as all scaffold network genes that connect two or more of
these hallmark genes (grey). (B) For each peptide in the dataset, a t-
test was run between values in metastatic CRPC samples and primary
controls. TieDIE “linker genes were defined as those proteins in the scaf-
fold network that were not included in any of the 3 (genomic; kinase;
transcription factor) input sets. I found the overall phosphoryation of
linker genes (red) to be significantly higher (p = 4.5 x 1075; two-sample
Kolmogorov-Smirnov test) in metastatic CRPC samples, as compared
with the distribution of differential phosphorylation in all other genes
(blue), which is centered at zero. (C-H) Genes and subnetworks related
to each hallmark category are shown. [13]. . . . . . ... ... ... ...
Pathway analysis of metastatic CRPC. Enriched cancer hallmarks gener-
ated by dataset integration using TieDIE after inclusion of the phospho-
proteomic data (A). Several cancer hallmarks were enriched after inclu-
sion of the phosphoproteomic data including the cell cycle pathway (B,
red nodes), DNA repair pathway (D, yellow nodes), AKT/mTOR/MAPK
pathway (F, blue nodes), and the nuclear receptor pathway (H, green
nodes). Inspection of a select number of kinases and phosphoproteins
from each network confirmed their elevated phosphorylation state (C, E,
G, I) including some with direct phosphorylation on their enzymatic ac-
tive residue (C, E). Black arrow represents phosphoresidues that result
in enzymatic activity of the given protein [13], further supporting the
activation state of the networks. . . . . . .. ... ... .. oL
Hallmark wheels of genomic/transcriptomic and full integrated datasets.
(A) Hallmark wheel showing enrichment of hallmark pathways when the
transcriptional and genomic information is included. (B) Further enrich-
ment of these hallmark pathways are observed when the phosphopro-
teomic data was included as a 3rd dataset. . . . . . . ... ... ...
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4.35

4.36

4.37

(A) Flow diagram depicting the integration of gene expression and phos-
phoproteomic datasets for VIPER analysis. (B) Heatmap of the gene
expression and kinase master regulators and phosphorylated kinases for
all 6 patients. This data was used as the input for patient-specific network
analysis. . . . . .. L e
Hallmark wheels for each patient. Top: the integrated TieDIE network
solution shows strong enrichment for genes in Migration and Invasion
Pathways, Stemness Pathways, Nuclear Receptor Response, PI3K-AKT-
mTOR Signaling, Cell Cycle and DNA Repair related categories. Bot-
tom: hallmark wheels for 6 individual patients show varying, but strong
enrichments for categories. Color indicates the log(p) value (uncorrected)
for the hypergeometric overlap test between genes in each patient-specific
network and the corresponding hallmark category. . . .. ... .. ...
Scatter plots of correlation between tumors found in multiple metastatic
sites in patients WA55 and WA43. (A) Comparison between VIPER in-
ferences in liver and dura metastases of patient WAS5 show very high
correlation (0.87 Spearman Rho), while in (B) we see low (0.1 Spearman
Rho) correlation between individual phosphopeptides on the same pro-
teins. (C) Comparison between VIPER inferences in samples taken from
periaortic, lung and mixed metastatic sites show low to moderately high
correlation (left to right: 0.23, 0.1, 0.62 Spearman Rho, respectively) in
patient WA43. (D) Comparison between phosphopeptides abundance in
the same proteins shows negative to moderately high correlation (left to
right: periaortic vs. mixed, 0.06; lung vs. mixed, -0.34; periaortic vs.
lung, 0.63 Spearman Rho) in patient WA43. . . ... .. ... ... ..
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4.38

4.39

4.40

Integrated pathway network of patient RA40. (A) Hallmark analysis for
patient RA40 revealed strong enrichment of cell cycle and PISK-AKT-
mTOR pathway networks. The hallmark wheel summarizes enrichment
between genes in each patient-specific network and the corresponding cat-
egory: labels indicate categories with significant enrichment after multi-
hypothesis correction (q <0.1). Dots indicate SNV and copy-number
genomic events in this patient. Patient-specific network nodes and edges
related to cell cycle pathway (hallmark categories G2M checkpoint, mi-
totic spindle, E2F targets, TP53 pathway, and apoptosis) nuclear receptor
pathway, PI3BK-AKT-mTOR pathway, and stemness pathways (hallmark
categories, TGF-beta signaling, WNT-beta-catenin signaling, notch sig-
naling, MYC targets, and hedgehog signaling). Edges belonging to both
the patient-specific network model and the cell cycle related scaffold net-
work are shown as thick yellow edges, while corresponding genes are
shaded in dark grey. Yellow arrows indicate that the upstream kinase di-
rectly phosphorylates the downstream substrate. “Circleplot” quadrants
for each gene summarize genomic, transcriptomic and phosphoproteomic
activity relevant to metastatic CRPC phenotype (upper right: ampli-
fication; lower right: deletion; lower left: mutation; upper left: tran-
scriptional regulatory activity; center: kinase regulatory activity). Node
“ears” peripherally attached to circleplots represent relative phosphory-
lation of specific, functionally annotated peptides sites on each protein.
Genes and edges in the scaffold network are only shown in light grey. . .
Integrated pathway network of patient RA40, focusing on cell cycle re-
lated pathways. A) Hallmark categories related to cell cycle: G2M check-
point, mitotic spindle, E2F targets, TP53 pathway, and apoptosis show
significant enrichment after multi-hypothesis correction in Patient RA40.
B) Network diagram corresponding to cell cycle related pathways, as de-
scribed in Figure 4.38. . . . . . . ..o L Lo
Summary of kinase targets in patient-specific networks. Left: green boxes
indicate kinases (rows) that are members of each of the six major hallmark
subnetworks (columns) shown in (Figure 4.32). Right: Orange boxes in-
dicate the predicted importance of kinase targets based on the combined
evidence from VIPER-inferred kinase activity, phosphorylation status of
functionally annotated peptides, and connectivity, for each patient spe-
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Abstract

Sample-specific cancer pathway prediction from genomic, transcriptomic and

phosphoproteomic data

by

Evan O. Paull

Cancer phenotypes, such as invasion, evasion of programmed cell death, and rapid
growth, arise from the complex interactions of genes, proteins and extra-cellular en-
vironments. Understanding how selective alterations in the genome convert healthy
cells to cancer is a critical step in developing new targeted and combination thera-
pies. Current technology allows for detailed measurement of both genomic state as well
as phenotype, through measurement of gene expression, chromatin state and protein
activation. I present a method to find pathways linking key genomic alterations to phe-
notypic effects, using high-throughput data collected from cohorts of cancer patients,
and then apply this method to predict sample-specific network models in metastatic
prostate cancer. The method presented here, Tied Diffusion through Interacting Events
(TieDIE), uses a “heat diffusion” model of information transfer to simultaneously com-
bine multiple types of biological data with prior knowledge to predict network models of
disease. Applying this method to four large data sets developed by The Cancer Genome
Atlas (TCGA), I found key genes and interactions linking mutations related to histone
modification and protein kinase signaling to gene-expression signatures of growth and
proliferation. I next applied TieDIE to a study of metastatic, lethal prostate cancer

xviii



that also included detailed measurements of the phosphpoproteome. Sample-specific
network predictions were developed through an extension of the original algorithm,
providing a hierarchy that reveals the top kinase targets for each patient analyzed, and

the corresponding therapeutic intervention.
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Introduction

Cancer has a major health impact on society: in the United States alone, an
estimated 1.6 million new cases of cancer will be diagnosed and 600,000 will die from
the disease in 2015, according to the National Institutes of Health (www.cancer.gov). Al-
though a third of cancers are preventable, according to current best estimates (www.who.int),
evidence published in numerous scientific journals as well as independent research stud-
ies suggest that a majority of cases can be attributed to heritable genetic variation and
random effects associated with the normal process of cell division [206].

Aside from inherited genetic factors, most cancers are thought to result from
acquired genetic and epigenetic changes (the somatic mutation theory of cancer [69])
identified by at least eight biological capabilities developed through the multistep de-
velopment of tumors [85,219]. These eight biological “hallmarks” currently include
sustaining proliferative signaling, evading growth suppressors, resisting cell death, en-
abling replicative immortality, inducing angiogenesis, activating invasion and metastasis,

reprogramming of energy metabolism, and evading immune destruction [85].



1.1 Detecting Impactful Genomic Alterations

While evidence for each of these biological programs can be detected by mea-
surement of transcriptional activity, epigenetic state, and protein activity (See appendix
sections A.1.4, A.1.5, A.1.6), relatively little is understood as to how genomic abbera-
tions affect this cancer phenotype. Current large-scale analyses of genomic “drivers” of
tumor phenotype focus on statistical techniques to implicate point mutations by recur-
rence and sequence features [6,59,119] or more complex patterns of recurrence, such as
mutual exclusion [44]. Similarly, analyses of copy-number data has been able to iden-
tify regions of recurrent copy-number amplification or deletion, using many of the same
principles [139,225]. Linking these putative genomic drivers to the phenotypic changes
cataloged in the cancer “hallmarks” is more difficult, and often involves interrogation
of multiple types of biological data.

In some cases, genomic analyses have revealed somatic mutations that predict
constitutive activation of signaling circuits, often triggered by activated growth factor
receptors [85]. In these cases, tumor cells are often able to exploit unmodified compo-
nents of the cellular signaling machinery such as the mitogen-activated protein kinase
(MAPK) [56] and AKT [104] pahtways. This observation has led to the study of targeted
inhibitors of these canonical signaling pathways for use in cancer therapy [51,56,85] (See

appendix A.1.2).



1.2 Pathway Methods

After first identifying candidate genomic drivers, a further step in finding
clinically actionable drug targets is to use genomic, transcriptomic , and other high-
throughput biological measurements to gain a better understanding of the molecular
mechanisms driving each cancer. The goal of this research strategy is to find the most
vulnerable points of each tumor’s biology and disable it with targeted drug therapies.
Biological pathways—representations of the known interactions between proteins, RNA
and genes—can support this goal by adding a priori biological information that provides
a context to integrate otherwise disparate types of high-throughput data (See appendix
A.1.1.). In this way, pathways allow for information transfer between high-throughput
datasets that capture very different aspects of cellular biology (e.g., RNA-Seq for tran-
scriptional state, Mass Spectrometry for protein phosphorylation state), allowing one
to construct a more complete model of cell state, one that is greater than the sum of
its parts.

To illustrate this concept, for example, possessing data on copy number alter-
ations, gene mutations, and gene-expression, does not clarify which of these genomic
changes is responsible for the cancer phenotype, approximated by microarray gene ex-
pression. A pathway-based methodology, in contrast, would attempt to answer this
question by finding a set of literature-supported biological interactions that connects
the genes and protein identified by each dataset. This pathway, in turn, would provide

a logical explanation of how the perturbations relate to the observed expression data,



and reveal proteins that might disrupt the pathway when targeted by small molecule
inhibitors.

A small example of such a pathway is shown in figure 1.1. In this example, re-
lationships between the epidermal growth factor receptor (EGFR), protein components
of the PI3K pathway, and the tumor-suppressor PTEN are shown alongside genomic
and expression data in glioblastoma (GBM). Mutual exclusivity between loss and gain
of function events is observed between these genes, indicating equivalence of alteration
between genes in this pathway. In this case, the pathway information includes the
knowledge that PIK3CA and PIK3R1 are components in the same complex, explaining
the equivalence between loss of function (truncating or missense mutations) in either
of these protein sub components. Similarly, the pathway interactions between EGFR,
PISK components, and PTEN explain the equivalence between gain of function al-
terations in EGFR and loss of function alterations in PTEN, providing a context to
interpret multiple types of genomic and gene expression data.

Several pathway models are available for combining experimental data with
prior pathway knowledge. The Signaling Pathway Impact Analysis (SPIA) algorithm
[201] was developed to discover specific pathway perturbations in colorectal cancer, using
a model that propagates information over a gene interaction network while accounting
for edge direction and type (see methods 2.2.2.3).

To identify transcriptional regulatory interactions and transcriptional “master
regulators” that regulate the expression of a large number of genes, the Master Regulator

Analysis (MRA) algorithm [124] uses a modified form of Gene Set Enrichment Analysis



A. 91 GBM Tumors, altered in 76 (84%)

PIK3CA Q%IIIIIII]]
PIK3R1 11% [] NEEREERER
eorn  sood 0 CMARA"CC RRRRRRRREEREREERR R AR RRNR == IAON00I
PTEN 37% o L 1] 5 5 mEms IIIII u EEER IIIIIIIIIIIIII
genetic alteration I Amplification I Deep Deletion [| mRANA Downregulation || mRNA Upregulation ™ Missense Mutation
B. EGFR/PI3K/PTEN Pathway Interactions ¥ Trnosing baaaon | inrme Mussin
B Amplification
E GFR Copy Number n g:?;ozygcus Deletion
Hemizygous Deletion

thick border: seed gene
thin border: linker gene

mRNA Expression

Up-Regulated Mutation
B Down-Regulated B Mutated

PIK3CA \PIK3R1
O —O
o/

Alteration Frequenc‘ (%)
0 100

Figure 1.1: A) Oncoprint (www.cbioportal.org) summary of genomic and transcrip-
tional alterations in GBM tumor samples: each sample is a column, and each row
corresponds to one of 4 genes. Frequent amplification and mRNA over-expression of
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illustrate different ways the cancer can alter key mechanisms of tumorogenesis.



(GSEA) [198], along with a set of transcription factor to target interactions inferred
from the data [137]. A sample-specific version of this algorithm is provided as part of
the VIPER software package [19] (see appendix A.3).

Another method, PARADIGM [217], uses a Bayesian factor graph model to
perform inference across a gene interaction network and multiple data types, computing
gene-specific inferences of predicted activity (see appendix A.4).

In addition to these inference algorithms, several methods can be applied to
search for sub networks (a collection of pathway interactions that interconnect a set of
genes of interest) that explain some aspect of a given data set. The jActive modules plug-
in to cytoscape is one of the original algorithms developed to search for sub networks
that connect a set of genes across a given network [102]. Following that, the problem
of sub network selection was posed as a prize-collecting Steiner tree (PCST) linear
optimization problem and used to find modules in a protein-protein interaction network,
from microarray data of lymphoma patients [61]. This is one of several optimization-
based methods that find connected sub networks around a given input set of genes, with
a minimal number of connecting nodes (See appendix A.2.1).

A novel algorithm, HotNet [213], finds sub networks by searching for areas of
influence for a given set of genes on a network. This method has been used in many large-
scale studies to find mutated sub networks; in a large-scale integrative study of clear
cell renal cell carcinoma by The Cancer Genome Atlas (TCGA), HotNet identified a key
sub network containing von Hippel-Lindau tumor suppressor (VHL), a key factor in the

development of kidney cancer, as well as a network involved in chromatin remodeling



[150] (see methods 2.2.2.1).

This approach has also been used to predict genetic interactions and co-
complex membership in yeast [172] using a similar graph-diffusion methodology. In
addition, new methods such as “Network Based Stratification (NBS)” [95] extend the
heat-diffusion concept by transforming mutational data through a “network smooth-
ing” process, which is then used to cluster and stratify patient samples. This method
was applied to a study of thyroid carcinoma, finding three distinct subtypes that were
both correlated with histological subtype, risk of recurrence, cancer stage, and multiple

molecular characteristics [152].

1.3 Connecting Genomic Changes to Transcriptional State

of Cancer Cells

Finding driver genomic events is a key step in identifying clinically actionable
targets; a more specific goal, however, is to find the causal relationships between specific
alterations to the genome and cancer phenotype. The importance of this question can
be seen in the biology of phosphoproteomic signaling and how it processes extra cellular
signals to patterns of growth, differentiation, apoptosis and migration in the nucleus of
the cell. For example, in figure 1.2, an overview of the (MAP)-kinase signaling pathway
diagrams some of the signaling pathways that relay extra cellular signals to the tran-
scriptional machinery in the nucleus, resulting in phenotypic changes. These pathways

are often essential, highly conserved units of biology that allow for rapid changes in



cellular state [60]; genomic alterations in these pathways, however, are often responsible
for giving cancer cells the capacity to sustain proliferative signaling, often in the absence
of extra cellular growth factors [85]. For instance, roughly 40% of human melanomas
contain activating mutations that change the structure of the B-Raf protein, resulting
in constitutive signaling through the RAF and MAPK pathways [56,85]. Algorithms
that can link these genomic aberations to their respective phenotypic consequences are
needed not only to find the causal drivers of specific tumor biology, but also to iden-
tify the unmodified signaling components that relay these aberant signals and therefore
represent unique points of vulerability.

The PCST framework is one of the first methods [117,189] developed to extract
sub networks that connect genomic perturbation data and expression data through a
small set of intermediate nodes. However, this approach does not take into account the
type of interactions present and may produce network solutions that are not logically
consistent with the data. For example, a protein that suppresses transcription of a gene
paradoxically might be used to explain higher transcription of that gene. In addition, by
using a linear optimization approach to minimize the number of edges in the biological
network, one might miss key functional parts of a biological network that might be only
a single step further than the “optimal” solution (See appendix A.2.1.). Flow algorithms
attempt to avoid this situation by allowing for weights to be assigned to edges, but in
reality it is impractical to compute relative probabilities over edges that are based on
multiple types of biological assays [110], and the highly connected topology of graphs

leads to frequent ties in edge length [24]. In spite of those limitations, these approaches
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Figure 1.2: Schematic overview of MAPK pathways [60]. extra cellular signals are linked
through a three-tier kinase pathway where MAPK is activated upon phosphorylation
of mitogen activated protein kinase kinase (MAPKK), which is in turn activated by
MAPKKK citedhillon2007map. The cellular processes listed below are essential “hall-
marks” of tumorogenesis [85] and their state can be assessed by measurement of gene
expression, using technologies such as RNA-Seq A.1.4.

have been successful in linking oncogene signaling to transcriptional activity through
the proteome [117].

In this thesis, I propose a different approach to connect genomic perturbations
to transcriptional changes over a pathway space, producing sub network solutions that
are far more complete than linear optimization methods, while also making full use
of the interaction logic provided in pathway databases. This method—Tied Diffusion

Through Interacting Events (TieDIE)—uses a heat diffusion model of information flow,



finding sub networks of protein-protein interactions, predicted transcription factor to
target connections, and curated interactions from literature. It then find paths con-
necting source to target nodes that are logically consistent with both the perturbation
or expression status of each gene pair and the type of interaction between each edge in
the path. Finally, permutation-based analysis is used to gauge the significance of the
solutions resulting from the TieDIE network.

As I show with a rigorous computational evaluation on synthetic data from
human breast tumors, sub network solutions produced by TieDIE are both accurate
and far more comprehensive than previous methods because of two deliberate choices:
to separate the search and pathway integration (the heat-diffusion step) from the mod-
eling of biology (the search for logically consistent paths and to treat genomic and
transcriptional data as distinct entities, effectively adding information to the algorithm.

The clinical relevance of TieDIE is first validated on a panel of breast cancer
cell lines, using RNA-interference (RNAi; See appendix A.1.7.) knock-down data to
measure the quality of network models produced by the algorithm. The algorithm is
then demonstrated on four large-scale sequencing projects coordinated by The Can-
cer Genome Atlas (TCGA), in each case finding tissue-specific network models that
connect cancer-driving genomic events with the respective gene-expression signatures
of carcinogenesis, tumor progression, and maintenance. The identified networks and
corresponding “linking” genes and interactions that are implicated by the surrounding
pathway context rather than by direct genomic evidence, are validated through exten-

sive literature review and outside data in coordination with TCGA project members,
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and are published as part of three separate TCGA project papers. In each case, the
TieDIE algorithm highlighted genes, interactions, and cellular processes that might be
useful for follow-up studies, in particular to assess the clinical utility of inhibiting these
respective targets.

I continue to explore tissue-specific network and gene prediction next, with an
outline of results related to my participation in the Dialogue for Reverse Engineering
Assessments and Methods (DREAM) challenges 8 and 9. These results provide further
support for the use of prior pathway knowledge in predicting important genes and
interactions that are specific to a given tissue or genomic context. Finally, I combine
all the previous concepts detailed here and apply them to a study of lethal, metastatic
prostate cancer for which a dataset measuring phosphophoteomic signaling has been
created A.1.6. Patient-specific network models are developed using an extension of the
TieDIE algorithm for samples with phosphoproteomic, gene expression, and genomic
data, and a methodology for finding clinically actionable protein targets in these patients
is developed, along with a new visualization paradigm to provide deeper insight into

the disease.
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TieDIE: An Algorithm for Sub Network

Search and Discovery

2.1 Introduction

Integrating multiple data sources with a pathway model can greatly improve
the ability to find active sub networks in disease, compared with using just a single
source of information such as gene expression or mutational data. Several methods for
identifying sub-network models are available to combine genomic, gene expression data,
or both with pathway databases, including the HotNet, SPIA, and PCST algorithms
discussed in the previous chapter.

Here, I introduce the TieDIE algorithm, which provides a way to combine an
arbitrary number of data inputs with pathway knowledge simultaneously, applying a
heat diffusion model to find “linker genes” that are strongly implicated by each data
input. In this chapter, linker genes are then used to find sub networks that connect
genomic perturbations to transcriptional changes, while later chapters demonstrate the

method on more than two data sets. These sub networks are critical in finding genes that
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may be lacking in cis-level data but are implicated by other genes in the surrounding
pathway and the logic of the corresponding interactions. TieDIE also is a critical step
in the computational pipeline developed to predict sample-specific, N = 1 networks in
the final chapters, providing a framework to relate patient-level data to the statistically
robust sub networks generated with cohort-wide data.

I benchmarked TieDIE against multiple competing methods on both synthetic
datasets and those derived from patient tissues, and found that it greatly outperforms
previous methods by several metrics, on these data. All the methodological description
and results presented here are also available in the TieDIE Bioinformatics publication

[165] and supplemental text.
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2.2 The TieDIE Algorithm

Building on a “heat kernel” model developed for physics, the TieDIE method
[165] takes the output of a differential gene expression analysis genered from transcrip-
tional (RNA-Seq, microarray) data and performs heat diffusion over a supplied biologi-
cal pathway to find a pathway neighborhood strongly supported by the transcriptional
data. Separately, the algorithm takes a set of significantly perturbed genes found with
genomic sequencing data (mutations, copy number alterations), performs heat diffusion
on these inputs and then merges the result with the diffused transcriptional data via
a “linker” function, producing an overall score for each gene in a given input pathway.
The algorithm uses high-scoring “linker genes” to find sub networks connecting genomic
alterations (“source” genes) to the observed transcriptional changes (“target” genes) in
a patient cohort, providing a probable explanation for dysregulated transcriptional pro-

files (see Figure 2.2.2.4).

2.2.1 Problem Statement

The TieDIE approach searches for relevant interconnecting genes on a back-
ground network using a diffusion strategy. The method is given as input an interaction
network graph G containing N vertices V = vi..vy that represent genes, proteins or
other biological pathway features such as gene products, protein complexes and cellular
abstract processes. The nodes in G are interlinked by I edges ' = e;..ej representing

both directed interactions as well as undirected relations such as proteinprotein interac-
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tions. The interactions can be derived from curated sources such as the National Cancer
Institute’s Pathway Interaction Database [185], from functional genomics predictions,
such as undirected high-throughput proteinprotein assays, or directed TF to target in-
teractions such as from genome-wide chromatin-immunoprecipitation experiments, or
from a mixture of both sources such as Reactomes Functional Interaction Network [105].
TieDIE makes use of the adjacency matrix A of the graph G, where A;; = 1 if node 4
activates node j, A;; = —1 if node i represses or inactives node j and 0 otherwise.

In addition to the graph, the method is given a set of scores for each node in G.
Let x = [x1,22,,xN]| be a vector of scores assigned to the nodes in the graph. Typically,
only a limited set of genes (e.g. in the range 1050) will have known involvement in the
disease process being studied. For example, this involved set may consist of genes for
which a minimum number of mutations or copy number changes or DNA methylation
silencing events have been detected in a given cohort of patient samples. Nodes cor-
responding to these involved genes are assigned scores between 1 and +1 to reflect a
positive or negative association of activity with the disease state under study. Nodes
associated with genes not known to be involved in the disease process are assigned a
value of 0 to reflect an a priori belief in no involvement.

The values in x can represent different types of measurements on the genes.
For instance, the scores might reflect how often a gene is mutated in one subtype of
patients compared with another (e.g. from a log of the P-value computed from a Fishers
exact test to detect differential mutation frequency). Alternatively, the scores can reflect

a genes differential expression in tumor versus normal. Statistical techniques, such as
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significance analysis of microarrays (SAM) [41], or edgeR for RNA-Seq data [180] may
be used to compute the significantly differentially expressed genes and the SAM score
(d-statistic) for each gene normalized to this range. Transcription factors this may
represent the score from a Gene Set Enrichment Analysis (GSEA) [198] test on gene
expression data, taking d-statistic scores as input. For genomics data, mutation or
copy-number events may be prefiltered with algorithms such as MutSig [40] and MEMo
[45] that use sample statistics to find events that are likely to be ‘driving the cancer
phenotype. Note here that all mutations are assumed to lower a genes activity (even
though a minority, oncogenic mutations in particular, increases gene activity) and to
take precedence over copy number alterations (e.g. amplifications) and expression events
(e.g. overexpression), which will inflate the false-negative rate of the algorithms tested
here as some true paths will not be counted. Relaxing this assumption is an important
topic discussed later in this document. The input vector of positive scores is scaled
to match an intuition that the scores reflect a stationary probability distribution of
occupancy on the nodes in the network obtained from a random walk process: Zf\i 1T =

1.

2.2.2 Relevance Functions

To simplify the comparison between TieDIE and preceding methods, I abstract
the idea of diffusion on a biological network and describe a relevance function as an
update of the state of all of the nodes in G by some function z = r(z, A), that is a

function of the input set of scores  and of the full adjacency matrix A.
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The TieDIE method and methods that are compared to it here all make use
of a derivative of the graphs adjacency matrix. Let the full signed adjacency matrix be
A where A;; = 1 if node 7 activates node j, A;; = —1 if node ¢ represses or inactivates
node j, and 0 otherwise. Undirected edges, such as protein-protein interactions, are
encoded as A;; = Aj; = 1 in this work. Denote the directed, but unsigned version of the
adjacency matrix as D; the entries are then set to D;; = |Dij|, i.e. D;; = 1 if there is a
directed edge from gene ¢ to gene j and 0 otherwise. Such an unsigned representation
of A retains the directionality but throws away information about repression versus
activation in regulatory interactions. Some approaches make use only of the undirected
structure of G without considering how information flows upstream or downstream. Let
the undirected version of the adjacency matrix be U, a symmetric matrix containing

entries Uj; = Uj; = (D;j|Dj;), where “|” denotes the logical OR operation [165].

2.2.2.1 HotNet

The HotNet method uses a heat diffusion process to derive an update for all
of the nodes in G, but does not consider the directionality of an edge in G, making use
of the U version of the adjacency matrix. Let B be a diagonal matrix with B;; equal to
the number of other genes that gene 7 interacts with, and B;; = 0 for all 75. The heat

diffusion-based update for HotNet is then:

rHotNet<x7 A) =X * ei(BiU)t

where BU is known as the Laplacian matrix L of G, its exponentiated form
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is known as the diffusion kernel, and t is an arbitrary time step. I fixed t=0.1, which
Vandin et al. ( [213] and Qi et al. [172]) found to be most useful from a number of
simulation tests. The dynamics of this continuous-time process are governed by the
vector equation % = L« f(t). The solution to this system of equations is f(t) =
f (0) = e It with e representing the matrix exponential. The matrix exponential is
estimated using the implementation of the Pad approximation in Matlab (Golub and
Van Loan, 1989). Once the diffusion kernel is available, the relevance scores = can be

computed in one linear operation. Thus, an advantage of this approach is that the kernel

can be pre-computed and then applied efficiently to as many input sets as desired.

2.2.2.2 Personalized PageRank

Personalized PageRank is a variation of the PageRank algorithm, originally
developed for Google search, that allows for bias of a particular topic to be introduced
when calculating PageRank vectors [86]. The Personalized PageRank recurrence can
be approximated using the following iterative computation in which an initial starting
value xg is set to the input scores x and an updated version of relevance scores x; is

calculated from the previously calculated relevance scores x;_1 [43]:

2t =0%2"+ (1 -6 21 %« (BID),

where § is the probability that a completely new node is chosen irrespective
of the current node (teleport step), (1 — d) is the probability a neighbor in G is chosen
at time ¢t (random walk step), and B~!D is the random walk matrix and uses the
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directed, but unsigned connections in G [43]. The recurrence is repeated using the
power method [86] until time 7" such that (2! —z! —1) < ¢, where € here was set to 0.001
to represent a 0.1% change between consecutive iterates. The final relevance scores x

then are then set to xL.

2.2.2.3 Signaling Pathway Impact Analysis (SPIA)

I also compare TieDIE to SPIA, a method that incorporates activation and

inactivation of the regulatory links encoded in G and computes the quantity:

rspra(z, A) =W x (I — I/V)_1 * T,

where W represents a normalized version of the full directed, signed adjacency
matrix: Wi; = A;j/Nds(j), where Nds(j) is the number of downstream neighbors of
node j encoded by G.

All the methods discussed above can take advantage of a simple transformation
to infer the activities of transcription factors (TFs) with expression data (see appendix

A3).

2.2.2.4 TieDIE

In contrast to previous approaches that implicate sub networks by running the
relevance function with a single input set of genes, our algorithm extends the strategy
by using multiple diffusion processes and then identifying overlapping regions in G, to
find genes in a network that are proximal to multiple input sets. I develop the approach
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here for the special case of two input sets but the method generalizes to any arbitrary
number of input sets.

Suppose we are given a source set S and target set T" where S acts upstream
of T'. In the cancer setting, S may correspond to genes involved in genomic alterations-
mutations, deletions and amplificationswhereas the target set may correspond to genes
involved in transcriptional and post-transcriptional activation or deactivation. How-
ever, any features in the pathway diagram in addition to proteins can be included in
the input sets including protein complexes, small molecules or metabolites and cellular
processes. In the same spirit as the spanning tree approach (Huang and Fraenkel, 2009),
we are interested in identifying parsimonious networks that connect S to T'. I now let x

represent the vector of scores for the source set and y the scores for the target set [165].

Time =0

|Diﬂuse Heats

\J

Time =1

Figure 2.4: Visualization of the TieDIE Diffusion process. Relevant genes from two
separate sets are shown as nodes colored by dyes diffusing on a network (e.g. mutated
genes; red nodes) and target set (e.g. TFs; blue nodes). Linker genes (purple nodes)
residing between the source and target sets are revealed through a diffusion process
evolved over time; two time slices are shown as stacked layers of the same network [165]

We can visualize the process for two input sets by imagining the intermixing of
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different color dyes, diffusing from two sources through a lattice representing G (figure
2.4. The intensity and hue of the dye reveals whether a particular node is close to either
the source, target or to both sets. To disambiguate these cases and identify points that
reside only between the sets, we determine a score for all nodes based on the relevance

scores already computed [165]:

2 = f(r(z, A),r(y, AT)),

where AT is the transpose of the full adjacency matrix, the function f() is
chosen to assign high relevance scores to nodes where both r(x, A) and 7(y, AT) are high
and lower scores when either of the two are low. Note that the transpose of the adjacency
matrix is used to force the diffusion to proceed upward from the targets by supplying
a graph containing reversed edges. When applied to directional diffusion approaches
like PageRank and SPTA, this has the effect of running the algorithm backward. Of
course the transpose makes no difference for undirected approaches like HotNets heat
diffusion, as rgotnet (Y, A) = rHotnet (Y, AT). T refer to z; as the linking score for node 1.

This form decomposes over the separate relevance calculations, which can be
“plugged in” to the tied-diffusion calculation. In this document, I chose f() equal to
the min() operator to extract genes that have intersecting evidence from each input
datasets.

A set of linking genes is obtained by thresholding the linking scores using a

chosen value « selected to guarantee a desired level of specificity as a fixed multiple of
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the input set size. Specificially, the linker set generated at this threshold L, is set so
that the unique linker nodes (not in the source or target sets) are of size s:

[La~{SUT}H s+ [[SUT]

This “network size” parameter provides a single user-tunable parameter to
control the size of the resulting sub network, and, as discussed below, the null model
developed to test the significance of the resulting sub networks is specific to this size
control parameter. By default the size control factor is set to 1, on the assumption that
we expect to find a number of novel genes comparable to the number of genes that are
already known.

A set of connected sub networks C' is obtained by taking the union of all nodes
in the S, T, and linker sets L, and adding an edge between any two nodes in this subset
that contain an edge in G: C' = {(u,v) Yu,v € {SUT U Lapha}}-

An alternative method, uses the BioNet heuristic to approximately solve the
Prize Collecting Steiner Tree (PCST) problem ( [61]) that includes all linker genes and
input gene sets. This approach has the advantage of being able to connect smaller
connected sub components into a single connected graph, when the number of required
intermediate links is small. A fast approximation algorithm that solves the PCST

algorithm is available as part of the BioNet package [27,165].

2.2.3 Extracting Logically Coherent Paths

The network solutions that interconnect sources and targets can be large, with

hundreds of genes, even though we attempt to control the specificity and size of the
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output as described above. In addition, some diffusion approaches like HotNet ignore
the logical consistency of the interconnections between the set of genes identified to
be relevant. While it may be advantageous to maintain contradictory influences (e.g.
to highlight discrepancies between pathway interactions from different databases), it is
generally difficult to extract meaningful information from large networks. Therefore,
I introduced a filter to specifically select for consistent regions of the network, which
focuses attention on the best defined and most interpretable regions of the solution
space.

To do this, I first assign an activity score z(i) between —1 and +1 to all genes 4
involved in genomic, epigenomic, or transcriptional events. z = —1 is assigned to events
such as mutations, methylated promoters, or focal deletions. Note this encoding makes
the assumption that mutations are deleterious, which can be wrong because many mu-
tations are known to activate important oncogenes, but in the TieDIE software this can
be bypassed by a user with expert knowledge of mutation effects (or the help of a mu-
tation impact assesment algorithm). AS = +1 are assigned to focal copy number gains,
and finally, genes involved in only transcriptional events are assigned their expression
or differential expression levels normalized to the range [-1,+1] [165].

Figure 2.5 illustrates the intuition behind the idea of extracting logical paths.
To find logically coherent paths, I search for all possible paths of length k, or smaller
between any single source and any single target. I use k& = 3 in this work for math-
ematical tractability and simplification of visualization, to test various approaches. I

then use the activation scores to compute a measure of consistency on each path: first,
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Figure 2.5: Extracting sub networks with a logical consistency filter. Interlinking sub-
networks are extracted and logically consistent paths are identified.

edges are assigned a coherency score to reflect whether the source and target activi-
ties connected by the edge are in agreement given the interaction type encoded by the
edge. Each edge i to j has an interaction type encoded in the full adjacency matrix,
A;j = +1,—1. Thus the product AS(i) x AS(j) * Aij produces a measure of whether
the activities of two interacting nodes in the pathway have activities consistent with
their known interaction—positive scores are associated with consistent assignments and
negative scores with inconsistent assignments. A logically consistent path in G is one
that is composed entirely of (i,7) pairs for which this product is positive. Let w be
the ordered set of K nodes (i1, 42..i) representing a path that connects a source node
i1 € S to a target node i € T through linker genes identified from tied diffusion. The

coherency score of path w is:
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K-1
C(w) = AS(ir) * AS(ix) * [ Aksesr
k=1

Note that only the activation scores for the source and target can be used here
since linker genes by definition have no observed values. Paths found to have positive
C(w) scores are kept since the annotated up and down-regulation of the intervening

path is consistent with the starting and ending activation logic [165].

2.2.4 Algorithm Summary

The following pseudocode summarizes the steps to generate the sub-graph g,
given input source and target sets X sources Xtarget a user-supplied network size threshold

S, graph G and linker function f():

procedure TIEDIE(XsouT067 Xtarget7 f()7 S, G)

% —Lt
Ksource < Xsource * €

Xta'rget — Xtarget * e 1t

threshold <+ max(f(f(soume, Xmmet))

while | f(Xsource, Xtarget) > threshold| < S do
decrement(threshold)

end while

linkers < {f(f(soume, Xtarget) > threshold}

g<{}

for edge € G do
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if edge € linkers then
g < {gUedge}
end if
end for
ge < {}
for all ( paths s =t € g ,where {s € Xyource : t € Xiarget} ) do
if consistent(path) then
9e < {Yeonsistent U {edge € path}}
end if
end for
return g,

end procedure

2.2.5 Null Model/Significance Test

Gene sets that are biologically related are likely to exert a high degree of
mutual influence over a pathway. I constructed a permutation test to determine the
significance of the influence score by selecting one of the input data sets, in the case of
two sets either = or y, and swap each gene value with a randomly chosen gene in the
interaction network. To maintain the topology of the permuted set, genes of similar
degrees (determined by binning all nodes according to degree in G) are swapped.

To do this, I use the relevance scores to measure the closeness in pathway space

(G) of two or more input sets. I first propagate the scores in S through the network—
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exactly as done in the core TieDIE algorithm—to obtain scores for all nodes starting
from the source set, recorded in x = r(z, A). Similarly, I obtain scores starting only
from 7" and record these in y = r(y, AT). A relevance cutoff « is then used to determine
which nodes in G have high scores from both source and target set diffusion, using
the same size factor s as used for the core algorithm. Let the relevant neighborhood
for the sources, relative to a given cutoff a, be S*(a) = i : I > « and for the targets
be T*(a) = i : yi > «, where the sets are written as functions to explicitly show their
dependence on the threshold. I then compute a measure reflecting the degree to which
the two input sets are related given our network and our choice of the relevance score.
I then overlap the a-level relevance neighborhoods and compute the ratio of overlap

between the two sets as:

S*(a) NT(
S*(a) UT*(

2

RO =

£

The ratio measures the proportion of mutually proximal nodes in G to both
the source and target sets, which formalizes the simple intuition that genes related
gene sets should be close in pathway space (connected by paths that are shorter than
average). One could sweep through various choices of o and obtain a series of ratios,
each time computing the significance of the overlap by a permutation test like the one
described below. Instead, to match the core TieDIE algorithm as closely as possible,

the null model sets « to a level that produces networks of similar size to the core result,
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by using the same size control factor s and sweeping through « with the same sub-
algorithm. In a typical experiment, 1000 permutations of the data are performed and
the RO score generated with the real network is compared with the permuted scores to

generate an empirical p-value [165].

2.2.5.1 A Parameter-Invariant Significance Test

In addition to the null model above, I have developed a generalized test that
evaluates the closeness of two input vectors in pathway space, independent of any «
parameter. Rejection of this null model can provide useful evidence when a user does
not have enough prior knowledge to estimate the size of the sub pathway being searched,
or when using TieDIE just to compute ‘linker’ scores to provide a ranking of genes.

Scores are obtained through diffusion over a pathway, as before, and recorded
in z = r(z,A), and y = r(y, AT) vectors. I then use the observation that these pre-
normalized vectors have a natural interpretation as a probability vector over the universe
of genes in our pathway [42], and use the symmetric Kolmogorov-Smirnov test (KS-test)
to quantify the distance between these distributions. Note that no parameteric form is
required for this test, allowing us to use the emprical heat distributions of each vector
safely. The symmetric version of this test is obtained by averaging the two KS-test
scores computed by treating each vector as the reference distribution and the other as
the empirical distribution to test against.

Permutations of the gene scores are obtained with the same procedure as de-

scribed above, using a binning strategy to swap genes with others of similar degree in the
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network. The symmetric KS scores produced with permuted data are then compared

with the real KS scores to produce empirical p-values.

2.3 Validation on Synthetic Data

To validate TieDIE on a synthetic dataset, I created a toy network in which a
pre-defined “core sub-network is embedded, and alterations to the state of expression of
genes in the core network are assumed to contribute or “drive a disease process, while
alterations outside of the core are assumed to have little effect.

A scale-free network topology was simulated using the NetworkX (Version 1.7)
algorithm [83], and a core sub-network of twelve genes containing four “source genes
and two “target genes was then embedded into the NetworkX network. For sources,
the scores reflect the degree of alteration such as mutation frequency across a cohort
or its predicted impact from sequence-based analyses. For targets, the scores represent
the degree of differential expression observed in the targets of a transcription factor.
I also simulated six false-positive sources representing genes with neutral hitchhiking
events or passenger mutations. Six linking genes were simulated to connect the sources
to targets, and I assessed the precision of TieDIE and a single-source diffusion (SDS)
process in picking up the majority (4 out of 6) of these linker genes. In the case of single
source diffusion, the algorithm was given the same mixture of true- and false-positive
sources as TieDIE, including the two true-positive targets, considered as a single set.

The results of the single diffusion source (SDS) algorithm and the TieDIE
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algorithm in discovering the six linking genes is shown in Figure 2.7. As expected,
the single source process more frequently picked up nodes outside of the core network,
which represents a lower precision. The TieDIE method, in comparison, captured fewer
off-core false positive nodes, and the 3 false-positive nodes that it did capture are all
directly connected to both a true source and target node.

I also tested to see if diffusion strategies used in this analysis outperformed the
popular guilt-by-association-based approaches in which genes are implicated as involved
in the disease process according to whether they are neighbors to involved genes in the
pathway diagram. To do this, I implemented a k-nearest neighbor approach in which a
gene was promoted to the positive set if a certain proportion of its direct neighbors were
contained in either the source or target sets. The same simulation described above was
used to introduce false-positives into the source set to gauge the ability of the methods
to handle noise. As before, the parameters for all of the approaches were varied until
they achieved a level of recall of 4 out of 6. In the case of the k-NN approach, the
fraction of the neighborhood used as a cutoff to call a gene positive or not was the
parameter varied. The results of the simulation are shown in Figure 2.6

I found that the diffusion approaches had significantly better precision com-
pared to the k-NN approach at the 66% (4 out of 6 genes recovered) recall level imposed
(a realistic compromise of sensitivity in some settings.) While single diffusion did achieve
a higher proportion of precise predictions than the tied diffusion strategy, TieDIE had
a higher precision on average with many fewer poor-quality predictions possible with

the single diffusion approach (visible by the low-precision outliers in the SDS column in
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Figure 2.7) [165].

It is important to note that this test represents an idealized scenario where
both the network topology is simulated to match a scale free network, and the input
sets are close enough to form a fully connected network when several “linker” genes are
added. However, it displays the large gain in accuracy that can be acheived when we

add knowledge of set membership to the input sets, along with the appropriate diffusion

strategy.
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Figure 2.6: Boxplot of the precision of Single Source Diffusion (SDS) and TieDIE at
finding linking genes in the core network on 20,000 simulated data sets, compared with
a simple k nearest neighbors (KNN) classifier. Recall is fixed at 4/6 signaling genes
in simulated trials, and linking genes outside of the core set of 6 are considered false
positives. Jitter was added to the x-axis of the points as well as a small amount to
the y-axis to allow viewing the quantized values of precision obtained across solutions.
The width of the overlaid violin plot silhouettes is drawn proportional to the density
of points for the corresponding value of precision. Drawn using an R script calling the
geom _violin function available in the ggplot2 library version 0.93 (Wickham, 2009) [165].
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Figure 2.7: Frequency of a discovered core and off-core genes in single-source and tied-
diffusion in a simulated network. (A) Single-source diffusion over the synthetic network.
Darker colors indicate genes in a larger fraction of network solutions in repeated simu-
lated trials at a fixed recall of 4 of 6 signaling genes. (B) The corresponding tied-diffusion
frequencies at identical recall and test conditions [165]

2.4 Validation on genomic and transcriptomic data from

patient breast-cancer samples:

2.4.1 Tied diffusion predicts breast-cancer related genes with higher

precision than single diffusion approaches

The main assumption behind TieDIE is that more accurate pathways are ob-
tained by directing diffusion processes to connect genes involved in somatic mutations to
observed transcriptional effects. Therefore, I tested whether this approach could achieve
higher accuracy than the comparable single-source approaches like HotNet that only
consider the genomic perturbations without regard to the state of the transcriptome. 1

chose breast cancer as a test system because many mutations have been identified and
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diverse types of data are available.

To determine if TieDIE networks were better able to find genes implicated
in breast cancer, I collected gene lists from both WikiPathways-WP1984 [107] and
retained a list of genes with 100 more known breast carcinoma mutations from the
Catalogue of Somatic Mutations in Cancer (COSMIC) [3] version 57 [70]. Genomics
and gene expression datasets were collected from the breast cancer analysis working-
group of the Cancer Genome Atlas (TCGA) project [149]. At the time of acquisition,
the breast cancer dataset included patient tumor samples for 533 patients and matched
normal samples for a smaller subset, each with genomic sequencing and microarray
expression data. To incorporate a diverse set of genomic and epigenomic alterations
specific to a subtype, genes within regions of predicted copy number gain or loss based
on the Genomic Identification of Significant Targets in Cancer algorithm (GISTIC) [139]
were identified as having at least five samples with either high-copy amplifications or
homozygous deletions [149]. T also included as sources the frequently mutated genes
published by the TCGA Network (i.e. genes mutated in 410 tumors). Altogether, 110
genes were collected with significant numbers of events involving 41 amplified genes in
1258 samples, 14 deleted genes in 147 samples and 54 mutated genes in 1115 samples.
One gene, BRCA1, was methylated in 15 samples and had gene expression inversely
correlated in these tumors and so was also included. The background network contained
a collection of curated transcriptional, protein-level and complex interactions for 4737
genes, proteins and abstract concepts, with 101,526 interactions [89]. To enrich for

nodes with measured data, I removed complexes from the published SuperPathway after
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transferring their interactions to the incident constituent members. For the purpose of
the experiments presented in this document, I considered a protein a transcription
factor if it had an outgoing regulatory interaction to at least one other gene in the
SuperPathway.

TieDIE and single source diffusion were run multiple times, to produce a wide
range of network sizes and the precision and recall of each validation set of genes was
measured for each. The precision as a function of recall for identifying the positive

control genes, either from COSMIC or from WikiPathways is shown in Figure 2.8
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Figure 2.8: Accuracy of single and tied-diffusion approaches to recover known cancer
genes. A) Known cancer genes used as positive controls were derived from COSMIC
and WikiPathways collections. Any linker gene not in the input sets that was recovered
in a diffusion solution was considered to be a true positive, if present in one of these
validation sets. B) Accuracy of tied-diffusion (blue) compared to single-source diffusion
(orange) in recovering breast cancer-associated genes as recorded in COSMIC measured
in terms of precision (y-axis) plotted against recall (x-axis). C) Same as in B but using
WikiPathway genes [165].
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Compared with single-source diffusion, TieDIE demonstrated higher precision
over an appreciable range of recall (by varying the size parameter) when used to predict
breast cancer-implicated genes from the Catalogue of Somatic Mutations in Cancer and
WikiPathways gene sets 2.8. Because WikiPathways includes genes related to breast
cancer without any documented mutations, these results imply that the method may
increase the ability to identify cancer essential genes as new drug targets. In realistic
settings with 20% recall, TieDIE approximately doubles the precision for finding the
genes. At recall levels higher than 3040%, the performance of TieDIE relative to single-
source diffusion decreases but TieDIE is always equal or better than single diffusion
methods. Including more sets may help increase the precision further (e.g. proteins
with perturbed kinase activity). However, the linear decline in precision past these
levels of recall indicates that any diffusion process searching sufficiently far from the

input sets may be nomore effective than randomly drawing candidate genes [165].

2.4.2 Basal-luminal breast cancer networks on tumor samples.

To demonstrate the utility of the TieDIE method, I next used it to elucidate
breast cancer-related networks that distinguish the major breast cancer subtypesthe
so-called basal and luminal A subtypes. I chose to compare these two because they
have a clear transcriptional signature compared with other subtypes that have a more
intermediate or heterogeneous signature, such as the luminal B and HER2- amplified
breast cancers. Basal breast cancer is known to be a more proliferative form of cancer

compared with the luminal type, and the subtypes are thought to result from muta-
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genic transformation of different originating cell types [144]. Because these subtypes
respond differently to both general cytotoxic and targeted therapies [149], it is im-
portant to identify pathway mechanisms that differentiate the two subtypes to discover
new treatments. The subtypes are easily identifiable from transcriptome signature anal-
ysis; however, different genomic alterations within each subtype can lead to the same
transcriptional profile. For example, PIKSCA mutations or PTEN deletions are both
correlated with the luminal A expression subtype [149]. On the other hand, it is possi-
ble that seemingly synonymous genomic alterations can lead to different transcriptional
subtypes. For example, whereas TP53 mutations are enriched in basal cancers, some
luminal cancers also harbor TP53 mutations. Thus, network-diffusion approaches may
reveal how genomic alterations correlate with transcriptional signatures in a subtype-
specific manner.

I performed a differential analysis between 99 Basal and 235 Luminal-A sam-
ples from the TCGA dataset. I used a set of 110 genomic perturbations published by
the Cancer Genome Atlas Network [149] and applied a chi-square proportions test to
find those that occur with significantly different frequency in one subtype as compared
to the other. This uncovered 12 genes with mutations significantly associated with ei-
ther the basal or luminal subtypes at the p = 0.05 level, used as the source gene set
S. The target T set was defined by inspecting the differential expression of each TF's
predicted target genes. Intuitively, TFs with activity more associated with basal tumors
should have a set of targets with higher or lower expression than Luminal tumors, com-

pared with random chance. To quantify this, I used a simplified version of the Califano
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laboratorys MARINa algorithm [120] to find TFs with targets differentially expressed
in basals compared with luminals. Predicted target genes were collected from the Su-
perPathway and SAM [41] was run to derive ‘delta scores representing the degree of
differential expression in basal tumors compared with luminal A tumors for each target
gene. Gene set enrichment analysis (GSEA) [199] analysis was then used to identify
TF's having targets with a non-random distribution of SAM scores. Rather than apply
a strict multiple-hypothesis correction at the level of significance, I instead retained
TFs with scores at a relaxed cutoff of p = 0.05 and then associated a relevance score to
each retained TF by dividing its absolute GSEA score by the maximum absolute score.
Similarly, source genes were retained that had a Fishers exact of p = 0.05 and were
log-transformed P-value. These data were used to test various relevance measures for

the following sections.

2.4.2.1 Evaluation of relevance scores:

I evaluated the precision of different methods for their ability to find true net-
work paths in the presence of randomly generated false-positive ‘decoy links, shown in
figure 2.9. To generate these links, I added one random edge to the SuperPathway for
every two true edges, leaving 33% of the edges false. Any paths in the final solutions that
contained even a single decoy link were considered to be false positive. By computing
the number of such paths that exist in the entire SuperPathway network, I calculated
the total number of true-positive paths and used this to compute the precision and recall

of the solutions. I compared tied-diffusion with its single-source counterpart and with
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competing approaches such as prize-collecting Steiner trees as implemented by Dittrich
et al. (2008), and Dijkstras allpairs- shortest-paths algorithm as a baseline approach.
Three plug-in relevance score functions were included: heat-diffusion, Googles person-
alized PageRank and SPIA (Methods 2.2.2.3 2.2.2.2). Diffusion strategies performed
comparably with the three competing methods at the specific levels of recall obtained
with each approach (green, blue and red points in Figure 2.9). In addition, I found that
tied-diffusion had higher precision over varying recall compared with the single-source
equivalents. Also, the heat-diffusion relevance function performs comparably with per-
sonalized PageRank over moderate levels of recall, after which personalized PageRank
outperforms the heat-diffusion kernel. Thus, given the significant computational ben-
efits of using a precomputed kernel, I opted to use the heat-diffusion approach as the
principal algorithm for my analysis as it allowed for a greater amount of flexibility and
experimentation [165]. However, PageRank and other random-walk processes should be
considered as alternatives, and future research might also consider the performance of

various random-walk variations relative to the underlying network topology.

2.5 Visualization of Molecular Mechanisms Distinguishing

Basal and Luminal Breast Cancer Samples:

The initial TieDIE evaluation dataset, including 99 Basal and 235 Luminal-A
samples from the TCGA dataset discussed in the previous chapter (see methods 2.4.2),

can be visualized to provide a pathway based view of the differential biology between
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samples. The TieDIE network connecting basal-enriched genomic events, such as TP53,
to basal-associated activated TFs, such as MYC, was found to be significant (P <0.002)
according to the background model (methods 2.2.5, and figure 2.10).

To make the visualization manageable, a relatively small size-factor of 0.85
was given to the algorithm (rather than the default of 1.0). As can be seen in figure
2.11, the paths in this network involve DNA damage checkpoint genes such as ATM,
RB1, CCNE1, and CDKN2A, while luminal pathways include genes such as the estrogen
receptor protein (ESR1), frequently mutated kinase PIK3CA and E-cadherin (CDH1)
[165]. The basal and luminal subtypes also differ in copy number profile, with basal
tumors characterized by amplifications in MYC, CCNE1, and deletions in CDKN2A,
while luminal A tumors often have amplifications in CCND1, which acts in opposite
fashion on the RB1 protein compared with basal samples [165]. This suggests that these
luminal A tumors may have either flipped or lost the functional interaction between
Cyclin D1 and RBI1, or that the increase in transcriptional activity of RB1 can be
explained by other upstream nodes such as TP53 or E2F1 [165].

Linking genes in the map may represent breast cancer “essential” genes whose
functions are required for altered signaling logic in tumors. In support of this idea,
inhibitors to PLK3 and HDAC1 were found to sensitize breast cancer cell lines [89], and
targeting chromatin remodelers, such as the HDACs, are currently the focus of clinical
trial work [134,165]. Therefore, the breast cancer network found by TieDIE represents
a data-driven visual summary of testable hypotheses that can explain the simultaneous

protein activation, transcriptional activity and edge interactions found between many
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of the key genes involved in breast cancer.

2.6 Application to Therapeutic Targets

I next tested the ability of the algorithm to generalize the breast-cancer model
to a panel of breast cancer cell lines. This test has important implications for the
clinical utility of TieDIE and related algorithms: if network predictions remain relatively
consistent when taken from patient samples to cell lines, the potential for followup
testing of network predictions on cell-line “surrogates”, that have similar expression
and genomic signatures to a given sample, is promising. If this is not the case, then
alternatives such as patient-derived xenografts [203] are available.

I used TieDIE to infer basal-luminal networks generated from a completely
independent data set collected in breast cancer cell lines. Data for a panel of 36 breast
cancer cell lines (17 basal, 19 luminal) was obtained from the Gray lab at OHSU [89).
I used microarray gene expression data from these lines to get the “downstream” input
heats and repeated the TieDIE analysis describe in section 2.4.2, using the original
set of TCGA derived genomic perturbations as the source set. The latter “source”
set was chosen because of both the sparse genomic data in cell lines as well as the
lack of sample size needed to get a broad view of the genomic diversity of this disease.
The resulting network was found to have a high degree of overlap with the Basal vs.
Luminal-A network derived from TCGA data 2.12. This suggests that the transcription

factor inputs are close in pathway space despite the relatively low specific overlap of
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genes, allowing TieDIE to find a similar set of linker genes that represent the connecting
topology between each pair of input sets.

To further assess the overlap of these networks I used DAVID [96] to test the
enrichment of the intersection of these networks, and found it to be highly enriched in
the expected Gene Ontology (GO) [18] biological processes related to metabolic regula-
tion, anti-apoptosis, cellular signaling, differentiation, cell cycle and other known cancer
processes. Interestingly, I found many of the most enriched terms for genes, that were
present only in the TCGA network, were related to metabolism and biosynthetic pro-
cesses. The gene lists for each network can be found in the supplemental data of the
TieDIE Bioinformatics paper [165]. I hypothesize that this contrast in metabolism is
due to the exceptional growth characteristics of cell lines, combined with the medium
of growth provided in these lines. Patient tumors, on the other hand, would have fewer
nutrients available in the extra-cellular environment and therefore be forced to increase
internal production of macromolecules to support growth. It would therefore be in-
teresting to determine whether growth conditions or the microenvironment could be
altered to make cell lines more similar to tumors [165].

Overall, the results are promising: in spite of the relatively low overlap in
transcription factors, the algorithm was able to find a highly similar network model and
set of “linking” genes between the genomic background derived from TCGA patient
samples, in spite of the relatively low overlap between TFs infered from patient and
cell-line datasets, respectively. In each case, TieDIE was able to find a set of cancer

related genes that link the genomic background to transcriptional changes in each data
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set. This highlights the ability of pathway-based methods to generate generalizable
models, through the use of prior knowledge.

In the directed networks used here, some of the proteins reside at the logical top
of the pathway while others reside at the bottom. Based on this setup, I would expect the
ones toward the top, the “master regulators, to produce more overall changes when their
activities are modulated. To test this intuition, I selected 8 basal and 8 luminal breast
cancer cell lines available in an RNAi knockout dataset [209] and selected all genes with
a mean growth-inhibition z-score of -1 or less, or with a significantly increased growth-
defect in basal lines (p <0.05, SAM) to serve as a positive control. Ideally, these genes
should be selected more often as master regulators if the pathway model is correct.

For each master-regulator algorithm, I found the intersection between the top k
predictions and the validation set and compared it with the non-intersecting predictions
to compute the precision-recall value for each. SPTA and PageRank were again run on
the networks to identify proteins at the “top.”

Each ranked “master regulator” was tested against a set of siRNA knockout
data for breast cancer cell lines [209], and I used the rankings to compute the precision
and recall in each case. We found that both methods (SPIA, PageRank) produced a
significantly better precision than random orderings, at a given level of recall, both
when used with the TieDIE network and the entire pathway (Figure 2.13). Predictions
made with the TieDIE network achieved much higher levels of precision than those
made with the entire network, which is largely a function of the methods ability to

target key pathways and not necessarily due to any enhanced topological accuracy of
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the TieDIE network. However, the fact that TieDIE was able to find enough of the
correct topological features of the core cancer pathways to achieve significantly better
precision than random suggests that the network solutions here should be useful for

identifying key regulators that might be targeted therapeutically.

2.7 Sample-specific networks in Breast Cancer

2.7.1 Computational Analysis

I next applied diffusion approaches to characterize the specific pathways of
individual samples. For each sample, I identified which of the TF's in the “downstream’
setidentified by GSEA on the cohort-wide expression datahad at least one differentially
expressed target for that sample. I then connected these tumor-specific active TFs to
the genomic perturbations in that sample present in a scaffold network, a background
network derived from a TieDIE solution from the cohort similar to the one shown in
Figure 4 except using a smaller parameter to obtain a larger starting network of 106
nodes and 423 edges.

To test if TieDIE provides an accurate scaffold, I performed a search for sample-
specific networks over TieDIE networks of multiple sizes as I as the entire SuperPathway.
Using the procedure of adding random decoy links as described earlier, I measured the
ratio of ‘true and ‘false paths in each sample-specific network solution, and plotted them
for each choice of network “scaffold” (See figure 2.14). The precision of the sample-

specific networks was plotted, and the mean precision was significantly higher when

45



using the TieDIE summary networks compared with using the entire SuperPathway.
This precision declines gradually as the TieDIE summary networks increase in size,
which is expected, given that they capture a larger fraction of the possible edges in
the starting network and in the limit are identical to the SuperPathway. This shows
that the improved precision achieved by the TieDIE summary networks is transferred
to sample-specific networks, thereby using data from the entire cancer cohort to inform
the network predictions for individual samples.

I evaluated the ability of TieDIE to connect differentially expressed genes to
at least one of the genomic perturbations represented in the sample-specific network.
I tested differentially expressed genes that were downstream of the input set of TFs,
in the cohorts TieDIE network. For the majority of samples, these sample-specific
networks explained a significant fraction of differential expression (20-80%), although for
a subset of samples none of the expression could be explained 2.15. This may be because
of missing links in the starting network, which greatly affects the TieDIE solutions,
because the method cannot infer missing links. In addition, genomic perturbations
that only occur in a small minority of samples may not be represented in the TieDIE
network because the method, by design, will filter out pathway elements that cannot
be supported by a sufficient number of samples (though by abstracting to pathway
space it can often find groups of mutually exclusive, low frequency events). This trade-
off increases the overall quality of the networks, at the expense of missing potentially
novel, but rare, molecular mechanisms that may drive the cancer phenotype in a small

minority of samples.
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2.7.2 Mapping the network of an abnormal luminal A tumor

A major goal in cancer systems biology is to infer a specific network for each
patients tumor and, as data become available, each subclone identified within the tumor.
Accurate network models could be used to explore a large space of potential targets to
kill the tumor in silico. Therefore, I applied TieDIE to identify a pathway solution
for every tumor sample in the TCGA breast cohort. To illustrate the results, I focus
here on the non-canonical tumor sample TCGA-BH-AOBR, which had an intermediate
pathway state between the classic basal and luminal A subtypes as evidenced in its
CircleMap plot (Figure 2.16). Tumor heterogeneity may contribute to such “mixed”
samples or may reflect a tumor evolution distinct from the classic basal and luminal
pattern. The sample-specific analysis of this tumor reveals it has a hybrid set of genomic
perturbations with both luminal A-like events, such as an AKT1 mutation, and several
basal-like events, such as a TP53 mutation, and amplifications in insulin-like growth
factor receptor (IGF1R) and PAKI.

Even though the patient sample has a luminal-associated AKT1 mutation, the
surrounding network is more consistent with wild-type AKT1 activity. Namely, HIF1A
is active, reflecting a basal program of hypoxic response and angiogenesis, further evi-
denced by increased EDN1 expression. In addition, IRS1 and PIK3CA expression are
basal-like, and these network properties are maintained by a basal-like PAK1 amplifi-
cation that, in this patient, may promote the activity of RAC1 and MAP2K1.

Interestingly, IGF1R is known to be involved in the control of breast cancer
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cell growth. Blocking or reducing the activity of this receptor has been found to re-
duce growth in at least one luminal breast cancer cell line [82], and increased sensitivity
in trastuzumab-resistant cells are associated with IGFR1 as well as PAK1 [173]. The
TieDIE network suggests that IGF1R and PAK1 amplifications may be driving the
growth signaling pathways of this tumor in the absence of HER2 amplification. Experi-
mental validation of such hypotheses are difficult to perform within patient samples, but
the concordance of TCGA sample-expression-derived and cell line-expression-derived
networks (see above) suggests that experiments in cell lines could be used to address

such patient-specific hypotheses in the future.
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Figure 2.9: Precision of single-source (blue points) and tied-diffusion (orange points)
with different relevance scores 2.2.2 for identifying pathways in a breast cancer. Any
paths containing even a single randomly injected ‘decoy link were considered false pos-
itives. Recall measures the number of logically consistent paths (Methods 2.2.3) out
of the total possible; precision measures the number of such consistent paths in the
total number returned. Relevance scores tested are heat diffusion (circles), personalized
PageRank (triangles) and SPIA (green circles). For comparison, included are all-pairs
shortest paths (APSP; blue circle) and prize-collecting Steiner trees (PCST; red dot).
Randomly generated networks of various sizes were obtained to estimate the background
distribution (gray dots). Different levels of precision and recall were obtained by varying
algorithm parameters (e.g. the o parameter for single and tied diffusion; [165]
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Figure 2.13: Precision/Recall for various “master regulator” algorithms, in the cell-line
specific breast cancer network. A) Precision of two master regulator node-importance
ranking algorithms (SPTA, PageRank) as well as node out-degree. A node is considered
a true positive if it was found to cause a significant growth defect in the siRNA inhibition
dataset (Turner et al., 2008). Grey boxplots show multiple random orderings of genes
in the network. B) Precision of master regulators from the TieDIE network plotted
against rankings generated from the entire SuperPathway.
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Figure 2.14: Precision of patient-specific paths over the SuperPathway and TieDIE
networks of varying size. The plot of precision over the entire SuperPathway network
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shown. The number of linker genes in each TieDIE solution, relative to the number of
genes in the input sets, is shown in the x-axis and ranges non-linearly from 0.01 to 1.0.
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Figure 2.15: Histogram of the fraction of differentially expressed genes (downstream of
our initial set of transcription factors) that are explained by genomic perturbations in
that same sample. For most samples, we found logically consistent paths explaining 20
- 80% of the differentially expressed genes.
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Network Analysis and Applications of

the TieDIE Algorithm

3.1 TieDIE finds effects linking histone modification to

transcriptional changes related to growth

3.1.1 Introduction

As with normal biology, cancer cells are characterized by a specifc pattern of
epigenomic state, that are believed to contribute to the cancer phenotype [26]. While
histone modification accounts for cell type specific gene expression patterns [88] in
normal cells, specific patterns of modification, and their effect on transcription, have
appeared for different cancers [26,73]. For example, abberant DNA methylation can
induce cancer by silencing tumor supressor genes by either by CpG island promoter
hypermethylation [68], global hypomethylation [68,90], or loss of acetylation at histone
H4 [71]. In addition, the SWI/SNF (SWItch/Sucrose Non-Fermentable) complex, a

conserved chromatin-remodelling complex that mobilizes nucleosomes and implicated as
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having tumor-supressor activity (or required for the activity of other tumor-supressor
gnes) [176], is known to have frequently mutated constituent proteins in renal carci-
noma [216].

Two large-scale TCGA studies in renal-cell and bladder carcinoma, that I have
been heavily involved in, also found frequent alterations in SWI/SNF complex genes,
including PBRM1, ARID1A, SMARCA4 and others that are thought to contribute to
the tumor phenotype [150, 151]. Through the use of prior knowledge, pathway-based
methods have the potential to find at least a fraction of the (likely wide-ranging) effects
of the alterations seen in these chromatin remodelling genes. These priors include
protein-protein interactions that can result via complex formation, and regulatory or
functional interactions between genes.

Genes that are found to interact with mutated chromatin-remodelling genes
may represent the targets of mutation-driven epigenetic changes, and pathway-based
methods are needed to prioritize genes using this additional prior evidence. In particular,
pathway interactions with transcriptional “master regulators” that already have good
evidence for altered activity in SWI/SNF mutants, based on the aggregate expression
of their downstream targets, represent additional evidence that a given transcription
factor is implicated in disease.

For each of these studies, I used the TieDIE algorithm to connect these mutated
histone-modifying genes to transcriptional regulators that modulate a large fraction of
the gene-expression signature seen in tumor samples, testing the hypothesis that the

mutations in question have a causal impact on the expression signature. In each case,
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pathway data, in combination with the TieDIE background model (Methods 2.2.5)
supported this hypothesis, and TieDIE was able to select specific histone-modifying
proteins, transcription factors and pathway interactions that underly these respective
results. In addition, key “linking” genes that may mitigate the signal between mutated
proteins and transcription factors were found in each case, expanding the list of potential

therapeutic targets available for followup study.

3.1.2 Kidney Cancer

In a study of over 446 TCGA samples of clear cell renal carincoma, the TieDIE
algorithm was used to integrate mutation, expression and pathway data. The “source”
set chosen by selecting any MutSig gene with a g-value of 0.05 or smaller, which resulted
in 19 genes (out of the original 39 significant at the 0.10 level found by MutSig using
the pre-validation MAF).

To select the “target” set of transcription factors (TFs) , the PARADIGM
algorithm was used to find transcription factors with high predicted activity in tumor
samples, as compared with normal controls. Briefly, this procedure infers integrated
pathway levels (IPLs) for genes, complexes, and processes using pathway interactions
and genomic and functional genomic data from a single patient sample using a Bayesian
statistical model [150].

All transcription factors with an average unsigned PARADIGM IPL greater
than unity that also had at least one transcriptional target with an IPL above unity

were selected as active hubs. An IPL above unity corresponds to having an activity of
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at least one standard deviation more extreme than levels seen in normal controls. These
selection criteria allowed active transcription factors with relatively few targets to be
included while controlling for well connected “hub” transcription factors found to be
inactive given the pathway context. This resulted in the selection of 115 transcription
factors. The TieDIE solution connecting these transcription factors to the 19 MutSig
genes was found to be highly significant (Figure 3.19). The resulting network contained
529 genes connected by 10,707 interactions (3396 HPRD-PPI, 4052 regulatory, 3259
component; p < 0.017). In this network, 14 (74%) of the sources were connected by
some path to 115 (100%) of the targets involving 400 interconnecting linking genes.
Pathway enrichment analysis revealed that 5 genes (PBRM1, SETD2, BAP1,
KDM5C, and ARID1A) participating in chromatin remodeling were overrepresented
beyond chance expectation in the list of 19 significantly mutated genes based on MutSig
analysis. To elucidate the pathways that may be disrupted due to mutations in these
chromatin genes I extracted a chromatin-related sub-network of the TieDIE solution.
A graph traversal was used to search for paths linking mutated chromatin genes to
those genes with gene expression levels significantly correlated or anti-correlated with
mutations in any of the chromatin genes. Correlation was determined by performing a
t-test in which samples having a mutation in one of the 5 chromatin gene were grouped
into one set and those without a mutation in any of the 5 were grouped into a second set.
A two-sided t-test was then calculated for each gene using either the genes expression
levels or its IPLs from PARADIGM and links connecting genes with t-statistics with

and FDR < 0.10 were retained. A depth-first search was then used to find all
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paths connecting the chromatin-related genes to IPL-correlated “signaling layer” genes,
through up to one “linking” gene.

Similarly, I connected the IPL-correlated signaling genes to expression-correlated
“output” genes through active transcriptional hubs. The final sub network was defined
as the union of all complete paths connecting the chromatin-related genes to “output”
genes through the linker, signaling and transcriptional-hub layers.

The TieDIE solution gives clues into the various pathways affected by mod-
ulation in the chromatin related genes (Figures 3.17, 3.18 ). Of particular interest is
the finding that the chromatin complex made up of PBRM1, ARID1A, and several
SMARCA proteins was found to interact with NFKB1. In addition, central to the
network are genes involved in TGF-beta and Wnt-related signaling. For example, be-
tacatenin (CTNNB1) has higher activity in non-chromatin mutants. This suggests that
the more advanced disease stages are driven by pathways involving beta-catenin acti-
vation, which in turn would then activate such targets as MYC leading to well-known
de-differentiation programs seen in many aggressive cancers.

Several interlinking genes in the TieDIE solution are of particular interest
because they may be overlooked when the data is analyzed without consultation of the
known and /or predicted pathway interaction logic. For example, JUN, FOS, and SP1 are
major transcriptional regulators that are inferred by PARADIGM analysis to be active
in many of the samples (see outer rings of these genes in Figures 3.17,3.18). However,
neither the inferred activities nor the expression of these genes is associated significantly

with chromatin-specific genomic perturbations. However, these transcription factors

61



together interconnect several genes that are associated with chromatin mutations from
the signaling layer, such as COBRA1, to genes in the transcriptional output layer,
such as estrogen receptor (ESR1), TGF-beta, and IL6 differential expression. The
existence of such connections suggest that mutations in chromatin modifiers enable
particular transcription factor linkers such as JUN and FOS to express sets of growth
factor receptors, cyclins (e.g. CCNB1) and interleukins leading to a global turn-over in

the signaling circuitry of tumor cells.
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Figure 3.17: sub network Describing the Impact of Chromatin-Related Mutations in
Kidney Cancer. TieDIE was used to assess the impact of mutations in genes known
to participate in chromatin-remodelling processes (PBRM1, ARID1A, BAP1, SETD2,
KDM5C), and identified as significant by MutSig, in a TCGA study of clear cell re-
nal carcinoma [150]. TieDIE identified a significant sub network connecting 3 of these
genes (PBRM1, ARID1A, BAP1) to active transcriptional hubs as identified by the
PARADIGM method. Each gene is shown as a multi-ring circle with multiple levels of
data, so that each ‘spoke’ in the ring represents a single patient sample. PARADIGM
ring, bioinformatically inferred levels of gene activity (red, higher activity); Expression,
mRNA levels relative to normal (red, high); Mutation, somatic event; centre, correla-
tion of gene expression or activity to mutation events in chromatin-related genes (red,
positive).
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Figure 3.18: Chromatin-related TieDIE solution, alternate view showing the original,
non-discriminant data and inference levels. Same solution as in figure 3.17 with an
expanded view by searching all paths from mutated genes to transcriptional targets up
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instead of the differential levels.
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3.1.3 Bladder Cancer

This TCGA study of urothelial bladder carcinoma collected data from 19 tissue
source sites, consisting of 131 chemotherapynaive, muscle-invasive, high-grade urothelial
tumours (T2-T4a, Nx, Mx), as well as peripheral blood (n5118) and /or tumour-adjacent,
histologically normal-appearing bladder tissue [151]. Genomic and transcriptional data
was collected, as in the kidney cancer study (above), and MutSig analysis was performed
to assess the driver potential of observed SNPs in tumor samples, again through the
TCGA /Broad Institute Firehose pipeline. PARADIGM was again used to infer IPL
levels for all genes.

An initial “global” TieDIE analysis was performed to assess whether the genes
with predicted driver mutations were likely to influence transcriptional “master regula-
tors” that modulate the gene-expression signature observed in tumor samples. There-
fore, the TieDIE source set was defined as the 29 genes identified as significant by
MutSig analysis. For the targets, a gene-expression signature between tumor and nor-
mal controls was defined using edgeR [180], using RNA-Seq data. Gene Set Enrichment
Analysis (GSEA) [199] was then used to identify transcription factors (TFs) having
targets with a non-random distribution of significance scores, resulting in the selection
of 26 transcription factors including JUN, FOS and MYC/Max. Not surprisingly since
RB1 is one of the genes in the SMG, several retinoblastoma-pathway TFs were selected
including HDAC1, E2F1, E2F4, and TFDP1.

The TieDIE solution was found to be highly significant (p <0.008; Figure
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3.20, part A), and the resulting network (Figure 3.21) contained 103 genes connected
by 1,233 interactions (523 HPRD-PPI, 409 regulatory, 301 component). 24 (83%) of
the sources were connected by some path in this network to all 26 of the targets, with
56 interconnecting linking genes [151].

The resulting linking set of genes in this “global” solution contained over a
dozen “linker” genes with high betweeness centrality measures (Figure 3.21). While
many of the highly central genes by this measure correspond to the starting input set
(TP53, RB1, HDAC1, E2F1), several genes were found as linkers that were not part of
either the source or target sets used as input to TieDIE that increase the overall con-
nectivity of the solution. These genes are depicted as large white nodes in Figure 3.21.
Among these linkers were several cycle-cycle related genes such as CCND1, CDC25A,
CDK1 and CDK4. Also among the list was the DNA repair gene, BRCA1 [151].

To further investigate the specific effects of mutations in histone-modifying
genes, | selected 23 genes with known histone-modifying activity and at least 1 non-
synonymous mutation, and weighted these genes by their mutation frequency to define
the source set. For the targets, I divided the samples into 2 groups: one containing at
least 1 non-synonymous mutation in the list of histone- modifying genes (100 samples)
and those without (28 samples), and used edgeR to [180] to rank the genes by differential
expression between those groups. Gene Set Enrichment Analysis (GSEA) [199] was then
used to identify transcription factors having targets with a non-random distribution of
edgeR [180] significance scores, which resulted in the selection of 35 transcription factors,

weighted by GSEA significance. TieDIE was run on this source and target set, producing

67



a highly significant network (Figure 3.20, part B) with 107 nodes and 2463 edges (603
HPRD-PPI, 322 regulatory, and 1538 component; p <0.001) [151].

To further focus this network solution on paths relating genomic alterations
and transcriptional changes, only through relevant “linking” proteins, PARADIGM was
run on the samples to produce Inferred Pathway Levels (IPLs) [151] for all genes, includ-
ing those not in the “source” or “target” sets. In this case, PARADIGM inferences were
used in place of direct measurement of direct, phosphoyrlated protein quantification via
RPPA or Mass-Spectrometry. A two-sided t-test was calculated for each gene using the
IPLs, and 12 genes were found to correlate with histone status (p <0.05, uncorrected).

I generalized the TieDIE algorithm to use the original source and target
sets along with this additional IPL-correlated set of genes, with the algorithm set
to find linker genes with high heat in either the source and IPL-correlated sets, or
the target and IPL-correlated sets. This corresponds to a generalized relevance func-
tion z = f(r(a; A);r(b; A);r(c; A)) = max( min(r(a; A),r(b; A)), min(r(b; A),r(c; A)) ),
where a, b, ¢ represent the source, IPL, and target sets, respectively (Methods 2.2.2). In-
tuitively, this sets the model constraints to find two independent regions of the network
connecting source genes to the IPL-correlated “signaling” genes, and the “signaling”
genes to the target gene set, respectively. This constrains the results to include only
paths from source to target sets that flow through the “signaling” set. As expected, the
resulting network was notably smaller (49 genes, 600 edges), and I ran an additional fil-
tering step by performing a graph traversal from the 3 most mutated histone-modifying

genes (EP300, CREBBP, MLL) to the 7 most differentially active transcriptional hubs
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(TP53, MYC, MAX, MYB, HES1, FOXA2, HSP90AA1), selected by prior knowledge
and TCGA working group consensus. The resulting network (Figure 3.22 contained 24
genes, including 4 of the IPL-correlated input nodes (SP1, HNF4A, FOXA2, CD19),
and 66 edges (55 HPRD-PPI, 10 transcriptionally activating, 1 post-transcriptionally
activating).

The linker gene with the highest centrality in the “global” network solution,
CREBBP, was also found in this chromatin-remodeling sub-network. This gene is a
transcriptional coactivitator of several transcription factors that couples chromatin re-
modeling to transcription factor recognition involving growth, homeostasis, and devel-
opment.

Interestingly, though 17 samples in the BLCA cohort have non-silent mutations
in CREBBP, the level of significance did not reach the cutoff for CREBBP to merit
inclusion into the SMG by Mutsig analysis. Therefore, the TieDIE analysis provides an
important orthogonal perspective on the role of CREBBP, further implicating it as a

potential driver of bladder carcinogenesis based on it’s surrounding pathway context.
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Figure 3.20: Genomic perturbations in bladder cancers are significantly associated with
downstream transcriptional changes through known and novel pathway circuitry. A)
The TieDIE algorithm was used to identify a network connecting the top 29 significantly
mutated genes to transcriptional hubs identified from the identification of transcription
factors with targets significantly up- or down-regulated in tumors relative to normal
controls. These inputs sets are significantly close in pathway space, under 1000 random
permutations of the input sets; blue bars are the scores of the permutations, the green
line represents the score of the real network. B) The TieDIE algorithm was applied
to connect 23 mutated histone-modifying genes, weighted by mutation frequency, to
transcription factors with differential activity in histone-gene mutated and non-mutated
samples.
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Figure 3.21: TieDIE network connecting Significantly Mutated Genes (SMGs) to tran-
scription factors with altered activity in tumor samples. SMGs (orange) are shown as
part of a network that connects these mutated genes to transcription factors (green)
with altered activity. Solid lines indicate transcriptional regulation and dashed lines
indicate protein regulation, and dotted lines indicate HPRD-PPI interactions or com-
ponent associations. Size of the node reflects the betweeness centrality measure of the
genes position in the network with larger nodes as more central to the network solution.
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Figure 3.22: The network connecting mutated histone-modifying genes to transcrip-
tion factors with differential activity. Each gene is depicted as a multi-ring circle with
various levels of data, plotted such that each ‘spoke in the ring represents a single pa-
tient sample (same sample ordering for all genes). ‘PARADIGM ring, bioinformatically
inferred levels of gene activity (red, higher activity); ‘Transcriptional activity, mean
mRNA levels of all of the targets of each transcription factor; ‘expression, mRNA levels
relative to normal (red, high); Mutation in gene, somatic mutation; ‘Mutation in histone
modifier genes, somatic mutation in at least one such gene; ‘IPL anticorrelation, genes
with PARADIGMintegrated pathway levels (IPLs) inversely correlated with histone-
gene mutation status. Genegene relationships are inferred using public resources [151]
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3.1.4 Discussion

The results here support the hypothesis that coding mutations in several
chromatin-remodelling genes lead to a proliferative transcriptional program that un-
derlies the tumor phenotype. The algorithm also predicts several “master regulators”
that are known to modulate this transcriptional program and are likely to require
the chromatin alterations that exist in the specifically mutated samples. In addition,
key “linking” genes, that are not frequently mutated or modulate the expression a
large number of genes, are implicated by TieDIE, including beta-catenin (CTNNB1),
CREBBP, SMARCD1, SHC1 and others. In each case, the integration of multiple
datasets with prior pathway knowledge is necessary to identify these genes, that lack
strong cis-evidence.

Methodologically, both the standard TieDIE model (used with two input sets)
and a generalized implementation that allowed for inclusion of a third set of inferred
protein activities, generated with the PARADIGM algorithm [?,217], were used. The
latter analysis highlights the flexibility of diffusion models like TieDIE, that can be
easily adapted to test more specific hypotheses as the available data is expanded.

One weakness of this anlysis is that, while validation of the findings has been
done through literature validation by myself and the TCGA working groups, they cur-
rently lack any direct biological validation. One way to approach followup analysis
on the set of prioritized genes would be focused on validation of differential epigenetic

state in functionally mutated kidney and bladder cancer samples, and the effects of
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intervention on these specific genes.

Another complication with the preceeding analysis is that the pathway inter-
actions used as prior knowlege may be specific to specific cellular type and state, so it is
difficult to conclude that each resulting network represents a coherent biological process
rather than a set of unrelated biological interactions that each occur in different cellu-
lar states. This issue may be partially resolved through prediction of context-specific
networks, which has beeen addressed through DREAM challenges. Specifically, I partic-
ipated in the DREAMS HPN-DREAM breast cancer network inference challenge, and
as a member of the winning team for subchallenge 1A, helped to design methodology
to predict signaling networks specific to each of a set of breast cancer cell lines. Other
methods such as ARACNe [137] and CLR [133] have been developed to predict tran-
scriptional specific to a given cell type, and more work is needed in this area to support

methods such as TieDIE.
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3.2 TieDIE identifies key kinase and scaffold proteins in

BRAF and RAS mutated thyroid carcinoma samples

Papillary thyroid carcinoma (PTC) is the most common type of thyroid can-
cer, and is characterized by frequent activating somatic alterations of genes encoding
effectors of the MAPK pathway [152], including mutations in either BRAF or RAS
genes [111] , as well as fusions involving the RET [79] or NTRK1 [170] tyrosine ki-
nases [152]. These genomic events are almost always mutually exclusive [195], suggesting
similar or redundant downstream effects [152].

I participated in a TCGA study of 496 PTCs, as a pathway analysis workgroup
leader, in an effort to characterize the genomic landscape and corresponding oncogenic
pathway activation of these tumors. Previous analysis has observed that PTC tumors
driven by BRAF-V600E mutations do not respond to negative feedback from ERK to
RAF, resulting in high MAPK-signaling [171], while, conversely, tumors driven by RAS
and RTK fusions signal via RAF dimers that respond to ERK feedback result in lower
MAPK signaling [152]. Observing that this differential signaling results in profound
differences in phenotype, the group was been able to develop a gene-expression signa-
ture to quantify the separation between BRAF and RAS mutatant samples, defining an
expanded set of BRAF-like (BVL) and RAS-like (RL) samples using this signature (Sup-
plement [152]). Ultimately, the group was able to show that these expanded BVL and
RL subtypes show clear mechanistic differences in MAPK activation and corresponding

downstream transcriptional activation, including mTOR activation in RL tumors asso-
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ciated with ERK substrate p90RSK phosphorylation, and BCL2 overexpression [152].

TieDIE was then used to assess differential pathway activation between BVL-
PTC and RL-PTC. I identified 221 samples with a non-synonymous mutation in either
BRAF or one of (NRAS/HRAS/KRAS/EIF1AX) but not both, that had RPPA pro-
teomic data available. The goal here was to find sub networks characterizing the alter-
nate signaling activities and transcriptional effects between BRAF and RAS (NRAS,
HRAS, KRAS, EIF1AX) mutants. To define the source set I used the 5 mutated
BRAF/RAS gene set defined above, weighted by mutation frequency in the sample
set.

For the transcriptional targets, Gene Set Enrichment Analysis (GSEA [199)])
was used to identify transcription factors having targets with a non-random distribution
of edgeR [180] scores, generated by a differential analysis of RNA-Seq data between the
BRAF and RAS mutants. This resulted in the selection of 36 transcription factors,
including JUN, FOS and TP53. A t-test [210] was performed to identify 82 genes
with significantly different protemic activity between BRAF and RAS mutants at a
conservative g-value cutoff of 0.05, which served as the third “signaling” set of gene
inputs, weighted by the test statistic. TieDIE was run with parameters that gave
equal weight to each of the three input sets, and the solution was found to be highly
significant in two independent tests comparing the “source” set with the “signaling”
set (p = 0.01) and the “signaling” and “target” sets (p <0.01; p <0.00005 combined),
over a background network that combined NCIPID, BioCarta, Reactome, and KEGG

databases (see supplement of [152] for details).
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The resulting network contained 82 genes connected by 343 interactions (83
HPRD-PPI, 160 regulatory, 100 complex membership) and a depth-first search was
used to connect BRAF and NRAS genes to genes in the target set with paths up to
length 4, through post-transcriptional (directed) and HPRD (undirected) interactions
(Figure 3.23); this filtered network contained 31 genes with 71 interactions (48 HPRD,
23 regulatory), describing alternate signaling mechanisms of BRAF and RAS mutants
through key signaling genes RAF, Ras homolog enriched in brain (RHEB), MAP-Kinase
proteins as well as MEK and ERK pathways.

The small GTPase RHEB, a known regulator of mTOR activity [80], was
identified as the most influential factor driving differences between tumor types, through
ranking of the final TieDIE “linker” heat scores, confirming the association of mTOR
activating with the RL samples identified in the gene-signature analysis described above.

Notably, BRAF mutants were enriched for activity in the ERK-1-2-active pro-
tein complex, as inferred by PARADIGM, along with a corresponding decrease in TSC2
activity, an inhibition target of ERK via p90RSK signaling. This integrative analysis
sheds new light on the role of p90RSK as a crucial crossroad for MAPK, mTOR, and
BCL2 signaling in RAS-driven tumors, and also supported by the higher levels of p90
phosphorylation in RL tumors [152].

Additionally, KSR1 (Kinase Suppressor of RAS) activity was found to be
higher in RAS mutants as determined by both RPPA A.1.5 assays and PARADIGM in-
ferences (see Figure 3.23). KSRI1 is a scaffold protein that modulates Ras/Raf-mitogen-

activated protein kinase [114]; knockout of this factor has been shown to selectively
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blunt oncogenic signaling in at least one Ras-driven cancer [129,177], supporting the
idea that this protein deserves further consideration as a potential therapeutic tar-
get. TieDIE was able to re-discover the role of this gene via this completely data and
prior-knowledge driven analysis, thanks in part to the regulatory interactions between
both RAS/BRAF/RAF1 and MAPK/MEK/ERK-supported by the genomic and tran-
scriptomic data, respectively—as well as the RPPA dataset. This result highlights the
strength of multi-modal data integration when combined with prior-knowledge, as each
of these datasets and pathway links was necessary in re-discovery of this essential scaffold
protein.

These findings confirm many of the known signaling changes induced by BRAF
V600E and RAS mutations in PTC, provide a framework for explaining MAPK down-

stream activity in tumors with other driver alterations.
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Figure 3.23: TieDIE networks connecting BRAF/RAS mutated genes to transcription
factors and signaling proteins with altered activity in tumor samples. A) The “core”
network of genes connecting mutant genes NRAS and BRAF to inputs generated with
RNA-Seq (ERK1-2-active complex) with paths of length up to 3. Nodes correspond to
proteins or complexes in the TieDIE solution; the size of the label text indicates the
influence attributed to each node, in relation to the three input data sets. Solid lines
indicate transcriptional regulation and dashed lines indicate protein regulation, and dot-
ted lines indicate HPRD-PPI interactions or component associations. Each tick-mark
in each circle represents a single patient sample. Circles represent genomic perturba-
tions, PARADIGM inferred activities, RPPA and expression for proteins and complexes.
Outer ring represents mutation status for BRAF and NRAS genes; for all other genes
it represents the PARADIGM inferred activity levels. Second most outer ring repre-
sents RPPA activity level, and the inner ring represents the gene expression. All rings
are sorted in the same order and according to the presence of a mutation in BRAF or
RAS-related genes (NRAS/KRAS/HRAS/EIF1AX), and secondarily according to the
activity of BRAF within mutant samples, as measured by RPPA. B) The larger TieDIE
network generated by allowing all paths between BRAF/NRAS to RNA-Seq generated
inputs with paths of length up to 4.
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Table 3.1: Mutation frequency across pancan clusters.

mRNA Cluster | Mutation Cluster | P value | Proportion
1 12 5.5E-11 | 28/8

2 13 79E-11 | 52/10
2 8 5.9E-13 | 58/11
3 4 3.3E-56 | 203/32
3 9 5.8E-18 | 224/56
4 5 1.9E-22 | 76/51
5 10 2.1E-136 | 198/23
5 9 2.4E-12 | 153/56
6 1 1.9E-12 | 32/7

6 2.1E-12 | 72/32
11 5 4.6E-71 | 133/51
13 14 5.3E-14 | 19/6

3.3 TCGA PanCancer Dataset

To assess the hypothesis that multiple mutational and copy-number profiles
cause similar transcriptional effects in a large number of tumor samples, I devised a
pathway-based approach that could incorporate both prior network knowledge along
with transcriptional and genomics data. To this end, I performed a Hypergeometric
test with Bonferroni correction between the 16 mutation-based clusters and the 16
expression-driven clusters. I found 12 clusters with highly significant overlaps (p <

1xe10)

, as shown in table 3.1 and, in particular, found that mutation clusters 8 and 13
each overlap highly with mRNA cluster 2. Roughly half of the samples in each of these
mutation clusters intersect with the mRNA cluster 2 that consists of mostly squamous
cell HNSC and LUSC tumor samples along with some BLCA and LUAD samples.

I asked whether the genomic perturbations in each of the overlapping muta-

tion subgroups were significantly associated with the transcriptional signal associated
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with the squamous mRNA cluster. To accomplish this, I used TieDIE to search for
significant interconnections between genomic perturbations and downstream transcrip-
tional changes. For this analysis, I used genes with mutations in at least 2% of the
intersecting set of samples (in both mutation cluster 8 and mRNA cluster 2) as the
source set, and used the combined frequency of mutations and copy-number changes to
define the weights of these 75 resulting genes. For the targets, I used Gene Set Enrich-
ment Analysis (GSEA) [199] to identify identify 42 transcription factors having targets
with a non-random distribution of edgeR [180] significance scores, based on a tumor vs.
normal comparison with all the samples in the second mRNA cluster. TieDIE was run
on these input sets, and produced a significant network (p < 0.043) according to the
permutation-based background model, used to determine whether the inputs sets are sig-
nificantly close in pathway space. The resulting network contained 215 genes connected
by 2,531 interactions (774 HPRD-PPI, 644 regulatory, 1113 component). Similarly, a
source input set consisting of 80 genes was generated for the intersection of mutation
cluster 13 and mRNA cluster 2 and TieDIE was run as before, this time producing a
highly significant network consisting of 219 genes, connected by 2733 interactions (784
HPRD-PPI, 593 regulatory, 1356 component; p <0.006, Figure 3.24).

To visualize the result in Figure 3.26, a tag cloud (word cloud) representation
was used with free online software from http://www.wordle.net/.

Pathway Input. As input to both the TieDIE and GSEA analyses, path-
ways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta

databases from http://pid.nci.nih.gov, the Reactome database from http://reactome.org,
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and the set of signaling and metabolic pathways in the last public release of the KEGG
database. Gene identifiers were unified by UniProt ID then converted to Human
Genome Nomenclature Committees HUGO symbol using mappings provided by HGNC
(http://www.genenames.org/). Interactions from all of these sources were then com-
bined into a merged Superimposed Pathway (SuperPathway).

Genes, complexes, and abstract processes (e.g. “cell cycle” and “apoptosis”)
were retained and referred to collectively as pathway features. Before merging gene
features, all gene identifiers were translated into HUGO standard identifiers. A breadth-
first traversal starting from the feature with the highest number of interactions was
performed to build one single component. The resulting pathway structure contained a
total of 20,713 concepts, representing 7706 proteins, 8998 complexes, 1700 families, 55
RNAs, 15 miRNAs and 582 processes. In addition, 39,240 protein-protein interactions
from the HPRD database were acquired from http://www.pathwaycommons.org/ and

included in the input network used for TieDIE.
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Figure 3.24: Genomic perturbations in mutation clusters 8 and 13 are significantly
associated with downstream transcriptional changes in the squamous expression sub-
type, through known and novel pathway circuitry. A) The TieDIE algorithm was used
to identify a network connecting 75 mutated genes within mutation cluster 8 to tran-
scriptional hubs identified from the identification of transcription factors with targets
significantly up- or down-regulated in tumors relative to normal controls, within the
squamous mRNA cluster 2. These inputs sets are significantly close in pathway space,
under 1000 random permutations of the input sets; blue bars are the scores of the
permutations, the green line represents the score of the real network. B) The TieDIE
algorithm was applied to connect 80 altered genes in the mutation cluster 13 to the
same set of transcriptional hubs.
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Figure 3.25: TieDIE networks connect genomic perturbations in mutation clusters 8
and 13 connect to downstream transcriptional changes in the “squamous’ expression
subtype. A) The TieDIE algorithm was used to identify a connecting network between
75 perturbed genes within mutation cluster 8 to transcriptional hubs identified from the
identification of transcription factors with targets significantly up- or down-regulated in
tumors relative to normal controls, within the “squamous” mRNA cluster 2. Node and
label font size represents the genomic alteration frequency within the sample group;
brighter shades of red represent genomic alterations more exclusive to the mutation
cluster 8, as compared with mutation cluster 13. Genes commonly mutated in both
networks are removed (TP53, CDKN2A) for contrast. B) The TieDIE algorithm was
applied to connect 80 altered genes in the mutation cluster 13 to the same set of tran-
scriptional hubs. Brighter shades of blue indicate genomic alterations more exclusive to
mutation cluster 13, as compared with mutation cluster 8.
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Figure 3.26: To visualize the result in Figure 3.26, a tag cloud (word cloud) representa-
tion was used with free online software from http://www.wordle.net/. Font sizes were
scaled linearly either by frequency of genomic alteration (top left, top right clouds),
linker gene importance from the TieDIE algorithm (middle left, middle right clouds),
and by the significance of GSEA scores for each transcriptional hub (bottom cloud).
Font color gradients represent differential frequency of genomic perturbation (top left,
right clouds) and differential linker gene importance (middle left, right), with bright red
representing a gene fully exclusive to mutation cluster 13, or a linker gene in the corre-
sponding TieDIE network that is not found in the mutation cluster 8 TieDIE network.
Similarly, bright blue words represent genes fully exclusive to mutation cluster 8 and its
corresponding TieDIE network
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3.4 TieDIE Cytoscape Implementation

In the summer of 2014 I served as a Google Summer of Code (GSoC) mentor, as
part of the National Resource for Network Biology (NRNB; http://nrnb.org/gsoc.html)
academy. I had the pleasure of working with Srikanth Bezawada, a student at the Birla
Institute of Technology and Sciences, who implemented the TieDIE algorithm as a Cy-
toscape [188] application in the Java programming language, under my guidance. The
application is currently available from the Cytoscape app store (http://apps.cytoscape.org/)

as a Beta release.
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Figure 3.27: TieDIE is available as a plugin application to the Cytoscape software [188];
developed in collaboration with Java software engineer Srikanth Bezawada and the 2014
Google Summer of Code (GSoC). Top left: the TieDIE control panel allows users to
select input data from tables loaded into the Cytoscape software; radio buttons allow
the user to select either the heat-diffusion kernel or personalized pagerank methods for
information diffusion over their selected network. The rectangular button below starts
the TieDIE algorithm as an a-synchronous background process, producing a sub network
(top right) on completion, as well as highlighting the source (red outline), linker (yellow
outline) and target (red center) nodes, as shown in the bottom figure.
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Patient-Specific Network Analysis and

Applications

4.1 Introduction

A major goal in cancer systems biology is to infer a specific network for each
patient’s tumor, and, as data becomes available, each subclone identified within the tu-
mor. Accurate network models could be used to explore a large space of potential targets
to kill the tumor in silico, while new experimental technologies such as Patient Derived
Xenografts (PDX) [204] will make testing a subset of these computational predictions
possible.

In contrast to the cohort-wide analyses that find a summary of common biolog-
ical changes across a cohort of tumors with similar tissue of origin, biological markers or
subtype, patient-specific analyses attempt to find specific biological changes that drive
the disease of a single patient. In (rough) statistical terms, cohort-level analyses capture
a “mean” view of relevant biology of tumors, often related to genomic or transcriptional

events that occur in a meaningful fraction of patients, while patient-level analysis is
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necessary to summarize the variance (or heterogenaity) between patients. This hetero-
geneity is widely believed to be present in most cancer types [85], and the need for
patient-specific analyses is particularly necessary for generating clinincal utility as most
the therapeutic strategies target specific proteins or molecular processes [85].

Finding these actionable genes in each patient, however, provides a challenge
due to the lack of statistical power when doing an N = 1 analysis, making it difficult to
find robust predictions for each patient. Any reasonable approach to N = 1 analysis,
therefore, will attempt to use data on additional cancer samples to inform predictions
made for a specific patient. One of the simplest examples of this strategy is the use
of the COSMIC [3] database, which can help determine if a single nucleotide variant
(SNV) observed in a given patient is recurrent across other cancer samples, and therefore
more likely to be an evolutionary driver of the tumor in question. Similarly, the driver
potential of some mutational variants observed in new patient samples can now be
interpreted thanks to large-scale studies by the TCGA in cancers of various tissues of
origin [150,151,153].

Proteins and signaling components that are not directly altered, but essential
to the growth and survival of a given tumor, can pose an ever greater challenge in N =1
analysis than assessment of genomic drivers. For instance, as proposed earlier in this
document 3.1, alterations in certain histone-modifying genes can lead to the corrup-
tion of SWI/SNF complex machinery and wide-ranging epigenomic and transcriptional
changes in genomically unmodified genes. In addition, multiple genomic alterations up-

stream of the mitogen-activated protein kinase (MAPK) [56] and AKT [104] pahtways
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can lead to the constitutive activation of these growth-signaling pathways, which are
themselves genomically stable. Pathway analysis is a powerful tool in predicting acti-
vation of this tumor-essential biology as it provides a framework to compose various
types of high-throughput data (genomic, transcriptomic, proteomic and others) into
predicted pathway activation states, generating large-scale datasets—analygous to the
COSMIC and TCGA examples for SNVs—that can be used for interpretation of a single

patient’s pathway-transformed data.

4.2 Tissue-Specific network inference in cell-line model

systems

4.2.1 Inference of gene regulatory networks with phosphoproteomic

data

A major goal of systems biology is to infer the genetic “circuitry” that governs
how cells respond to environmental stimuli, developmental cues, and therapeutic inter-
ventions. The idea is to find a genetic pathway model that can accurately predict the
consequences of perturbations not seen during model construction [55]. Much work has
focused around the reverse engineering of gene regulatory networks (GRNs) from high-
throughput datasets of various manifestations. The DREAM series of challenges was
originally launched to spur the development of methods to infer GRNs and has found
that an ensemble or “wisdom of crowds” approach that combines several strategies of-

ten performs better than any stand-alone approach [55]. Consequently, the accuracy
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of the top-performing ensembles reveal that there still exists a considerable room for
improvement in the ability of individual methods to reverse-engineer GRNs. Thus, new
methodology is needed, one that may draw inspiration from approaches developed in
different fields of research and that could complement the current set of methods [55].

In collaboration with a small team of graduate students at UC Santa Cruz, 1
participated in the DREAM 8 breast cancer network inference challenge, in an effort
to predict tumor-specific protein signaling pathways. A panel of breast cancer cell
lines were used as a model for prediction in this challenge, in the hope that methods
learned here would generalize to patient samples. Our winning solution to the HPN-
DREAMS 1A problem combines the principle of correlation suggesting causation with
prior biological knowledge to produce a robust prediction of causation from time series
phosphoproteomics data.

This novel method, Prophetic Granger Causality (PGC), for inferring gene reg-
ulatory networks (GRNs) infers networks from time series data measuring protein levels
as a function of time, stimuli, and other perturbations or conditions [55]. The method
uses an Ll-penalized regression framework to adapt a Granger Causality approach for
use in GRN construction. When combined with a data-independent network prior, the
method outperformed all other methods submitted to the HPN-DREAM 8 network in-
ference challenge 1A sub-challenge. Our investigations reveal that PGC on its own is
a weak predictor but provides complementary information to other approaches, boost-
ing ensemble learners. Thus, PGC serves as a valuable new tool in the bioinformatics

toolkit for analyzing temporal datasets [55].
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Derivation of a network prior

Our hypothesis was that a network prior would aid in the interpretation of a
dataset like the HPN phosphoproteomics data, if enough of the protein-protein interac-
tions are relevant to the condition(s) represented in a study. For this challenge we used
established pathway collections, since their protein interactions tend to fit most closely
with a notion of causal influence. Because there are biological feedback mechanisms
that are not accounted for, perturbations in a child species also often lead to perturba-
tions in parents even in the absence of a documented mechanism, making it difficult to
assess the directionality of causality, as was required in this competition. Therefore, we
decided to ignore the directionality of pathway diagrams, and merely seek some metric
of “closeness in the graph that represents the pathway, choosing heat diffusion as the
metric, the merits of which have been extensively discussed in this thesis [55].

The biological prior was derived from the Pathway Commons database ver-
sion 3 [33]. Of these, 495 pathways describe previously established canonical biological
processes with HGNC symbols for genes. As a first guess at causality, without even
considering the phosphoproteome data, we used the pathways to describe how “close
the proteins were in biochemical processes, regardless of the types of interactions that
linked them. We did this by treating each pathway that contained two or more of the
proteins in the chip (263 pathways) in the following manner: first, each pathway was
reduced to a simple, undirected graph where each node was a gene and each edge was

an interaction. For proteins that act in a complex, each of the constituents of the com-
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plex was assigned an edge to the targets of the complex. On this graph, I calculated
a heat diffusion kernel for the pathway. If L, is the graph Laplacian, then the heat
kernel corresponding to a 0.1 time unit diffusion, as suggested by [172] was calculated
as: H, = exp(—Ly * 0.1), where exp() is the matrix exponential, and identically to
the computation used with the TieDIE algorithm. This step resulted in a symmetric
matrix of pairwise edges between some of the nodes in the training data. The final prior
network was then obtained by aggregating all of these symmetric matrices across all of
the Pathway Commons pathways considered [55,197].

The heat kernel prior uses no information about the training data in its cal-
culation; however, this matrix alone achieved second place in the DREAM challenge
1A (see figure 4.29. The performance of this entry by itself in the DREAM challenge
can be seen as a confirmation that the contest recapitulates known biology, and is an
important reminder that prior biological knowledge should always be taken into account

in practical applications of machine learning to biology [55,197].

Regression framework and results

The DREAMS-1A sub-challenge provided contestants with a time series of
phosphoproteomics data on four different breast cancer cell lines, subjected to eight
different stimuli, in the presence of four different inhibitor conditions. The goal of the
HPN sub-challenge was to infer the directed protein-protein signaling network govern-
ing the response of 45 phosphoproteins for each of the cell lines. The correctness of the

inferred networks was assessed by follow-up wet lab experiments in which the stimuli
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were presented to the cells in the presence of a new inhibitor, and the resulting responses
of each protein in the network were recorded; this allowed verification of phosphopro-
teins predicted to be differentially regulated under the new inhibitor and, therefore,
downstream of the inhibitors target [55].

A regression-based analysis was performed, extending L1-penalized Granger
causality [20] to consider future time points in addition to past time points (see up-
coming DREAMS project paper [197]). This strategy provided the regression model
with additional training data to assess the correlation structure of the data, while still
allowing resolution of the directionality. Treating each (cellline, stimulus) context in-
dependently, each value of the phosphoprotein data for a particular inhibitor, time
point, and phosphoprotein was approximated as a linear combination of all other (time
point, phosphoprotein) pairs for the same inhibitor, including future time points. An
L1-penalty was applied to the regression and tuned such that all regression coefficients
associated with past and future instances of the regressed node (i.e. autoregression
terms) were set to zero. Any non-zero coefficients among the exogenous terms were
then assumed to contain causal information. Regressor nodes from time points prior
to, or concurrent with, the regressed node contributed evidence in favor of the regressor
node having a causal influence on the regressed node. Regressor nodes from time points
after the regressed node contributed evidence in favor of the regressed node having a
causal influence on the regressor node. Finally, the inferred network matrices were nor-
malized to a [0,1] range and averaged with the prior network to produce a final causal

matrix [55,197]; an overview of our approach is shown in figure 4.28.
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As can be seen in figure 4.29, the causal model combined with the prior network
was the best overall performer in the challenge, slightly (but signficantly) improving on

the prior network alone [197].

Discussion

The DREAM competitions are an invaluable way to assess the relative utility
of a large number of methodologies and datasets, and provide rapid feedback to the
scientific community. In the DREAMS network inference challenge, we found that
the use of prior knowledge is essential for the determination of tumor-specific protein
networks. As with the many TieDIE algorithm results presented in this thesis, we
demonstrated the ability of a heat-diffusion model to effectively integrate prior data
with tumor-specific datasets.

Further analysis (presented in detail in our methods paper in Nature Scientific
Reports) using our regression framework found evidence that cell-type, and the corre-
sponding genomic background, is a greater determinant of cell-specific network wiring
than stimulus-dependent effects [55]. This, along with evidence from other recent stud-
ies [66,94] supports the idea that tissue-specific networks are needed to perform more
complex computational analyses. I test this approach with a multi-omic dataset derived

from metastatic prostate tumors later in this chapter.
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Figure 4.28: a). Prophetic Granger Causality method description taken from the team
paper [55]. The method is given a set of probes (rows; y-axis) measuring the level of
a particular phospho-protein state at particular time points (columns; x-axis). Each
probe value p at each time point t (green) is considered in turn as a linear regression of
all other feature times and probes. Probe A is being considered at time T. The penalty
parameter L1 is chosen such that autoregression contributions (red) are set to zero.
Any remaining non-zero regression coeflficients for other probes suggest causality; past
or concurrent time point probes (blue) are considered causal of the target; future time
point probes (yellow) are considered to be caused by the target. The different inhibitor
conditions are treated as different examples in the regression task. This process was
repeated for each time and probe, with each regression task contributing to the final
connectivity matrix [55]. b) Overview of the overall PGC plus network prior approach
for the HPN DREAMS submission [55]. Prediction for a single (cell line, ligand) pair
task. (i.) 263 Pathway Commons pathways having at least two proteins in the DREAM
dataset (colored shapes). (ii.) Heat diffusion kernel used to measure closeness between
the proteins in each individual pathway. Pathways were combined into a single weighted
biological prior adjacency matrix. (iii.) The Prophetic Granger solution, obtained as
shown in part A. (iv.) The final solution for the (cell line, ligand) pair produced by
averaging the heat diffusion kernel with the absolute value of the Prophetic Granger
solution [55].

96



experimental data task

mean AURCC
(=] = o
B - =

=
o)

=

Linear Prior Fairwise Manlinear ODEs

Ensemble Other Bayesian networks
regrassion netwark soare Fegression
erily [trep-based
ensemble
appraach)

Figure 4.29: Summary of subchallenge 1A result for all models submitted to the HPN-
DREAMS network inference challenge. The prior network (2) scored higher than all
other submitted models; combining with the Prophetic Granger Causality (PGC) re-
gression predictions further increased the performance (1, left) [197].

97



4.2.2 Gene-Essentiality Prediction in cell-line model systems

As described in the introduction to this thesis, cancer often relies heavily on
unaltered components of cellular biology to sustain agressive growth; this results in
tumor-specific vulnerabilities that can be exploited with target drug therapies [39].
Prediction of these cancer-essential genes is an important dual to the problem of sub-
network prediction, as reliance on specific gene interactions (as explored in the the
previous section) can inform gene-essentiality prediction, and vice versa.

In the summer, 2014, I lead a team at UC Santa Cruz to compete in the
Broad-DREAM Gene Essentiality Prediction Challenge. This challenge represented
a community effort to assess the potential of a large-scale genomic screening effort
(project Achilles) to link gene dependencies to the molecular characteristics of each
cancer, in order to identify molecular targets and guide therapeutic development [39]
(www.synapse.org). The Achilles project, developed by the Broad Institute, uses genome
wide genetic perturbation reagents (ShRNA) to selectively silence genes and assess the
effect on survival of each (www.broadinstitute.org/achilles). Our goal was to predict
the specific dependence of each gene in a panel of cell lines from the Cancer Cell Line
Encyclopedia (CCLE), producing a ranking of cell lines from most to least sensitive.
Our leading hypothesis was that prior information in the form of pathway databases
and literature review could improve our ability to predict specific essentiality of many
key genes; by the end of the competition, we had developed methodology to employ this

prior knowledge to our prediction task, and were able to win one of the key subchallenges
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in the DREAM competition.

4.2.2.1 Methodology

Data Filtering Strategy Given that we were asked to predict a relatively small
number of samples ( 150) with an extremely large number of features (over 40,000),
feature selection was a large factor in the competition, both for the accuracy and inter-
pretability of the results. Because cancer-related genes are more likely to be driving the
underlying biology of tumor cells, I hypothesized that prior-knowledge of these genes
will improve our ability to pick robust biomarkers; in particular, data and analyses per-
formed on the TCGA Pan-cancer dataset can filter the number of genomic features to
those related to “driver” events. In addition, the TCGA Pan-cancer datasets includes
thousands of unique samples, meaning the application of these data vastly improves
the amount of information available to select a robust set of features. I implemented
this concept by filtering CCLE copy-number training and test data include only the 102
genes found to have significant copy-number alterations in the TCGA Pan-cancer data
set [25], and found that it provided a significant boost in performance on throughout all
(3) stages of the competition. Therefore, we included only this subset of copy-number
features in all of our final submissions.

In addition, a “baseline” filter was constructed by selecting the 25% of ex-
pression probes with the highest variance in the combined training and test datasets,
leaving 4740 probes. After this we filtered out any probes with significantly different

distributions in the training and test data (two-tailed t-test, p <0.05), as these probes
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were less likely to generalize between the two data partitions; 4561 probes were left after

this step.

Prediction Framework To introduce prior knowledge into our prediction task, we
used MSigDB [200] ¢2 (curated gene sets) and ¢5(GO gene sets) to construct a list of
pathways to be used with a Multiple Kernel Learning (MKL) framework. Starting with
6176 gene groups, we first filtered using our baseline filter (above), and then through
a heuristic to remove redundant gene sets: gene sets were ranked according to size,
and starting with the largest, every subsequent gene set was only included if it did not
overlap more than 65% with any previously included gene sets. Following this second
filtering step, we ended up with 2804 pathways that were used to construct expression
kernels.

Multiple Kernel Learning is a kernel-based machine learning method which
looks for an optimal linear combination of (given) kernels that gives the best learner
for a partiular task [196]. These kernels can represent heterogeneous data sources or
different biological perspective of the same data: in our case, each kernel corresponded
to one of the 2804 expression-based and 2338 copy-number based gene sets that passed
the pathway filtering step previously described. Our hope was that, by using these
kernels to learn activation or de-activation states of clusters of related genes, we would
obtain more robust (and more interpretable) features than a single-gene predictor could
provide. Vladislav Uzunangelov, a Ph.D. student colleage on our team used Tomioka

and Suzuki’s regularized MKL elastic net formulation [207] to implement this part of
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our entry.
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where N is the number of samples, M is the number of kernels with non-zero
weights, and («) are the individual kernel weights. We solved this with Tomioka and
Suzuki’s MATLAB implementation.

We constructed 2804 expression-based and 2338 copy -number based Gaussian
kernels by limiting the feature space to only the expression/CN features that belonged
to the given gene set. Before computing the kernels, we standardized the distribution
of each feature across the training set to a mean of 0 and variance of 1. Furthermore,
once the kernels were calculated, they were all re-scaled to have 1’s along the main
diagonal, which is equivalent to ensuring that each vectors lies on the unit sphere in the
(transformed) feature space.

I implemented a Random Forest predictor to predict the essentiality of each
gene i, the features for all cell lines were combined into a single data matrix that was
then used as input to the randomForest package. The regression problem for each target
gene ¢ was then reduced to minimizing the squared error loss over all cell lines [ and

features j:

> (61 = filz))?)

j7l
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where (8}) is the gene essentiality for gene i and cell line 1, and (fi(y)) is the
function of the feature data to be optimized by our regression model.

Regression trees approximately solve this problem by recursively splitting the
learning sample with binary tests, each based on one input variable, trying to reduce
the variance of the output variable/essentiality score across the cell lines [123]. At
each node/split, only a subset of the input features are sampled and considered as a
candidate variable for this split; we set this parameter to the base-2 logarithm of the
number of the total number of features, plus one, as it was determined to provide the
best performance in a related DREAM prediction task [50]. Votes from an ensemble
of 1000 trees, each built from a bootstrapped sample of the data, is then averaged to

produce the final predictions.

4.2.2.2 Conclusion

Our DREAM9 team demonstrated the effectiveness of using the additional
data of a large sequencing initiative (TCGA Pancancer) as well as pathway data, to
improve the prediction of gene essentiality in cell line models. The methods we developed
use this additional data in combination with the competition-provided expression and
copy-number data to select a more robust set of predictive features for each task (gene).
Specifically, an analysis of a Pan-cancer dataset consisting of thousands of diverse tumor
samples was able to identify a small set of “driver” genomic features [94] (102 genes)
that consistently improved predictive accuracy on the phase 1 and phase 2 leaderboards,

when compared with the entire ( 19,000) gene set.
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In addition to the feature-selection methods, we leveraged multiple non-linear
(random forest, my contribution; multiple kernel learning, implemented by Ph.D. stu-
dent Vladislaw Uzunangelov) predictors, allowing us to create ensemble predictions that

increased the performance on the first subchallenge.

4.3 Patient-Specific Networks in Metastatic Prostate Can-

cer

Incorporation of phosphoproteomic data sets has not reached the standardized
level to what is routine with whole genome or RNA sequencing data. Typically, these
approaches have defined algorithms that analyze the data in several ways to depict key
transcriptional targets, cell surface molecules, or pathways [13,19,78,148,179,202]). This
has led to the current state of personalized medicine using genomics and transcriptomics
to identify targetable mutations or pathways that can differentiate tumors from a similar
tissue of origin for selective therapies [13]. However, one step that is missing from
genomic or transcriptomic analyses is further confirmation or validation of the activated
pathways that have been found with these data; Examples include confirmation of known
driver mutations such as EGFR in lung adenocarcinoma and c-KIT in gastrointestinal
stromal tumors (GIST) or the identification of signaling pathways from tumors lacking
consistent driver mutations such as prostate cancer, where the functional understanding
of how these pathways drive tumor growth is essential [13].

Protein phosphorylation is an essential, rate limiting step for the regulation
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of signaling pathways over numerous biological events; determining both the level of
phosphorylation and what residues are phosphorylated on a given protein may pro-
vide information about the activity of kinases and phosphatases as well as uncover new
functional information [13]. Cellular signaling can also be controlled through the recruit-
ment of protein domains (such as SH2 and SH3) to specific phosphorylation sites on
the cytosolic tail of kinases [166]. Protein phosphorylation leads to a cascade of down-
stream signaling events important for cell maintenance and survival, and dysregulation
of this process has been implicated in many diseases including cancer [100]. It follows
that the implementation of phosphoproteomics, coupled with traditional mRNA-based
approaches, may provide greater clues to these signaling events than either alone [13].

To discover treatment-relevant patterns of phosphoproteomic signaling in CRPC,
a team lead by Justin Drake and Owen Witte (UCLA) first developed a complete and ex-
tensive dataset of the phosphoproteome in metastatic CRPC by performing an extensive
analysis of tyrosine, phosphoserine and phosphothreonine peptides [63]. In collaboration
with them, I adapted the TieDIE and Master Regulator Analysis (MRA; see appendix
A.3) presented in earlier chapters of this thesis, to develop a computational pipeline that
could integrate this new protein signaling information with existing “omics” datasets.
This approach was motivated by recent attempts at multi-omic data integration of pro-
teomic and genomic data, that have revealed (in other cancer types) pathways that can
be targeted [21,28,227].

With TieDIE, we developed comprehensive pathway networks that are both

enriched and activated in CRPC, integrating independent datasets of the transcriptome,
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mutational data, and the phosphoproteome from a partially overlapping set of tumor
samples obtained at rapid autopsy [182]. For six patients (seven samples) that had both
mRNA and phosphoproteome data, I computed patient-specific pathways that mark
key signaling events within the pathway for interrogation, by extending the methods for
single-patient analysis developed for TieDIE and demonstrated on TCGA breast cancer

data, earlier in this thesis.

4.3.1 Results

Generation of a comprehensive phosphoproemic dataset
Metastatic CRPC was analyzed at the phosphoproteome level by the team at UCLA
using strong cation exchange (SCX) chromatography (phosphotyrosine (pY) peptides,
[63] and phosphoserine (pS) and phosphothreonine (pT) peptides [13]); in addition to
the tyrosine peptides, CRPC tumors were evaluated for pST peptides using quantitative
label free mass spectrometry (Figure ). This analysis was able to identify 8,051 total pST
peptides from 72 total runs corresponding to 36 samples of interest, resulting in over a
25-fold increase of pST to pY identifications due to the stoichiometry of serine/threonine
phosphorylation (98%) relative to tyrosine phosphorylation (2%) [160].
Similar hierarchical clustering patterns were apparent when compared to pre-
viously published pY peptide data [63] as cell lines were distinct from primary tissues
and treatment nave localized prostate cancer clustered independently from metastatic

CRPC tissues (Figure 4.30).
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Figure 4.30: Experimental setup for prostate cancer phosphoproteomic data collection,
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the workflow for phosphopeptide enrichment and quantitative mass spectrometry as
described in [63]. (B) Unsupervised hierarchical clustering heatmap of phosphoserine
and phosphothreonine peptides identified from prostate cancer cell lines and tissues.
Over 3,900 unique phosphopeptides were significantly identified from over 36 samples

[13].
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TieDIE pathway analysis of clinical prostate cancer samples

I first applied the MARINa algorithm [17] to find transcriptional “master regulators”
as well as kinase regulators (based on kinase/substrate relationship data) with differ-
ential activity in metastatic CRPC samples as compared with treatment nave prostate
cancers (Table 4.2). In addition, kinases directly identified by the mass spectrometer
in our phosphoproteomic dataset were merged with the kinase regulators, before being
input to TieDIE (phosphorylated kinases). From this differential analysis, we were able
to input 74 transcriptional master regulators, 14 inferred kinases, and 24 phosphory-
lated kinases (Fig. 4.31 (b)). The inclusion of both inferred and phosphorylated kinases
allowed us to increase the number of kinases that will be interrogated in the network
(Fig. 4.31 (c)). As a third input to TieDIE, the background of somatic mutation and
copy-number aberration was estimated using a large number of prostate cancer samples

from multiple datasets (see methods 4.3.2).
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This approach found that the identified kinases were significantly interrelated
to the expression-driven transcription factor and genomic-derived input sets (p <0.012),
according to a conservative background model that performed 1,000 permutations of the
data. The integrated network consisted of 338 nodes (40 kinases, 53 transcription fac-
tors, 86 genomically altered genes and 163 linkers) and 1,889 edges. To simplify this
network, we kept only the nodes that were directly identified in the phosphoproteomic
analysis (i.e. each node has a phosphoresidue identification). This resulted in a “scaffold
network” for metastatic CRPC containing 122 nodes and 256 edges. Interestingly, the
61 “linker” genes identified through network topology were found to have protein phos-
phoresidues that were significantly more phosphorylated in metastatic samples (Figure
4.32 (b); p < 4.5 x 107°). Using a set of established cancer “hallmark” gene sets from
GSEA /MSigDB (http://www.broadinstitute.org/gsea/msigdb), we performed enrich-
ment analysis to identify activities related to the disease state in the scaffold network
solution. Six predominant sub-networks involved in AKT/mTOR/MAPK signaling,
nuclear receptor signaling (Estrogen Response and Androgen Response), the cell cycle
(G2M checkpoint, mitotic spindle, TP53 Pathway, E2F Targets, and Apoptosis), DNA
repair (DNA repair, UV response), stemness (TGF-beta signaling, WNT-beta-catenin
signaling, notch signaling, MYC targets, and hedgehog signaling), and migration and
invasion (Figure 4.32 c-h) (Apical junction and epithelial and mesenchymal transition)
were identified representing metastatic CRPC biology.

To determine how many of these proteins within the sub-networks were de-

pendent on the inclusion of the phosphoproteomic dataset, I re-ran the same TieDIE
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analysis with or without the phosphoproteomics information (Figure 4.34 a,b). I found
that the resulting, comparable sized networks showed significantly different hallmark
outputs as we observed more enrichment in proteins involved in cell cycle, DNA repair,
AKT/mTOR/MAPK and nuclear receptor pathways when the phosphoproteomic data
was included (Figure 4.33; cell cycle: 20.5 vs. 14.7, -logl0 hypergeometric p-value;
DNA repair: 6.6 vs. 5.1; AKT/mTOR/MAPK signaling: 4.6 vs. 1.6; nuclear receptor
signaling: 8.0 vs 5.8). Inspecting each sub-network through our phosphoproteomic data
revealed several enzymatically active phosphoresidues enriched in metastatic CRPC.
This includes MAPK signaling targets (RPS6KA4 S343/S347, S682/T687), cell cycle
targets (MCM2 S40/41, S27), and the DNA repair kinase PRKDC T2609, S2612 (Fig-
ure 4.33 b-i). Several other kinases within these sub-networks were hyperphosphory-
lated at residues with unknown function in metastatic CRPC including PRKAA2 S337,
MAPK14 S2, STK39 S385, NIPBL S318, and SNW1 S14. These results provide evi-
dence of actionable phosphorylation events in metastatic CRPC, several of which have
previously been implicated in this disease [76,164,224] while others represent novel drug

targets.

110



AGR®, P @'®% “gp SO B biterentiat Actity (Rec TieDIE tinkers; Bie: ther genes)
S o b 0}, i -
3 - 5 i
b , ¢
d [ J .. : s
b~ 5% . '
y ® Enriched Pathways §° '
O Cell cycle pathway i .
© DNA Repair pathway s "
O PI3K-AKT-mTOR pathway . .
@ Nuclear Receptor pathway ° v
© Stemness pathways ¢ - ‘
@ Migration and invasion pathway e
C Cell cycle pathwa D
Bhun  CHEK2sGRp1 EGFR oflib ABe MAPK14 NIPBL
PRE ’4AEGVR1B, iy PRKDC R mAm DAXX POLETSC( MgBL 2 PRKDC TR@33
mABkra MBO1 TRINIS o AN o CTANGT EGFR, 1y CHAF1A CBX3
O HSTAHAA s oA i - DAXXEIF2C2  RBf
TRIM24 7CGHCs oA CHD4 AKT1 DNMT1
- ‘@ XPC xRECS ) RB1 IGF1R SSF“:"‘CDKQTAF6
CCOE97Rp&RkAL e Ty i AP NEK3 MYC XPC
THilles e AL oBke T pg DNWIA sn@Bc4 TRIM28
MBMe  TP83 MBM7 SW1 RAB21 SUBSH1 RPNTURTIEH  NCORT
EIF2AK2 - TEDP1
RES3 pROM2  REB CREBBPPELP‘ PARP1
LATST MBIz A NOBX
o1 MEL  NGOR2 CREBBPTP53  PRDM2
E PI3K-AKT-mTOR pathway F Nuclear receptor pathway
PRKAA2 AT EGFRMAPK1 REN1 '
N.?Z ARID4A HSF1
N 4
pAkbc 1K icRIR =GR @ PRDC
GOA3 F.5
ol !]VIAPK14 R M 1N400R1 NGOAG RB1 .
0.31 X 5
o k1
stiso Y @ rouzri
MCM7 NEIC
MEMe A ARD sl
MCM2 RPA1 CREBBP
G Stemness pathways H Migration and invasion pathways
RBL2 ATM
DA())(:Dﬂll,Ps?rFDP1HDAC4 RB1 H|3T14H4A PRKDC M‘14 I\.7
cTiiNg1 NCOR2 Mcm7 Q@SSSRM T.1
CHAF 1A 0T EGFR By E
il o NGORT g M
- PML . RPATMCM2
ARID4A CBR2 MY% Pl AR NCOAG6
céNpt1 MEL  SNW1 TRIMes. .
h CREBBP_NUP214 F.Z
pe PARP1 .
CDK1 TPSS BB IGE1R

Figure 4.32: (A) TieDIE “Scaffold” network components centered on each of 6 cancer
hallmark categories: for each, the set of genes in both the hallmark and the scaffold
network are shown (colored) along with all adjoining edges, as well as all scaffold network
genes that connect two or more of these hallmark genes (grey). (B) For each peptide in
the dataset, a t-test was run between values in metastatic CRPC samples and primary
controls. TieDIE “linker genes were defined as those proteins in the scaffold network
that were not included in any of the 3 (genomic; kinase; transcription factor) input
sets. I found the overall phosphoryation of linker genes (red) to be significantly higher
(p = 4.5 x 107%; two-sample Kolmogorov-Smirnov test) in metastatic CRPC samples, as
compared with the distribution of differential phosphorylation in all other genes (blue),
(C-H) Genes and subnetworks related to each hallmark

which is centered at zero.
category are shown. [13].
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Figure 4.33: Pathway analysis of metastatic CRPC. Enriched cancer hallmarks gener-
ated by dataset integration using TieDIE after inclusion of the phosphoproteomic data
(A). Several cancer hallmarks were enriched after inclusion of the phosphoproteomic
data including the cell cycle pathway (B, red nodes), DNA repair pathway (D, yellow

nodes), AKT/mTOR/MAPK pathway (F,
way (H, green nodes).
from each network confirmed their elevated

blue nodes), and the nuclear receptor path-

Inspection of a select number of kinases and phosphoproteins

phosphorylation state (C, E, G, I) including

some with direct phosphorylation on their enzymatic active residue (C, E). Black arrow
represents phosphoresidues that result in enzymatic activity of the given protein [13],
further supporting the activation state of the networks.
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Development of patient-specific networks using VIPER

The overall network consisting of the transcriptomic and phosphoproteomic assess-
ment of metastatic CRPC tissues described in the previous section represents the com-
prehensive signaling network averaged across all of the analyzed metastatic CRPC tis-
sues. To de-convolute the signaling networks generated by TieDIE for the purpose
of identifying patient-specific signaling routes we proceeded to analyze 6 metastatic
CRPC patients, of which one patient (RA55) presented with two different metastatic
lesions [13]. These were the only 6 patients in our cohort that had both transcrip-
tomic and phosphoproteomic data available, thus confining our analysis to a select few.
We ran the VIPER algorithm [17] twice, to summarize the high-dimensional transcrip-
tomic and phosphoproteomic data vectors of each patient into reliable inferences of a
relatively small number of transcriptional and kinase “master regulators”, respectively
(Figure 4.35a). It is interesting to note that the transcriptional master regulators are
highly similar across this patient cohort but the inferred and phosphorylated kinases
are more variable between each of the individual patients (Figure 4.35 b). This sug-
gests that the dominant signaling networks driving the biology of each patient may be
derived from the phosphoproteomic data rather than the relatively convergent gene ex-
pression data. Importantly, we found that phosphoproteomic-driven VIPER inferences
for patient RA55 (with two samples from multiple metastatic lesions; liver and dura)
were very highly correlated (Spearman Rho approx. 0.87) between the metastatic sites
(Figure 4.37 (a)). However, the phosphorylation abundance of specific residues on these

same proteins displayed a lower correlation (Spearman Rho approx 0.1) (Figure 4.37
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(b)). This additionally held true for a second patient, RA43, where we found that the
overall cross-comparison correlations were higher on average for VIPER scores than with
phosphorylation abundance for all three metastatic lesions (Figure 4.37 ¢-h). While not
surprising, this finding bolstered our confidence that VIPER analysis is able to detect

patient-specific protein signaling activity that is consistent across different metastatic

sites.
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Figure 4.35: (A) Flow diagram depicting the integration of gene expression and phos-
phoproteomic datasets for VIPER analysis. (B) Heatmap of the gene expression and
kinase master regulators and phosphorylated kinases for all 6 patients. This data was
used as the input for patient-specific network analysis.

Analogous to the integrative analysis presented above, I intersected sample-
specific VIPER inferences and the phosphorylation abundance of select phosphoresidues
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(with published biological activity: see Patient-specific network generation methods
in next section) with the integrated TieDIE “scaffold network” solution to generate
separate network models. This approach allowed us to prioritize proteins not only by
their activity, but also by their ability to regulate (or be regulated by) other genes
implicated in that patients dataset. Importantly, we can now make use of all available
cohort-level data when predicting a single patients signaling profile. Full utilization of
this methodology revealed the variation in both gene-level representations of detectable
targets as well the enrichment of cancer-hallmarks (Figure 4.36).

Assessment of clinically actionable pathways for personalized medicine Using
this information, we have now integrated a beta version of what we call personalized
cancer hallmarks using an integrated phospho-signature, or hallmark (Figure 4.36 a).
hallmark will allow us to visually inspect and prioritize the signaling and regulatory
pathways specific to each individual patient. These patient-specific patterns will be
useful for evaluating differences in pathway events across patients but also for person-
alized treatment approaches.

Dissecting the hallmarks of patient RA40 revealed 4 enriched sub networks
(cell cycle, nuclear receptor, PI3K-AKT-mTOR, and stemness pathways) including a
large active network related to cell cycle processes (Figure 4.38). Interestingly, this was
the only patient of the 6 analyzed with a missense mutation and deletion in the tumor-
suppressor gene APC. While frequently observed in colorectal cancers, APC mutations
can occur in other cancers [106] where its inactivation leads to increased -catenin ac-

tivity [146]. Indeed, we observed strong phosphorylation of the enzymatic active site
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Figure 4.36: Hallmark wheels for each patient. Top: the integrated TieDIE network
solution shows strong enrichment for genes in Migration and Invasion Pathways, Stem-
ness Pathways, Nuclear Receptor Response, PISK-AKT-mTOR Signaling, Cell Cycle
and DNA Repair related categories. Bottom: hallmark wheels for 6 individual patients
show varying, but strong enrichments for categories. Color indicates the log(p) value

(uncorrected) for the hypergeometric overlap test between genes in each patient-specific
network and the corresponding hallmark category.

of -catenin (S675) with very moderate phosphorylation of APC residues, though the
function of these residues is currently unknown. The putative activation of EZH2 is
also linked to -catenin activation in several cancers including hepatocellular carcinoma

and breast cancer [35,38,191] . EZH2 activation in this sample is supported by both
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Figure 4.37: Scatter plots of correlation between tumors found in multiple metastatic
sites in patients WA55 and WA43. (A) Comparison between VIPER inferences in liver
and dura metastases of patient WA55 show very high correlation (0.87 Spearman Rho),
while in (B) we see low (0.1 Spearman Rho) correlation between individual phospho-
peptides on the same proteins. (C) Comparison between VIPER inferences in samples
taken from periaortic, lung and mixed metastatic sites show low to moderately high
correlation (left to right: 0.23, 0.1, 0.62 Spearman Rho, respectively) in patient WA43.
(D) Comparison between phosphopeptides abundance in the same proteins shows neg-
ative to moderately high correlation (left to right: periaortic vs. mixed, 0.06; lung vs.
mixed, -0.34; periaortic vs. lung, 0.63 Spearman Rho) in patient WA43.

heterozygous amplification and de-phosphorylation of residue T487 (a marker for ubig-

uitination of EZH2; phosite.org) as well as amplification of DNA methyltransferase 3

118



Table 4.2: VIPER scores for kinase regulators enriched in metastatic CRPC samples.
VIPER Scores for Kinase Regulators

Kinase Regulon Size NES p.value FDR
PRKDC 759 4.01 6.09E-05 0.00237
MAPK14 327 3.83 0.000126 0.00237
MDC1 236 3.37 0.000756 0.00423
CDK1 792 3.33  0.000854 0.00423
NEK4 87 3.29 0.00102  0.00423
AKT1 403 3.16 0.00157  0.0044
NEK3 89 3.12  0.00182 0.00442
PHKA1 209 2.65 0.008 0.0143
PRKAA2 307 2.33  0.02 0.0293
SRC 25 2.27 0.023 0.0314
ACTR2 79 2.24  0.025 0.032
ATM 136 2 0.046 0.0555
CHEK2 244 2 0.046 0.0555
TRIM24 26 1.9 0.058 0.0679
PRKCZ 44 1.561 0.132 0.135

(DNMT3) and predicted activity of DNTM1 (inferred by the gene-expression activity
of its downstream transcriptional targets) [159] (Figure 4.39 (b)). Further, the am-
plification and predicted (transcriptional) activity of SUV39H1 correlates with EZH2
expression in tumor development [163], consistent with our observations. Mechanisti-
cally, EZH2 activity is sufficient for activation of AKT1 [75], which we observed through
both hyperphosphorylation of the enzymatic active site T308 as well as high predicted
kinase activity inferred through patient-specific VIPER analysis (Table 4.2). Together,
this information implicates the involvement of AKT1 in contributing to altered cell cycle
regulation and growth, and makes a strong case for targeted inhibition in this patient.

Similar mechanisms relating to other signaling pathways for other patients can also be

described.
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Figure 4.38: Integrated pathway network of patient RA40. (A) Hallmark analysis for
patient RA40 revealed strong enrichment of cell cycle and PISK-AKT-mTOR. pathway
networks. The hallmark wheel summarizes enrichment between genes in each patient-
specific network and the corresponding category: labels indicate categories with signif-
icant enrichment after multi-hypothesis correction (q <0.1). Dots indicate SNV and
copy-number genomic events in this patient. Patient-specific network nodes and edges
related to cell cycle pathway (hallmark categories G2M checkpoint, mitotic spindle,
E2F targets, TP53 pathway, and apoptosis) nuclear receptor pathway, PI3K-AKT-
mTOR pathway, and stemness pathways (hallmark categories, TGF-beta signaling,
WNT-beta-catenin signaling, notch signaling, MYC targets, and hedgehog signaling).
Edges belonging to both the patient-specific network model and the cell cycle related
scaffold network are shown as thick yellow edges, while corresponding genes are shaded
in dark grey. Yellow arrows indicate that the upstream kinase directly phosphorylates
the downstream substrate. “Circleplot” quadrants for each gene summarize genomic,
transcriptomic and phosphoproteomic activity relevant to metastatic CRPC phenotype
(upper right: amplification; lower right: deletion; lower left: mutation; upper left: tran-
scriptional regulatory activity; center: kinase regulatory activity). Node “ears” periph-
erally attached to circleplots represent relative phosphorylation of specific, functionally
annotated peptides sites on each protein. Genes and edges in the scaffold network are
only shown in light grey.
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Figure 4.39: Integrated pathway network of patient RA40, focusing on cell cycle re-
lated pathways. A) Hallmark categories related to cell cycle: G2M checkpoint, mitotic
spindle, E2F targets, TP53 pathway, and apoptosis show significant enrichment after
multi-hypothesis correction in Patient RA40. B) Network diagram corresponding to cell
cycle related pathways, as described in Figure 4.38.
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Under the assumption that we seek to reverse as many altered gene activities
found in a patient, we considered the idea of using a minimum combination of targets
that influence the largest area in a patients network. Inhibiting genes at the top of
the network may offer more powerful targets than those at the bottom. Understanding
the nesting of gene regulatory signals provides information about how to select genes
for this purpose [13]. Therefore, I developed a hierarchy of therapeutic kinase targets
through topological evaluation of the cancer hallmarks and pathways of each individual
patient (Figure 4.40). The hierarchy reveals the top kinase targets for every individ-
ual patient that we analyzed and the corresponding therapeutic intervention including
PRKDC, CDK1, CDK2, AKT1, SRC, and EFGR. Given this structure, targeting of a
single kinase such as PRKDC may be sufficient to blunt the activity of other kinases
that phosphorylate many of the same targets (NEK3, PRKCZ) and those that are,
additionally, predicted to be phosphorylated by PRKDC (ATM, IKBKB) [13].

The hierarchy allows for the construction of feasible strategies for patients with
high activity in multiple kinases, such as WA30 (or WA53) where the joint inhibition of
SRC and AKT1 may reduce activity of PRKDC and CDK1 as well as multiple down-
stream kinases (Figure 4.40). Both WA30 and WA53 may also need EGFR inhibitors in
addition to these. As another example of how to use the regulator hierarchy, different
combinations could be selected for those patients with low SRC or AKT1 levels such
as WA14. For example, PRKDC stands out for WA14 since the patients CDK1 levels
are also low. In other cases, such as WA55, inhibition of either SRC or CDK1 may be

worthwhile, with SRC still relevant as well for the subclone(s) represented in the dura
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sample taken from this patient [13].
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Figure 4.40: Summary of kinase targets in patient-specific networks. Left: green boxes
indicate kinases (rows) that are members of each of the six major hallmark subnetworks
(columns) shown in (Figure 4.32). Right: Orange boxes indicate the predicted impor-
tance of kinase targets based on the combined evidence from VIPER-inferred kinase
activity, phosphorylation status of functionally annotated peptides, and connectivity,
for each patient specific network (columns). Far Right: Network diagram of hierarchy
of kinase interactions. Edge thickness represents the degree of overlap of protein targets;
directed arrows are drawn when a given source kinase is predicted to phosphorylate a
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4.3.2 Methods

Development of a metastatic CRPC network using TiEDIE

To prioritize kinases that are likely to regulate the observed gene-expression profile of
metastatic samples, and be related to genomic aberrations observed in prostate cancer, I
applied the TieDIE algorithm as part of a novel computational pipeline. This approach
allowed for the integration of complementary transcriptomic and genomic datasets col-
lected from partially overlapping metastatic CRPC tissues or patients, as well as prior
knowledge in the form of pathway databases, to find proteins implicated by multiple
forms of biological evidence (Fig. 2a).

Replicates were averaged before running a t-test between 11 treatment naive
and benign prostate cancer samples and 16 metastatic CRPC samples corresponding
to 13 distinct patients [210]. 1,045 differentially phosphorylated peptides with higher
phosphorylation in metastatic samples above a FDR of 0.1 were retained, 24 of which
mapped to known kinases [135]. In addition, we performed “Master Regulator Analysis
(MRA; see appendix A.3) to find kinases implicated by the combined phosphorylation
activity of their putative targets [17]. To facilitate this analysis, Justin Drake and
Nicholas Graham [63] combined multiple databases of predicted kinase-substrate pre-
dicted interactions to produce a comprehensive ‘regulome of candidate regulator kinases
that are predicted to phosphorylate at least 25 proteins on at least one site [63,64,115].
We ran the MARINa algorithm [17], to find ‘kinase regulators with significantly higher

activity—as inferred from the peptides they are predicted to phosphorylate—in CRPC
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samples compared to the control primary and benign tumor samples. This analysis
found 14 kinases with higher inferred activity in CRPC samples (FDR <0.1), 3 of
which overlapped with the set of differentially active kinases, resulting in a final list of
35 putative kinase regulators in the CRPC samples.

Separately, I ran master regulator analysis (see appendix A.3) on microarray
expression data consisting of 49 primary tumor and 27 metastatic samples. This anal-
ysis finds transcription factors (TFs) that are likely drivers of a large fraction of the
observed expression differences between these CRPC and control samples. Because this
analysis requires a computationally derived ‘interactome between TFs and putative tar-
gets that must be tissue specific, we used a pre-determined interactome of transcription
factor-to-target regulatory edges, inferred using a diverse sample of normal, primary
and metastatic prostate cancer samples as well as cell lines [19]. While this dataset
does not include CRPC samples, it contains samples with a high degree of genomic and
clinical diversity, leading to a highly comprehensive interactome [19]. This step found
transcriptional regulators with significantly higher or lower activity in CRPC samples
than the control primary tumor samples, resulting in 74 TF genes (q <0.1), weighted by
the absolute value of the MARINa test statistic. We again used the VIPER package to
infer the sample-specific activity of each of these regulators in each metastatic sample,
using the 27 primary samples to compute the reference distribution of activity scores.

We combined genomic data from multiple sources to estimate the genomic
background of metastatic prostate cancer. Briefly, data and analyses from The Cancer

Genome Atlas (TCGA) were downloaded; a MutSig 2.0 [119] analysis on 261 TCGA

125



primary tumor samples revealed 14 predicted driver genes that were found to be sig-
nificant at a g-value cutoff of 0.1. This, combined with a partially overlapping list of
9 predicted driver genes from 49 metastatic samples [78] produced a list of 21 genes
with putative driver mutations in prostate cancer samples. Similarly, an analysis of
the same 49 metastatic samples revealed significant amplification events encompassing
several key genes (PIK3CA, HOXA3, AR) as well as significant deletion events (NT5E,
CHD1, PTEN, RB1, TP53). An analysis of 492 primary TCGA tumors revealed 28
significant focal amplifications, and 37 significant focal deletion events implicated as
drivers according to the GISTIC algorithm [140]. Because a large number of genes were
involved in these events we further filtered these genes by intersecting with the most
recent COSMIC census, representing 572 cancer-related genes according to our prior
knowledge. When combined with the genes found in the CNV analysis of metastatic
samples, this resulted in 96 candidate genes with copy number alterations and 112 genes
with either mutation or copy number events with driver potential. Of these, 108 had at
least one copy-number or mutation event in the 49 metastatic samples.

We used the TieDIE algorithm [165] to connect 35 kinases and “kinase regu-
lators”, 108 putative cancer driver genes with genomic perturbations in CRPC and 74
transcription factors, using the “Multinet” [110] pathway database consisting of a di-
verse set of literature-based gene-gene interactions (43,722 protein-protein interactions;
27,900 direct phosphorylation; 27,914 transcriptional /regulatory; 9,714 metabolic; ge-
netic interactions excluded). Each of these three inputs were treated as a separate,

equally weighted, input set for the algorithm, while the gene members of each input
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set were weighted by the total evidence for each protein: kinases by combined SAM
d-statistic and MARINa inferred activity level, transcription factors by MARINa in-
ferred activity level, and genomic events by the number of mutations and copy-number
alterations observed in the 49 metastatic prostate cancer samples. The kinase, genomic
event and TF gene sets were found to be significantly close in pathway space (p <0.012),
according to a conservative background model run with 1,000 permutations of the input
data.

The resulting network consisted of 338 nodes and 1,889 edges (597 direct
phosphorylation; 1,184 protein-protein interaction; 102 transcriptional/regulatory; 6
metabolic). This network was filtered further by restricting to gene-gene edges with at
least one pair of constituent phosphopeptides with at least modest correlation (Spear-
man rank correlation, Rho > 0.3), resulting in a final scaffold network of 122 nodes and

256 edges (190 protein-protein interaction; 131 phosphorylation).

VIPER analysis of individual prostate cancer patients

I used the VIPER package [17] to infer sample-specific activity (pseudo z-scores) of
each of each of the 14 kinase regulators that were found to have significantly higher
average activity in CRPC samples, using the 11 treatment naive or benign samples
to compute the reference distribution of activity scores. Similarly, I used VIPER to
generate inferences for each of the 74 TFs, for each sample, using the same microarray

data, regulon and reference samples used in the MARINa analysis on the Grasso dataset.
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Patient-specific network generation

To generate sample-specific networks, I applied thresholds to each samples data,
generating binary calls for each of the 35 kinase regulators and 74 TFs, respectively.
Scores for the 24 peptides with significant differential phosphorylation activity were z-
normalized by gene and thresholded at a z-score of 1.0 or above, while VIPER pseudo
z-scores were thresholded at the level corresponding to a 0.1 FDR cutoff in each corre-
sponding Network Enrichment Score (NES) for MARINa analysis, 1.89 and 2.83 for the
kinase and transcriptional regulators, respectively. Kinases were called as “active” if ei-
ther the VIPER inference or cis-phosphorylation status passed the respective thresholds.
For each sample, we searched all paths connecting any active kinase to any active TF
over edges contained in the scaffold network, using the NetworkX python package [83]
and up to an edge-depth of 4; directionality was used when available, while protein-
protein interactions were converted to bi-directional edges. Networks were visualized
using the Cytoscape 3.2.1 software package [188].

For all proteins in each patient-specific network, I performed three indepen-
dent rankings based on the phosphorylation activity of functionally annotated peptides,
VIPER inferred activity scores, and the network connectivity. For the first metric, I used
log10 normalized phosphorylation values to rank all phosphopeptides with an available
functional annotation (phosphosite.org) that map to a protein/gene in the corresponding
patient-specific network. VIPER scores inferred from the phosphoproteomic data were
ranked separately, and the network connectivity ranking was generated by computing

the shortest-path between centrality for all genes, with the NetworkX python pack-
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age [83]. For the first two rankings, genes without a corresponding functional peptide
or VIPER score were given a rank of N+1, where N is the number of ranked genes with
each respective method. These three independent rankings were then equally weighted
and summed by gene, generating a final combined ranking for each patient. Figure 4.40
illustrates the combined rankings of kinases for each patient; hallmark membership of
each kinase is determined by inclusion in the corresponding TieDIE scaffold sub network

shown in figure 4.32.

Further computational validation

To assess the ability of the patient-specific network predictions to remain robust to
noise in the phosphoproteomic dataset, I designed a procedure to select random subsets
of the mass-spec data, and performed ten repetitions. For each, 20% of the peptides
were randomly sampled for each of the 7 samples with patient-specific networks, and the
corresponding mass-spec data was removed. I then repeated the procedure to generate
a TieDIE scaffold network with this diminished dataset, using the same parameters to
generate a network of comparable size; similarly, I repeated the VIPER analysis of each
patient and the patient-specific network generation procedures as before. Each finalized
patient-specific network was then evaluated by counting the number of functionally
annotated peptides that had been absent from the subsampled data for that specific
patient, had a corresponding gene in the patient-specific network prediction, and high
phosphorylation (z-score <1.0) in that particular sample. I measured the number of

these “recovered” peptides and divided by the expected number ( <1, given the size
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of the networks) to get a ratio statistic for each patient, in each subsampled dataset,
finding that most networks had a significantly high enrichment of these peptides (Figure
4.41), confirmed with a hypergeometric overlap test.

The contribution of the TieDIE scaffold network to the observed robustness
measures was assessed using the same data-subsamples as described above, to generate
patient-specific networks in a scaffold-independent manner. For each patient, VIPER
scores were thresholded as before and then used as direct inputs to the TieDIE algorithm,
replacing the kinase, and TF gene sets outlined in the TieDIE methods above. Genomic
alterations were used as a third input set, included if reported in both that patients
data and in the list of 108 altered genes established (see TieDIE pathway analysis of
clinical prostate cancer samples methods). TieDIE was run with the same size parameter
established in the scaffold generation step, to ensure final networks of a similar size. The
ratio statistic of “recovered” peptides was measured as done with the scaffold-enabled
networks; because this metric counts only peptides measured in the phosphoproteomic
data in the denominator, this measure controlled for network nodes/genes without any
measured peptides. I found a higher average ratio of hyper-phosphorylated, functionally
annotated peptides in 6 of 7 sample-specific networks (Figure [?]), and similar levels in

the seventh.

4.3.3 Discussion

Current clinical inhibitors targeting AR in late stage prostate cancer patients

provide survival benefits of 3-4 months [57,187]. This work provides clues into the
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Figure 4.41: Patient-specific network evaluation. A) Patient-specific network solutions
are evaluated by recall of hyperphosphorylated, functionally annotated residues (x-axis,
ratio of recovered by expected) for 7 metastatic samples, using the TieDIE scaffold
methodology (left) and scaffold-free solutions for each patient (right). B) The same
robustness measures shown with a side-by-side comparison between patients.

signaling pathways that are activated in metastatic prostate cancer patients, and as a
result of resistance to current AR targeted therapies. Although the way to target these
kinases in these patients is not entirely clear (recent clinical trials using single agent ki-
nase inhibitors do not increase overall survival in CRPC patients [?,118]), co-targeting
strategies for cancer therapy in other cancer types has proved to be better than ad-
ministration of single agents in pre-clinical models [54,126]. It follows that advanced
prostate cancer patients could also benefit from targeted, combination therapies, and
several clinical trials are currently underway to address this possibility including inhibi-

tion of AKT, MET/VEGFR2, or SRC in combination with AR blockade (NCT01485861,
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NCT01995058, NCT01685125).

In collaboration with Justin Drake, Owen Witte and other experimental sci-
entists at UCLA, the computational pipeline I developed identified many interesting
protein targets in CRPC patients. The identification of mTOR and MAPK signaling
pathways through this computational approach are not new in prostate cancer, but sev-
eral signaling molecules such as PRKDC, AMPK, PTK6, RPS6KA4, and even CDK
family members within these pathways provide strong support to therapeutically target
these proteins as well [13]. Additionally, the patient-specific analysis presented here
sheds some light into the diversity of the activated signaling pathways in metastatic
CRPC patients, and highlights the strength of systems biology methodology that can
integrate multiple biological perspectives in a single model [13]. In particular, the model
developed here may be generally useful for analyzing datasets that have only partial sam-
ple overlap between datatypes (i.e. gene expression and mass spec data). By combining
the signatures constructed on a larger sample group, I was able to create a tissue-specific
“scaffold” network that was enriched for proteins with significantly higher phosphory-
lation in metastatic CRPC than when compared with primary and benign controls.
Incorporating this network in the patient-specific analysis greatly improved the recall of
functionally annotated and hyperphosphorylated peptides in patient-network models,
when tested with a held-out data cross validation setup.

As with previous studies of tyrosine kinases [63], we found a large degree of het-
ereogeneity between samples, while also observing stronger similarity between different

metastatic sites in the same patients. In addition, the enrichment-based visualization de-
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veloped in collaboration with Justin Drake provides a systematic way to rapidly identify
cancer-related processes in each patient while simultaneously summarizing the complex
relationships between genes and proteins, and the evidence provided by multiple assays
of biological data. Taken as a whole, the system to analyze metastatic CRPC presented
here represents a prototype of a personalized treatment strategy. However, further
interrogation of these patient-specific networks in appropriate pre-clinical models are
necessary, and more experimental and computational work is needed before personal-
ized medicine can propose sound treatment recommendations for lethal prostate cancer

patients such as these.
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Future Directions

This work points toward the need for developing personalized network models
of disease that combine all concepts presented in the previous chapters. These include
data integration over a biological network prior, the generation of tissue-specific net-
works as an intermediate step in personalized network construction, identification of
cancer-essential genes and new techniques to explain how pathway and process-level
aspects of a tumor are explained by a patient’s genomic and kinase-signaling alter-
ations. Each of these concepts represents part of an overall strategy to integrate data
produced by multiple high-throughput assays, each capturing a unique perspective of
cancer biology, into a single personalized model of disease.

In the first chapter, I presented a new methodology (TieDIE) to select genes
and interactions (sub networks) from prior literature that are dependent on the mea-
surable genomic, transcriptional and (if available) phosphoproteomic signaling context
of cancer cohorts. This method provides a way to integrate multiple, disparate types of
biological data with prior knowledge, and has been rigorously tested on a large breast
cancer cohort where it was better able to extract relevant genes and interactions than
previous methods.
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The second chapter details multiple applications of the TieDIE method, where
it was applied to three additional TCGA tissue-specific cohorts with genomic, tran-
scriptomic and proteomics A.1.5, as well as one “pan-cancer” dataset. In kidney and
bladder cancer, this analysis revealed key literature-backed interactions that connect
mutated genes with histone-related activity to a wide range of transcriptional processes
relevant to tumor maintenance and growth. In the thyroid cancer cohort, the inclusion
of RPPA [?] proteomics data allowed the TieDIE algorithm to find key areas of the
signaling pathways that are downstream of activating BRAF V600E and RAS muta-
tions. In each case, the TieDIE algorithm provided new evidence that genomic events
already presumed to drive tumorogensis do influence the observed pattern of gene ex-
pression, mediated by transcriptional “master regulators.” The algorithm also revealed
specific mechanisms of that influence. In broader terms, these results help to address
the question of how tissue and disease-specific processes work to change the way genes
and proteins interact, with consequences for the progression and potential treatment of
disease.

I continued to explore this question with my participation in the DREAMS
(network inference) and DREAM9 (gene essentiality) challenges: in each case I was
part of a competition winning team that explored two sub-questions related to the
central question of finding patient-specific pathway models. In the first, our team
used time-course proteomics data to predict protein interaction networks specific to
cell line/stimulus pairs. As a model system, the cell line and stimulus conditions pro-

vide an approximation to the genomic background of patient-tumors, and corresponding
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extra-cellular environments. We found that these networks are reasonably predictable,
and that the use of prior knowledge is fundamental in making good predictions. This is
an encouraging result, as knowledge of the specific rewiring of protein interactions un-
der a given genomic background may lead to key observations that can guide treatment
options in the future. At the same time, this result is a strong datapoint supporting
the hypothesis that pathway knowledge derived from normal biology is highly relevant
to the study of cancer tissue.

The second (DREAMY9) challenge required prediction of the relative gene
essentially—potential for reduced growth after knockout—in a panel of cell lines, a proxy
for the therapeutic potential of targeted drugs in patients. The use of prior knowledge
again proved critical for this challenge, for us and other participants (a DREAM9 marker
paper is in progress), and we found that the essentiality of many genes can be predicted
with high accuracy. However, the genomic state of these cell lines proved to be of little
use in predicting gene essentiality (with our and all other teams in the competition),
meaning far more work still needs to be performed to find biologically interpretable pat-
terns of gene expression and genomic modification that can find specific vulnerabilities
in patient tumors.

In my next research phase, encouraged by the results of previous analysis,
as well as recent studies [66,94] supporting the idea that the interaction structure of
networks is dependent on both genomic context as well as tissue-specific effects, I applied
the same approaches to a study of lethal prostate tumors obtained by rapid autopsy.

Borrowing from the ideas developed by running TieDIE on large TCGA datasets, 1
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used the same tools to integrate genomic, transcriptomic and phosphoproteomic data
into a tissue specific network specific to metastatic prostate cancer. 1 then mapped
patient-specific data and activity inferences onto this network, extending on the original
methodology developed for the TieDIE algorithm 2.2.2.4 [165], and used it to predict
patterns of oncogenic signaling activity in a sample of patients with phosphorproteomic,
genomic and expression data. This methodology provides a way to integrate multiple
datatypes with only partially overlapping samples, and my results show that this allows
for better recovery of held-out, true-positive data in at least one dataset. In addition,
a new visualization paradigm (the cancer “dashboard”) provides a more intuitive way
than many complex network visualizations for researchers and clinicians to see how
pathway and process-level aspects of a tumor are changed by a patient’s genomic and
signaling alterations.

As of now, phosphoproteomic data is expensive to collect and may not be prac-
tical for general clinical assessment. However, the ability to relate patterns of kinase and
signaling pathway activation to more accessible measurements of genomic and transcrip-
tional state should begin to be accomplished with only moderately larger sample sizes
than presented here, where machine-learning methods can be applied to create such a
mapping. However, at present it is also easy to imagine a future where genomic and
transcriptional data will continue to be insufficient to find clinically actionable, tumor-
specific vulnerabilities in all cases, meaning that direct measurement of kinase activity
may be extremely valuable in choosing the right drugs for a given patient. In either

case, more complex models will be needed to predict combinatorial therapies through
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joint analysis of these data and prior-knowledge.

Crucially, through rigorous computational validation and a detailed analysis
of cohort and patient-specific network models, this work demonstrates that computa-
tional models that simultaneously analyze data produced by multiple high-throughput
assays can reach conclusions that far exceed any single-data analysis. Extrapolating
from this conclusion, we can assume that future technologies will not only improve
our understanding of cancer biology but also accelerate the pace of discovery, pending
computational models that can fully exploit this data. Model complexity necessarily
increases with adding additional data modalities, so standards and technologies that
aim to make data more computable will become increasingly important to the field of

computational systems biology.
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Appendix A

Appendix

This chapter describes the technologies that I have used or are directly relevant
to my thesis work and summarizes the prior methods that have inspired my research.
This chapter can be used as either an introductory background to the thesis, or as an

appendix that may be referred to while reading the later chapters.

A.1 Measuring Biology: Biological Networks and Data
Types

Modeling of biological networks is a decades-old field that relies on the com-
bination of multiple forms of evidence to construct interaction models of real biology.
These models can present multiple types of interactions: signal propagation through
phosphorylation cascades, activating transcriptional responses, transcriptional repres-

sion and complex associations may all be present. To perform inference with these
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networks, whose utility lies in their ability to combine such disparate data sources,
we need to know the individual characteristics of each interaction type and mode of

curation.

A.1.1 Signaling Interaction Types

A.1.1.1 Ligand/Receptor Mediated Signaling:

In this model, an external ligand binds to a cell-surface exposed receptor that
begins a process of signal transduction and mediation, resulting in a transcriptional
or functional response from the cell. A good example of this process is the binding
of TGF-5, which begins a signaling cascade by binding together type 1 and type 2
serine/threonine kinases on the cell surface [192]. This action allows the phosphorylation
of the receptor 1 kinase by the receptor 2 kinase, which then propagates the signal by
phosphorylating SMAD proteins, changing their conformation and converting them to

receptor-activated (R-SMAD) proteins (see figure A.1). [192].

A.1.1.2 Complex Formation and Transcriptional Activation:

The phosphorylated R-SMAD-2 and SMAD-3 proteins then form a trimeric
complex with SMAD4 proteins, and this activated complex then accumulates in the
nucleus of the cell [67]. Once in the nucleus, this complex transcriptionally activates a
number of genes [67,192], including pro-apoptotic genes in the BCL2 family, and the
cyclin depending kinase inhibitor CDKN1A.

In this example, we can observe several interaction types: ligand-binding in-
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teractions, activating links in signal transduction pathways, complex formation, and
transcriptional activation. In addition, recent research has suggested that mutant ver-
sions of the tumor-suppressor p53 may disrupt the complex formation of SMAD2/3 and
SMAD4 — an example of a repressive interaction [67].
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Figure A.1: Figure of TGF-8 / SMAD signaling transduction from the Shi-Massague
[192] paper.

A.1.2 Genome Sequencing and Variant Analysis

High-throughput genome sequencing is a set of technologies that allow us to
read the exact DNA sequences of both normal and cancer cells, these techniques allow
us to find the genomic differences that have caused the observed cancer phenotype.
Several hardware platforms use short-read technology to read small bits of DNA (from

a few dozen to a few hundred nucleotides long): these second generation sequencing
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technologies include 454, Illumina and SOLiD [190]. These current technologies are
accurate and cost-effective enough to use for sequencing of hundreds of tumor and
normal samples, as used in The Cancer Genome Atlas projects [153], and potentially
many more cancer patients in the near future. In addition, promising next-generation
technologies like nanopore sequencing may soon provide individual sequencing for as
little as $1,000 [29].

Because of the short-read nature of the current technologies, algorithmic ap-
proaches are needed to find the genomic locations that have been mutated or had regions
duplicated or deleted in cancer cells. The University of California, Santa Cruz, has de-
veloped tools to produce variant “calls” from genomic sequencing data [121], as has the
BROAD Institute, with MutSig (that operates on cohort-wide data) and the MuTect
algorithm [23]. In addition, algorithms are available to find genes that are significantly

targeted by focal amplification or deletion event in cancer cells [139)].

A.1.3 Gene Expression Microarrays and Analysis

Gene expression microarrays are an older technology than genome sequencing
but still play a key role in the analysis of cancer cells. Expression microarrays use
small oligonucleotide probes that hybridize with specific regions of known genes, and
that binding is usually detected with fluorescence; by comparing the binding in two
difference conditions, the relative abundance of a known target can be assessed [186].

Microarray analysis has vastly enhanced our understanding of cancer biology

since it’s inception, having been used to predict the molecular subtypes of various can-
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cers [168], drug efficacy [116] and many other clinically relevant features.

A.1.4 RNA-Seq

As with gene expression microarrays, RNA-Seq is a (newer) technology to
quantify mRNA transcripts, and is a widely used tool in the analysis of cancer biology.

With this technology, a population of RNA is converted to a library of cDNA
fragments with adaptors attached to one or both ends, after which each molecule (with or
without amplification) is then sequenced in a high-throughput manner to obtain short
sequences from one end (single-end sequencing) or both ends (pair-end sequencing)
[221]. Short reads are generated (typically 30-400 bp [221]), and then, in the case of
tumor DNA, aligned to a human reference genome. Compared with micro-array data,
RNA-Seq has very low background signal and very high dynamic range, due to the
ability to uniquely map reads [221], making this technology much better at detecting
lowly expressed RNAs as well as quantifying expression change between experimental

conditions.

A.1.5 Reverse Phase Protein Arrays (RPPA)

Proteomics deals with large-scale determination of gene and cellular function
at the protein level, combining a collection of technical disciplines [15]. Reverse phase
protein arrays (RPPA) are an extremely important new technology for detecting the
status of proteins in tumor cells. Unlike transcriptional or genome sequence analysis,

RPPA allows for a direct assay of the functional status (phosphorylation, cleavage,
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mutational) and abundance of proteins [205].

With this technique, samples are spotted in parallel on solid-phase carriers
(plates) [136] to allow for high-throughput detection of protein activity, at a very high
level of accuracy and repeatability for known proteins and states [205]. Primary anti-
bodies are used for protein capture, with secondary antibodies and fluorescence used
to quantify measurements. One downside of the antibody approach, however, is that
only known proteins and functional mutations can be captured [136], which means that

novel functional mutations may be missed from the assay.

A.1.6 Mass Spectrometry for Protein Phosphorylation Quantification

Like RPPA technology, mass spectrometry techniques allow for large scale
quantification of protein abundance, allowing biologists to directly measure the func-
tional status of the proteome. A mass spectrometer consists of an ion source, a mass
analyser that measures the mass-to-charge ratio (m/z) of the ionized analytes, and a
detector that registers the number of ions at each m/z value [15]. This technique allows
for specific identification and quantification of protein molecules.

Through the development of specific antibodies that recognize only phosphory-
lated protein residues, it is possible to use mass-spectrometry to ascertain the quantity
of phosphorylated protein-peptides [81]. Because reversible phosphorylation of pro-
teins is a major conduit of information flow from transmembrane receptors to the nu-
cleus [81,167], this technique is useful in determination of cellular state, in a way that

is highly complementary to measurements of gene-expression and genomic state.
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A.1.7 RNAIi techniques for drug target identification

Tumor growth is achieved by an evolutionary process that allows tumors to
rapidly proliferate, evade immune detection, attract new nutrient-carrying blood vessels
and eventually metastasize [132,142], via a number of gain of function and loss of
function genomic (and epi-genomic) alterations. Because of this characteristic oncogene
and non-oncogene addiction [132], cancer therapies must try to hit key functional nodes
that will not only cripple tumor growth, but also be selective enough to limit damage to
normal cells. Making this task more difficult, is the surprising diversity among tumors
regarding the presence or absence of a number of low frequency mutations. It seems that
these low frequency driver mutations may all contribute to the extensive rewiring and
phenotypic changes seen in tumor cells [132,222] and makes the problem of drug-target
selection for a given tumor more difficult.

To solve this problem, we need a strategy to test the effects of inhibiting
each of many different targets, and in combination with a number of different drugs or
other targeted therapies. One can view this as a large multi-dimensional landscape of
drug/target(s) combinations, to which we may apply a sampling strategy to explore.
This is a similar concept to synthetic-lethality, which has been used to find the combi-
nations of gene knock-outs that cause growth defects in yeast [49], or chemical-genomic
lethality used to find the same with drug-gene combinations [92].

One experimental technology that has been used to successfully sample the

landscape of possible target therapies is RNAi inhibition. This technique mimics natural

185



small interfering (siRNA) and micro (miRNA) RNA pathways, by introducing short
hairpin RNAs (shRNA) that bind to transcribed mRNAs, forming a double stranded
molecule that is then cleaved by Dicer enzymes or otherwise silenced [193]. These
shRNAs are designed to target specific transcripts, allowing a “library” of silencing
RNAs to be created; and, with high throughput welling techniques a number of potential

targets can be screened this way [193,209].

A.2 Sub network Computation

A.2.1 Algorithms for sub network extraction

Many of the current approaches to biological pathway search use some form
of linear optimization to connect sets of genes over a curated network pathway. Flow
based methods like ResponseNet [117] attempt to connect “source” genes to “target”
genes over a network G = (V, E), (which represents the vertices and directed edges,
respectively), by providing each edge with a capacity [48] to allow a “flow” between
source and target nodes. Because the capacities limit the amount of flow between each
edge, the problem of finding the maximum flow between source and targets can be solved
efficiently and exactly with an algorithm that iteratively tries to reroute data along
edges with available capacities (the Ford-Fulkerson algorithm [48]). This algorithm is
formulated as a linear optimization problem, where the goal is to minimize an objective
function by applying either a depth first or breadth-first search (the Edmonds-Karp

algorithm). To maximize flow between multiple sources and targets, this problem can
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be modified by creating a “dummy” source node that feeds into only the true source
node set, and a dummy target node that takes flow from the target set.

To adapt this algorithm to gene networks, one could imagine the source set of
nodes as a set of proteins that have an effect on cellular signaling (cell surface receptors,
kinases) that conduct an external signal through a set of intermediate nodes to a target
set of transcription factors, which then modify the expression and phenotype of the
cell. This signal is modeled as a flow, and the solution would be the most direct or
parsimonious route that the signal might take to reach the target genes, given the
known network topology. Lan et al. [117] used this approach to find signaling pathways
connecting genetic hits to expression responses in yeast, defining an objective function

and solving it using the linear optimization library LOQO [212].

An input graph G: hollow circles represent customers A feasible but not optimal PCST solution

Figure A.2: An example of the Prize Collecting Steiner Tree problem [127].

The Prize Collecting Steiner Tree (PCST) problem defines a similar approach

to a slightly different problem; under this formulation the problem is to connect a set
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of weighted “prize” nodes over a interaction network where each edge has a weighted
penalty. This method was used by Dittrich et al. [61] to identify functional modules
in PPI networks, and the algorithm now part of the BioNet R-Package [27], a publicly
downloadable library for the R language. The greater complexity of the PCST formu-
lation makes it a costly computational problem to solve for larger gene sets over well
connected networks. Code for an exact solution is available to those with an academic
CPLEX library as part of Ivana Ljubi’s dhea package [127], but, as the PCST prob-
lem is NP-hard the worst-case running time is often sufficiently long to make an exact
solution impractical for sets of a few hundred or more nodes (genes) over a densely
connected network. Fortunately, a fast-heuristic is built-in to the BioNet package, and
an approximate solution is usually sufficient for the purposes of connecting sets of genes
over a biological interaction network.

Huang et al. used the PCST framework to connect perturbed “genetic hits
to the transcriptional responses accompanying those perturbations though a curated
signaling network in yeast [189]. This framework can also be extended to connect
genomic perturbations such as mutations, and copy number variations in key cancer

genes to differentially transcribed genes in human networks.

A.3 Master Regulator Analysis / VIPER Analysis

The “Master Regulator Analysis” algorithm [124] uses a modification of the

Gene Set Enrichment (GSEA) ALGORITHM [199] to infer the activity of a set of
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transcription factors (TF), from the expression of the TFs downstream targets (see the
diagram in figure A.3 below). These activity scores (or the significance of the scores
tested against random target sets of identical size) predict the protein activity of TFs
and have been shown to provide a much more robust measure than the gene expression
alone.

The VIPER algorithm is available as a Bioconductor/R (bioconductor.org)
package, and implements master regulator analysis and a sample-specific version of the

algorithm.
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Figure A.3: An illustration of the Master Regulator Analysis (MRA) / MARINa algo-
rithm, taken from [17].
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A.4 Probabilistic Graphical Models

A Bayes belief network is a directed, a-cyclic graphical structure that represents
the conditional dependencies between a set of random variables. This structure allows
us to represent the complete joint distribution of a relatively large set of variables in
a simplified manner, because each variable is dependent on only it’s direct neighbors.
For a biological network, a Bayes net model can be used to represent the regulatory
links between biological entities, and to discover complex interactions between nodes.
This type of probabilistic graphical model (PGM) can perform two important tasks:
inference and learning. The former allows us to use a PGM to answer questions related
to it’s model of the world: for example, if gene A activates gene B in our model, and we
know that gene A has high activity in a given data set, we can infer that gene B is also
up-regulated from our model. Learning in a PGM framework allows us to construct a
model that approximates some feature of a set of experimental observations [112] — a
particularly useful and data-driven approach.

One immediate issue that arises when applying a Bayes netork model to bi-
ological networks is the requirement that these networks be a-cyclic; this problem is
solved with approximate or “loopy” belief propagation, which can produce good in-
ference approximations on cyclic graphs in many cases [112]. This type of message
passing inference algorithm has been used to do inference on biological networks, in-
cluding with the PARADIGM tool, developed by Vaske et al. [217]. PARADIGM uses

the C++ library LibDAI to perform inference [145] and learning, which has been proven

191



A Model inference result

o Phospho-Proteins
O phospho-Lipids
O Perturbed in data

Expected 1517
Reported 1717
Reversed 1
Missed 3
- -

Figure A.4: Figure from Sachs et al. [183] shows the results of applying a structure
learning algorithm to a small biological network and input data set.

to be computationally efficient over even large biological networks (thousands of nodes).
Under this model, learning the parameter space of a PGM network representation is ac-
complished with a factor graph model [217] and an interactive expectation maximization
algorithm to find optimum parameter values of the PGM [112].

Structure learning is another important use of probabilistic graphical models:
this task involves learning not only the parameter space of a given PGM, but also
searching though the space of possible edge additions and deletions, finding an optimal
structure to explain a given data set. The structural EM algorithm developed by Nir
Friedman are able to search both structure and parameter spaces concurrently [72], and
has since been further developed for efficiency [169]. Structure learning has been used
to infer biological networks before (see figure A.4 above), but because of the complexity

of searching for all possible links, it is often infeasible to apply to networks larger than
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a few dozen nodes [112].
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