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Abstract

Interplay between Quantum Computation and Machine Learning

by

Haoran Liao

Doctor of Philosophy in Physics

University of California, Berkeley

Professor K. Birgitta Whaley, Co-chair

Professor Irfan Siddiqi, Co-chair

Quantum errors remain the primary barrier inhibiting quantum computers from outper-
forming classical supercomputers. To overcome this challenge, a diverse array of strategies
has been developed, encompassing quantum error correction and quantum error mitigation.
Machine learning, maturing as a widely adopted approach for pattern recognition, offers
new perspectives in enhancing the aforementioned strategies to tackle quantum errors. Fur-
thermore, the implications of quantum errors extend to various applications of quantum
computing, notably in quantum machine learning which leverages quantum resources for
potential advantage over classical counterparts. This dissertation delves into these inter-
twined parts, examining the interplay between quantum computation and machine learning.
The first part concerns machine learning for enhancing quantum computations. It addresses
challenges in correcting errors that occurred to continuously measured logical states, and in
improving the efficiency in mitigating errors on both small- and large-scale quantum circuits
for increased accuracies in the targeted expectation values, serving as an example of using
classical machine learning on quantum data. The second part of this dissertation explores
quantum computation for machine learning. It provides theoretical and numerical analysis
on the robustness of quantum machine learning models against worst-case errors on input
encoded quantum states received through quantum communication, or against quantum de-
coherence during model training and evaluation, serving as an example of applying quantum
machine learning on classical data.
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2.3 Mitigation accuracy under i) complexity of quantum noise and ii) ML-QEM in-
terpolation and extrapolation for Trotter circuits. Top row: Average error perfor-
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device noise model increases to include additional realistic noise types. Coherent
errors are introduced on CNOT gates. Bottom row: Corresponding typical data
of the error-mitigated expectation values of the ⟨Z0⟩ Trotter evolution; here, for
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execution error of Trotter circuits for experiments on QPU device ibm_algiers
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2.5 ML-QEM and QEM performance for Trotter circuits. Expanded data correspond-
ing to Fig. 2.3 of the main text that includes the three ML-QEM methods not
shown earlier: GNN, OLS, MLP. We study three noise models: Left: incoherent
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readout error, and Right: with the addition of coherent errors on the two-qubit
CNOT gates. We show the depth-dependent performance of error mitigation av-
eraged over 9,000 Ising circuits, each with different coupling strengths J . For
the incoherent noise model, all ML-QEM methods demonstrate improved per-
formance even when mitigating circuits with depths larger than those included
in the training set. However, all perform as poorly as the unmitigated case in
extrapolation with additional coherent noise. . . . . . . . . . . . . . . . . . . . . . 59
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2.6 Application of ML-QEM to a) unseen expectation values and b) the variational
quantum eigensolver (VQE). a) Top: Schematic of a Trotter circuit, which pre-
pares a many-body quantum state on n = 6 qubits (in 5 Trotter steps). Top
right: Circle depicts the pool of all possible 4n Pauli observables. Shaded region
depicts the fraction of observables used in training the ML model; the remain-
ing observables are unseen prior to deployment in mitigation. Bottom: Average
error of mitigated unseen Pauli observables versus the total number of distinct
observables seen in training. b) Top: Schematic of the VQE ansatz circuit for 2
qubits parametrized by 8 angles θ⃗. Below, a depiction of the VQE optimization
workflow optimizing the set of angles θ⃗ on a simulated QPU, yielding the noisy
chemical energy ⟨Ĥ⟩noisy

θ⃗
, which is first mitigated by the ML-QEM or QEM be-

fore being used in the optimizer as ⟨Ĥ⟩mit
θ⃗

. Compared to the ZNE method, the
ML-QEM with RF method obviates the need for additional mitigation circuits at
every optimization iteration at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 ML-QEM mimicking QEM on large, 100-qubit circuits with lower overheads, in
hardware. Top three panels: Average expectation values from 100-qubit Trotter-
ized 1D TFIM circuits executed in hardware on QPU ibm_brisbane. Each panel
corresponds to a different Ising parameter set (top right corners). Top panel
corresponds to a Clifford circuit, whose ideal, noise-free expectation values are
shown as the green dots. The RF-mimicking-ZNE (RF-ZNE) curve corresponds
to training the RF model against ZNE-mitigated data on the hardware rather
than in numerical simulators, for which these large non-Clifford circuits are more
difficult. Bottom panel: The error, measured again in the L2 norm, between the
ZNE-mitigated expectation values and the RF-mimicking-ZNE (RF-ZNE) miti-
gated expectation values over non-Clifford testing circuits with randomly sampled
coupling strengths J < h averaged over 40 testing circuits per Trotter step and the
observables. The training is over 10 circuits per Trotter step, which results in a
25% lower overall and 50% lower runtime quantum resource overhead compared
to the ZNE, as shown in the inset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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2.8 Updating the ML-QEM models on the fly. Comparing the efficiency and per-
formance of ML models, fine-tuned or trained from scratch, on a different noise
model. Noise model A represents FakeLima and noise model B represents FakeBelem.
All training, fine-tuning, and testing circuits are 4-qubit 1D TFIM measured in
a random Pauli basis for four weight-one observables. The solid purple curve
shows the testing error on noise model B of an MLP model originally trained on
2,200 circuits run on noise model A and fine-tuned incrementally with circuits
run on noise model B. The dashed purple curve shows the testing error on noise
model B of another MLP model trained only on circuits from noise model B.
The red curve shows the testing error on noise model B of an RF model trained
only on circuits from noise model B. All three methods converge with a small
number of training/fine-tuning samples from noise model B. While the testing
error of the fine-tuned and trained-from-scratch MLP models converged, both
were outperformed by a trained-from-scratch RF model. This provides evidence
that ML-QEM can be efficient in training. . . . . . . . . . . . . . . . . . . . . . . . 66

2.9 Overview of the four ML-QEM models and their encoded features. (a) Linear
regression (specifically ordinary least-square (OLS)): input features are vectors
including circuit features (such as the number of two-qubit gates n2Q and SX
gates nSX), noisy expectation values ⟨Ô⟩noisy, and observables Ô. The model
consists of a linear function that maps input features to mitigated values ⟨Ô⟩mit.
(b) Random forest (RF): the model consists of an ensemble of decision trees and
produces a prediction by averaging the predictions from each tree. (c) Multi-layer
perception (MLP): the same encoding as that for linear regression is used, and
the model consists of one or more fully connected layers of neurons. The non-
linear activation functions enable the approximation of non-linear relationships.
(d) Graph neural network (GNN): graph-structured input data is used, with node
and edge features encoding quantum circuit and noise information. The model
consists of multiple layers of message-passing operations, capturing both local
and global information within the graph and enabling intricate relationships to
be modeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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3.1 The solid curve depicts the decision boundary of a quantum classifier. The states
in blue are classified in a different class from the states in red. The metric is the
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Chapter 1

Continuous Quantum Error Correction
on Superconducting Qubits

This chapter is derived from previously published work by Convy, Liao, Song, Patel, Liv-
ingston, Nguyen, Siddiqi, and Whaley [1], where Convy and Liao are the co-first authors,
which studied imperfections in continuous quantum error correction measurement signals,
proposed a recurrent neural network model for decoding, and benchmarked this machine
learning model against the traditional method and a discrete Bayesian model. Liao and
Convy are primarily responsible for the implementation of the recurrent neural network
model and the discrete Bayesian model, respectively.

1.1 Background on Quantum Error Correction
The prevalence of errors acting upon quantum states, either as a result of imperfect quantum
operations or decoherence arising from interactions with the environment, severely limits
the implementation of quantum computation on physical qubits. A variety of methods have
been proposed to suppress the frequency of these errors, such as dynamic decoupling [2],
application of a penalty Hamiltonian [3], and decoherence-free subspace encoding [4]. There
also exist various methods for quantum error mitigation [5] which reduce the negative impact
of errors on the targeted expectation values. In addition to these tools for error suppression
and mitigation, there exist many schemes for quantum error correction (QEC) that are able
to return the system to its proper configuration after an error occurs [6]. The ability to
correct errors rather than just suppress or mitigate them is vital to the development of
fault-tolerant quantum computation [7].

Classically, the most straightforward way to encode information to protect against errors
or allow correction of these is to store multiple copies of the same information, namely to
create redundancy. In such a way, we could successfully recover the information by a major-
ity vote, shall no more than half of the copies had been corrupted. In quantum mechanics,
the No-Cloning theorem states that no physical operations (unitary) can clone an arbitrary
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quantum state ∣ψ⟩. This theorem does not state that we cannot clone a given known state,
but it certainly prevents us from making copies of a state in the middle of an arbitrary quan-
tum computation, and thus nullifies the attempt to arbitrarily create redundancy that can
assist in protection against corruption of quantum information. The solution to completely
protect against errors in principle is the use of quantum error correcting code, where we
store each quantum bit in multiple physical qubits in a way that we can detect and correct
errors occurring to those physical qubits, enabling us to perform faithful operations on each
quantum bit. We call the encoded quantum bit (state) the logical qubit (state), the operator
on the encoded state the logical operator, the measurements we performed to detect errors
the syndrome measurements, and the operations to reverse the error the recovery operations.

Quantum Error

Quantum error arises when the observed system undergoes undesired interaction with the
environment (bath). An error process on the system is formally described as some quantum
channel. A quantum channel maps the system density matrix to the reduced density matrix
(tracing over the environment) after a joint unitary evolution of the system and environment,
namely

E(ρS) = TrE[USE(ρS ⊗ ρE)U †
SE], (1.1)

which reflects the fact that the quantum state of the environment degrees of freedom is
unmonitored after the joint evolution, such that quantum information of the system has
been carried away by the environment. Physically, quantum errors can happen, for example,
when we cannot keep track of the quantum state of all the photons that scatter off of the
study, we are unaware of the precise duration of the interaction, or how electronic states
in an atom are perturbed upon interacting with distant electrical charges [8, 9]. This loss
of information is irreversible on the system alone, but can be in principle reversed in an
enlarged Hilbert space. This enlarged Hilbert can be simply the original joint system and
environment, or a quantum error correcting code encoding the system together with the
syndrome measurement ancillas. Assuming the environment initialized to ∣0⟩E, Eq. (1.1) can
be written as

E(ρS) =∑
i

⟨i∣E USE

⎛
⎝∑j,k

ρjk∣j⟩⟨k∣⊗ ∣0⟩⟨0∣E
⎞
⎠
U †
SE ∣i⟩E

=∑
i

⟨i∣E USE ∣0⟩E
⎛
⎝∑j,k

ρjk∣j⟩⟨k∣
⎞
⎠
⟨0∣E U

†
SE ∣i⟩E .

(1.2)

Defining a measurement of the environment performed in the basis ∣i⟩E after the unitary
transformation USE has been applied,

Ei ≡ ⟨i∣E USE ∣0⟩E , (1.3)
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we obtain the operator-sum representation, or Kraus representation, of any quantum channel
E(ρS) = ∑iEiρSE

†
i . It is evident from Eq. (1.3) that {Ei} is the set of operators satisfying the

completeness condition ∑iE
†
iEi = 1. It can also be readily shown that any such an operator-

sum can be realized by a unitary map1 acting on an extended system [9] and therefore, this
is a bi-directional result.

It can be shown that a completely positive tracing-preserving (CPTP) convex-linear map
consists of the axioms defining quantum channels (operations). In fact, a map E satisfying
the CPTP convex-linear axioms if and only if it has an operator-sum representation [8]
(again, this is a bi-directional result indicating that any set of operators {Ei} satisfying
the completeness condition and operates on some density matrix must be a valid, physical
operation).

The relationship that a CPTP map implies a unitary map acting on an extended system as
in Eq. (1.1) constitutes the application of the Stinespring’s dilation theorem [10] in quantum
mechanics, which is formally stated as [10]
Theorem 1 . Any quantum channel, or completely positive and trace-preserving (CPTP)
map, Λ ∶ B(HA)→ B(HB)2 over finite-dimensional Hilbert spaces HA and HB is equivalent to
an isometry (inner-product preserving map) mapping to a higher dimensional Hilbert space
HB ⊗HE, where HE is also finite-dimensional, followed by a partial tracing over HE

3 . In
particular, the dimension of the ancillary system HE can be chosen such that dim(HE) ≤
dim(HA)dim(HB) for any Λ.

We note that the set of Kraus operators of a given error channel is not unique. It
is equivalent up to a unitary change of basis, and the number of Kraus operators can be
different in another form of the representation. Other representations of error channels are
also widely used [11], including the Pauli transfer matrix (PTM) (please see Sec. 2.1 in
Chapter 2), χ-matrix, and Choi matrix.

One single-qubit error channel, whose Kraus operators are most easily recognized, is the
depolarizing channel

E(ρ) = (1 − 3

4
p)ρ + p

4
(XρX + Y ρY +ZρZ) = (1 − p)ρ + pI

2
. (1.4)

Represented as an average over the realizations of a Markov process, i.e., unraveled in quan-
tum trajectories [12], the depolarizing channel on its own describes the statistical ensemble
of quantum trajectories subject to a bit flip, a phase flip, or both a bit and a phase flip,
each with a p/4 probability, equivalent to having a maximally mixed state with probability
p. This latter interpretation is used to generalize this error channel to a multi-qubit one.
Let Γ be the probability per unit time, or rate, of the depolarizing noise, it can be readily

1The unitary map is obtained by further extending the input Hilbert space of an isometry.
2We denote the convex set of positive-semidefinite linear operators with unit trace, namely the set of

density operators, on a complex Hilbert space H (thus Hermitian and bounded) as B(H).
3In the Stinespring’s representation of such a CPTP map Λ, there exists an isometry V ∶ B(HA) →

B(HB ⊗HE) such that Λ(ρ) = TrE(V ρV †),∀ρ ∈ B(HA).
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seen that the diagonal elements of the density matrix exponentially decay as

e−Γtρii +
1

2
(1 − e−Γt) , (1.5)

leading to an exponential decay of observable expectation values. Although this simple noise
model is of theoretical interest due to the fact that all possible single-qubit errors (the three
Pauli errors) are included, which fulfills as a test to any error correction model for arbitrary
single-qubit error, it is not physically well-motivated.

Decoherence – Relaxation and Dephasing

The more interesting channels are the amplitude damping channel and the dephasing (phase
damping, or just phase flip) channel. Let us start with the amplitude damping channel,
or energy dissipation. It models physical processes such as spontaneous emission. If the
atom starts in the ground state, there is no spontaneous emission and the environment
electromagnetic field, starting in no photon, remains in ∣0⟩E. If the atom is excited, or in
a superposition of ground and excited state, there is a certain probability p = Γ∆t (the
probability per unit time, or rate, Γ of spontaneous emission can be described by Fermi’s
golden rule) that the excited state of an atom will decay to the ground state and a photon
will be emitted. Hence, the environment will make a transition from the state ∣0⟩E (no
photon) to the state ∣1⟩E (one photon in some mode). We have the unitary transformation
on the atom and the electromagnetic field as

∣0⟩A ∣0⟩E ↦ ∣0⟩A ∣0⟩E ,

∣1⟩A ∣0⟩E ↦
√
p ∣0⟩A ∣1⟩E +

√
(1 − p) ∣1⟩A ∣0⟩E .

(1.6)

The emitted photon has infinite different modes to propagate into, thus the probability of the
atom re-absorbing the photon and re-exciting is negligible. Tracing over the environment,
the density matrix of the atom evolves as

ρ↦ E(ρ) = [ρ00 + pρ11
√
1 − pρ01√

1 − pρ10 (1 − p)ρ11
] (1.7)

In terms of the decay rate, successfully applying the channel for n times, (1 − p)n = (1 −
Γt/n)n = e−Γt, we obtain the system (reduced) density matrix over time as

ρ(t) = [ρ00 + (1 − e
−Γt)ρ11 e−

Γt
2 ρ01

e−
Γt
2 ρ10 e−Γtρ11

] (1.8)

We call the time for the excited state population to decay to e−1 of the initial as T1 time,
and the time for the off-diagonals (the coherence) to decay to e−1 of the initial population
as T2 time [9]. With only the amplitude damping channel, we have T2 = 2T1. Exemplified by
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such a channel, any process resulting in the decay of the off-diagonals in the density matrix
is decoherence.

Then let us focus on the dephasing channel, the simplest model resulting in decoher-
ence. We first note that coherence, denoting the non-zero off-diagonal elements of a density
matrix, arises from a portion of the identically prepared states, in a given basis, having a well-
defined relative phase between the constituent superposition states. The phases are what
we sometimes refer to as what allows for the wavefunction to interfere in some observable4.
Decoherence is then a scrambling of the phase information due to undesired environment
interaction with the system, such that our knowledge of the system state, reflected in mea-
suring an ensemble of originally identically prepared states, must now be described by a
density matrix with decayed off-diagonals. For instance, suppose we start with an ensemble
of identically prepared ∣+⟩ = 1/

√
2(∣0⟩ + ∣1⟩), and unmonitored interaction induces a random

π-phase flip with 1/2 probability on each state, our knowledge of the system will decohere
to a maximally mixed density matrix of 1/2(∣+⟩⟨+∣ + ∣−⟩⟨−∣) = I/2. More concretely, suppose
we have a qubit in ∣ψ⟩ = α ∣+⟩−β ∣−⟩, and we have a Rx(π+θ) gate rotating the qubit around
X-axis by π on the Bloch sphere. Suppose the gate has some noise with an over-rotation
angle θ which is stochastically sampled from a Gaussian distribution with a mean 0 and a
variance 2Γ. The result of this one gate on the qubit, to the best of our knowledge, can only
be represented as an average over θ, in a density matrix in the X basis, as follows

ρ = 1

4πλ ∫
∞

−∞
Rx(π + θ)∣ψ⟩⟨ψ∣R†

x(π + θ)e−
θ2

4Γ dθ = [ ∣α∣
2 αβ∗e−Γt

α∗βe−Γt ∣β∣2. ]. (1.9)

The effect of this scramble of the phase shows up as a damping factor in the coherence of
the ensemble density matrix. Abstract away, it can be readily verified that the two Kraus
operators E1 =

√
p/2(I +Z) and E2 =

√
p/2(I −Z) describe the dephasing channel

E(ρ) = [ ρ00 (1 − p)ρ01
(1 − p)ρ10 ρ11

] = [ ρ00 ρ01e−Γt

ρ10e−Γt ρ11
], (1.10)

where Γ is the rate of decoherence per unit time. Since this noise channel only affects the
coherence, unlike amplitude damping which has an effect on all density matrix elements, it
is sometimes emphasized as “pure dephasing”.

In physical systems, amplitude damping (Eq. (1.8)) and (pure) dephasing (Eq. (1.10))
occurs simultaneously with two rates, Γ1, and Γϕ, respectively. Γ1 is also referred to as the
longitudinal relaxation rate. By the definition described previously,

Γ1 ≡
1

T1
. (1.11)

4Consider a superposition state of 1/
√
2(∣0⟩+ ∣1⟩) whose density matrix in the Z basis have non-zero off-

diagonals, when measured in the X basis, the constituent state ∣0⟩ = 1/
√
2(∣+⟩+ ∣−⟩) and ∣1⟩ = 1/

√
2(∣+⟩− ∣−⟩)

constructively interferes to produce a measurement statistics of +1 uniformly. While in an ensemble of
fully-decohered states, 1/2(∣0⟩⟨0∣ + ∣1⟩⟨1∣) = I/2, each state is unable to interfere and only 1/2 of the states
measured in the X basis to have +1.
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As shown in (Eq. (1.8)), it also causes the off-diagonal to decay at a rate of Γ1/2, which,
when combined, leads to an overall decay rate of the off-diagonals Γ2 = Γ1/2 + Γϕ. By the
definition described previously,

Γ2 ≡
1

T2
= Γ1

2
+ Γϕ, (1.12)

This is also called the transverse relaxation rate (transverse as on the equatorial plane on
the Bloch sphere). It can be measured using e.g., a Ramsey experiment. From Eq. (1.12), it
is also evident that when there are both amplitude damping and dephasing, we have

T2 ≤ 2T1. (1.13)

So far, we have described incoherent quantum errors, meaning errors that cannot be
described by a unitary evolution of the system. What if the over-rotation angle θ of the X
gate is deterministic? Then it becomes a coherent error Uerr = e−iθX , when the over-rotation
angle is small, expands to ∣ψ⟩ ↦ (1 − iθX) ∣ψ⟩, or ρ ↦ ρ + θ2XρX, up to a renormalization
of the state. Hence, the effect of a small coherent rotation error is the same as a stochastic
error with a probability of occurring parametrized by the rotation angle. This is the same as
describing what the measurement outcome distribution is after the coherent error evolution.

Quantum Error Correcting Code

Let {∣ϕi⟩} denote the basis set of the code subspace. The quantum error correcting criterion
is a sufficient and necessary condition for the recovery operations to be possible [13]. This
criterion can be stated based on two principles. First, correctable errors are those that
cannot destroy the perfect distinguishability of orthogonal codewords (encoded states). In
other words, an error mapping two different encoded states into the same resultant state
is surely not correctable since we would not be able to have an inverse mapping from the
resultant state back to the desired encoded state. This can be expressed concisely as

⟨ϕi∣E†
aEb ∣ϕj⟩ = Cabijδij, (1.14)

where the complex tensor Cabij, in its full generality, is to be determined. Second, we should
not be able to acquire any information about the encoded state by measuring the syndromes,
otherwise, we would inevitably disturb that state. This requires that ⟨ϕi∣E†

aEb ∣ϕi⟩ should not
depend on i, and thus Cabijδij = Cabδij. It is then readily true that Cab must be a Hermitian
matrix, and we arrive at the QEC criteria,

⟨ϕi∣E†
aEb ∣ϕj⟩ = Cabδij. (1.15)

The 3-qubit bit-flip stabilizer code is the quantum analog of classical repetition code. It
encodes the logical states ∣0⟩ and ∣1⟩ into ∣0⟩L = ∣000⟩ and ∣1⟩L = ∣111⟩, respectively, where
the stabilizer generators are chosen to be S1 = Z1Z2 and S2 = Z2Z3, which also serve as
the error syndrome operators. The states ∣000⟩ and ∣111⟩ span the code subspace, in which
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the syndromes have values (S1 = +1, S2 = +1). The (S1 = −1, S2 = +1), (S1 = −1, S2 = −1),
(S1 = +1, S2 = −1) subspaces are known as the error subspaces, which are spanned by the
basis states {∣011⟩ , ∣100⟩}, {∣010⟩ , ∣101⟩} and {∣001⟩ , ∣110⟩}, respectively. A logical error in
quantum memory, i.e., when there is no Hamiltonian evolution, is an error attributed to the
logical X operator, XL =X1X2X3. It only protects against weight-one X error, and not any
Y or Z error. The same code in the X basis, i.e., ∣0⟩L = ∣+ + +⟩ and ∣1⟩L = ∣− − −⟩, protects
against weight-one Z error, and not any Y or X error.

The 9-qubit Shor’s code is a nested version of the above 3-qubit bit-flip code in both the
X and Z basis,

∣0⟩L = (
1√
2
∣000⟩ + ∣111⟩)

⊗3

and ∣1⟩L = (
1√
2
∣000⟩ − ∣111⟩)

⊗3

, (1.16)

which is a stabilizer code that can correct any single-qubit error and has a distance 3. A
phase flip (Z error) in any of the 3-qubit clusters can be detected by measuring

X1X2X3X4X5X6 and X4X5X6X7X8X9. (1.17)

A bit-flip (X error) on any of the qubit can be detected by measuring Z1Z2, Z2Z3 for the
first 3-qubit cluster, Z4Z5, Z5Z6 for the second 3-qubit cluster, and Z7Z8, Z8Z9 for the third
3-qubit cluster.

We describe a quantum code with n physical qubits, encoding k qubits, and distance
d = 2t + 1 as an [[n, k, d]] quantum code. We say that a QEC code (QECC) can correct t
errors if the set of recoverable errors {Ea} includes all Pauli operators of weigh t or less, i.e.,
the QEC criteria in Eq. (1.15) is satisfied by all Pauli operators Ea Eb of weight t or less,
where t = ⌊(d − 1)/2⌋. A given QECC can detect d − 1 = 2t errors. Therefore, a distance-2
code is useful for detecting weight-1 errors.

Some notable QECCs include the [[7,3,1]] Steane code [14], the 5-qubit code which is
the smallest possible code protecting one logical qubit against single-qubit errors, i.e., the
[[5,1,3]] code [15], and Kitaev’s surface code [[2L2,2, L]] [16, 17].

1.2 Background on Continuous Quantum Error
Correction

An essential feature of QEC is the measurement of certain error syndrome operators, which
provides information about errors in the physical qubits without collapsing the logical quan-
tum state. In the canonical approach, quantum error correction is conducted in a discrete
manner, using quantum logic gates to transfer the qubit information to ancilla qubits and
subsequently making projective measurements on these to extract the error syndromes.

In contrast to this theoretical idealization of instantaneous projections of the quantum
state, experimental implementation of such measurements inherently involves performing
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weak measurements over finite time intervals [18], with the dispersive readouts in super-
conducting qubit architectures constituting the prime example of this in today’s quantum
technologies [19, 20, 21, 22]. This has motivated the development of continuous quantum
error correction (CQEC) [23, 24, 25, 26, 27, 28, 29, 30, 31, 32], where the error syndrome
operators are measured weakly in strength and continuously in time.

CQEC operates by directly coupling the data qubits to continuous readout devices. This
avoids the ancilla qubits and periodic entangling gates found in discrete QEC, reducing hard-
ware resources. Additionally, the presence of these entangling gate sequences and ancillas
introduces additional error mechanisms, occurring in-between entangling gates or on ancil-
las, that can cause logical errors [30, 32]. On noisy quantum hardware, multiple rounds of
entangling gates and ancilla readouts are required to accurately identify the system state5.
All of this is also avoided by measuring data qubits directly, as in CQEC.

In addition to quantum memory, CQEC naturally lends itself to modes of quantum com-
putation involving continuous evolution under time-dependent Hamiltonians, such as adia-
batic quantum computing [34] and quantum simulation [35]. Given that the Hamiltonians
considered generally do not commute with the error operators, the action of an error induces
spurious Hamiltonian evolution within the corresponding error subspace until the error is
ultimately diagnosed and corrected, resulting in the accrual of logical errors [31]. CQEC can
effectively shorten the spurious evolution time in the error subspaces, and therefore increase
the target state fidelity in quantum annealing.

Continuous Measurement

A continuous measurement is one in which partial information about the state is extracted
continuously in time [18]. The amount of information obtained goes to zero as the duration
of the measurement goes to zero. Suppose we want to continuously measure X (Hermitian)
with a continuous spectrum of eigenvalues x, and corresponding eigenstates ∣x⟩. We divide
time into intervals of length ∆t. In each interval, we have the measurement operator as a
Gaussian weighted “sum” of the projectors onto the different eigenstate, centering at α,

A(α)∝ ∫
∞

−∞
e[−2k∆t(x−α)2]∣x⟩⟨x∣dx. (1.18)

This models a process where there is Gaussian white noise on the measurement eigenvalue
⟨α⟩ = ⟨X⟩ that the observers observe. To see this more precisely, we compute the probability

5In discrete QEC, full syndromes measurements are performed multiple times before attempting to
decode, often O(n) times for a length n repetition code or surface code [33]. This reduces the impact of
faulty entangling gates or ancillas.
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of having a measurement result of α6,

P (α) = Tr[A(α)†A(α)∣ψ⟩⟨ψ∣]∝ ∫
∞

−∞
∣ψ(x)∣2e−4k∆t(x−α)2dx

≈ ∫
∞

−∞
∆(x − ⟨X⟩)e−4kδt(x−α)2dx∝ e−4k∆t(α−⟨X⟩)2 ,

(1.19)

where at the beginning of the last line we have assumed that when ∆t is sufficiently small
then the Gaussian is much broader than ψ(x) and so ∣ψ(x)∣2 can be approximated by a delta
function centered at the expectation value ⟨X⟩.

The action of the measurement operator at each time step on the state ∣ψ(t)⟩ produces

∣ψ(t +∆t)⟩∝ A(α) ∣ψ(t)⟩∝ e−2k∆t(α−X)2 ∣ψ(t)⟩
∝ {1 − 2k∆tX2 +X[4k⟨X⟩∆t +

√
2k∆W + kX(∆W )2]} ∣ψ(t)⟩ ,

(1.20)

where we expanded the exponential to first order in ∆t (we note that ∆W 2 = ∆t in Itô
calculus) in the last line.

Taking ∆t→ 0, we set ∆t = dt, ∆W = dW and (∆W )2 = dt, we see that

d ∣ψ(t)⟩∝ {−[kX2 − 4kX⟨X⟩]dt +
√
2kXdW} ∣ψ(t)⟩ . (1.21)

Master Equations

We will give a straightforward “derivation” of the Lindblad master equation and stochastic
master equation (SME) arising from the continuous measurement process, as motivated
by [18].

By what was described in Sec. 1.1 any transformation of the density matrix must be a
CPTP map and it is so if and only if the transformation has an operator-sum representation.
Let us ignore the TP (trace-preserving) part for now, which was enforced by the completeness
condition of the Kraus operators, and write the most general form of the completely positive
transformation as

ρ↦∑
n

AnρA
†
n, (1.22)

where {An} are arbitrary operators. We note that under unitary evolution, the Schrödinger
equation (a direct consequence of the fundamental postulates of quantum mechanics) says
that the density matrix (so it is actually Liouville–von Neumann equation) transforms over
a short time interval dt as

ρ + dρ = ρ − i
h̵
[H,ρ]dt = (1 − iH

h̵
dt)ρ(1 + iH

h̵
dt) . (1.23)

where H is the Hamiltonian. Namely, it corresponds to a single infinitesimal transformation
operator A = 1 − iHdt/h̵ in Eq. (1.22). Since any complex matrix can be expressed in terms

6Note that the probability of obtaining measurement result m of a positive operator-valued measure
(POVM) Ωm is P (m) = Tr[ΩmρΩ†

m], and the resultant density matrix is ρf = ΩmρΩ†
m/Tr[ΩmρΩ†

m].
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of Hermitian and anti-Hermitian matrices, the arbitrary operator A can be further expressed
as A = 1− iHdt/h̵+ bdt, where b is Hermitian and all the anti-Hermitian part goes into iH/h̵.
It turns out that the (continuous) measurement process brings another contribution to A
in terms of the Wiener differential dW , such that dW 2 = dt in Itô calculus, as shown in
Eq. (1.21). Therefore, we should include the possible dW term in the expression of A,

A = 1 − iH
h̵
dt + bdt + cdW, (1.24)

where c is an arbitrary operator.
Now, by the operator sum in Eq. (1.22),

dρ = − i
h̵
[H,ρ]dt + {b, ρ}dt + cρc†dt + (cρ + ρc†)dW. (1.25)

We can then average over all possible Wiener processes (all possible measurement records),
or discard the measurement records, which is denoted by taking ⟪⋅⟫. Noting that ⟪ρdW⟫=0
in Itô calculus,

d⟪ρ⟫ = − i
h̵
[H,⟪ρ⟫]dt + {b,⟪ρ⟫}dt + c⟪ρ⟫c†dt. (1.26)

Since ⟪ρ⟫ is an average over valid density matries, it is also a valid density matrix and must
have unit trace, or dTr[⟪ρ⟫] = Tr[d⟪ρ⟫] = Tr[⟪ρ⟫(2b + c†c)] = 0. For this to hold for an
arbitrary density matrix, it must be that b = −(c†c)/2. And we arrive at the Lindblad master
equation:

dρ = − i
h̵
[H,ρ]dt +D[c]ρdt, (1.27)

where
D[c]ρ ≡ cρc† − 1

2
(c†cρ + ρc†c) (1.28)

is the Lindblard superoperator. The Lindblad master equation is deterministic, as it rep-
resents an “averaging out” of the system-environment interaction, that it averaged over all
possible noise realizations. Its formal derivation is achieved by performing a partial trace
over the environment following a unitary system-environment interaction, assuming Born
approximation and Markov approximation [36]. A simple example is the Hamiltonian H = Z
with the Lindbladian L =√γσ− that corresponds to the amplitude damping channel with a
spontaneous emission rate of γ.

The full transformation without averaging over the noise realizations (measurement
records) becomes

dρ = − i
h̵
[H,ρ]dt +D[c]ρdt + (cρ + ρc†)dW. (1.29)

To preserve the trace of the density operator, we need to add a term ρTr[ρ(c + c†)dW ] so

dρ = − i
h̵
[H,ρ]dt +D[c]ρdt + (cρ + ρc†)dW − ρTr[ρ(c + c†)]dW. (1.30)
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which enforces that Tr[dρ] = Tr[ρ(c + c†)dW ] − Tr{ρTr[ρ(c + c†)]dW} = {Tr[ρ(c + c†)] −
Tr[ρ(c + c†)]Tr(ρ)}dW = 0. Therefore, we arrive at the stochastic master equation (SME):

dρ = − i
h̵
[H,ρ]dt +D[c]ρdt +H[c]ρdW, (1.31)

where
H[c]ρ ≡ cρ + ρc† − ρ⟨c + c†⟩ρ (1.32)

is the measurement superoperator.
Further taking into account multiple measurement operators cn with separate Wiener

noise process dWn independent of all the others, as well as measurement efficiencies ηn, we
obtain a more general SME

dρ = − i
h̵
[H,ρ]dt +∑

n

(D[cn]ρdt +
√
ηnH[cn]ρdWn) , (1.33)

whose corresponding measurement record for the n-th process can be written as

dr(t) = cn + c
†
n

2
dt + 1√

4ηn
dW. (1.34)

The measurement superoperator H[c]ρ represents the information gain due to the mea-
surement process (if we average over, or discard, the measurement records, then this term
does not exist) that it modifies the state depending on the measurement records. The D[c]ρ
term represents the back-action or the disturbance to the state due to the measurement
independent of whether or not the measurement records are used by the observers.

Homodyne Measurements

Homodyne measurement is a technique used in quantum optics and quantum information
processing. It involves the mixing of a quantum signal with a strong reference beam, known
as a local oscillator, at a beam-splitter. The relative phase between the signal and the local
oscillator is crucial. By adjusting this phase, one can measure different quadratures of the
quantum field.

The interaction Hamiltonian for the transmission line and the cavity field is given by a
Jaynes-Cummings Hamiltonian

H = i
√

γ

∆t
(ba† − b†a), (1.35)

where γ is the coupling strength and ∆t is some coarse-grained time-scale in the collision
model (see Eq. (14, 16, 17) in [37]), b and a are the lowering operators of the cavity field and
the transmission line, respectively.
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The original Hamiltonian in Eq. (1.35) then generates a unitary which we keep up to
order ∆t:

U = e−iH∆t ≈ 1 +
√
γ∆t(ba† − b†a) − γ

2
(ba† − b†a)2∆t. (1.36)

The homodyne measurement readouts the quadrature basis of the probe, in-phase I,
quadrature Q, or some linear combination thereof, and can be implemented by a variety of
devices. In our physical experiments, we use JPAs. For our analysis, we will measure in the
I quadrature, in which we construct the quadrature operator R = a + a†. Measuring in this
basis, the output is a continuous variable r with associated Kraus operators [38] (also see
Eq. (1.3) in Chapter 1)

Ωr = ⟨r∣U ∣0⟩

= ⟨r∣0⟩ + ⟨r∣1⟩
√
γ∆tb − γ

2
∆t (⟨r∣0⟩ b†b + ⟨r∣2⟩

√
2b2)

= ⟨r∣0⟩ [1 + r
√
γ∆tb − γ

2
∆t(b†b − (r2 − 1)b2)] ,

(1.37)

where ⟨r∣0⟩ = (2π)−1/4 exp(−r2/4) =
√
P0(r) is the probes’s ground state in the position basis

and P0(r) is the probability of measuring r when the probe is in the ground state. In the
last line, we have used the Hermite polynomials to express the harmonic oscillator’s first and
second excited states in terms of its ground state.

We determine the probability of measuring a particular outcome r as

pr = ⟨Ω†
rΩr⟩ρ = P0(r) [1 + r

√
γ∆t ⟨b + b†⟩ρ + γ∆t(r2 − 1) ⟨b†b⟩ρ] , (1.38)

where the average is taken over the states ρ of the cavity field coupled to the transmons [39].
If we approximate r as a Gaussian variable, we then want to determine the mean and

variance of this:

⟨r⟩ρ = ∫
∞

−∞
rprdr =

√
γ∆t ⟨b + b†⟩ρ ,

⟨r2⟩ρ = ∫
∞

−∞
r2prdr = 1.

(1.39)

Let ∆W be drawn from a Gaussian distribution with variance ∆t. The statistics of the
measurement record of r can be reproduced by

r
√
∆t =√γ ⟨b + b†⟩ρ∆t +∆W. (1.40)

The voltage operator to be measured will be of the form

V̂ ∝ a + a†
√
∆t

, (1.41)

resulting in a classical voltage
V = A r√

∆t
, (1.42)
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where A is a constant scaling factor in units of V ⋅s1/2 characterising the physical noise power
in a certain bandwidth. Using Eq. (1.40), the measured voltage V , which is written in terms
of

V∆t = A (√γ ⟨b + b†⟩ρ∆t +∆W ) , (1.43)

has variance that scales as ∆t−1. The state of the transmons can be inferred from the
homodyne measurement voltage in Eq. (1.43) [39].

To implement a single parity measurement on two qubits, we dispersively couple two
qubits to the same readout resonator. We tune the qubits to have the same dispersive
coupling to the resonator so that the states ∣01⟩ and ∣10⟩ are indistinguishable on the I-Q
plane. By making the dispersive shift χ much larger than the linewidth κ of the resonator,
we can make the reflected phase of ∣00⟩ (close to π) and ∣11⟩ (close to −π) overlap with
one another, making them indistinguishable as well. Altogether we implement a full parity
measurement of odd excitations vs. even excitations by measuring the I quadrature. In our
experiment, we implement two of these full parity measurements – one between qubits 1 and
2 and the other between qubits 2 and 3 [32].

1.3 Continuous Quantum Error Correction on Small
Stabilizer Code

Motivation of Applying Machine Learning

Previous theoretical work on CQEC has focused primarily on measurement signals that
behave in an idealized manner [30, 31, 29], such that each sample is assumed to be i.i.d.
Gaussian (white noise) with a mean given by one of the syndrome eigenvalues. The presence
of white noise requires some inference of the measured state, which is a key component in
the decoding of CQEC schemes. However, in real dispersive readout signals, we observe a
wide variety of “imperfections” caused by hardware limitations and post-processing effects,
which can lead to more complicated syndrome dynamics or significant alterations to the noise
distribution. A well-calibrated CQEC protocol should be designed to take into account any
significant non-ideal behavior for a given architecture in addition to dealing with the contin-
uous nature of the signal. However, it is often difficult to generate a precise mathematical
description of the imperfections present in real measurement signals.

Machine learning algorithms offer a solution to this problem, as they can be optimized to
solve a task by looking directly at the relevant data instead of relying on hard-coded decision
rules [40]. Highly expressive models involving multiple neural network layers have proven
to be particularly effective at solving complex tasks such as image recognition and language
translation [41]. The recurrent neural network (RNN) is a popular sequential learning model,
because it operates on inputs of varying length and provides an output at each step. After
being trained on a set of non-ideal measurement signals, an RNN can function as a CQEC
algorithm by generating probabilities that describe the likelihood of an error at a given time
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step. Most importantly, the flexibility of the algorithm allows it to handle imperfections in
the signal that would otherwise be impractical to model.

Here we investigate the performance of an RNN-based CQEC algorithm which acts on
measurement signals with non-ideal behavior. We emphasize here active correction, in which
errors are corrected during the experiment as soon as they are observed. To quantify the
benefits of using a neural network, we compare the RNN to a conventional double threshold
scheme as well as to a discrete Bayesian classifier. The first threshold scheme for CQEC
was by Sarovar et al. [26], who used the sign of the averaged measurement signals (i.e., a
threshold at zero) to identify the error subspace. This filter was improved upon in Atalaya et
al. [29] and Atalaya, Zhang et al. [31], as well as in Mohseninia et al. [30], by adding a second
threshold to better detect errors that affect multiple syndromes. We chose to compare our
RNN model to the threshold scheme in [31], since it had superior performance in numerical
tests.

Problem Setup

We exemplify our CQEC protocol by operating it on the three-qubit bit-flip stabilizer code; in
general, the protocol works with any QEC code. This is a proof-of-concept of the continuous
QEC scheme with a machine-learning approach for signal processing, which is an extension
of the concept of decoder into the continuous quantum error correction regime.

In the continuous operation of the three-qubit bit-flip code, the error syndrome operators
Sk, k = {1,2} are continuously and simultaneously measured to yield the following idealized
signals for each Sk as a function of time t as in Eq. (1.34):

Ik(t) =
√
Γk
mtr[Skρ(t)] + ξk(t). (1.44)

Here ρ(t) is the density matrix of the three physical qubits and Γk
m is the measurement

strength that determines the time to sufficiently resolve the mean values of the syndromes
under constant variance. Specifically, 1/Γk

m is the time needed to distinguish between the
eigenvalues of Sk with a signal-to-noise ratio (SNR) of 17. In the Markovian approxima-
tion, ξk(t) is Gaussian white noise, i.e., ξ(t) = Ẇ (t) where W (t) is a Wiener process, with
a two-time correlation function ⟨ξk(t)ξk′(t′)⟩ = δkk′δ(t − t′), where the ⟨⋅⟩ denotes average
over an ensemble of noise realizations. In the continuous operation, the observer receives
noisy voltage traces with means proportional to the syndrome operator eigenvalues and
variances that determine the continuous measurement collapse timescales. Monitoring both
error syndromes with streams of noisy signals represents a gradual gain of knowledge of the
measurement outcome to diagnose bit-flip errors that occur. We shall refer to the parity of
Ik(t) as even or odd depending on whether the mean value of Ik(t) is positive or negative.
In an actual experiment, we will only have access to the averaged signals taken at discrete

7The SNR is defined as (µe −µo)2/(σe +σo)2, where µ and σ are the mean and standard deviation of the
signals, and subscripts denote the odd and even parities of the syndrome measurements.
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time steps separated by ∆t, which we denote by Ik,t at time step t:

Ik,t =
√
Γk
m tr [Skρ(t)] +

∆W

∆t
(1.45)

where ∆W ∼ N (0,∆t). We shall assume that ρ(t) only changes due to bit-flips at the
beginning of each time step ∆t for very small ∆t.

In previous work, Ref. [30] compared the performance of a linear approximate Bayesian
classifier and the double threshold model with one threshold fixed at y = 0 and another
threshold at y > 0 in correcting the three-qubit bit-flip code for quantum memory. Ref. [31]
analyzed the double threshold model with two varying thresholds in correcting the three-
qubit bit-flip code, and applied it to quantum annealing under bit-flip errors Xq with which
the chosen annealing Hamiltonian does not commute. In the current work, we shall study
the performance of machine learning algorithms both in quantum memory and in quantum
annealing.

The SME governing the evolution of ρ(t) under measurements with a finite rate of in-
formation extraction implied by Eq. (1.44) in the presence of bit-flip errors is given by [26,
31]

ρ̇(t) = − i[H(t), ρ]

+ ∑
k=1,2

[
Γk
ϕ

2
(SkρSk − ρ) +

√
Γk
mξk(t) (

Skρ + ρSk

2
− ρ ⟨Sk⟩ρ)] + ∑

q=1,2,3

γq (XqρXq − ρ) .

(1.46)

The first term describes the coherent evolution of the three-qubit state under a Hamiltonian
H(t), which can, for instance, be a quantum annealing Hamiltonian. The second term
describes the back-action induced by the simultaneous continuous measurement of the error
syndrome operators S1 and S2 on the three-qubit state, where Γk

ϕ is the measurement-
induced ensemble dephasing rate of the corresponding error syndrome operator Sk. The
measurement strength Γk

m, is related to the detector efficiency ηk as Γk
m = 2Γk

ϕηk The first
two terms can be obtained by substituting operators ck ∝ Sk into the general SME dρ =
−i[H,ρ]dt+∑k(D[ck]ρdt+

√
ηkH[ck]ρdW ) as derived in Eq. (1.33). The third term describes

the decoherence of the three-qubit state in the presence of bit-flip errors, with γq, q = {1,2,3}
denoting the bit-flip error rate of the qth physical qubit. While the idealized measurement
signals mentioned above assume no effect induced by physical experimental apparatus in the
qubit readouts, there are various imperfections of the measurement signals in practice that
make the error diagnosis more challenging. We shall first present the characteristics of these
measurement signals from physical experiments below and explain their implications for our
purpose.

Characteristics of CQEC Measurement Signals

The superconducting qubits are monitored using voltage signals from homodyne measure-
ments of the parity operators that are derived from tones reflected off the resonator (see
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Figure 1.1: The measurement signals of the two syndrome operators S1 = Z1Z2 and S2 = Z2Z3

on the transmon qubits. The even(odd) parity signal, i.e., Sk = +1(−1) has a voltage readout
that is centered at an arbitrary negative(positive) value, according to Eq. (1.43). We note
that the experimental voltage readout of even parity is centered at the negative mean by
design. The upper figure is the raw voltage signal readout of a single experimental run. The
lower figure is the averaged voltage readout over 47,494 post-selected runs. The qubits are
initialized to ∣100⟩ and an X2 bit-flip is artificially injected at t = 3.0µs, resulting in a new
state ∣110⟩. The oscillation pattern is explained in Sec. 1.3.
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Sec. 1.2). The resonator signal is fed into a Josephson parametric amplifier (JPA) in order
to increase the signal strength without adding a significant amount of noise. The amplified
radio frequency signals are then demodulated and digitized. After a further digital demodu-
lation, the signals are processed with an exponential anti-aliasing filter with a time constant
of 32 ns. This filtered signal, which is averaged in ∆t = 32ns bins, is then streamed from the
digitizer card to the computer.

Due to the effects of the amplifier and resonator, we expect that measurements performed
on such real superconducting devices will deviate from the idealized behavior predicted by
Eq. (1.44). In particular, we can anticipate the following three imperfections:

1. The noise will possess a high degree of positive auto-correlation at short temporal lags
due to the narrow low-pass bandwidth of the JPA and anti-aliasing filter.

2. When a bit-flip occurs, the syndrome means will change gradually rather than instan-
taneously as the resonator reaches its new steady state. These periods are referred to
as resonator transients to stress their temporary nature, and arise because of time-
dependent changes in the measurement strength Γk

m (see Sec. 1.3).

3. The values of the syndromes will drift over time due to small changes in experimen-
tal conditions (e.g. temperature). Unlike the other imperfections, this effect is only
noticeable when comparing across quantum trajectories rather than within them.

These non-ideal behaviors in the measurement signals extracted from our typical physical
experiments will be incorporated into our simulated experiments in Sec. 1.5.

Fig. 1.1 shows experimental dispersive readouts taken from three transmon qubits [42]
over the span of 6 µs [32]. The blue and orange lines are a record of the outputs from the
two resonators, each measuring a different pair of qubits for their syndromes. The top figure
shows the measurement signals from a single experiment, which contains large amounts of
auto-correlated noise. During the experiment, an X2 error was injected at 3.0 µs, flipping
the system from ∣100⟩ to ∣110⟩, but the weak-measurement noise largely obscures its effect
on the syndrome values.

To reveal these underlying syndromes, the bottom figure of Fig. 1.1 shows an average over
the measurements from roughly 47,500 experiments, each initialized to ∣100⟩ and injected
with an X2 error at 3.0 µs. It takes approximately 2 µs after initialization for the syndromes
to reach their steady-state values for ∣100⟩, as the number of photons in each resonator
increases from zero gradually. We ignore this effect in our analysis, as it will only occur
once at the start of an experiment. After the X2 error is injected, the syndromes do not
instantaneously jump to a new pair of values but instead enter a transitory period which can
include significant oscillations. These transients derive from the time-dependent changes in
the measurement rate Γk

m(t) analyzed in Sec. 1.3. This period lasts for roughly 2 µs, after
which the syndromes stabilize at their new steady-state values for ∣110⟩.

Depending on the underlying hardware, a measurement signal may be generated on a
wide variety of different scales, such as the arbitrary voltage scale in Fig. 1.1. To denote a
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signal generically on any scale, we write the measurement samples as

Ik,t = S̄k,t +
√
τkεt, (1.47)

where S̄k,t is the scaled mean of the k-th resonator at step t, τk is the scaled variance of the
k-th resonator, and εt ∼ N (0,1). In this notation, the physical quantities Γm and ∆t from
Eq. (1.45) have been absorbed into S̄k,t and τk.

Resonator Transients

The resonator transients are manifested from the varying SNR before the qubit-state-dependent
coherent states ∣αζη(t)⟩ of the microwave field in the cavity reach their steady states when the
resonator linewidth κ is small, where ζ, η ∈ {e, g} and e/g denotes the excited/ground state.
The complex field amplitude ⟨â⟩ζη = αζη given that the qubits are in state ζη satisfies [39,
43, 20]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α̇ee(t) = −iε − i(δr + 2χ)αee(t) − κ
2αee(t),

α̇gg(t) = −iε − i(δr − 2χ)αgg(t) − κ
2αgg(t),

α̇eg(t) = −iε − iδrαeg(t) − κ
2αeg(t),

α̇ge(t) = −iε − iδrαge(t) − κ
2αge(t),

(1.48)

where ε is the amplitude of the driving tone, χ is the dispersive shift and δr = ωr − ωd is the
detuning of the measurement drive to the bare cavity frequency.

The steady state (α̇ζη = 0) solutions to the above equations are

⎧⎪⎪⎨⎪⎪⎩

αee/gg = −2ε
2(δr±2χ)−iκ

,

αeg = αge = −2ε
2δr−iκ

(1.49)

with + for ee and − for gg.
In our parity measurement, we probe at the shared odd excitation resonance, which is

also the same as the bare cavity frequency, i.e., δr = 0. The cavity resonance when the qubits
are in ∣11⟩ is shifted from the bare cavity resonance by 2χ/2π = −4MHz, while the resonance
when the qubits are in ∣00⟩ is shifted from the bare frequency by −2χ/2π = 4MHz. This
results in an asymmetry between the paths in phase space leading up to the steady states
when the qubit pair changes parity.

When the qubits go from an even-parity state to an odd-parity state, e.g., ∣00⟩ → ∣10⟩,
solving α̇eg(t) in Eq. (1.48) with the initial coherent state at αgg yields the path αeg(t)
specified by

⎧⎪⎪⎨⎪⎪⎩

αgg(t) = αgg

αeg(t) = (αgg + 2iε
κ+2iδr

) e−iδrt−κ
2
t − 2iε

κ+2iδr
.

(1.50)
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When the qubits go from an odd-parity state to an even-parity state, e.g., ∣10⟩→ ∣00⟩, solving
α̇gg(t) in Eq. (1.48) with the initial coherent state at αgg yields the path αgg(t) specified by

⎧⎪⎪⎨⎪⎪⎩

αgg(t) = (αeg + 2iε
κ+2i(δr−2χ)

) e−i(δr−2χ)t−κ
2
t − 2iε

κ+2i(δr−2χ)

αeg(t) = αeg.
(1.51)

These paths are shown in Fig. 1.2. Strictly speaking, the two sets of solutions apply when
there are no dynamics apart from the dispersive measurements.

The measurement strength is defined as [44, 39]

Γ(t) = 1

2
κ∣αgg(t) − αeg(t)∣2, (1.52)

which scales the separation of the two parity signal means under constant noise variance (see
Eq. (1.44)). In the odd-to-even parity transition, the path in phase-space leading up to the
steady states forms a tighter spiral as the ratio ∣χ/κ∣ gets larger. A tighter spiral translates
to a more oscillatory Γ(t), thus leading to a more oscillatory signal mean [20].

Shown in Fig. 1.3, the ring-up transient without clear oscillations is manifested in the mea-
surement strength corresponding to the even-to-odd parity transition in Eq. (1.50), whereas
the ring-down transient with oscillations is manifested in the measurement strength corre-
sponding to the odd-to-even parity transition in Eq. (1.51). They show good agreement with
experimental observations, such as those in Fig. 1.1.

Impact of Auto-correlations

Unlike the other imperfections, the challenge posed by auto-correlated signal noise can be
characterized theoretically. If the Gaussian noise in Ik,t is correlated, then the distribution
of noise samples can be parameterized in terms of a covariance matrix Σ whose off-diagonal
elements determine the degree of correlation. For simplicity, we restrict our analysis to
dependencies that are Markovian, such that Ik,t depends only on the preceding measurement
Ik,t−1, though our conclusions are not limited to this regime. Using a correlation coefficient
of 0 < ρ < 1, the joint Gaussian log-density describing Ik,t and Ik,t−1 is

log p(Ik,tIk,t−1∣S̄k,t) = −
1

2τk(1 − ρ2)
[Ĩk,t Ĩk,t−1] [

1 −ρ
−ρ 1

] [ Ĩk,t
Ĩk,t−1

] +A, (1.53)

where Ĩk,j ≡ Ik,j − S̄k,j denotes the centered signal sample at step j and A is the log of the
normalization constant. We shall assume hereafter that the signal has been rescaled such
that S̄k,j = ±1.

The effect of auto-correlations on error correction is best characterized in terms of how it
impacts the usefulness of the syndrome measurements. To be more precise, we know that the
purpose of each measurement is to provide some information about whether the underlying
syndrome value of the state is 1 or −1. When framed in these terms, we can formalize and
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Figure 1.2: The pointer state paths leading up to the steady state in the phase space, with
κ/2π = 800kHz, χ/2π = −2MHz, δr = 0 and ε set to 1. When the qubit pair goes from an
even parity to an odd parity, e.g., ∣00⟩ → ∣10⟩, the blue line is the path of αeg(t) while the
blue cross shows the steady state of αgg, obtained from Eq. (1.50). When the qubit pair goes
from an odd parity to an even parity, e.g., ∣10⟩→ ∣00⟩, the orange spiral curve is the path of
αgg while the orange cross shows the steady state of αeg, obtained from Eq. (1.51).

quantify a notion of measurement “usefulness” using Bayesian theory, specifically a ratio
called the Bayes factor which we denote as ϕ [45]. This factor can be written in log form as

logϕk,t = log p(Ik,t∣Ik,t−1, S̄k,t = 1) − log p(Ik,t∣Ik,t−1, S̄k,t = −1), (1.54)

and quantifies how much evidence Ik,t gives about the underlying syndrome value if we have
already seen the previous measurement Ik,t−1. The larger the magnitude of logϕk,t the more
useful Ik,t is for our task, with its sign simply indicating whether the evidence supports a
value of 1 or −1.

Let Q = Σ−1. By making the substitutions σ−1 = Q22 and µ = S̄k,t −Q12/Q22(Ik,t−1 − S̄k,t)
in the unconditional log-densities −(Ik,t − µ)2/(2σ) +A, each of the conditional log-densities
in Eq. (1.54) can be written as

log p(Ik,t∣Ik,t−1, S̄k,t) = −
[Ik,t − S̄k,t − ρ(Ik,t−1 − S̄k,t)]2

2τk(1 − ρ2)
+A, (1.55)

where A is again the normalization constant [46]. Expanding the numerator and keeping
only the terms that depend on S̄k,t gives

log p(Ik,t∣Ik,t−1, S̄k,t)→
S2
k(ρ − 1) + 2S̄k,t(Ik,t − ρIk,t−1)

2τk(1 + ρ)
, (1.56)
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Figure 1.3: The measurement rate Γ(t) on a pair of qubits with a bit-flip transition at t = 0,
with κ/2π = 800kHz, χ/2π = −2MHz, δr = 0 and ε set to 1. The upper figure corresponds to
the qubit pair transitioning from an even parity to an odd parity, obtained from Eq. (1.50).
The lower figure corresponds to the qubit pair transitioning from an odd parity to an even
parity, obtained from Eq. (1.51).
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where we ignore the other terms since they will cancel when computing logϕk,t. After
substituting this representation back into Eq. (1.54) we get

logϕk,t =
2(Ik,t − ρIk,t−1)

τk(1 + ρ)
, (1.57)

where the value of logϕk,t depends not only on Ik,t and Ik,t−1 but also on the variance and
auto-correlation of the measurements.

To see the impact of the auto-covariance more clearly, we compute the expectation value
E[logϕk,t] with respect to a Gaussian distribution centered on the true syndrome value
S′k,t = ±1. Since Eq. (1.57) is linear, we can simply substitute in S′k,t for Ik,t and Ik,t−1 to get
E[logϕk,t]. After taking its magnitude, we have

∣E[logϕk,t]∣ =
2(1 − ρ)
τk(1 + ρ)

, (1.58)

which decreases as the value of ρ increases. Eq. (1.58) shows that positive auto-correlation
(ρ > 0) in the signal makes each of our measurements less useful than if the noise had been
uncorrelated (ρ = 0), which means that it will take longer for us to determine the value of
S̄k,t at a given measurement strength.

This result can be understood by imagining that S̄k,t and Ik,t−1 are competing to determine
the value of Ik,t, with smaller ρ favoring S̄k,t. The more that S̄k,t affects the measurement,
the more that the measurement in turn tells us about S̄k,t and thus the more useful it is to
us. When ρ is large, the value of Ik,t tends to lie very close to the value of Ik,t−1 regardless of
whether S̄k,t is 1 or −1, and therefore the measurement does not reveal much new information
about the syndrome.

1.4 Bayesian Inference and Machine Learning
Before going into the details of our Bayesian inference and machine learning models, let us
review the conventional method for error detection in CQEC, namely the double threshold
approach.

Double Thresholds

The double threshold protocol from [31] uses two standard signal processing methods, filter-
ing and thresholding, to identify errors. The raw measurement signal is first passed through
an exponential filter to smooth out oscillations, and then this averaged value is compared
to a pair of adjustable threshold values to determine the state of the system. A slightly
different double threshold protocol was proposed in [30], which used boxcar averaging and
fixed one of the thresholds at zero.
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To estimate the definite error syndromes from the noisy measurements, we first filter the
raw signals Ik(t) to obtain corresponding filtered signals Ik(t) according to

İk(t) = −
Ik(t)
τ
+ Ik(t)

τ
, (1.59)

where τ is the averaging time parameter, and whose discretized version is similar. In the
regime where t − t0 ≫ τ where t0 is at the last filtered signal reset, Ik(t) reads as

Ik(t) = ∫
t

t0
dt′
e−

t−t′
τ

τ
Ik (t′) . (1.60)

After filtering the measurement signals, we then apply a double thresholding protocol to
the filtered signals I1(t) and I2(t) that is parameterized by the two thresholds Θ1 and Θ2,
where Θ1 is the threshold for the −1 value of the error syndromes and Θ2 is the threshold for
the +1 value of the error syndromes. If at least one of I1(t) or I2(t) is found to lie within the
interval (Θ1,Θ2), we declare to be uncertain of the error syndromes and do not perform any
error correction operation. Otherwise, we apply the following procedure, in accordance with
the standard approach for error diagnosis and correction. If both I1(t) > Θ2 and I2(t) > Θ2,
then we diagnose the error syndromes as (S1 = +1, S2 = +1) and accordingly perform no error
correction operation. If I1(t) < Θ1 and I2(t) > Θ2, then we diagnose the error syndromes as
(S1 = −1, S2 = +1) and accordingly perform the error correction operation Cop = X1. If both
I1(t) < Θ1 and I2(t) < Θ1, then we diagnose the error syndromes as (S1 = −1, S2 = −1) and
accordingly perform the error correction operation Cop = X2. If I1(t) > Θ2 and I2(t) < Θ1,
then we diagnose the error syndromes as (S1 = +1, S2 = −1) and accordingly perform the
error correction operation Cop =X3.

In quantum annealing, we note that the error correction operations are applied imme-
diately after the error syndromes are diagnosed to minimize the aforementioned spurious
Hamiltonian evolution. The action of an error correction operation Cop, assumed to be
instantaneous, changes the three-qubit state ρ(t) according to

ρ(t)→ Copρ(t)Cop, (1.61)

which applies to other models in our work as well. We note that the parameters {τ,Θ1,Θ2}
constitutes the minimal set of tunable parameters. When the measurement signals Ik have
white noise, their optimal values in minimizing the logical error rate can be obtained by
Eq. (43) in [31] together with numerical optimizations.

We further reset the filtered signals Ik(t) to the corresponding initial syndrome value, at
the same instant to avoid the transient delay in the filtered signals to reflect the application
of the error correction operation on the state. Inherent within any error correction protocol,
however, is the implicit assumption that the correction properly removes the error, which
may not necessarily be the case if the error was misdiagnosed.

We note that the Ik(t) used by the double threshold model in CQEC consists of weighted
contributions from every raw signal taken prior to t and after the last correction. The discrete
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Bayesian model and the RNN-based model that we discuss in this work can both be operated
on raw signals, using all historical signals taken prior to a given t. This is in contrast to the
projective measurement on ancilla superconducting qubits in discrete QEC that applies a
matched filter [47] on raw signals taken only within each detection round.

Discrete Bayesian Classifier

One weakness of the double-threshold scheme is that its predictions are essentially all-or-
nothing, since there is no in-built quantity that expresses the model’s confidence. This
contrasts with probabilistic classifiers, which generate probability values for each prediction
class instead of only a single guess. By framing the classification problem in terms of proba-
bilities, we can incorporate our knowledge of the error and noise distributions into our model
in a mathematically rigorous manner.

Since each qubit in our system will experience either one or zero net flips after every
time step, there are eight different ways that a state can be altered by bit-flips and therefore
eight different classes that our classifier must track. We denote each of the possible bit-flip
configuration using the state that ∣000⟩ is taken to by the error, such that ∣001⟩ denotes a
flip on the third qubit, ∣110⟩ denotes a flip on the first and second qubits, and so on. The
goal of a probabilistic error corrector is to accurately determine the probability of all eight
“error states” at time step t given the measurement histories Mk

t ≡ {Ik,t′}t
′=t
t′=0. We write this

posterior probability as
p̂(st) ≡ p(st∣M1

tM2
t ), (1.62)

where st ∈ {0, ...,7} denotes the digital representation of the error state at step t.
In the remainder of this subsection, we consider a probabilistic classifier constructed using

Bayes’ theorem, which makes predictions based on the posterior probabilities of the different
basis states at each time step [48]. Starting with the knowledge of the initial state, this
model uses a Markov chain and a set of Gaussian likelihoods to update our beliefs about the
system conditioned on the specific measurement values that we observe.

The Bayesian algorithm described in this section is derived by assuming that the mean
of a given measurement Ik,t is always determined by the state of the system at the end of the
time step. This is equivalent to assuming that errors always happen at the beginning of each
time step (see Sec. 1.3). Since our method for generating quantum trajectories follows this
assumption, the Bayesian model is theoretically optimal for the numerical tests carried out
in Sec. 1.5 without mean drift or resonator transients. As the length of the step ∆t between
measurements goes to zero, this algorithm converges to the Wonham filter [49], which is
known to be optimal for continuous quantum filtering of error syndromes [50]. This filter is
similar to the discretized, linear Wonham filter derived in [30], except that our filter does
not rely on first-order approximations of the Markov evolution or Gaussian functions.

Using Bayes’ theorem, the posterior probability of Eq. (1.62) can be rearranged into the
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recursive form

p̂(st)∝ p(I1,tI2,t∣stM1
t−1M2

t−1)
7

∑
i=0

p(st∣st−1 = i)p̂(st−1 = i), (1.63)

where we assume that the occurrence of an error is independent of any previous measurements
and that Ik,t depends on the error state at time t along with past signal values due to auto-
correlations.

This recursive expression describes a Bayesian filter which takes prior information about
the error state of the system and updates it based on the transition probabilities p(st∣st−1)
and measurement likelihoods p(I1,tI2,t∣stM1

t−1M2
t−1). The filter can be easily implemented

once we have functional forms for these two terms, which we describe next.
The Markovian assumption inherent in p(st∣st−1) is reasonable, given that the net effect

of an additional bit-flip error depends only on the error state the system before the error.
We assume hereafter that the error rate γq is identical for all three qubits, i.e., γq = γ. This
allows us to model the errors as a Markov chain [51] with an 8 × 8 rate matrix Q given by

Qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−3γ if j = i
γ if j ⊕ i ∈ {1,2,4}
0 otherwise,

(1.64)

where we define our basis such that index i ∈ {0, . . . ,7} corresponds to the error state whose
classical binary representation is equal to i, e.g. 5→ ∣101⟩.

Since Q only gives the rate of transition per unit time, we need to compute the transition
matrix J in order to get probabilities for a finite step. This matrix can be derived from Q as

J = eQ∆t, (1.65)

where ∆t is the length of the time step. Element Jij gives the probability of transitioning
from error state i to error state j across the time step, so we can relate p(st∣st−1) to J as
p(st = j∣st−1 = i) = Jij. Using J , the sum in Eq. (1.63) can be evaluated to give probabilities
p̃(st)

p̃(st = j) ≡
7

∑
i=0

p̂(st−1 = i)Jij, (1.66)

which take into account the transitions induced by bit-flip errors during the time step.
The measurement likelihood p(I1,tI2,t∣stM1

t−1M2
t−1) describes the probability of generat-

ing signal values I1,t and I2,t given that the system is in error state st and that we had
previously measured the values in M1

t−1 and M2
t−1. Since the noise from each syndrome is

independent, we can factor the likelihood as

p(I1,tI2,t∣stM1
t−1M2

t−1) = p(I1,t∣stM1
t−1)p(I2,t∣stM2

t−1) (1.67)

with I1,t and I2,t contributing independently to the probability.
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If the noise source is assumed to be Gaussian, then the probability density for each Ik,t
has the form

p(Ik,t∣stMk
t−1) =

1

2πσ2
exp [

−(Ik,t − µk,t)2
2σ2

] , (1.68)

where µk,t and σ2 are the mean and variance of the signal conditioned on the past measure-
ments Mk

t−1. In practice the auto-correlations rapidly decay, so we only need to condition
on a small number of recent measurements. Hence, we let mk,t−1 be the vector of these
measurements, and let c be the vector of their corresponding covariance values. Then

µk,t = S̄k,t + cTΣ−1(mk,t−1 − S̄k,t1⃗), (1.69)

σ2 = τ

∆t
− cTΣ−1c, (1.70)

where 1⃗ is a vector of ones with the same dimension as mk,t−1, Σ is the covariance matrix
of the variables in mk,t−1, and S̄k,t is the mean corresponding to error state st [46]. Since
the system always begins in the coding subspace, each error state maps to a definite error
subspace and therefore has definite syndrome values regardless of how the logical state was
initialized.

After the measurement pair Ik,t is received, the Gaussian likelihood functions are used to
convert the probabilities from Eq. (1.66) into the next posteriors p̂(st) as

p̂(st)∝ p̃(st) ⋅ p(I1,t∣stM1
t−1)p(I2,t∣stM2

t−1), (1.71)

which will become probabilities after normalization.
The probabilities from Eq. (1.71) can be understood as describing how likely it is that

the system is in each of the eight error states based on the judgment of the model. Whenever
∣000⟩ does not have the highest probability, we can infer that at least one error has occurred
and take the appropriate action to correct it. This procedure, which effectively takes the
argmax of the posteriors, can be altered if certain forms of misclassification are more costly
than others, or if the act of making a correction itself carries some cost. The procedure can
also be modified so that it is more robust to imperfections in the signal, as we do in Sec. 1.4
by introducing the τignore and τstreak hyperparameters.

Whenever any correction is made, we must update the model with this information by
permuting its probabilities to reflect the applied bit-flip. In our example, a correction on
the second qubit would lead us to swap the probabilities between pairs of error states which
differ in only the second qubit, e.g., ∣010⟩ ⇌ ∣000⟩. Without this update, the model will
continue to recommend the same correction repeatedly, as it does not realize that the state
of the system has been changed.

A connection can be made between the Bayesian algorithm described here and the max-
imum likelihood decoder (MLD) commonly used in discrete error correction [52]. Given
a specific noise channel and qubit encoding, the MLD is the protocol with the greatest
probability of successfully correcting an error, assuming that we have access to projective
measurements of the syndromes. The Bayesian model can be viewed as an extension of the
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MLD to the continuous measurement regime, where the syndrome measurements provide us
with incomplete knowledge of the error subspace. As the variance of the Gaussian measure-
ment noise goes to zero, the Bayesian model reduces to the standard MLD protocol for the
three-qubit bit-flip code.

Compared to thresholding schemes, the Bayesian classifier described here is far more
sensitive to the assumptions we make about the noise and error distributions. Such sensitivity
can be an advantage, since it allows for near-optimal performance when our knowledge of
these distributions is accurate.

Of course, when our assumptions about the distributions are wrong, the accuracy of the
model can suffer significantly. Out of the three imperfections described in Sec. 1.3, only the
auto-correlation of neighboring samples is directly accounted for in the model. The resonator
transients occur over relatively short time intervals, so they are likely to have only a modest
impact on the model’s performance. The syndrome drift also has a negative impact, as the
mean values of the Gaussian distributions are key parameters in the model. If there is a
discrepancy between the actual signal means and our pre-programmed values, then every
measurement likelihood calculation will be biased.

We explore the size and significance of these effects for all three of our models in Sec. 1.5.

Recurrent Neural Network

Neural networks are a subset of the broader family of machine learning methods based on
acquiring a learned representation of the data, which consists of parameterized layers of linear
transformations and nonlinear activation functions. Recurrent neural networks (RNNs) are
a class of neural networks in which the layers connect temporally, combining the previous
time step and a hidden representation into the representation for the current time step. They
are thus well suited for the representation of the time-dependence of continuously measured
error syndromes over discrete time steps. Using a training set of labeled signals, the RNN
can learn the properties of the weak measurement signal and the structure of the underlying
bit-flip channel, which allows it to accurately detect errors as they occur.

The dynamics of a simple recurrent neural network can be expressed by the following
equations:

ht = σh (Whxt +Uhht−1 + bh) ,
yt = σy (Wyht + by) .

(1.72)

For each time step t, the network accepts the input vector xt and, along with the hidden state
vector from the previous time step ht−1, performs a linear transformation parameterized by
the weight matrices Wh and Uh and the bias vector bh before applying a nonlinear activation
function given by σh. The result is the hidden state vector for the current time step ht, which
is acted upon by an analogous series of operations defined by Wy, by and σy to produce the
output vector yt. We note that the hidden state ht effectively encodes a description of the
history of inputs {xt′}t

′=t
t′=0, which therefore allows the network to extract temporal, non-

Markovian features from the data.
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In our context, we consider the input at each time step to be the vector of measurement
signals plus the initial basis state,

xt =
⎡⎢⎢⎢⎢⎢⎣

I1,t
I2,t
s0

⎤⎥⎥⎥⎥⎥⎦
. (1.73)

Moreover, instead of the standard recurrent neural network architecture, we use a long short-
term memory network (LSTM) [53], which is a particular type of recurrent neural network
that involves cell states and various gates to evade the vanishing gradient problem of standard
RNN architecture [54]. Nevertheless, the same principle underlying the standard function
of RNN applies. The output yt of the LSTM layer is subsequently passed through a dense
layer and a softmax activation to produce the posterior probabilities of the eight basis states
p(st∣Mk

t ), and we select the basis state with the highest posterior as the prediction ŝt.
Training samples for the RNN require accurate labeling of the states corresponding to

the measurement signals at every time step. However, in reality, decoherence effects such
as amplitude damping and thermal excitation prevent us from knowing the correct state of
the system at some arbitrary time. As a result, to train the RNN, we have to resort to
measurement signals with a well-defined underlying quantum state. This can be achieved
by simulating the measurement signals on states in the absence of unwanted decoherence
effects, which will be described in detail in Sec 1.5. In the simulations, we provide the
measurement strength, the single-qubit bit-flip error rate and the initial quantum state as
input parameters, and the simulation produces a large number of quantum trajectories to
be the training samples of the RNN. We then train the RNN to diagnose bit-flip errors on
the three-qubit system, and the trained RNN can be subsequently used to actively correct
errors that occurred. That said, the same information used to generate the training samples
is also provided as prior knowledge to the double threshold and the Bayesian model. The
two models both require an explicit estimation of the measurement strength as well as the
assumption of a certain error rate.

We maximize the likelihood of the RNN parameters on the training set by minimizing
the cross-entropy batch total loss function, which is defined as

L = − 1

NT

N

∑
n=1

T

∑
t=1

log pn(st), (1.74)

where pn(st) stands for the posterior probability of the true basis state st at time step t in
the n-th sample, while N denotes the mini-batch size and T denotes the total number of
steps in each training sample.

To update the parameters to minimize the loss, we perform an iterative training procedure
where for each step and parameter w, one applies a gradient descent update of the form
w ← w − η(∂L/∂w), where the gradients ∂L/∂w are computed via backpropagation through
the computation graph of the network.

In our experiments, the gradient descent update is performed using the ADAM opti-
mizer [55]. We adopt a two-layer stacked LSTM with a hidden state size of 32. This small
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hidden size limits the largest matrix-vector multiplication in computations, hence the mem-
ory required, and also limits the number of parameters, facilitating the implementation of
the network in real-time experiments. We further provide a comparison test on the perfor-
mance of different hidden state sizes in Sec. 1.5 and show that both smaller LSTM and gated
recurrent unit (GRU) architecture [56] offer comparable performance for our purpose. The
number of stacked layers of the LSTM/GRU and the hyperparameters, such as the batch
size in training, are tuned with the assistance of Ray Tune [57].

When performing active error correction, we once again wish to avoid the delay in the
posterior probabilities output by the network to reflect the application of an error correction
operation Cop on the system. In the case of the Bayesian classifier, we permute the elements
of the vector of posterior probabilities, which encodes the state of the model, in accordance
with the error correction operation. For the RNN, however, we cannot apply a particular
transformation to the hidden state such that the vector of posterior probabilities outputted
by the network is permuted in analogous manner, since the function mapping the hidden
state to the output vector of posterior probabilities is highly nontrivial.

Any such delay in the network remaining unaware of the quantum state having been
corrected is harmful, because another errorXq occurring during this delay, compounding with
the correction Cop on the first error, will induce a logical error at the next error correction
operation. To see this clearly, considering that the physical qubits are initially in ∣000⟩, and
the first error X1 results in the state ∣100⟩. After detecting the error, the model makes a
correction that instantly returns the state back to ∣000⟩. However, the RNN still has the
knowledge of the qubits being in ∣100⟩ until some time later at trealize before accepting a
sufficient number of xt’s that allows it to predict ∣000⟩. If a second error X2 occurs before
trealize, the syndromes become (S1 = −1, S2 = −1) because the state becomes ∣010⟩, whereas
the RNN, only knowing the state in ∣100⟩, will eventually predict ∣101⟩ that has the same
syndromes, which is then equivalent to diagnosing an X3 error. After applying a second
error correction Cop =X3, the physical qubits are now in ∣011⟩ (since the very first error X1

has been corrected) and will be corrected to ∣111⟩ subsequently, constituting a logical error.
In other words, since we are not capable of injecting the knowledge of a correction operation
into the RNN, a correction operation is equivalent to an error seen by the RNN and active
correction effectively increases the bit-flip error rate γ in the eyes of the network. Although
the correction is correlated with the detected error, the network is generally trained on
quantum trajectories with uncorrelated random bit-flip error instances. As will be explained
in 1.5 that a greater γ will induce more logical errors, we conclude that the naive approach
of active correction with the RNN suffers from more logical errors.

Therefore, we propose the following re-calibration protocol to effectively hide the action
of any error correction operation from the network, so that there is no longer any delay in
the posterior probabilities to begin with.

We specifically keep track of all the error correction operations that have been applied
up to the present t,

Nq,t = Number of Xq corrections applied. (1.75)
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When the measurement signals I1,t and I2,t have symmetric noise around their respective
mean values and the possible means of Ik,t are always equal and opposite, each Cop correction
changes the mean of I1,t by a factor of −1 if Cop = X1, changes the mean of I2,t by a factor
of −1 if Cop = X3, and changes the mean of both Ik,t by a factor of −1 if Cop = X2. To hide
all the corrections done in the past, the measurement signals that are provided as input to
the network for all subsequent time steps are then flipped according to Nq,t,

I ′1,t = (−1)N1,t+N2,tI1,t,

I ′2,t = (−1)N2,t+N3,tI2,t,
(1.76)

which we called the re-calibrated signals. From the perspective of the RNN when taking in
I ′k,t, it appears as if no error correction operation has been applied to the physical qubits.

Given that at some time step we predict a different state ŝt, we now perform our error
correction operation relative to the previous predicted state ŝt−1.

When the possible means of Ik,t are not equal and opposite, as occurs in the resonator
transients upon applying Cop, the re-calibration method breaks down, because flipping the
means of either or both Ik,t does not produce the means as if there was no correction applied.
A solution to this is to impose an ignore time period τignore right after the correction is applied
at some t. During (t, t + τignore], no input xt is fed into the RNN. As a result, the hidden
state of the network is frozen until the ignore time period ends. The re-calibrated signals
are accepted by the network only after t + τignore, which reduces the risk of getting incorrect
predictions during the transients, but effectively increases the detection time of any error
that occurs during the ignore period.

Imposing τignore should be accompanied by a measure to ensure that the RNN diagnoses
any error with sufficiently high confidence so that fewer false alarms of error will be followed
by an ignore period τignore upon correction. A feasible measure in practice is to determine an
error correction operation only if the RNN predicts the same state {ŝt′}t

′=t+τstreak
t′=t for a streak

of time steps τstreak that is different from the old state ŝt−1, which is a discrete quantity
that is easy to optimize. The {τignore, τstreak} then constitutes a minimal set of tunable
hyperparameters for the task of active correction in the presence of resonator transients,
which applies to the Bayesian classifier explained in Sec. 1.4 as well.

1.5 Simulated Experiments
To evaluate the effectiveness of the three models described in Sec. 1.4, we test their error
correction capabilities on a large number of synthetic measurement sequences. The motiva-
tion for using artificial data instead of real data is twofold. First, by using artificial data we
can precisely control the underlying measurement distribution, which allows us to separate
out the effects of the different imperfections identified in Sec. 1.3. Second, it is important
that we know the true state of the system at every time step, as this is necessary both to
train the RNN and to calculate intermediate fidelity values. Such knowledge would not be
possible on a near-term quantum computer due to strong undesirable decoherence.
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To ensure that our simulations are grounded in reality, in addition to making idealized
simulations for the finite measurement rates without any experimental imperfections, we
model them on data taken from a superconducting qubit device. Fig. 1.1 shows measurements
taken from this reference data, which consists of approximately 1.6 × 106 sequences lasting
6 µs each8. The sequences are comprised of 192 measurement pairs (one for each resonator),
sampled every 32 ns. The data contains both “flat” sequences, in which no bit-flip occurs,
as well as sequences in which a bit-flip is deliberately applied to one of the three qubits to
induce a state transition. Since these bit-flips are all applied at precisely the same time, we
are able to track how the signal mean changes during the transient period.

Across all of our tests, we employ four different simulation schemes, each of which is
described below. The schemes are designated with letters A–D in order of how much non-
ideal behavior they include, with Scheme A having no imperfections and Scheme D having
all three imperfections. In all schemes, we ignore the thermal excitation for each qubit, since
a typical excitation rate is on the order of 1ms−1.

Scheme A: Idealized Behavior

In our first scheme, the simulated signal simply conforms to the idealized behavior given by
Eq. (1.44). At the beginning of each measurement sequence, the system is set to a specified
initial state in the coding subspace, and then the state of the next time step is determined
by sampling a number nq of bit-flips Xq for each qubit from the Poisson distribution, such
that nq = exp(−γ∆t)(γ∆t)nq/nq! where ∆t is the time step size. These errors are applied
to the corresponding qubits to get the next state. This cycle of sampling and propagating
errors is repeated until we have generated a sufficiently long sequence of states.

To create the corresponding Ik,t, we sample a uni-variate Gaussian distribution at each
time step with variance (Γk

m∆t)−1 and a mean of ±1 determined by the syndrome eigenvalue
at that step. Our reference data has

Γk
m ≈ 4.7 × 106 s−1, ∆t = 32 × 10−9 s, ηk ≈ 0.5, (1.77)

where Γk
m needed to be estimated from the measurement signals while ∆t was known to us in

advance. This sequence of Gaussian samples plus the underlying states provides a complete
description of a system in the context of our error correction task.

Scheme B: Auto-correlations

As a first step away from ideal behavior, we consider noise that is correlated across time.
The data generation process for this scheme is effectively the same as that of Scheme A,
except that the noise must be sampled sequentially in order to correctly capture the auto-
correlations. In our reference data, we find that significant auto-correlations extend back

8The 1.6 × 106 sequences break down to about 50,000 sequences for each of the eight initial states and
for each of the X1, X2, X3 injected bit-flip or no injected bit-flip.
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roughly four steps, with covariance given by

cTk ≈ 5.94 ⋅ [0.61 0.25 0.1 0.05] (1.78)

whose ith element is at lag-i. These values were found by taking every contiguous sub-
sequence of length five in our reference data and using them all to compute a covariance
matrix. We can simulate Gaussian noise with these auto-correlations one step at a time
using Eqs. (1.69, 1.70).

Scheme C: Auto-correlations with Resonator Transients

For our third scheme, we keep the auto-correlations from Scheme B but alter the behavior
of the syndrome values so that they include the resonator transients seen in Fig. 1.1 and
explained in Sec. 1.3. To incorporate these patterns into our simulation, we first extract the
mean values of the transient patterns from our reference data, consisting of 94 steps in total,
for each of the twenty-four different single-flip transitions. Our sequence generation process
is then identical to Scheme B, except that after an error occurs the next 94 measurements are
sampled from Gaussians centered on the transient means instead of the syndrome eigenvalues.
The pattern that we use is matched to the state of the system before and after the error.
After the transient period has elapsed, the means are set back to ±1 and further samples are
generated as usual until another error occurs.

Scheme D: All Imperfections

Our final simulation scheme takes the auto-correlations and resonator transients from Scheme
C and adds an underlying drift term to the syndrome means. Since our reference data
contains over a million trajectories collected over the span of multiple hours, it is possible to
observe significant differences in the syndrome means between trajectories that are separated
by large amounts of time, possibly due to temperature fluctuations.

For our experiments, we elected to apply a linear drift ∆i governed by

∆i =
0.4

N
⋅ i, (1.79)

where i is an index that arbitrarily orders the different measurement sequences that we
generate and N is the total number of these sequences. This drift term is added to every
measurement in the ith sequence, resulting in a uniform shift of the overall signal means.
The net drift across all runs represents a 40% change, which is consistent with the magnitude
of the drift observed in our reference data.

Quantum Memory State Tracking

In quantum memory, it suffices to track the basis states in response to the bit-flip errors
that have occurred and only apply error correction operations when needed. We generated
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Figure 1.4: The final fidelity with respect to the initial state ∣000⟩ in Schemes A, B, C, D
with the double threshold (DT), Bayesian and RNN classifier, as a function of single-qubit
bit-flip rate γ at an operation time T = 20µs. Each data point is averaged over 30,000
quantum trajectories. For better visualization, we split the figure into two plots, with the
left one comparing the RNN classifier to the double threshold, and the right one comparing
the RNN classifier to the Bayesian classifier. On the left, we see that the RNN classifier
outperforms the double threshold in all schemes. Whereas on the right, it shows that the
RNN approximates the Bayesian classifier, which is the optimal one among the three, in all
schemes. The error bars show the standard error of the mean.

30,000 trajectories of length T = 20µs from all four simulation schemes with a pre-defined
single-qubit error rate as our testing samples, among which are equal portions of trajectories
initialized in one of the eight basis states. While the RNN model employed here is trained
on 100,000 quantum trajectories from the corresponding simulation scheme, the error rate,
noise variance, and auto-correlations input to the Bayesian model are also estimated from
those quantum trajectories. The tunable parameters in the double threshold model are
numerically optimized in schemes with imperfections; the filtering time τ typically lies in the
range 0.3 − 1.6µs, with larger τ for smaller γ.

In Fig. 1.4, we compare the final fidelity F = ∣⟨ψT ∣ψ0⟩∣2 against the initial state of the
three models in tracking these quantum trajectories subject to bit-flips. The trend is that
the final fidelity decreases as a function of the single-qubit error rate γ. This is because
the higher the error rate is, the more chances there will be two different bit-flips before the
correction to the first bit-flip is made, resulting in a logical error upon the correction, and
therefore a lower final fidelity. For instance, a state starting at ∣000⟩ is flipped to ∣001⟩ at
t1 and is later also flipped to ∣011⟩ at t2 > t1, such that t2 is smaller than t1 + tdetect where
tdetect is the detection time of the first error. Subsequently, the model perceiving syndromes
with (S1 = −1, S2 = +1) will eventually make a Cop = X1 correction and change the state to
∣111⟩, leading to a logical error. From the above argument, it is also evident that a shorter
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Figure 1.5: The learning curves of LSTMs with hidden sizes of 16 and 32, and of GRUs with
hidden sizes of 16 and 32, on the state tracking task in quantum memory as described in
Sec. 1.5. The accuracy is defined to be the fidelity with respect to the initial state averaged
across all time steps, and the loss is computed by Eq. (1.74).

detection time is beneficial.
From Fig. 1.4, we see that the RNN and the Bayesian classifier outperform the double

threshold in all simulation schemes, whereas the RNN approximates the Bayesian classifier
in all schemes. As discussed in Sec. 1.4, the Bayesian classifier is the optimal model of the
three in Schemes A and B where there are only auto-correlations in the signals, which is
validated in this task. The fact that their performances in Schemes C and D are very similar
to that in Scheme B indicates that the resonator transient pattern and the drifting of the
means do not have a significant effect on all three models.

It is reasonable that the drift has a small negative effect to the two probabilistic models,
since the drift is usually on the order of the separation of mean values of the two parities,
which is in turn one order of magnitude smaller than the standard deviation of the noise.
The large noise variance obscures the drifting means, making the drifted signals appear like
more noisy signals with fixed means.

RNN Hidden State Size v.s. Performance

It is desirable to limit the size of the RNN to achieve sufficiently low computational latency
in real-time experiments. We present the performance in state tracking in quantum memory
as described in Sec. 1.5 for the LSTM and GRU architectures with different hidden sizes in
Tab. 1.1. In examining the performance, we see that although we used LSTM with a hidden
size 32 in our simulated experiments, it is possible to shrink the size of the network to 16
without harming the performance. We note that a smaller hidden size means smaller matrix-
vector multiplications in computing the model, which then requires fewer memory resources
in practice. The possible simplification is also suggested by the fact that the learning curves
with a hidden size of 16 is very similar to that with a hidden size of 32, as shown in Fig. 1.5.
Additionally, it is viable to use the GRU architecture to achieve the same performance.
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Table 1.1: The testing performance of LSTM (top) and GRU (bottom) with different hidden
sizes and the corresponding number of trainable parameters. The testing performance is
measured by the final excited states population Pexc. The hidden size determines the largest
matrix-vector multiplication operation performed when computing the model.

Hidden size 8 16 32 64
Parameter count 1064 3256 13448 51464
Final Pexc (±0.002) 0.851 0.880 0.884 0.882

Hidden size 8 16 32 64
Parameter count 816 2776 10152 38728
Final Pexc (±0.002) 0.816 0.880 0.879 0.881
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Figure 1.6: The population of the excited states {∣111⟩ , ∣110⟩ , ∣101⟩ , ∣011⟩} as a function of
time, obtained from simulated experiments with the four different schemes at a single-qubit
decay rate of γ = 0.04µs−1. Each data point is averaged over 3,000 independent quantum
trajectories. The three-qubit system is initialized to ∣1⟩L = ∣111⟩. As a comparison, the bare
qubit (purple curve) is initialized to the ∣1⟩ state and is subject to amplitude damping with
a time constant of T1 = 25µs, i.e., a decay rate of 0.04µs−1. For reference, the uncorrected
three-qubit system decay curve is shown in red (see Sec. 1.5). For all schemes, the RNN-
based model outperforms the double threshold model.

These results suggest that the RNN-based model may have a simpler structure and an even
faster computation speed in real-time implementation on programmables like FPGAs.

We note that the size of the RNN can be further reduced, if assuming a fixed initial state
so that the input to the RNN shown in Eq. (1.73) can be replaced by x = [I1,t, I2,t]T .

Extending T1 Time of the Logical Qubit

Although the models are motivated by correcting bit-flip errors, they can also be exploited
in extending the T1 time of the logical qubit in ∣1⟩L = ∣111⟩. For this task, actively correcting
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Figure 1.7: Left: the population of the excited states {∣111⟩ , ∣110⟩ , ∣101⟩ , ∣011⟩} as a function
of time, obtained from simulated experiments under Schemes A and B at a single-qubit
bit-flip rate of 0.04µs−1. Each data point is averaged over 3,000 independent quantum
trajectories. The three-qubit system is initialized to ∣1⟩L = ∣111⟩. As a comparison, the bare
qubit (purple curve) is initialized to ∣1⟩ and is subject to a bit-flip rate of γ = 0.04µs−1. As a
reference, the uncorrected three-qubit system decay curve is shown in red (see Sec. 1.5). In
Schemes A and B, the Bayesian model is the best among the three, and the Bayesian and
RNN-based models both outrun the double threshold model. Right: the initial logical error
rate ΓL at 9.6µs as a function of the single-qubit error rate γ. The fitted quadratic curves
show a strong suppression of ΓL for all three models in both schemes.

the state is required as opposed to merely tracking the state. While for practical purposes
the RNN model is trained on 30,000 quantum trajectories under bit-flips with a length
of T = 120µs, the Bayesian model, whose parameters are estimated from the same set of
trajectories, uses a different transition matrix generated by Q′ shown in Eq. (1.80) which
takes into account the asymmetric probabilities of transitions between the ground and excited
state. The parameters for the double threshold model is numerically optimized on the same
set of quantum trajectories.

For the three-qubit system initialized to the fully excited state ∣111⟩, we inspect the
population within a Hamming distance 1 away from the initial state, i.e., the population
Pexc of the set of basis states {∣111⟩ , ∣110⟩ , ∣101⟩ , ∣011⟩}, since these states can be recovered
to the initial state by a majority vote. We compare this Pexc against the population of the
excited state ∣1⟩ of a bare qubit as a function of time in all four simulation schemes, and the
results are shown in Fig. 1.6. In all schemes, the encoded three-qubit system Pexc decays
much slower under active correction by any of the three models than the bare-qubit excited
state population. In all schemes, both the Bayesian and the RNN-based models outrun the
double threshold model.
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Protecting against Bit-flip Errors

Similar to the task of extending the T1 time of the state ∣1⟩L, here we employ the three
models to protect the initial state ∣1⟩L from bit-flips. Shown in Fig. 1.7, we compare the
population Pexc of the three-qubit system against the excited population of the bare qubit
in time. For Schemes A and B, both the Bayesian and the RNN-based models have an
advantage over the double threshold. Furthermore, in Fig. 1.7 we extract the initial logical
error rate ΓL as a function of γ by computing the time derivative of Pexc at 9.6µs at each
γ. In either scheme with any of the three models, ΓL scales approximately quadratic in γ,
and we can see a strong suppression of ΓL relative to a bare qubit or the uncorrected three
qubits. We remark that, by introducing feedback based on noisy weak measurements, any
correction protocol can underperform a majority vote on the encoded qubits without error
correction at sufficiently small γ or runtime.

To better understand the performance of the models in this important task, we analyze
the detection time spent in true positive detection as well as the number of false alarms
when the three-qubit system is in ∣1⟩L. The difference between a true positive and a false
alarm is illustrated in Fig. 1.8, which shows the actual and predicted states of the system
when an X3 error occurs and when the model falsely detects an X1 error. When a true error
occurs, the system remains in the corresponding error subspace for a duration determined
by the detection time of the model, after which the error is corrected. By contrast, when the
model falsely detects that an error has occurred due to measurement noise, it improperly
applies a bit-flip to the system and thus pushes it out of the code subspace. After more
measurements are recorded, the model determines that the system is in an error subspace
and fixes its mistake by applying another bit-flip.

As explained in Sec. 1.5, a shorter detection is favorable and will lead to better error
corrections, whereas here we can expect more frequent false alarms arise for models with a
shorter detection time as a trade off, since the model is prone to make a correction. This is
demonstrated in Fig. 1.9, where we can see that the best two models, the Bayesian and the
RNN-based, both have a shorter detection time and more frequent false alarms at the same
time. Nevertheless, for both of these two models, the overall frequency of all false positive
detection remains low and is on the order of 0.1 µs−1.

Population of States Subject to Amplitude Damping or Bit-flips

We recall that the population of the excited states Pexc is the ensemble population of the
states that are at most one bit-flip away from the fully excited state ∣111⟩, i.e., Pexc =
P (∣111⟩) + P (∣110⟩) + P (∣101⟩) + P (∣011⟩) = P7 + P6 + P5 + P3.

Under T1 decay at zero temperature, the transition matrix evolving the states for time
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T is J ′(T ) = exp(Q′T ), where Q′ is defined as,

Q′ = γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 1 −2 0 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 1 −2 0 0
0 0 1 0 1 0 −2 0
0 0 0 1 0 1 1 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.80)

The state probabilities under the Markov chain are given by P (T ) = J ′(T )P (0), which yields

Pexc(T ) = (3eγT − 2) e−3γT . (1.81)

Under only bit-flip errors Xq, the transition matrix evolving the states for time T is
J(T ) = exp(QT ), where Q is defined in Eq. (1.64). The resultant population of excited
states is

Pexc(T ) = e−3γT cosh2(γT ) [3 sinh(γT ) + cosh(γT )] . (1.82)

This can be equivalently derived from the probability of a qubit experiencing an even/odd
number of flips under Poisson-distributed bit-flip errors. The probability that the k-th qubit
will experience an even number of bit-flips is

P (ek is even) =
∞

∑
j=0

P (ek = 2j) = e−γT
∞

∑
j=0

(γT )2j
(2j)!

= e−γT cosh (γT ). (1.83)

and thus the probability that the k-th qubit will experience an odd number of bit-flips is

P (ek is odd) = 1 − P (ek is even) = e−γT sinh (γT ). (1.84)

Using the above two equations, we recover Eq. (1.82).

Quantum Annealing with Time-dependent Hamiltonians

Having demonstrated a clear advantage using the RNN-based protocol for tasks in the quan-
tum memory setting over the double threshold protocol, we now study the performance of
our protocol for quantum annealing, using a time-dependent Hamiltonian that does not non-
commute with the bit-flip errors. We note that the protocol is also applicable to evolution
under quantum gate operations.

In quantum annealing, it is imperative to perform error diagnosis and correction in a
manner that is both fast and accurate, in order to avoid accruing these logical errors while
single bit-flip errors are being diagnosed and corrected. This is because the action of an
error Xq effectively transforms the Hamiltonian from H(t) to XqH(t)Xq in the Heisenberg
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Figure 1.8: Response of the system basis state and model to a true bit-flip error and a false
alarm as a function of time. At 1.0 µs an X3 error is applied to the system, and after a
small delay the error is detected and corrected. At 3.0 µs the model falsely detects and then
“corrects” for an X1 error, which results in the system being temporarily pushed into an error
subspace before the mistake is recognized and corrected. There are visible small constant
offsets between the prediction and the system state at the false alarm due to the streak time
period imposed in the correction protocol.

picture. Until the error is properly diagnosed and corrected, subsequent coherent evolution
of the logical state in the code subspace is due to the modified Hamiltonian XqH(t)Xq. If
the original Hamiltonian does not commute with the error, i.e. XqH(t)Xq ≠H(t), then such
evolution will be spurious rather than as originally intended, causing logical errors to accrue.

We adopt the jump/no-jump method for bit-flip errors. In this method, gradual de-
coherence due to the third term in Eq. (1.46) is described as the average effect of bit-flip
errors Xq occurring at random times. At a finite time interval [t, t + ∆t], a bit-flip error
Xq occurs with probability γq∆t. If this error occurs, the quantum state jumps from ρt to
ρt+∆t = XqρtXq. Otherwise, the quantum state continuously evolves without environmental
decoherence. Upon averaging over many instances of the bit-flip errors, the jump/no-jump
approach reduces to the open quantum system model, where errors continuously change the
mixed system state ρ(t).

In simulating the coherent evolution, we use the first-order Magnus expansion [58] of
the annealing Hamiltonian H(t) in Eq. (1.85) at every finite time interval [t, t +∆t], Ũt =
exp [−iH(t′)∆t] where t′ = t +∆t/2, such that the quantum state evolves as ρt+∆t = ŨtρtŨ

†
t .

We average over 10,000 quantum trajectories obtained through the above-mentioned
steps to simulate the ensemble density states ρt.
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Figure 1.9: The distribution of detection time (with the left y-axis) and the distribution
of false alarms of bit-flips (with the right y-axis) when the state is originally in ∣111⟩, over
100,000 quantum trajectories with an operation time T = 120µs and with a single-qubit
bit-flip rate γ = 0.04µs−1. The three qubits are initialized to ∣111⟩. The overall frequencies
of all false alarms for the RNN-based, Bayesian, and double threshold models are 0.155(5),
0.117(2), 0.0022(2)µs−1, respectively.
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For this simulated experiment, the annealing Hamiltonian with a strength Ω0 evolving
ρ0 = ∣ψ0⟩ ⟨ψ0∣ , ∣ψ0⟩ = (∣0⟩L + ∣1⟩L)/

√
2 is chosen to be

H(t) = −Ω0 [a(t)X1X2X3 + b(t)
Z1 +Z2 +Z3

3
] , (1.85)

where a(t) = 1 − t/T and b(t) = t/T . In the code subspace, it is equal to

h(t) = −Ω0 [a(t)σx + b(t)σz] , (1.86)

whereas in any error subspace, it is equal to the spurious Hamiltonian,

hspurious(t) = −Ω0 [a(t)σx + b(t)
σz
3
] . (1.87)

We adopt the reduction factor [31] as the metric for evaluating the model performance,
which is defined as,

R = 1 −Fune

1 −F
, (1.88)

whose numerator is the final infidelity of an unencoded bare qubit initialized to ∣0⟩ under
the annealing Hamiltonian Eq. (1.86), and whose denominator is the final infidelity of the
three-qubit encoded state in the code subspace with respect to the target quantum state. As
ȧ(t), ḃ(t)→ 0, the target quantum state becomes the ground state of the target Hamiltonian.

As shown in Fig. 1.10, at relatively low γ, the Bayesian model achieves the highest
reduction factor in Scheme A, while both the Bayesian and the RNN-based model outperform
the double threshold. However, at sufficiently high error rates γ, the encoded qubits under
active correction using any of the three models show no improvement over a single unencoded
qubit, as expected.

1.6 Discussion
We have proposed an RNN-based CQEC algorithm that is able to outperform the popular
double threshold algorithm across all tasks for each of the four simulation schemes tested
in Sec. 1.5. This result holds regardless of whether the algorithms are protecting a system
from bit-flip errors or from amplitude damping, and applies in the case of both quantum
memory and quantum annealing. The relative performance of the three models does not
depend significantly on the underlying error rate or the duration of the experiment, unless
either of these values is exceptionally large.

The mathematical simplicity of Eq. (1.44) is a product of many idealized assumptions,
so we can expect that measurements taken from real quantum devices will not necessarily
be as easy to describe. Our analysis of superconducting qubit measurements in Sec. 1.3
reveals several examples of non-ideal behavior in both the syndrome and noise distributions,
and we expect similar findings in the outputs of other devices. While some signal imper-
fections can be accounted for in traditional CQEC algorithms, such as the incorporation of
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Figure 1.10: The final infidelity reduction factor as a function of single-qubit bit-flip rate
γ, with an operation time T = 120µs, and the strength of the annealing Hamiltonian in
Eq. (1.85) equal to Ω0 = 0.04Γm where the measurement strength is set to Γm = 4.7µs−1.
The quantum efficiency is set to η = 0.5. Each data point is averaged over 10,000 quantum
trajectories.

auto-correlations into the Bayesian classifier, most of them will not be easy to precisely char-
acterize. It is in these situations that neural networks can best demonstrate their advantage,
since they do not require any a priori description of the patterns within the measurement
signals, but instead learn them directly from the training data. An interesting direction for
further study is the extension of the RNN-based CQEC algorithm to correlated and leakage
errors.

A CQEC algorithm should be practical to run on a sub-microsecond timescale, typically
using an FPGA or other programmable, low-latency device. The Bayesian model requires
division to normalize the posteriors, which is a very costly operation on FPGAs. This makes
it challenging to efficiently implement the Bayesian model, although a more practical log-
Bayesian approach has recently been developed [59]. The RNN-based model, by contrast,
does not require division and avoids this problem. There are many precedents for running
RNNs on FPGAs (see e.g. [60]). Since the RNN architecture used in our study is small in size
(more simplifications are discussed in Sec. 1.5), its computational latency is sub-microsecond.
Nevertheless, more work will be needed in order to determine how best to interface the RNN
with the quantum computer in a feedback loop. For supervised learning, there is the need
for generating a sufficient amount of training data that incorporates the error information
and the signal features. Further work could focus on determining the minimum amount and



CHAPTER 1. CONTINUOUS QUANTUM ERROR CORRECTION ON
SUPERCONDUCTING QUBITS 44

type of data that the RNN needs to train effectively, and understand how these needs change
as the number of physical qubits in the error code increases.

Given low-latency implementations of the Bayesian and RNN-based models, an obvious
next step for future work would be a direct comparison between these CQEC protocols
and existing discrete QEC protocols on quantum hardware. Ristè et al. [61] have already
demonstrated discrete QEC for a three-qubit bit-flip code on transmons, and recent work by
Livingston et al. [32] has implemented a triple threshold CQEC protocol on similar hardware.
By running experiments on a given physical device, a full comparison between discrete and
continuous CQEC can be made under realistic conditions. Due to the lack of both entangling
gates and ancillas, we are optimistic that CQEC could significantly improve the speed and
fidelity of many QEC codes.
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Chapter 2

Practical Quantum Error Mitigation

This chapter is derived from work by Liao, Wang, Sitdikov, Salcedo, Seif, and Minev [40],
where Liao and Wang are the co-first authors, which proposed a machine learning framework
for efficiently and effectively mitigating observable expectation values of both small- and
large-scale quantum circuits.

2.1 Background on Quantum Error Mitigation
Quantum computers promise remarkable advantages over their classical counterparts, offer-
ing solutions to certain key problems with speedups ranging from polynomial to exponen-
tial [62, 63, 64]. Despite significant progress in the field, the practical realization of this
advantage is hindered by inevitable errors in the physical quantum devices. In principle,
reduced error rates and increased qubit numbers will eventually enable fully fault-tolerant
quantum error correction to overcome these errors [65]. While this goal remains far out of
reach at scale, quantum error mitigation (QEM) strategies have been developed to harness
imperfect quantum computers to nonetheless yield near noise-free and meaningful results
despite the presence of unmonitored errors [66, 5, 67, 68, 69, 70]. QEM is paving the way to
near-term quantum utility and a path to outperform classical supercomputers [63, 70].

The main challenge to employing QEM in practice is devising schemes that yield accurate
results without excessive runtime overheads. For context, quantum error correction relies
on overheads in qubit counts and real-time monitoring of errors to eliminate errors for each
run of a circuit. In contrast, QEM obviates the need for both of these overheads but at the
cost of increased algorithmic runtime. QEM instead yields an estimator for the noise-free
expectation values of a target circuit, the results of a computation, by employing an ensemble
of many noisy quantum circuits. For example, in the cornerstone QEM approach known as
zero-noise extrapolation (ZNE) [71, 72], an input circuit is recompiled into multiple circuits
that are logically equivalent but each with an expected increased total number of errors.
From the dependence of the measured expectation values for each noisy circuit, one can
estimate the ‘zero-noise’, ideal expectation value of the original circuit. While ZNE does not
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yield an unbiased estimator, other QEM methods, such as probabilistic error cancellation
(PEC) [71, 72, 68] do and come fortified with rigorous theoretical guarantees and sampling
complexity bounds. Unfortunately, it is believed that QEM methods demand exponential
sampling overheads [73, 74]—the intuition comes from that it requires an exponentially large
sampling overhead for the error bar to be small enough to resolve the exponential decay of
the diagonals resulted from depolarizing noise as shown in Eq. (1.5) in Chapter 1—making
them challenging to implement at increasing scales of interest.

The quest for QEM methods that strike a balance between scalability, cost-effectiveness,
and generality remains at the forefront of quantum computing research. We shall briefly
review some important existing QEM methods, before introducing our new approach based
on machine learning.

Randomized Compiling

Randomized compiling [68, 75] involves the strategic introduction of randomness into the
sequence of quantum gates within a quantum circuit to mitigate errors. This is primarily
achieved through a technique called Pauli twirling. In this method, each Clifford gate1 in
the circuit is sandwiched between pairs of randomly selected twirling gates T ∈ {I,X,Y,Z}
and their inverses such that the circuit remains logically unchanged. Suppose we have some
easy (usually single-qubit), noisy gates C̃, as well as some hard (usually entangling), noisy
gates G̃ in a circuit, and they are separated into different cycles, each of which consists of
(successive) easy noisy gates followed by a hard noisy gate, for instance, the k-th cycle is
ρk = (G̃ ○ C̃)(ρk−1) = GΛG̃(ΛC̃(Cρk−1C†))G†. Twirling a cycle of the noisy circuit is to perform
the following conjugation of the hard noisy gate G = T cGT such that

GCρk−1C
†G† = T cGTCρk−1C

†T †G†T c†

GΛG̃(ΛC̃(Cρk−1C†))G† ↦ T cGΛG̃(ΛC̃(TCρk−1C†T †))G†T c† (2.1)

where T c = GT †G†. These additional gates create a “twirl” effect, effectively randomizing
any coherent errors in ΛG̃ ○ ΛC̃, transforming them into stochastic Pauli errors2. The orig-
inal computational action of the circuit remains unchanged. Any expectation value is then
averaged over all these randomly sampled (sampling the T ) twirling circuits. These stochas-
tic Pauli errors are less harmful than the original coherent errors in terms of the effect on
the expectation values, thus we effectively mitigate the noisy expectation values simply by
randomized compiling. We remark that single-qubit twirling gates such as those used in
Pauli twirling can be combined with the single-qubit easy gates in the circuit, reducing the
additional overhead incurred by twirling in practice.

To see why randomized compiling is able to covert coherent errors into incoherent ones,
it is enlightening to look at the Pauli transfer matrix (PTM), PTMij(E) = Tr[PjE(Pi)] of a

1Non-Clifford gates can be partially twirled by sandwiching Pauli gates that remain Pauli upon commu-
tation with the non-Clifford gate.

2An n-qubit Pauli channel Λ is a quantum channel of the following form Λ(⋅) = ∑a∈Z2n
n

paPa(⋅)Pa.



CHAPTER 2. PRACTICAL QUANTUM ERROR MITIGATION 47

single-qubit error channel Λ(⋅),

PTMij(Λ) = PTMij(IΛ(⋅)I) =

⎛
⎜⎜⎜⎜⎜
⎝

I X Y Z

I fII fIX fIY fIZ

X fXI fXX fXY fXZ

Y fY I fY X fY Y fY Z

Z fZI fZX fZY fZZ

⎞
⎟⎟⎟⎟⎟
⎠

.
(2.2)

It can be readily shown that the PTM is diagonal if and only if the error channel is a
stochastic Pauli channel (a type of incoherent noise). Next, let us look at the Pauli-twirled
version of the channel PE(⋅)P †,

PTMij(XΛ(⋅)X) =

⎛
⎜⎜⎜⎜⎜
⎝

I X Y Z

I fII fIX −fIY −fIZ
X fXI fXX −fXY −fXZ

Y −fY I −fY X fY Y fY Z

Z −fZI −fZX fZY fZZ

⎞
⎟⎟⎟⎟⎟
⎠

,

PTMij(Y Λ(⋅)Y ) =

⎛
⎜⎜⎜⎜⎜
⎝

I X Y Z

I fII −fIX fIY −fIZ
X −fXI fXX −fXY fXZ

Y fY I −fY X fY Y −fY Z

Z −fZI fZX −fZY fZZ

⎞
⎟⎟⎟⎟⎟
⎠

,

PTMij(ZΛ(⋅)Z) =

⎛
⎜⎜⎜⎜⎜
⎝

I X Y Z

I fII −fIX −fIY fIZ

X −fXI fXX fXY −fXZ

Y −fY I fY X fY Y −fY Z

Z fZI −fZX −fZY fZZ

⎞
⎟⎟⎟⎟⎟
⎠

.

(2.3)

It can be readily seen that an average over the Pauli conjugation yields an error channel that
is a stochastic Pauli channel, namely, the PTM of 1

4 ∑P ∈{I,X,Y,Z}PΛ(⋅)P is diagonal.
It remains to show that for the same error parameter magnitude, a stochastic Pauli

channel is less harmful than a coherent error channel in terms of the expectation value. It
is helpful to look at the single-qubit case, with the coherent error being an over-rotation of
angle mθ (m over-rotations of θ combined), RX(mθ),

PTMij(RX(mθ)) =

⎛
⎜⎜⎜⎜⎜
⎝

I X Y Z

I 1 0 0 0

X 0 1 0 0

Y 0 0 cos(mθ) − sin(mθ)
Z 0 0 − sin(mθ) cos(mθ)

⎞
⎟⎟⎟⎟⎟
⎠

.
(2.4)
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If we twirl every RX(θ), the PTM of m over-rotations combined, (PRX(θ)P )m, is

PTMij((PRX(θ)P )m) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 cos (θ) 0
0 0 0 cos (θ)

⎞
⎟⎟⎟
⎠

m

=
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 cosm (θ) 0
0 0 0 cosm (θ)

⎞
⎟⎟⎟
⎠
. (2.5)

Measuring in the Z basis amounts to looking at the last entry of the PTM—from Eq. (2.4),
we have for the coherent error ⟨Z⟩noisy − ⟨Z⟩ideal = cos(mθ) − 1 ≈ −(m2θ2)/2 + O(θ4); from
Eq. (2.5), the twirled noise channel gives ⟨Z⟩noisy−⟨Z⟩ideal = [cos(θ)]m−1 ≈ −(mθ)/2+O(θ4).
We see that coherent error builds up quadratically in the repetition parameter m, whereas
stochastic Pauli error only builds up linearly in m.

We remark that single-qubit Clifford twirling is also commonly employed. Instead of
sampling the twirling gates from the Pauli group, it samples from the 24-element single-
qubit Clifford group. The resultant averaging effect creates further symmetry along the
diagonal of the PTM3.

This randomization technique can also be used to perform measurement readout miti-
gation. After applying a twirling gate right before the measurement, there is no physical
twirling conjugation gate after the measurement. Instead, we virtually apply the conjuga-
tion gate by flipping the measurement result accordingly, shall the twirling gate inserted be
X or Y (measured in the computational basis). The measurement twirling is part of the
model-free twirled readout error extinction (TREX) technique [76].

Probabilistic Error Cancellation

Probabilistic error cancellation (PEC) [71, 72, 68] operates by intentionally applying a set of
“inverse” errors to the quantum system, which can cancel out the natural errors occurring in
a quantum computer on average. This process involves first characterizing the errors in the
quantum system, and then, during computation, randomly applying these characterized error
inverses according to a specific probability distribution. The result is a series of quantum
operations that, on average, counteract the effect of the natural errors. It requires the
noise to be stochastic Pauli error channel—for the convenience of characterization and also
cancellation by insertion of Pauli gates—which requires noise tailoring techniques such as
randomized compiling as described in Sec. 2.1.

The learning of the stochastic Pauli channel is usually done by techniques such as cycle
benchmarking (CB) [77]4, which extracts Pauli fidelities before converting them to Pauli
error probabilities through Walsh-Hadamard transformation [78, 79]. The learning requires

3The diagonals of the PTM are related to the Pauli fidelities λb defined in Λ(ρ) = ∑b∈Z2n
n

λb Tr(Pbρ)Pb.
Single-qubit Clifford twirling forces all Pauli’s with the same weight on the same qubits to have the same
Pauli fidelities, e.g., λXIY = λZIZ

4Randomized benchmarking (RB), on the other hand, employs up to two-qubit Clifford twirling for up
to a set of two-qubit gates, which symmetrizes all Pauli fidelities, yielding a global average quantity of a
fully-depolarizing rate (all Pauli fidelities the same, and thus all Pauli error probabilities are the same).
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a substantial overhead, but may be reduced exponentially to a scaling of only linear in the
number of qubits [78].

The idea of the noise inversion process in PEC (assuming the stochastic Pauli noise
channel has been learned) can be illustrated in a simple single-qubit circuit with only X
flip with a probability p. Suppose we randomly insert an X gate with a probability of q to
counter the natural error, there are four scenarios: there is a probability of (1−q)(1−p) that
there was no error and we inserted no gate; there is a probability of (1−q)p that there was an
error but we inserted no gate; there is a probability of q(1−p) that there was no error but we
inserted a gate; and there is a probability of qp that there is an error canceled by the gate we
inserted. Namely, there is a probability (1− q)p+ q(1−p) that we end up with an X error in
the circuit. We wish this probability to vanish, which can be readily shown that it requires
q = −p/(1−2p). This can be a negative probability, or quasi-probability, since a noise channel
is in general non-invertible (or to say that the inverted channel is non-physical). The sign
of the quasi-probability can be taken care in the weighted average of the expectation values
from the mitigation circuit, and we just need a relative magnitude of the probability to insert
the noise cancellation gate. To this end, we re-normalize the probability of inserting a gate
to be ∣q∣/(∣1− q∣+ ∣q∣). Let Tr[OC̃(ρ)] represent the expectation value when we insert no gate
and Tr[OX C̃(ρ)X] represent the expectation value when we insert an X noise cancellation
gate, the mitigated expectation value can be written as

Tr[OC(ρ)] = 1

∣1 − q∣ + ∣q∣
{sgn(1 − q)∣1 − q∣Tr[OC̃(ρ)] + sgn(q)∣q∣Tr[OX C̃(ρ)X]} . (2.6)

The above argument can be extended to having all Pauli errors. The PEC is done layer by
layer, and thus it scales with the circuit depth.

Intuitively, the stochastic Pauli noise can be thought of as a random walk, and the noise
cancellation by probabilistically inserting Pauli gates is another random walk process, both
of which combine to yield an unbiased estimator of the expectation value at the expense of
increased variance of the combined stochastic processes. Therefore, to control the variance
of this unbiased estimator, a significant overhead is demanded, which is in fact exponential
in the circuit size (circuit depth × width) as well as in the noise strength [68], making it
practically challenging to implement.

Zero-noise Extrapolation

Zero-noise Extrapolation (ZNE) [71, 72] operates on the principle of deliberately introduc-
ing varying levels of noise into a quantum system and then performing the same quantum
computation under these different noise conditions. By analyzing how the results of the com-
putation change with different noise intensities, ZNE allows for the extrapolation of what
the result would be in the absence of noise, hence “zero-noise”. Since obtaining the actual ex-
trapolating functional relationship under realistic noise is no easier than fully characterizing
all the noise processes and/or performing the quantum computation, the true extrapolating
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functional is unknown, and any extrapolating functional used in practical (usually polyno-
mials) results in a biased estimator of the noise-free result.

There are various methods to introduce varying levels of noise into a quantum circuit.
One is to fold the gates. For instance, noise level 3 means amplifying each gate’s noise by
a factor of 3, which can be achieved by performing UU †U for each gate (usually only for
each entangling gate). We can also do a fractional noise level, meaning a fraction of the
gates have noise their amplified (or equivalently gate folded). This is called digital ZNE.
Another approach amplifies the gate noise by stretching the pulse (extending its duration)
of the gate by the same factor. This is called analog ZNE or pulse-stretching ZNE. The last
one is to convert the gate noise into stochastic Pauli noise by randomized compiling and
then increasing the probability of the Pauli noise by some factor through manually inserting
Pauli gates—a process similar to PEC but instead of inserting to cancel, here we insert to
amplify. This is called probabilistic error amplification (PEA) [70].

Virtual Distillation

Many quantum algorithms target the preparation of a pure ideal state ρ = ∣ψ⟩⟨ψ∣. Many
common noise channels are stochastic, which will turn our ideal pure state ρ into some noisy
mixed state. Virtual distillation (VD) [80, 81] aims to extract the eigenvector corresponding
to the largest eigenvalues of ρ, since the closest pure state to a ρ in the trace distance is
simply the dominant eigenvector ∣ϕ⟩⟨ϕ∣.

This can be elegantly achieved by raising the density matrix to a sufficiently large power
so that the dominant eigenvector distinguishes itself sufficiently. Namely, we would like to
achieve this mapping

ρ↦ ρm

Tr (ρm)
. (2.7)

It has been shown elegantly by e.g., tensor diagrams, that measuring a ρ to a power m is
equivalent to measuring a local observable of m copies in parallel acted by a cyclic permu-
tation operator [80]

Tr(Oρm) = Tr(SmOkρ
⊗m), (2.8)

where Ok is the observable of interest on the k-th copy of the noisy ρ, and Sm is the cyclic
permutation operator performing Sm ∣ψ1⟩ ∣ψ2⟩ . . . ∣ψm⟩ = ∣ψ2⟩ ∣ψ3⟩ . . . ∣ψ1⟩.

Numerical and analytic studies have found that the error mitigation from VD can be of
multiple orders of magnitude for large systems, even using as little as m = 2 copies of the
state [80, 81]. However, the implementation of the cyclic permutation operator is hindered
by NISQ device connectivity, since it can require long-range entangling gates.

2.2 Machine Learning for Quantum Error Mitigation
Emerging at the crossroads of quantum mechanics and statistical learning, machine learning
for quantum error mitigation (ML-QEM) presents a promising avenue where statistical mod-
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els are trained to derive mitigated expectation values from noisy counterparts executed on
quantum computers. Could such ML-QEM methods offer valuable improvement in accuracy
or runtime efficiency in practice?

Q0 H

Q1 X

Q2 H

Q3 X

Q4 H

Q5 X

Q6 H

Q7 X

Q8 H

Figure 2.1: Machine-learning quantum error mitigation (ML-QEM): execution and training
for tractable and intractable circuits. A quantum circuit (left) is passed to an encoder (top)
that creates a feature set for the ML model (right) based on the circuit and the quantum
processor unit (QPU) targeted for execution. The model and features are readily replaceable.
The executed noisy expectation values ⟨Ô⟩noisy (middle) serve as the input to the model whose
aim is to predict their noise-free value ⟨Ô⟩mit. To achieve this, the model is trained beforehand
(bottom, blue highlighted path) against target values ⟨Ô⟩target of example circuits. These
are obtained either using noiseless simulations in the case of small-scale, tractable circuits or
using the noisy QPU in conjunction with a conventional error mitigation strategy in the case
of large-scale, intractable circuits. The training minimizes the loss function, typically the
mean square error. The trained model operates without the need for additional mitigation
circuits, thus reducing runtime overheads.

In principle, a successful ML-QEM strategy would learn the effect of noise in training,
thus obviating the need for additional mitigation circuits during the execution of an algo-
rithm. Compared to conventional QEM, the algorithmic runtime would then see a potential
reduction in overhead. First explorations of ML-QEM ideas have shown signs of promise,
even for complex noise profiles [82, 83, 84, 85, 86, 87], but it remains unclear if ML-QEM
can perform in practice in quantum computations on hardware or at scale. For instance, it
is unclear whether a given ML-QEM method can be used across different device noise pro-
files, diverse circuit classes, and large quantum circuit volumes beyond the limits of classical
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simulation. To date, there has not been a systematic study comparing different traditional
methods and statistical models for QEM on equal footing under practical scenarios across a
variety of relevant quantum computational tasks.

In this study, we present a general framework to perform ML-QEM for higher runtime
efficiency compared to other mitigation methods. Our study encompasses a broad spectrum
of simple to complex machine learning models, including the previously proposed linear re-
gression and multi-layer perceptron model. We further propose two new models, random
forests and graph neural networks. We find that random forests seem to consistently per-
form the best. We evaluate the performance of all four models in diverse realistic scenarios.
We consider a range of circuit classes (random circuits and Trotterized Ising dynamics) and
increasingly complex noise models in simulations (including incoherent and coherent gate er-
rors, readout errors, and qubit errors). Additionally, we explore the advantages of ML-QEM
methods over traditional approaches in common use cases, such as generalization to unseen
Pauli observables, and enhancement of variational quantum-classical tasks. Our analysis re-
veals that ML-QEM methods, particularly random forest, exhibit competitive performance
compared to a state-of-the-art method—digital zero-noise extrapolation (ZNE)—while re-
quiring lower overhead by a factor of at least 2 in runtime. Finally, with experiments on IBM
quantum computers for quantum circuits with up to 100 qubits and a two-qubit gate depth
of 40, we propose a path toward scalable mitigation by mimicking traditional mitigation
methods with superior runtime efficiency, which also serves as a further example of using
classical machine learning on quantum data [88, 89, 1].

2.3 Simulations and Hardware Experiments
The ML-QEM workflow (see Fig. 2.1) operates on a given class of quantum circuits for
which we train an ML model to predict near noise-free expectation values based on noisy
expectation values obtained from a quantum processing unit (QPU). This is required, since,
in general, the output of the quantum circuit is considered intractable and cannot be learned
in isolation by the ML model. Details of the training set, encoded circuit and QPU features,
and ML models, can be found in the Methods section. A key feature of the ML-QEM model
is that at runtime, the model produces mitigated expectation values from the noisy ones
without the need for additional mitigation circuits, thus dramatically reducing overheads.

As reported in the following, we find at par or even improved accuracy results at sig-
nificantly reduced runtime overheads using machine learning approaches in reference to the
chosen reference digital gate-folding ZNE approach56. We first report on performance in
small-scale circuits trained and tested in numerical simulations under realistic noise mod-
els. In turn, we validate conclusions on real noisy hardware. We then introduce a scalable

5We use zero-noise extrapolation with digital gate folding on 2-qubit gates, noise factors of {1,3}, and
linear extrapolation implemented via Ref. [90].

6All non-ideal expectation values in simulations and experiments presented in this study are obtained
from the measurement statistics from 10,000 shots.
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ML-QEM methodology for large-scale circuits. We demonstrate this idea in an experiment
using 100-qubit circuits with up to 1,980 CNOT gates. This is accomplished by training the
ML models to mimic the results of conventional error mitigation methods, inheriting their
accuracy but with significantly reduced overhead. In this regime, the calculations are beyond
simple brute-force numerical techniques, and serve as a test-bed for intractable circuits.

Mitigating Depolarizing Noise

Before presenting our simulations and experiments, we motivate the use of noisy expectation
values in the input features to the ML-QEM, and show here that the ideal expectation values
of an observable Ô linearly depend on its noisy expectation values when the noisy channel of
the circuit consists of successive layers of depolarizing channels. This is more general than
the result shown in [83].

Consider l successive layers of unitaries each associated with a depolarizing channel
with some rate pl, the noisy circuit acting on the input ρ, C̃(ρ), is written as C̃(ρ) =
El(UlEl−1(Ul−1 . . .E1(U1ρU

†
1) . . . U

†
l−1)U

†
l ), where El(ρ) = (pl/D)I + (1 − pl)ρ.

It can be shown by induction that

C̃(ρ) = p(l)
D

I + (1 − p(l))Ul . . . U1ρU
†
1 . . . U

†
l , (2.9)

where p(l) = 1 −Πl
i=1(1 − pi) as follows. Assuming for l = k,

C̃(ρ) = p(k)
D

I + (1 − p(k))Uk . . . U1ρU
†
1 . . . U

†
k , (2.10)

then for l = k + 1, we have

C̃(ρ) = p(k)
D

I + (1 − p(k)) [pk+1
D

I + (1 − pk+1)Uk . . . U1ρU
†
1 . . . U

†
k]

= p(k + 1)
D

I + (1 − p(k + 1))Uk . . . U1ρU
†
1 . . . U

†
k .

(2.11)

The induction completes with a trivial base case.
Therefore, the noisy expectation value of Ô becomes

Tr(C̃(ρ)Ô) = p(l)
D

Tr(Ô) + (1 − p(l))Tr(Ul . . . U1ρU
†
1 . . . U

†
l Ô)

= p(l)
D

Tr(Ô) + (1 − p(l))Tr(C(ρ)Ô) ,
(2.12)

where Tr(C(ρ)Ô) is the ideal expectation value of Ô.
For Trotterized circuits with a fixed Trotter step and a fixed brickwork structure, the

number of layers l of unitaries in the circuit is also fixed. Assuming some fixed-rate depolar-
izing channels associated with the l layers of unitaries, the noisy and ideal expectation values
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of some Ô on these Trotterized circuits with different parameters then lie on a line. Therefore,
the ML-QEM method can mitigate the expectation values by linear regression from the noisy
expectation values to the ideal ones, and the linear regression parameters can be learned to
vary according to the number of layers l. The ML-QEM is thus unbiased in this case. We
note that ZNE with linear extrapolation is still biased in this case, since the noise amplifica-
tion effectively results in a different combined depolarizing rate p′(l) = 1−Πl

i=1(1−p′i), which
leads to expectation values with differently amplified noises each lying on a different line
towards the ideal expectation value, and thus the linear extrapolation cannot yield unbiased
estimates.

Performance Comparison at Tractable Scale

First, we present a comparative analysis of several representative ML-QEM methods. As
portrayed in Fig. 2.9 in the Methods section in Sec. 2.4, we explore several statistical models
in our study with varying complexity and methods of encoding data, namely linear regression
with ordinary least squares (OLS), random forests (RF), multi-layer perceptrons (MLP), and
graph neural networks (GNN). Since the relationship between the noisy expectation values
and the ideal ones is non-linear in general (see Sec. 2.3 for more details), we emphasize the
role of non-linear machine learning models, and study three non-linear models, i.e., RF, MLP,
and GNN, in addition to the linear model OLS. Each of these models is described in further
detail in the Methods. We compare these models against each other and digital gate-folding
ZNE. Future studies comparing ML-QEM against methods with more rigorous theoretical
guarantees and successful experimental demonstrations, such as probabilistic error cancella-
tion [68], probabilistic error amplification [70], and analog zero-noise extrapolation via pulse
stretching [69] are warranted, as digital gate-folding ZNE is known to be accurate only under
depolarizing noise models [91].

We evaluate the performance of these methods for two classes of circuits: random circuits
and Trotterized dynamics of the 1D Ising spin chain on small-scale simulations. These two
classes of circuits bear distinct two-qubit gate arrangements, allowing us to gain knowledge
about the performance of the ML-QEM on the two extremes of the spectrum in terms of cir-
cuit structures. This evaluation is done by simulations on small-scaled circuits, conveniently
allowing us to vary the type of noises affecting the circuits and to identify situations under
which the ML-QEM outperforms digital ZNE in terms of mitigation accuracy. To that end,
in the study of Trotterized circuits, we also study the performance of the methods in the
absence and presence of readout error or coherent noise, in addition to incoherent noise.

Random Circuits

In the first experiment, we benchmark the performance of the protocol on small-scale un-
structured circuits. To ensure that the circuits encompass a broad spectrum of complexities,
we generate a diverse set of four-qubit random circuits with varying two-qubit gate depths,
up to a maximum of 18, as shown in the inset of Fig. 2.2. Per two-qubit depth, there are
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Figure 2.2: Quantum error mitigation (QEM) and ML-QEM accuracy on random circuits.
Top: Error distribution for unmitigated and mitigated Pauli-Z expectation values. Miti-
gation is performed using either a reference QEM method, digital zero-noise extrapolation
(ZNE), or one of four ML-QEM models (explained in text). Inset: Example random circuits.
Noisy execution is numerically simulated using a noise model derived from IBM QPU Lima.
The error is defined as the L2 distance between the vector of all ideal and noisy single-
qubit expectations ⟨Ẑi⟩; i.e., ∥⟨Ẑ⟩ − ⟨Ẑ⟩ideal∥2. Black dots are outliers. Average is over 2,000
four-qubit random circuits, with two-qubit-gate depths sampled up to 18. Bottom: Average
error for each method (using data from the top) is presented with 95% confidence intervals,
derived from bootstrap re-sampling. The mean L2 error is provided above each column.

500 random training circuits and 200 random test circuits that are generated by the same
sampling procedure. For each circuit, we carry out simulations on IBM’s FakeLima backend,
which emulates the incoherent noise present in the real quantum computer, the ibmq_lima
device. While these quantum devices generally have coherent errors as well, they can be
suppressed through a combination of e.g., dynamical decoupling [92, 93] and randomized
compiling [68, 75]. Specific types of noise include incoherent gate errors, qubit decoherence,
and readout errors. We train the ML-QEM models to mitigate the noisy expectation val-
ues of the four single-qubit Ẑi observables. As a benchmark, we also compare mitigated
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expectation values from digital ZNE. In Fig. 2.2, we show the error (between the mitigated
expectation values and the ideal ones) distribution of digital ZNE and ML-QEM with each of
the four machine learning models on the top plot and the bootstrap mean errors in the bot-
tom plot. We observe that the random forest consistently outperforms the other ML-QEM
models, with the MLP model closely following. Notably, all ML-QEM models, including
OLS and GNN, exhibit competitive performance in comparison to the ZNE method, despite
that the runtime overhead for ZNE is twice as much. Finally, we emphasize that rigor hy-
perparameter optimization may impact the relative performance of these methods, and we
leave this analysis to future work.

We remark that in the study of 4-qubit random circuits presented in this section, we use
the Qiskit function qiskit.circuit.random.random_circuit() to generate the random
circuits, which implements random sampling and placement of 1-qubit and 2-qubit gates,
with randomly sampled parameters for any selected parametrized gates. The 2-qubit gate
depth is measured after transpilation. We remark that the random circuits sampled at large
depths may approximate the Haar distribution and have expectation values concentrated
around 0 to some extent [94, 95].

Trotterized 1D Transverse-field Ising Model

To benchmark the performance of the protocol on structured circuits, we consider Trotterized
brickwork circuits. Here, we consider first-order Trotterized dynamics of the 1D transverse-
field Ising model (TFIM) subject to different noise models based on the incoherent noise on
the FakeLima simulator in Fig. 2.3, before moving to experiments on IBM hardware with
actual device noise in Fig. 2.4. We observe that these circuits are not only broadly represen-
tative but also bear similarities to those used for Floquet dynamics [96]. The dynamics of
the spin chain is described by the Hamiltonian

Ĥ = −J∑
j

ẐjẐj+1 + h∑
j

X̂j = −JĤZZ + hĤX , (2.13)

where J denotes the exchange coupling between neighboring spins and h represents the
transverse magnetic field, whose first-order Trotterized circuit is shown in the inset of Fig. 2.3.
We generate multiple instances of the problem with varying numbers of Trotter steps and
coupling strengths, such that the coupling strengths of each circuit are uniformly sampled
from the paramagnetic phase (J < h) by choice. There are 300 training circuits and 300
testing circuits per Trotter step, and the training circuits cover Trotter steps up to 14. Each
circuit is measured in a randomly chosen Pauli basis for all the weight-one observables. We
then train the ML-QEM models on the ideal and noisy expectation values obtained from
these circuits and compare their performance with digital ZNE. During the testing phase,
we consider both interpolation and extrapolation. In interpolation, we test on circuits with
sampled coupling strength J not included in training but with Trotter steps included in
the training. In extrapolation, we test on circuits with sampled coupling strength J not
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Figure 2.3: Mitigation accuracy under i) complexity of quantum noise and ii) ML-QEM
interpolation and extrapolation for Trotter circuits. Top row: Average error performance
on Trotter circuits (top-left inset) representing the quantum time dynamics of a four-site,
1D, transverse-field Ising model in numerical simulations. A Trotter step comprises four
layers of CNOT gates (inset). Vertical dashed line separates experiments in the ML-QEM
interpolation regime (left) from the extrapolation regime (right). The 3 curves represent the
performance of the highest-performing ML-QEM method, the QEM ZNE method, and the
unmitigated simulations. They are averaged over 300 circuits, each with a randomly chosen
Pauli measurement bases. The data is for all four weight-one expectations ⟨P̂i⟩. The error
is defined as L2 distance from the ideal expectations, ∥⟨P̂ ⟩ − ⟨P̂ ⟩ideal∥2, as also defined for
the remainder of figures. From the left to right, the complexity of the device noise model
increases to include additional realistic noise types. Coherent errors are introduced on CNOT
gates. Bottom row: Corresponding typical data of the error-mitigated expectation values of
the ⟨Z0⟩ Trotter evolution; here, for Ising parameter ratio J/h = 0.15.



CHAPTER 2. PRACTICAL QUANTUM ERROR MITIGATION 58

Figure 2.4: On QPU hardware: accuracy and overhead for ML-QEM and QEM. Average
execution error of Trotter circuits for experiments on QPU device ibm_algiers without
mitigation and with ZNE or ML-QEM RF mitigation. Error performance is averaged over
250 Ising circuits per Trotter step, each with sampled Ising parameters J < h and each mea-
sured for all weight-one observables in a randomly chosen Pauli basis. Training is performed
over 50 circuits per Trotter step, which results in both a 40% lower overall and 50% lower
runtime quantum resource overhead of RF compared to the overhead of the digital ZNE
implementation (see inset).

included in the training as well as with Trotter steps exceeding the maximal steps present
in the training circuits.

On the noisy simulator in Fig. 2.3, for this problem with incoherent gate noise in the
absence (left) or presence (right) of readout error, the ML-QEM model (using the random
forest) performs better than the ZNE method. We envision that ML-QEM can be used to
improve the accuracy of noisy quantum computations for circuits with gate depths exceeding
those included in the training set.

On the right of Fig. 2.3, we consider the same problem in the second study but simulate
the sampled circuits on FakeLima backend with additional coherent errors. The added
coherent errors are CNOT gate over-rotations with an average over-rotational angle of 0.02π.
We again generate multiple instances of the problem with varying numbers of Trotter steps
and coupling strengths uniformly sampled from the paramagnetic phase. We then train
the ML-QEM model (using the random forest) on the ideal and noisy expectation values
obtained from these circuits executed on the modified FakeLima backend and compare their
performance with ZNE.

During the testing phase, we also perform extrapolation where some testing circuits have
Trotter steps exceeding the maximal steps present in the training circuits. Specifically, the
testing circuits cover 14 more steps up to Trotter step 29. Under the influence of added
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Figure 2.5: ML-QEM and QEM performance for Trotter circuits. Expanded data corre-
sponding to Fig. 2.3 of the main text that includes the three ML-QEM methods not shown
earlier: GNN, OLS, MLP. We study three noise models: Left: incoherent noise resem-
bling ibmq_lima without readout error, Middle: with the additional readout error, and
Right: with the addition of coherent errors on the two-qubit CNOT gates. We show the
depth-dependent performance of error mitigation averaged over 9,000 Ising circuits, each
with different coupling strengths J . For the incoherent noise model, all ML-QEM methods
demonstrate improved performance even when mitigating circuits with depths larger than
those included in the training set. However, all perform as poorly as the unmitigated case
in extrapolation with additional coherent noise.

coherent noise, the performance of the ML-QEM model and digital ZNE deteriorated com-
pared to the previous study. However, in the extrapolation scenario, none of the models
demonstrated effective mitigation of the noisy expectation values. In practical applications,
a combination of, e.g., dynamical decoupling [92] and randomized compiling [68, 75], which
can suppress all coherent errors, could be applied to the test circuits prior to utilizing ML-
QEM models. This approach effectively converts the noise into incoherent noise, enabling
the ML-QEM methods to perform optimally in extrapolation. We remark that coherent gate
errors induce quadratic changes in the expectation values, which are stronger than incoher-
ent errors inducing only linear changes—it is plausible that the machine learning approach
performs better with weak noises.

We present a comparison across all ML-QEM models in this study of mitigating expec-
tation values of Trotterized 1D TFIM in Fig. 2.5. With incoherent noise only, the random
forest model demonstrates the best performance among the ML-QEM models both in inter-
polation and extrapolation, closely followed by the MLP, OLS, and GNN. With additional
coherent noise, in the interpolation scenario, the performance ranking of the other models
remained largely consistent with that observed in the previous study. Notably, the random
forest model exhibited the best performance among the ML-QEM models, closely followed
by the MLP model.
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We benchmark the performance of the ML-QEM model against digital ZNE on real
quantum hardware, IBM’s ibm_algiers. In this experiment, we do not apply any additional
error suppression or error mitigation such as dynamical decoupling, randomized compiling, or
readout error mitigation; thus, the experiment involves incoherence noise, coherent noise, and
readout error, with the results shown in Fig. 2.4. We train the ML-QEM with random forest
on 50 circuits and test it on 250 circuits at each Trotter step. We observe that 50 training
circuits per step, totaling 500 training circuits, suffices to have the model trained well. With
this low train-test split ratio7, the ML-QEM requires 500+2,500 = 3,000 total circuits, while
running ZNE with 2 noise factors on the testing circuits requires 2 × 2,500 = 5,000 total
circuits. The ML-QEM claims a reduction of quantum resource overhead compared to ZNE
both overall and at runtime—the reduction is as large as 30% overall and 50% at runtime.
Additionally, we observe that the ML-QEM method RF significantly outperforms ZNE for
all Trotter steps, demonstrating the efficacy of this approach under a realistic scenario. We
report approximately 0.7 QPU hours (based on a conservative sampling rate of 2 kHz [70])
to generate all the training data and seconds to train the model with a single-core laptop
for this experiment.

We remark that in this study of the Trotterized 1D TFIM, we initialize the state devoid
of spatial symmetries. This is done to intentionally introduce asymmetry in the single-qubit
Ẑi expectation value trajectories across Trotter steps, thereby increasing the difficulty of the
regression task. Conversely, when the initial state possesses a certain degree of symmetry,
the regression analysis, which incorporates noisy expectation values as features, becomes
highly linear, resulting in a strong performance by the OLS method.

We observe that both in the simulation and in the experiment of the small-scale Trotter-
ized 1D TFIM, there are significant correlations between the noisy expectation values and
the ideal ones. There are also significant correlations but to a lesser degree between the
gate counts and the ideal expectation values, suggesting the models are using certain depth
information deduced from the gate counts to correct the noisy expectation values towards
the ideal ones.

Mitigating Unseen Pauli Observables

There are algorithms in which we care about the expectation values of multiple non-commuting
Pauli observables on the same circuit, effectively creating multiple target circuits with the
same gate sequences but with different measuring basis, such as in quantum state tomog-
raphy and in variational quantum eigensolver. Additional error mitigation methods incur a
large overhead on top of these target circuits by requiring additional mitigation circuits for

7Assuming the mimicked QEM requires m total executions of either the mitigation circuits or the circuit
of interest (e.g., digital/analog ZNE usually has m = 2 or 3 noise factors), the total cost of the mimicked
QEM, namely its runtime cost, is mntest. The total cost, including training, for the RF is mntrain + ntest.
Equating these two yields the break-even train-test split ratio in the total cost of our mimicry compared
to the traditional QEM: ntrain/ntest = (m − 1)/m. Our mimicry shows a higher overall efficiency when the
train-test split ratio is smaller than (m − 1)/m.
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Figure 2.6: Application of ML-QEM to a) unseen expectation values and b) the variational
quantum eigensolver (VQE). a) Top: Schematic of a Trotter circuit, which prepares a many-
body quantum state on n = 6 qubits (in 5 Trotter steps). Top right: Circle depicts the
pool of all possible 4n Pauli observables. Shaded region depicts the fraction of observables
used in training the ML model; the remaining observables are unseen prior to deployment
in mitigation. Bottom: Average error of mitigated unseen Pauli observables versus the total
number of distinct observables seen in training. b) Top: Schematic of the VQE ansatz
circuit for 2 qubits parametrized by 8 angles θ⃗. Below, a depiction of the VQE optimization
workflow optimizing the set of angles θ⃗ on a simulated QPU, yielding the noisy chemical
energy ⟨Ĥ⟩noisy

θ⃗
, which is first mitigated by the ML-QEM or QEM before being used in the

optimizer as ⟨Ĥ⟩mit
θ⃗

. Compared to the ZNE method, the ML-QEM with RF method obviates
the need for additional mitigation circuits at every optimization iteration at runtime.
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Figure 2.7: ML-QEM mimicking QEM on large, 100-qubit circuits with lower overheads,
in hardware. Top three panels: Average expectation values from 100-qubit Trotterized 1D
TFIM circuits executed in hardware on QPU ibm_brisbane. Each panel corresponds to a
different Ising parameter set (top right corners). Top panel corresponds to a Clifford circuit,
whose ideal, noise-free expectation values are shown as the green dots. The RF-mimicking-
ZNE (RF-ZNE) curve corresponds to training the RF model against ZNE-mitigated data on
the hardware rather than in numerical simulators, for which these large non-Clifford circuits
are more difficult. Bottom panel: The error, measured again in the L2 norm, between the
ZNE-mitigated expectation values and the RF-mimicking-ZNE (RF-ZNE) mitigated expec-
tation values over non-Clifford testing circuits with randomly sampled coupling strengths
J < h averaged over 40 testing circuits per Trotter step and the observables. The training is
over 10 circuits per Trotter step, which results in a 25% lower overall and 50% lower runtime
quantum resource overhead compared to the ZNE, as shown in the inset.
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each target circuit. Here, we show that it is possible to achieve better mitigation performance
with lower overhead using an ML-QEM method.

In particular, we evaluate the performance of the ML-QEM to mitigate unseen Pauli
observables on a state ∣ψ⟩ produced by the Trotterized Ising circuit depicted on the top of
Fig. 2.6(a), which contains 6 qubits and 5 Trotter steps. We train the random forest model
on increasing fractions of the 46 − 1 = 4,095 Pauli observables of a Trotterized Ising circuit
with J/h = 0.15, and then we apply the model to mitigate noisy expectation values sampled
from the rest of all possible Pauli observables. The results of this study are plotted at the
bottom of Fig. 2.6(a). We observe that training the random forest on just a small fraction
(≲ 2%) of the Pauli observables results in mitigated expectation values with errors lower than
when using ZNE. The ML-QEM method additionally has lower runtime overhead—there are
no mitigation circuits with amplified noise required at runtime, and the number of circuits
needed to be executed at runtime for the ML-QEM is at least a factor of 2 fewer than that
for digital ZNE.

Enhancing Variational Algorithms

In the conventional formulation of the variational quantum eigensolver (VQE) algorithm,
the goal is to estimate the ground-state energy by measuring the energy ⟨Ĥ⟩θ⃗ of the state
prepared by a circuit ansatz Û(θ⃗) with a fixed structure and parameters θ⃗. Then, a classical
optimizer is used to propose a new θ⃗, and this procedure is executed repeatedly until ⟨Ĥ⟩θ⃗
converges to its minimum. When executing this algorithm on a noisy quantum computer,
error mitigation can be used to improve the noisy energy ⟨Ĥ⟩noisy

θ⃗
to the mitigated energy

⟨Ĥ⟩mit
θ⃗

and better estimate the ground-state energy. This workflow is shown at the top
of Fig. 2.6(b). Error-mitigated VQE with traditional methods can be costly, however, as
additional mitigation circuits must be executed during each iteration. We use ML-QEM
error mitigation instead, where a model is trained beforehand to mitigate the ground-state
energy of an ansatz Û(θ⃗) so that at each iteration, no additional mitigation circuits need
to be executed. This approach for faster error mitigation at runtime may be especially
appropriate for this algorithm, as VQE can require many iterations and long execution
times during which quantum hardware can drift. A trained model could also then be used
for error-mitigated VQE for different Hamiltonians.

To demonstrate this concept, we train the ML-QEM model with RF on 2,000 circuits
with each parameter randomly sampled from [−5,5], and compute the dissociation curve of
the H2 molecule on the bottom of Fig. 2.6(b). The ML-QEM random forest model is trained
on a two-local variational ansatz (depicted on the top of Fig. 2.6(b)) across many randomly
sampled {θ⃗}. This method results in energies that are close to chemical accuracy. Notably,
the absolute errors are an order of magnitude smaller than those of the ZNE-mitigated
energies.

Additionally, the training overhead of the ML-QEM model in VQE with different Hamil-
tonians can be significantly reduced by generalizing to mitigating unseen Pauli observables
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in Sec. 2.3. By decomposing Ĥ = ∑i ciP̂i into Pauli terms, the ML-QEM only needs to
train on the sampled ansatz Û(θ⃗) with a subset of the Pauli observables in Ĥ. This is
demonstrated in our experiment shown in Fig. 2.6(b) where the random forest is trained
on sampled ansatz Û(θ) measured in X̂1X̂2 and Ẑ1Ẑ2 (1,000 for each observable), while the
Hamiltonian of the H2 molecule at each bond length consists of X̂1X̂2, Ẑ1Ẑ2, Î1Ẑ2 and Ẑ1Î2
Pauli observables [97].

Scalability through Mimicry

For large-scale circuits whose ideal expectation values of certain observables are inefficient or
impossible to obtain by classical simulations, we cannot train the model to mitigate expecta-
tion values towards the ideal ones. Rather, we could train the model to mitigate expectation
values towards values mitigated by other scalable QEM methods, enabling scalability of
ML-QEM through mimicry. Mimicry can be concretely visualized using the workflow for
ML-QEM depicted in Fig. 2.1 with an error-mitigated QPU selected instead of a noise-
less simulator, as we show in the inset of Fig. 2.7. Performing mimicry does not allow the
ML-QEM model to outperform the mimicked QEM method by its nature, but allows the
ML-QEM model to reduce the overhead compared to the traditional ML-QEM.

We demonstrate this capability by training an ML-QEM model to mimic digital ZNE in
a 100-qubit Trotterized 1D TFIM experiment on ibm_brisbane. In particular, we use ZNE
to mitigate five single-qubit Ẑi observables on five qubits on the Ising chain with varying
numbers of Trotter steps and J/h values. Each Trotter step contains 4 layers of parallel
CNOT gates, and the circuits at Trotter step 10 have 1,500 CNOT gates in total. As shown
in the top of Fig. 2.7, we first confirm that the ZNE-mitigated expectation values are more
accurate than the unmitigated ones by benchmarking ZNE on a 100-qubit Trotterized Ising
circuit with h = 0.5π and J = 0 such that it is Clifford and classically simulable. We then
train a random forest model to mitigate noisy expectation values the same way that ZNE
does. In this experiment, we apply Pauli twirling to all the circuits, each with 5 twirls, before
applying either extrapolation in digital ZNE or the ML-QEM to mitigate the expectation
values.

We then find that the ML-QEM models are able to accurately mimic the traditional
method’s mitigated expectation values. The average distance from the unmitigated result
(after twirling average) for the mitigated expectation values produced by ZNE and the ran-
dom forest model mimicking ZNE are very close for all Trotter steps, as shown for specific
J and h corresponding to non-Clifford circuits in the second and third panel of Fig. 2.7.
In the fourth and bottom panel showing the residuals between the ZNE-mitigated and RF-
mimicking-ZNE-mitigated values averaged over the training set comprising non-Clifford cir-
cuits, we see that RF mimicks ZNE well. This result demonstrates that ML-QEM methods
can scalably accelerate traditional quantum error mitigation methods by mimicking their
behavior when exact expectation values cannot be computed classically. In this experiment,
although 1D TFIM is analytically solvable, the Trotter errors should be taken into consid-
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eration, and thus the exact expectation values of the circuits are not easily accessible, and
thus not shown.

Importantly, this mimicry approach requires less quantum computational overhead both
overall and at runtime. For this experiment, we test on 40 different coupling strengths J for
h = 0.66π, each of which is used to generate 10 circuits with up to 10 Trotter steps, or 400 test
circuits in total. The traditional ZNE approach with 2 noise factors requires 2 × 400 = 800
circuits. In contrast, the RF-mimicking-ZNE approach here is trained with 10 different
coupling strengths J for h = 0.66π, each of which generates 10 circuits with up to 10 Trotter
steps, or 100 total training circuits. Therefore, the RF-mimicking-ZNE approach requires
only 2×100+400 = 600 total circuits, resulting in 25% overall lower quantum computational
resources. The savings are even more drastic at runtime—again, the ZNE approach with 2
noise factors requires 2 circuits to be executed per test circuit, whereas each test circuit only
has to be executed once for RF-mimicking-ZNE-based mitigation, resulting in 50% savings.
We expect the error of the mimicry to shrink should more training data be provided. We
report approximately 0.14 QPU hours (based on a conservative sampling rate of 2 kHz [70])
to generate all the training data and seconds to train the model with a single-core laptop
for this experiment.

Efficient Adaptability to Drifted Noise

Because the noise in quantum hardware can drift over time, an ML-QEM model trained on
circuits run on a device at one point in time may not perform well at another point in time
and may require adaption to the drifted noise model on the device. Therefore, we explore
whether an ML-QEM model can be fine-tuned for a different noise model and show that
similar performance can be achieved with substantially less training data.

In particular, we fine-tune an MLP and compare its learning rate against RF. The MLP
can be fine-tuned on a different noise model after they have been originally trained on a noise
model. The fine-tuning is expected to require only a small number of additional samples—
this is demonstrated in Fig. 2.8 with the MLP trained on noise model A (FakeLima) and
fine-tuned on noise model B (FakeBelem) which converges after ∼ 300 fine-tuning circuits. On
the other hand, an MLP trained from scratch and tested on a noise model B shows a slower
convergence after ∼ 500 training circuits, though both fine-tuning and training from scratch
produce the same testing performance. We also compare them with an RF trained from
scratch, which converges after fewer than ∼ 300 training circuits, demonstrating excellent
efficiency in training an RF model. While future research can investigate in more detail
the drift in noise affecting the ML model performance, we show evidence that MLP can be
efficiently adapted to new device noise and that RF can be trained as efficiently from scratch
to new device noise.
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Figure 2.8: Updating the ML-QEM models on the fly. Comparing the efficiency and perfor-
mance of ML models, fine-tuned or trained from scratch, on a different noise model. Noise
model A represents FakeLima and noise model B represents FakeBelem. All training, fine-
tuning, and testing circuits are 4-qubit 1D TFIM measured in a random Pauli basis for four
weight-one observables. The solid purple curve shows the testing error on noise model B of
an MLP model originally trained on 2,200 circuits run on noise model A and fine-tuned incre-
mentally with circuits run on noise model B. The dashed purple curve shows the testing error
on noise model B of another MLP model trained only on circuits from noise model B. The red
curve shows the testing error on noise model B of an RF model trained only on circuits from
noise model B. All three methods converge with a small number of training/fine-tuning sam-
ples from noise model B. While the testing error of the fine-tuned and trained-from-scratch
MLP models converged, both were outperformed by a trained-from-scratch RF model. This
provides evidence that ML-QEM can be efficient in training.

2.4 Statistical Learning Models
Here, we discuss each of the statistical model (schematics shown in Fig. 2.9), data encoding
strategies, and hyperparameters used in this study. We emphasize that the performance of
a model depends on factors such as the size of the training dataset, encoding scheme, model
architecture, hyper-parameters, and particular tasks. Therefore, from a broader perspective,
we hope that the models in this work provide a sufficient starting point for practitioners of
quantum computation with noisy devices to make informed decisions about the most suitable
approach for their application.
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Figure 2.9: Overview of the four ML-QEM models and their encoded features. (a) Linear
regression (specifically ordinary least-square (OLS)): input features are vectors including
circuit features (such as the number of two-qubit gates n2Q and SX gates nSX), noisy expec-
tation values ⟨Ô⟩noisy, and observables Ô. The model consists of a linear function that maps
input features to mitigated values ⟨Ô⟩mit. (b) Random forest (RF): the model consists of
an ensemble of decision trees and produces a prediction by averaging the predictions from
each tree. (c) Multi-layer perception (MLP): the same encoding as that for linear regression
is used, and the model consists of one or more fully connected layers of neurons. The non-
linear activation functions enable the approximation of non-linear relationships. (d) Graph
neural network (GNN): graph-structured input data is used, with node and edge features
encoding quantum circuit and noise information. The model consists of multiple layers of
message-passing operations, capturing both local and global information within the graph
and enabling intricate relationships to be modeled.

Linear Regression

Linear regression is a simple and interpretable method for ML-QEM, where the relationship
between dependent variables (the ideal expectation values) and independent variables (the
features extracted from quantum circuits and the noisy expectation values) is modeled using
a linear function.

One relevant work in this area is Clifford data regression, proposed by Czarnik et al. [83].
In their approach, the authors first replace most of the non-Clifford gates with nearby Clifford
gates in the target circuit of interest, then use a linear regression model to regress the noisy
expectation values of those circuits onto the ideal ones. Our linear regression model differs
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in two main aspects. Firstly, we extend the feature set to include counts of each native gate
where native parameterized gates are counted in binned angles, the Pauli observable in sparse
Pauli operator representation, and optional device-specific noise parameters. Secondly, our
model does not necessarily require training on Clifford versions of the target circuits, although
this option remains available if desired.

We train a linear regression model that takes these features as input and predicts the
ideal expectation values. The model minimizes the sum squared error between the mitigated
and the ideal expectation values using a closed-form solution, which is named ordinary least
squares (OLS). The linear regression model can also be trained using other methods, such
as ridge regression, LASSO, or elastic net. These methods differ in their regularization
techniques, which can help prevent overfitting and improve model generalization. In our
experiments, we use OLS for its simplicity and ease of interpretation. We note that standard
feature selection procedures also help to prevent overfitting and collinearity in practice.

Random Forest

Random forest (RF) is a robust, interpretable, non-linear decision tree-based model to per-
form quantum error mitigation. As an ensemble learning method, it employs bootstrap
aggregating to combine the results produced from many decision trees, which enhances pre-
diction accuracy and mitigates overfitting. Moreover, each decision tree within the random
forest utilizes a random subset of features to minimize correlation between trees, further
improving prediction accuracy.

The input features to the random forest model are extracted from the quantum circuits,
specifically counts of each native gate on the backend (native parameterized gates are counted
in binned angles), the Pauli observable in sparse Pauli operator representation, and optional
device-specific noise parameters. We train a random forest regressor with a specified large
number of decision trees on the training data. Given all the features, the random forest
model averages the predictions from all its decision trees to produce an estimate of the ideal
expectation value.

For RF, we used 100 tree estimators for each observable. The tree construction process
follows a top-down, recursive, and greedy approach, using the Classification and Regression
Trees (CART) algorithm. For the splitting criterion, we employ the mean squared error
reduction for regressions. For each tree, at least 2 samples are required to split an internal
node, and 1 feature is considered when looking for the best split.

Multi-layer Perceptron

Multi-layer perceptrons (MLPs), first explored in the context of QEM in Ref. [82], are
feedforward artificial neural networks composed of layers of nodes, with each layer fully
connected to the subsequent one. Nodes within the hidden layers utilize non-linear activation
functions, such as the rectified linear unit (ReLU), enabling the MLP to model non-linear
relationships.
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We construct MLPs with 2 dense layers with a hidden size of 64 and the ReLU activation
function. The input features are identical to those employed in the random forest model. To
train the MLP, we minimize the mean squared error between the predicted and true ideal
expectation values, employing backpropagation to update the neurons. The batch size is
32, and the optimizer used is Adam [55] with an initial learning rate of 0.001. In practice,
regularization techniques like dropout or weight decay can be used to prevent overfitting
if necessary. The MLP method demonstrates competitive performance in mitigating noisy
expectation values, as evidenced by our experiments. However, it should be noted that MLPs
are also susceptible to overfitting in this context.

Graph Neural Network

As the most complex model among the four, graph neural networks (GNNs) are designed to
work with graph-structured data, such as social networks [98] and chemistry [99]. They can
capture both local and global information within a graph, making them highly expressive and
capable of modeling intricate relationships. However, their increased complexity results in
higher computational costs, and they may be more challenging to implement and interpret.

A core aspect of our ML-QEM with GNN lies in data encoding, which consists of encoding
quantum circuits, and device noise parameters into graph structures suitable for GNNs.
Before data encoding, each quantum circuit is first transpiled into hardware-native gates
that adhere to the quantum device’s connectivity. To encode them for GNN, the transpiled
circuit is converted into an acyclic graph. In the graph, each edge signifies a qubit that
receives instructions when directed towards a node, while each node corresponds to a gate.
These nodes are assigned vectors containing information about the gate type, gate errors,
as well as the coherence times and readout errors of the qubits on which the gate operates.
Additional device and qubit characterizations, such as qubit crosstalk and idling period
duration, can be encoded on the edge or node, although they are not considered in the
current study.

The acyclic graph of a quantum circuit, serves as input to the transformer convolution
layers of the GNN. These message-passing layers iteratively process and aggregate encoded
vectors on neighboring nodes and connected edges to update the assigned vector on each
node. This enables the exchange of information based on graph connectivity, facilitating the
extraction of useful information from the nodes which are the gate sequence in our context.
The output, along with the noisy expectation values, is passed through dense layers to
generate a graph-level prediction, specifically the mitigated expectation values. As a result,
after training the layers using backpropagation to minimize the mean squared error between
the noisy and ideal expectation values, the GNN model learns to perform quantum error
mitigation.

For the GNN, we use 2 multi-head Transformer convolution layers [100] and ASAPooling
layers [101] followed by 2 dense layers with a hidden size of 128. Dropouts are added to
various layers. As with the MLP, the batch size is 32, and the optimizer used is Adam [55]
with an initial learning rate of 0.001.
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2.5 Discussion
In this chapter, we have presented a comprehensive study of machine learning for quantum
error mitigation (ML-QEM) methods, including linear regression, random forest, multi-layer
perceptrons, and graph neural networks, for improving the accuracy of quantum computa-
tions. First, we conducted performance comparisons over many practically relevant contexts;
they span circuits (random circuits and Trotterized 1D transverse-field Ising circuits), noise
models (qubit decoherence, readout, depolarizing gate, and/or coherent gate errors), and
applications (mitigating unseen Pauli observables and enhancing variational quantum eigen-
solvers) studied here, we find that the best-performing model is the random forest (RF).
Notably, RF is a non-linear model that is more complex than linear regression but less so
than multi-layer perceptrons and graph neural networks, pointing to the importance of se-
lecting the appropriate model based on the complexity of the target quantum circuit and
the desired level of error mitigation. Second, we demonstrated that ML-QEM methods can
perform better than a traditional method, zero-noise extrapolation (ZNE). Paired with the
ability to mitigate at runtime by running no additional mitigation circuits, ML-QEM reduces
the runtime overhead of traditional methods; for instance, it reduces the runtime overhead by
a factor of at least 2 compared to digital ZNE. Therefore, ML-QEM can be especially useful
for algorithms where many circuits that are similar to each other are executed repeatedly,
such as quantum state tomography-like experiments and variational algorithms. Finally,
we find that ML-QEM can even effectively mimic other mitigation methods, providing very
similar performance but with a lower overhead at runtime. This allows the ML-QEM to
scale up to classically intractable circuits.

Future research in ML-QEM can focus on several directions to further enhance the train-
ing efficiency, performance, scalability, or generalizability of these methods. First, the train-
ing set can be optimized in terms of both the size and type of the training circuits subject
to design principles. In the case of the Trotter circuit for example, a simple principle would
maximize informational content in training by picking highly different circuits in informa-
tion content by for example employing symmetry structures in the circuit [84], or focusing
on deeper over shallower circuits. Further, one can make assumptions about errors of single-
qubit gates [87] or could focus on Clifford or near-Clifford circuits [83, 84, 87, 102]. Second,
better encoding strategies that incorporate other significant information about the circuit
and the noise model, such as pulse shapes, and output counts, could lead to even more ac-
curate error mitigation. Third, one could study the effect of the drift of noise in hardware
on the machine learning model. This would allow one to optimize the resources needed to
fine-tune the neural network models or train even to retrain a simple random forest model
from scratch periodically. As a step in this direction, we provide evidence that the models
can be efficient in fine-tuning to adapt to a change in the noise model, as shown in Sec. 2.3.
Fourth, when trained with different noise models and their corresponding noisy expectation
values, it is interesting to investigate if setting the noise parameters encoded in GNN, to the
low-noise regime (e.g., setting encoded gate error close to zero and the encoded coherence
times to a large value) allows the GNN to predict the expectation values close to the ideal
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expectation value without ever training on them, and thus providing potential advantages
on both accuracy and efficiency when scaling up to classically-intractable circuits. In other
words, it is an open question whether the GNN can “extrapolate” to zero noise without specif-
ically amplifying the noise on the target circuit but knowing the noisy expectation values
from different noise models on different circuits. Fifth, ML-QEM can be more rigorously op-
timized and benchmarked against leading methods, such as PEC, PEA, and pulse-stretching
ZNE. Finally, extending these methods to other quantum computing tasks and applications
will help to further establish the utility of ML-QEM as a powerful tool for improving the
accuracy and reliability of quantum computations.

In conclusion, our study underscores the potential of ML-QEM methods for enhancing
quantum computations. Understanding the strengths and weaknesses of different models
and developing strategies to improve their efficiency paves the way for increasingly robust
and accurate applications of quantum computing.



72

Part II

Quantum Machine Learning
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Chapter 3

Adversarial Attacks on Quantum
Machine Learning

This chapter is derived from previously published work by Liao, Convy, Huggins, and Wha-
ley [95], which derived the adversarial robustness of general quantum machine learning mod-
els with angle encoding classifying general, naturally-generated classical datasets and showed
that it only decreases mildly as O(1/

√
n) in the number of qubits.

3.1 Background on Quantum Machine Learning and
Adversarial Attacks

Quantum machine learning (QML) protocols, by exploiting quantum mechanics principles,
such as superposition, tunneling, and entanglement [103], have given hope of outperform-
ing their classical counterparts, even with noisy intermediate-scale quantum (NISQ) [104]
hardware in the near-term [105]. For classification tasks where statistical patterns can be
revealed in complex feature spaces, the high-dimensional Hilbert space of sizable quantum
systems offers a naturally advantageous starting ground for QML models. However, many
state-of-the-art classical machine learning models, such as deep neural networks with compli-
cated internal feature mappings, have been shown vulnerable to small crafted perturbations
to the input, namely adversarial examples [106, 107]. These are intentional worst-case per-
turbations to the original samples with an imperceptible difference that are nevertheless
misclassified by the classifier. This not only raises questions as to why well-performing
classifiers suffer from such instabilities but also poses security threats to machine learning
applications that emphasize reliability, such as in spam filtering [108]. To understand this
unreliable behavior, the transferability of these attacks across different architecture and the
robustness against perturbations has led to extensive investigations in the classical machine
learning community in recent years [109, 110, 111]. Notably, some geometric and proba-
bilistic arguments, based on curvatures of decision boundaries [112] and the concentration
of measure [113, 114, 115, 116, 117], have been employed to quantify the risk of adversarial
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attacks in various settings. It has been shown that any classifier will have an adversarial
robustness that is increasingly reduced by the dimension of the space on which it classifies,
given the concentration of measure phenomenon in certain metric probability spaces [113].
This has raised attention in the QML community where the models take advantage of the
high dimensionality of quantum systems [118, 119, 120, 121]

The concentration of measure is a phenomenon that describes the fact that, in certain
metric probability spaces, points tend to gather around the boundaries of subsets having at
least one half of the probability measure. As a result, there is generically a high probability
of obtaining values close to the average for any reasonably smooth function that is evaluated
on the distribution [122, 123, 124, 125, 126]. This means that when samples are selected from
such a concentrated space, the confidences predicted by the classifier tends to accumulate
around the critical value separating the correct and incorrect classes. As such, small targeted
perturbations can then easily move the samples across the decision boundary. In particular,
it has been recognized that this phenomenon can lead to extreme vulnerabilities of any
quantum classifier on high-dimensional Haar-random pure states [118]. Nevertheless, there
is no indication of whether such vulnerability exists when classifying on a subset of encoded
pure states in a realistic task, such as using a quantum classifier on classical images encoded
in pure states.

In this study, we approach the task of classifying quantum states from a geometric per-
spective. The quantum classifier divides the Hilbert space into subsets, each of which belongs
to a certain class. We use this perspective here to study aspects of the problem that are
relevant to practical applications of QML. In a practical classification task, such as in recog-
nizing natural images, the samples to be classified can be generated from a Gaussian latent
space by one of a number of commonly-used generative models [127, 128, 129, 130, 131].
The success of these models for real-world data generation ensures that the focus on QML
models classifying a subset of encoded pure states, where these states are sampled from a
distribution that is smoothly mapped from a Gaussian latent space [117], will yield insight
into the vulnerability of QML models in a real-world classification task. This contrasts with
the previous analysis of the vulnerabilities when classifying Haar-random pure states [118].

We demonstrate that the adversarial robustness over this generated distribution decreases
as O(1/

√
n) in the number of qubits n, with the scaling measured in the trace norm. This

decline in the robustness is mild, indicating a quantum classifier can be robust to attacks
on high dimensional quantum states. In contrast, when considering prediction-change ad-
versarial settings where the inputs are pure states drawn Haar-randomly, we show that the
robustness decreases as O(1/2n) in the number of qubits n, implying extreme vulnerabilities
to attacks in high-dimensional quantum systems. This second case parallels the result of
reference [118], which considered error-region adversarial settings and found the robustness
also decreases as O(1/2n) here. However, we argue that the extreme vulnerability in this
setting is not of concern in practice, since the states to be classified are always sampled from
a distribution over some subsets of states, rather than from the Haar-random distribution
over the entire set of pure states.

The rest of the chapter is structured as follows. In Section 3.1, we introduce the set-
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ups and preliminaries in both classical and quantum adversarial attacks. In Section 3.2,
we describe the prediction-change adversarial setting, which is often more relevant to real-
world classification tasks than the previously employed error-region adversarial setting. We
then derive the prediction-change adversarial robustness of any quantum classifier on Haar-
randomly distributed pure states and explain its practical limitations. In Section 3.3, we
derive the main results on the adversarial robustness of any quantum classifier classifying a
smoothly generated distribution over a subset of encoded pure states of interest, and propose
a feasible modification to any quantum classifier to lower bound unconstrained adversarial
robustness. In Section 3.12, a summary and discussion of the derived robustness over the
two types of distribution are presented.

Classical Adversarial Attacks

Classical adversarial attacks were introduced to analyze the instability of deep neural net-
works caused by a small change to the input sample. Classically, the confidence is often
quantified as the probability corresponding to the label class in the output normalized dis-
crete distribution, e.g., the largest softmax value in the output vector in a multi-class logistic-
regression convolutional neural network. As numerically shown in various works, such an
attack results in a significant drop in the confidence in the correct class [106, 132, 133, 110],
and may also bring a significant increase in the confidence in the incorrect class [107]. So
far, some arguments have been proposed to explain the vulnerabilities of various classifiers
to adversarial attacks and their transferability [107, 134, 135, 136, 116], yet no conclusive
consensus has been established [137].

The most common type of adversarial attack is the evasion attack where the adver-
sary does not interfere with the training phase of a classifier and perturbs only the testing
samples [109]. The adversary can devise white-box attacks if it possesses total knowledge
about the classifier architecture, or otherwise, it can devise black-box attacks relying on the
transferability [109, 110]. We shall focus on white-box evasion attacks.

We introduce some notations and definitions used in this study. Let (X ,d, µ) denote the
sample set X with a metric d and a probability measure µ. The notation x ← µ denotes
that a sample x is drawn with a probability measure µ. L denotes the countable label set.
For a subset S ⊆ X , we let d(x,S) = inf{d(x, y)∣y ∈ S} and let Bϵ(x) = {x′∣d(x,x′) ≤ ϵ} be
the ϵ-neighborhood of x, where d is the metric on X . We also let Sϵ = {x∣d(x,S) ≤ ϵ} be the
ϵ-expansion of S. h is a hypothesis or a trained classifier that maps each x ∈ X to a predicted
label l ∈ L. c is the ground-truth function that maps each x ∈ X to a correct label l ∈ L.
hl denotes the set of samples classified as label l, namely hl = {x ∈ X ∣h(x) = l}. The error
region M is the set of samples on which the hypothesis disagrees with the ground truth,
namelyM = {x∣h(x) ≠ c(x)}. We define the risk as R(h, c) = Prx←µ[h(x) ≠ c(x)] = µ(M).

The two relevant types of evasion attacks studied here are based on the error region and
the prediction change. In an error-region attack, the ground-truth function c is accessible
and an attack occurs when a perturbation in the sample causes h to disagree with c. In
contrast, a prediction-change attack emphasizes the instability of h: an attack occurs when



CHAPTER 3. ADVERSARIAL ATTACKS ON QUANTUM MACHINE LEARNING 76

a perturbation results in a different prediction by h, and c is irrelevant. The precise definitions
of these two types of attacks are as follows.
Definition 1 . The error-region adversarial risk under ϵ-perturbation is the probability of
drawing a sample such that its ϵ-neighborhood intersects with the error region,

RER
ϵ (h, c, µ) = Pr

x←µ
[∃x′ ∈ Bϵ(x)∣h(x′) ≠ c(x′)].

Definition 2 . The prediction-change adversarial risk under ϵ-perturbation is the probability
of drawing a sample such that its ϵ-neighborhood contains a sample with a different label,

RPC
ϵ (h,µ) = Pr

x←µ
[∃x′ ∈ Bϵ(x)∣h(x) ≠ h(x′)],

equivalently,

RPC
ϵ (h,µ) = Pr

x←µ
[min
x′∈X
{d(x′, x)∣h(x′) ≠ h(x)} ≤ ϵ] .

In either type of attack, we call the nearest misclassified examples the adversarial exam-
ples. We say that h is more robust if the induced risk of either type is lower for a certain
ϵ-perturbation. We shall refer to the minimal ϵ-perturbation to x resulting in an adversarial
example as the adversarial perturbation or the robustness of x with h. In contrast, we shall
quantify the adversarial robustness of h as the size of ϵ necessary for the adversarial risk of
h to be upper bounded by some constant. The main result of this study is an upper bound
on the adversarial robustness of any quantum classifier when the input states are smoothly
generated from a Gaussian latent space.

Quantum Adversarial Attacks

For our work, a quantum classifier is a quantum channel E that assigns labels l with some
set of positive-operator-valued measures (POVMs) {Πl}. The quantum classifier takes in an
ensemble of identically prepared copies of a state and assigns the state a label l. The confi-
dence of a prediction is quantified as the expectation value of the POVM for the prediction l,
namely tr(E(ρ)Πl) for an input density matrix ρ. We do not consider the number of copies
of a state that is required to implement any specific quantum classification protocol. To
measure the perturbation size, the natural choice of metric on quantum states – the trace
distance – can be shown to generate an upper bound on the difference between their quantum
classification confidence (see Section 3.4), which implies that no small variation can induce a
large swing in the predictive confidence. This property of the trace distance is a consequence
of its interpretation as the achievable upper bound on the total variation distance1 between
probability distributions arising from measurements performed on those quantum states [8].
Furthermore, we show in Section 3.4 that the Hilbert-Schmidt norm, the Bures distance,
and the Hellinger distance between two quantum states all generate a similar upper bound.

1Informally, total variation distance is the largest possible difference between the probabilities that the
two distributions can assign to the same event.
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As a result, in quantum adversarial attacks, the adversary either perturbs the states near
the decision boundary minimally to seek misclassification, or aims to maximize confidence
change to any state with associated perturbations that are upper bounded by some consid-
erable size in these norms, as illustrated in Figure 3.1. Our work analyzes primarily the
risks due to the former objective. In Section 3.5, we also propose a method for the latter
objective exploiting the reversibility of parametrized quantum circuits (see e.g. [138, 139]).
We note that the latter adversarial setting is justified, since in order to assess the security
of a classifier under attack, it is reasonable – given a feasible space of modifications to the
input data – to assume that the adversary aims to maximize the classifier’s confidence in
wrong predictions, rather than merely perturbing minimally in size [110].

Figure 3.1: The solid curve depicts the decision boundary of a quantum classifier. The
states in blue are classified in a different class from the states in red. The metric is the
trace distance. The trace distance between any pair of states generates an upper bound on
the difference between their quantum classification confidences. Thus ρ∗, the state closest
to the decision boundary, is the ideal target of a prediction-change adversarial attack if
the adversary aims to achieve misclassifications with minimal perturbations. On the other
hand, if the adversary aims to maximize confidence change to any state with associated
perturbations of size up to D, then all states between the dashed lines can be perturbed
to be misclassified, while all other states can be perturbed to get closer to the boundary,
resulting in overall decreased confidence in predicting the correct class. The concentration
of measure phenomena implies that for a sufficiently large class, samples tend to lie near the
decision boundary.

There are two natural set-ups of adversarial attacks in QML that can be specified. The
first is when the input data to the classifier is already quantized and any data transmitted
through the quantum communication network comes from an untrusted party. In this case,
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the adversary, who may be the sender or an interceptor, can perform an attack either by
perturbing each of the transmitted density matrices, or by intercepting a fraction of the
copies of the state and substituting them entirely (see Section 3.4). In a broader context,
our analysis can be extended to include the instability of classifying quantum states subject
to decoherence. We focus on this first set-up in the current study. The second set-up is
when the input to the quantum classifier is classical. The quantum classifier encodes the
classical data before classifying. Since the adversary is perturbing the classical input data,
it is effectively attacking classically. If one views such a quantum classifier as a black-boxed
hypothesis function that maps each input to a class, any classifier-agnostic classical analysis
of adversarial robustness can then be directly applied. For example, reference [112] analyzes
the robustness of any classifier against random or semi-random perturbations, provided the
curvature of the decision boundary is sufficiently small, while reference [117] analyzes the
adversarial robustness of any classifier when classical input vectors are smoothly mapped
from a Gaussian latent representation.

Quantum Data Encoding

We now explain the feature maps used throughout the study. Considering a normalized
positive vector u of length n, without loss of generality, we intuitively refer to it as a gray-
scale image with n pixels in this study. We focus on a particular set of encoding schemes
where the normalized gray-scale value of each pixel, i.e., ui ∈ [0,1], i = 1, . . . , n, is featurized
into a qubit-encoding state ∣ϕi⟩. The product state ∣ϕ⟩ to be classified is a tensor product
state of these qubit-encoded pixels in the 2n-dimensional Hilbert space [140, 141, 142, 143],
namely

∣ϕ⟩ =
n

⊗
i=1

∣ϕi⟩ =
n

⊗
i=1

[cos(π
2
ui) ∣0⟩ + sin(

π

2
ui) ∣1⟩] . (3.1)

The qubit-encoding states, Eq. (3.1), do not require a quantum random access memory
(QRAM) [144] and are efficient in time to prepare. Other schemes including amplitude
encoding (see e.g., [145]) are not considered here. We note that some of our results are
general and independent of the encoding scheme. We further generalize Eq. (3.1) to qudits.
In this case each pixel is mapped to a Hilbert space of higher dimension d ≥ 2, with the
coefficient of the j-th component of the i-th qudit state given by

∣ϕi⟩j =
√
(d − 1
j − 1
) cosd−j (π

2
ui) sinj−1 (π

2
ui) . (3.2)

These qudit states are special cases of what are known as spin-coherent states [140], and the
qubit states in Eq. (3.1) correspond to d = 2.
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Concentration of Measure Phenomenon

To describe this phenomenon, let Σ ⊆ X be a Borel set2. The concentration function, defined
as

α(ϵ) = 1 − inf
Σ⊆X
{µ(Σϵ)∣µ(Σ) ≥

1

2
} , (3.3)

has a smaller value when more points are aggregated in the ϵ-expansion of a sufficiently
large set Σ, for a fixed ϵ. Informally, a space X exhibits a concentration of measure if
α(ϵ) decays very fast as ϵ grows, and we shall refer to it as a concentrated space. This is
true for a simple example – the standard Gaussian distribution (R, ℓ2,N (0,1)). Looking at
the Borel set Σ = (−∞,0) whose probability measure is 1/2, the cumulative density outside
its ϵ-expansion, namely R/Σϵ = (ϵ,+∞), decreases at least as fast as exp(−ϵ2/2) by the tail
bound [146]. One can invoke isoperimetric inequality [147] to show that this clustering occurs
around any Borel set with measure at least 1/2 and applies to any canonical m-dimensional
Gaussian measure in the Euclidean space (see Section 3.10). More formally, a family of
N -dimensional spaces with corresponding concentration functions αN(⋅) is called a (k1, k2)-
normal Lévy family if αN(ϵ) ≤ k1 exp(−k22ϵ2N), where k1 and k2 are particular constants.
Consequently, the measure is more concentrated for a higher dimension. Two notable normal
Lévy families are SU(N) and SO(N), both of which are equipped with the Hilbert-Schmidt
norm L2 and the Haar probability measure ν [148, 149]. An implication of this phenomenon
is that when points x are drawn from a highly concentrated space, for any function f varying
not rapidly, we have f(x) ≈ ⟨f⟩ with high probability. Lévy’s Lemma [122, 123] constitutes
a specific example of this.

Related Work

The work in [113] considered any normal Lévy family and derived the robustness for error-
region adversarial attacks. The results show that for a nice classification problem3, if µ(M) =
Ω(1), the size of perturbations must beO(1/

√
N) in order to have the error-region adversarial

risk upper bounded by some constant, where N is the dimension of the concentrated space.
References [115, 114] studied some specific concentrated spaces and revealed the same scaling.

Reference [118] transforms the classification of pure states ∣ϕ⟩ into that of unitaries U in
∣ϕ⟩ = U ∣0⃗⟩ for some fixed initial state ∣0⃗⟩. These quantum classifiers then classify samples
drawn from SU(N) equipped with the Haar probability measure ν and the Hilbert-Schmidt
norm, which is a (

√
2,1/4)-normal Lévy family. Therefore, if µ(M) > 0, the necessary

condition on the perturbation size for the error-region adversarial risk to be bounded above
by 1 − γ for some γ ∈ [0,1] is O(1/

√
N). Precisely, to have RER

ϵ (h, c, ν) ≤ 1 − γ, the ϵ-
2Borel sets are sets that can be constructed from open or closed sets through countable union, countable

intersection, and relative complement
3The precise definition of a nice classification problem can be found in Definition 2.3 in [113].
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perturbation to any unitary must be upper bounded as4

ϵ ≤
√

4

N

⎡⎢⎢⎢⎢⎢⎣

¿
ÁÁÀln(

√
2

µ(M)
) +

¿
ÁÁÀln(

√
2

γ
)
⎤⎥⎥⎥⎥⎥⎦
. (3.4)

3.2 Problems with Practical Classifications
The result in Eq. (3.4) claims that when classifying unitaries in SU(N) with the Haar mea-
sure, given that an adversary can devise white-box attacks and µ(M) not exponentially
suppressed by N , the robustness of any quantum classifier decreases polynomially in the di-
mension of the input N . This is daunting since the input has a dimension N = dn exponential
in the number of qudits.

To apply any result related to Eq. (3.4), a ground-truth function c on SU(N) is needed to
obtain the risk µ(M). However, c may not be easily defined in a real-world machine learning
task. For instance, it is challenging to define what constitutes a mistake for visual object
recognition. After adding a perturbation to an image, it likely no longer corresponds to a
photograph of a real physical scene [150]. Furthermore, it is difficult to define the labels for
images undergoing gradual semantic change. All of these factors complicate the evaluation
of µ(M). It thus motivates us to focus on prediction-change adversarial risks (see e.g., [115,
150, 112]) in order to avoid requiring access to the ground truth. The following theorem and
corollary then apply.
Theorem 2 . Let SU(N) be equipped with the Haar measure ν and the Hilbert-Schmidt
norm L2. For any hypothesis h ∶ SU(N) → L that is not a constant function, let η ∈ [0,1/2]
determine the measure of the dominated class such that ν(hl) ≤ 1−η,∀l ∈ L. Suppose U ∈ hl,
V ∉ hl and a perturbation U → V occurs, where ∥U − V ∥2 ≤ ϵ. If the prediction-change
adversarial risk RPC

ϵ (h, ν) ≤ 1 − γ, then ϵ must satisfy

ϵ ≤
√

4

N

⎡⎢⎢⎢⎢⎢⎣

¿
ÁÁÀln(2

√
2

η
) +

¿
ÁÁÀln(2

√
2

γ
)
⎤⎥⎥⎥⎥⎥⎦
. (3.5)

It is evident from Eq. (3.5) that the upper bound on the size of the perturbation ϵ is
suppressed as the dimension N of the space increases. It is also suppressed when the measure
of the dominated class (1−η) decreases and when the tolerance on the adversarial risk (1−γ)
decreases.
Corollary 1 . With ρ = U ∣0⃗⟩ ⟨0⃗∣U † and σ = V ∣0⃗⟩ ⟨0⃗∣V †, Eq. (3.5) translates to a necessary
upper bound in the trace norm between the pure-state density matrices

∥ρ − σ∥1 ≤
4

N
λ1 = Ω(d−n).

4A concise proof of Eq. (3.4) can be found in Section 3.6.
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With the qudit encoding in Eq. (3.2), a naive translation of this necessary upper bound to
that in the ℓ1 norm of the encoding vectors u and v gives,

∥u − v∥1 ≤
2n

π
cos−1 [(1 − 2

N
λ1)

1
(d−1)n

] = Ω(d−n
2

√
n),

where N = dn and λ1 = [ln(2
√
2/η)]1/2 + [ln(2

√
2/γ)]1/2 with η and γ defined in Theorem 2.

The proofs can be found in Section 3.7 and 3.8. The interpretation of Theorem 2 and
Corollary 1 is clear: given that no class occupies Haar-measure 1, any quantum classifier
on quantum states is more vulnerable to prediction-change adversarial attacks on higher-
dimensional pure states drawn Haar-randomly, with the robustness decaying exponentially
in the number of qudits.

In what follows, we apply this theorem to a practical task by presenting two perspectives
on the application, in order to illustrate the limitations of the theorem. Suppose that the
objective of the practical task is to classify a subset of quantum states, for example, the pure
product states in Section 3.1 that encode images displaying a digit 0 or 1. On one hand,
if we label unitaries not related to an actual image, together with unitaries associated with
noisy images not displaying a digit 0 or 1, in a third-class, this class will have measure 1,
since the set of all unitaries that evolve the initial ∣0⃗⟩ to some final pure product state ∣ϕ⟩ has
Haar measure 0 in SU(N) [151]. For example when n = 1, this can be seen by recognizing
that the encoded states {∣ϕ⟩} correspond to only a fraction of the circle going through ∣0⟩
and ∣1⟩ on the Bloch Sphere. This labeling renders Theorem 2 useless for any h trained in
this way because η = 0. On the other hand, if we train a binary h to classify half of SU(N),
including unitaries corresponding to 0-digit images, to l = 0, and the other half, including
unitaries corresponding to 1-digit images, to l = 1, then η = 1/2. Using Eq. (3.5) then
gives O(1/

√
dn) robustness against prediction-change adversarial attacks, again suggesting

extreme vulnerabilities in high dimensions.
However, the interpretation of this result is not of practical interest, for the following rea-

sons. We emphasize that in applying Theorem 2 or Eq. (3.4), the notion of adversarial risks
by Definition 2 represents the probability of perturbing a Haar-randomly selected unitary
by some ϵ to its adversarial example. It does not represent, for instance, the probability of
perturbing a particular unitary associated with a real image to its adversarial example, nor
does it represent the risk of attacking a unitary drawn from any other distribution over some
subset. Therefore, if the task is to train and generalize a quantum classifier on a subset of
quantum states with some distribution, this theorem cannot claim vulnerabilities that are
exponential in the number of qudits. It is also noted that, as far as how Eq. (3.4) and The-
orem 2 are formulated, the perturbed states cannot be mixed states since these are mapped
from ∣0⃗⟩ ⟨0⃗∣ by a completely positive and tracing preserving (CPTP) maps rather than by
unitaries. In Section 3.3, we shall see that this is an example of an in-distribution attack,
which applies to scenarios where both the original and perturbed states are pure.
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3.3 Robust in Practice: Adversarial Attacks on
Quantum Machine Learning

Concentration in Generated Distributions

In practice, one is interested in the performance of a classifier on a distribution over some
subset of meaningful samples, such as the subset of images displaying digits including the
MNIST data set. It is this distribution on which the adversarial risk should be computed
in order to infer the extent of the vulnerability. To ensure that the probability measure
on the classifier-input space covers meaningful samples, we resort to approximating the
distribution over meaningful samples using the image of a smooth generator function on a
concentrated latent space, trained on samples of interest [117]. Following convention, we
refer to the latter as a real-data manifold. Such a generator can be a Normalizing Flow
model [127, 128] or the generator of a Generative Adversarial Network (GAN) [129, 130,
131], both with a Gaussian latent space, trained on the same data set that the classifier will
be trained on. A generative model serving this purpose is also referred to as a spanner [152].
In this way, a major fraction of the samples in the generator output S can be related to
samples of interest, despite the fact that, the smoothness of the generator may introduce
some samples off the real-data manifold, such as those undergoing gradual semantic change
during interpolations. This generative set-up can be generalized to multiple generators on
the same latent space. However, each generator maps to a disjoint part of the real-data
manifold, overcoming the problem of covering the off real-data manifold when the latent
space is globally connected [153]. This generalization requires relaxing the demand that
ω(0) = 0 in the Eq. (3.6) below. As a result, no data off the real-data manifold is generated
in S.

The reason that we require the latent space to be concentrated is so that we can study
the concentration of samples in the generator-output space resulted from the concentration
of the latent space. This connection is made by the assumption that the generator is smooth,
in the sense that it admits a modulus of continuity (i.e., it is uniformly continuous), namely
if there exists a monotone invertible function ω(⋅) such that

∥g(z) − g(z′)∥ ≤ ω(∥z − z′∥2), ∀z, z′ ∈ Z, (3.6)

where ∥⋅∥ is the metric equipped by the image of g. This is a weaker condition than the
Lipschitz continuity which results when ω(⋅) is a linear function. In this study, we assume
ω(⋅) to yield a tight upper bound in Eq. (3.6), and we demand ω(τ) to be small for small
τ for a smooth generator. The idea is that any tendency to concentration of measure in
the latent space is preserved by such a smooth mapping to its image, and the generated
samples then follow a modified concentrated distribution. We can imagine that if some pairs
of latent variables from different classes are within distance b across the class boundary in the
generator domain, their generator images must be accordingly within distance at most ω(b)
across the boundary. This can also display a clustering. Although the tendency to cluster is
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preserved, the extent to which the points in the generator image gather is mediated by the
modulus of continuity. A tight upper bound with ω(⋅) that yields distances larger than the
typical distances in the output space means that generated samples can be further apart,
and vice versa. As far as adversarial robustness is concerned, a larger ω(⋅) is then favorable
since it implies that larger perturbations are needed to definitively perturb a larger number
of generated samples across decision boundaries.

In generating these to-be-classified samples, the fact that a large probability density
resides near the decision boundary is not at odds with a trained classifier that predicts
training samples with high confidence. The training samples comprise only a subset of
the support of the generator-output distribution. High-confidence training samples result
from the classifier drawing the decision boundaries away from them. When such a decision
boundary encloses a sufficiently large measure, it then inevitably encounters large probability
densities – as dictated by the concentration of measure phenomenon on these distributions
– that do not contribute to training. As a result, when generalizing to test samples that
are similar to the training samples, some test samples may locate near the boundary and be
vulnerable targets to adversarial attacks.

Robustness of Quantum Machine Learning Models

We consider the quantum adversarial attack set-up where the input to the classifier is already
quantized and transmitted through a quantum communication network.

Let our latent space Z be, for example in this study, the Rm with the Euclidean metric
ℓ2 and the canonical m-dimensional Gaussian measure Nm ≡ N (0, Im) so it is a concentrated
space. Let z ← Nm in Z. Suppose that a smooth generator g ∶ Z → S ⊆ X is trained to
generate a distribution ξ of concern, such as some distribution of natural images, on a subset
S of X . For a sample g(z) ∈ S, we then have ξ(g(z)) = Nm(z).

Incorporated in the generator g = g2 ○ g1, g1 maps the latent space to a subset of n-
pixel natural images, g2 then encodes the natural image into a density matrix defined in
Eq. (3.2). That is, g(z) = ∣ϕ(z)⟩ ⟨ϕ(z)∣ = ρ(z) ∈ S ⊆ X , where S – the image of g – is a
subset of all density matrices X . The metric on density matrices is the trace norm L1 unless
otherwise specified. The probability measure ξ, which is a distribution mapped by g from
the m-dimensional Gaussian measure Nm on Z, is only supported on S over density matrices
capturing the natural image distribution. Any quantum classifier h then classifies the dn×dn
density matrices in (X , L1, ξ). Let us denote the intermediate stage – the set of images with
n pixels (normalized vectors with length n) – as I, then the corresponding measure on I can
be denoted as ξ ○ g2. The metric on I is, for instance, the ℓ1 norm. Diagrammatically, these
mappings are

Z g1Ð→ I g2Ð→
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g

S ⊆ X Ð→
h
L.

It is noted that smoothness is a desirable property of generative models. It is hinted at
gradual transitions in the features in the generated samples, which imply that the generator
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has learned relevant factors of variation [154]. We are then justified in assuming that the
real-data manifold on I can be covered by a smooth generator g1 (see e.g., [128, 129, 130,
131]). In what follows, we show that the overall generator g, mapping from Z to the real-data
manifold in the set of density matrices X , is also smooth.
Proposition 1 . Assuming that g1 ∶ Z → I is smooth with a modulus of continuity ω1(⋅) and
the qudit encoding scheme, Eq. (3.2), is applied, then the generator g = g2 ○ g1 ∶ Z → S ⊆ X is
also smooth and admits a modulus of continuity ω(⋅) that is lower bounded as

ω(τ) ≥
√

1 − cos2n(d−1) ( π
2n
ω1(τ)), ∀τ ≥ 0.

The proof can be found in Section 3.9. In terms of the scaling with respect to n and d,
when ω1(⋅) scales as Ω(1), for instance, when g1 is Lipschitz continuous (e.g., the generator
in [155, 156]), Proposition 1 implies that the modulus of continuity of the overall generator
g, i.e., ω(⋅), scales as Ω(

√
d/n). It is desirable to enforce Lipschitz continuity on some

generators, for example when imposing spectral normalization [157] on the generator of a
GAN to improve training [156].

A distinction can be made concerning whether the adversarial example σ must be also
in the subset S. If so, the adversarial attack is called in-distribution, since the attacker
only looks for an adversarial example within the data manifold S. Otherwise, we call it
an unconstrained adversarial attack since the perturbation is arbitrary in X , i.e., it is not
confined to the data manifold. We state the precise definitions, based on prediction-change
adversarial risks in Definition 2, as follows.
Definition 3 . An in-distribution adversarial attack, or a data-manifold attack, attempts to
find the perturbation

εin(ρ) =min
r∈Z
{∥g(z + r) − ρ∥1∣h(g(z + r)) ≠ h(ρ)}

=min
σ∈S
{∥σ − ρ∥1∣h(σ) ≠ h(ρ)},

which is within the data manifold (S, L1, ξ). It induces an in-distribution adversarial risk,

RPC
ϵin
(h, ξ) = Pr

ρ←ξ
[εin(ρ) ≤ ϵin] .

Definition 4 . An unconstrained adversarial attack attempts to find

εunc(ρ) =min
σ∈X
{∥σ − ρ∥1∣h(σ) ≠ h(ρ)},

which is in (X , L1) not restricted to the data manifold S. It induces an unconstrained
adversarial risk,

RPC
ϵunc
(h, ξ) ≡ RPC

ϵ (h, ξ) = Pr
ρ←ξ
[εunc(ρ) ≤ ϵ] .
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It is noted that when the generator is surjective on X , i.e., S = X , there is no distinction
between the two types of attacks. The set-ups in Theorem 2 and Eq. (3.4) consider classifying
on the subset of all pure-state density matrices in X on which a Haar-random distribution
ν is supported. Since this requires both the original and perturbed states to be pure, the
adversarial risks are considered in-distribution, although we shall see in Section 3.3 that the
same upper bound applies to the unconstrained robustness for a general quantum classifier.

In-distribution Adversarial Robustness

The following theorem, depending on the distribution to be classified as well as the specific
classical-data generator g1 in terms of ω1(⋅), then applies.
Theorem 3 . Let h ∶ X → L be any quantum classifier on the set of density matrices.
Considering in-distribution adversarial attacks on the image of g, if ξ(hl)) ≤ 1/2,∀l, i.e.,
the classes are not too unbalanced, then for the prediction-change risk RPC

ϵin
(h, ξ) ≤ 1− γ, the

distance between two density matrices ϵin must satisfy

ϵin ≤ ω
⎛
⎝

√
ln( π

2γ2
)
⎞
⎠
, (3.7)

where ω(⋅) is the modulus of continuity in Proposition 1.
The proof can be found in Section 3.10. This result is independent of the quantum data
encoding scheme. It can be generalized to quantum classifiers with arbitrary decision bound-
aries, but in this case, the necessary upper bound on the in-distribution robustness will not
have a closed form (see Section 3.10). This upper bound is saturated when Eq. (3.6) is tight
and the quantum classifier induces linearly separable regions in the latent space, namely
when h ○ g is a linear function on Z, giving rise to the maximally robust quantum classifier.
The non-saturation of this upper bound when class regions are not linearly separable in Z
can be seen in the example of the standard Gaussian in Section 3.1 above. Suppose one
looks at Σ′ = (−∞,−2δ) ∪ (0,2δ) for some δ > 0, which has the same probability measure
1/2 as Σ = (−∞,0) but is not linearly separable in R. The measure outside the δ-expansion
of Σ′, i.e., R ∖ Σ′δ = (3δ,+∞), is smaller than that outside of the δ-expansion of Σ, namely
R ∖Σδ = (δ,+∞), implying more concentration outside and near Σ′ than Σ.

The non-saturation of this upper bound for non-linearly separable classification regions in
Z also implies that it is prone to misclassification with an increasing number of equiprobable
classes. The proof for cases with at least 5 equiprobable classes can be found in Section 3.10.
Informally, more equiprobable classes lead to more boundaries, enclosing classes with suffi-
ciently large total measure, that border distinct classes. Then within a fixed distance beyond
more of those boundaries, there are more samples subject to some prediction change.

We note that this upper bound is usually not saturated in practice, since a quantum
classifier is usually linear, such as a parametrized quantum circuit and a unitary tensor
network, while the generator g is usually non-linear, given that g1 is usually non-linear and
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g2, the quantum feature map, is non-linear. Classically, some highly-nonlinear state-of-the-
art neural networks have robustness one or two orders of magnitude smaller in the ℓ2 norm
on some data sets than the corresponding upper bound derived with similar arguments [117].
It would be interesting to examine the amount of deviation from the upper bound for QML
models in future works.

Theorem 3 implies that when the quantum states to be classified encode classical data
generated with a modulus of continuity scaling as Ω(1), the in-distribution robustness of any
quantum classifier decreases polynomially in the number of qudits n and increases polynomi-
ally in the qudit dimension d. To see this, we first note that according to Proposition 1, when
ω1(⋅) = Ω(1), which applies to generators such as those enforcing Lipschitz continuity, ω(⋅)
is lower bounded by a function that scales as Ω(

√
d/n). This means that the upper bound

on the perturbation size ϵin between any two in-distribution states, i.e., the right-hand side
of Eq. (3.7), is then asymptotically bounded from below by

√
d/n.

As such, the vulnerability increases slightly with a larger number of qudits n and by
contrast, decreases slightly with qudits of higher dimension d ≥ 2. When the encoded classical
data manifold comes from generators for which Lipschitz continuity is not enforced, it requires
numerical approximations of the modulus of continuity ω1(⋅) to determine its scaling in
the output space, before obtaining the robustness scaling. Compared to Theorem 2 where
samples are Haar-random pure states, the states to be classified here, which characterize the
adversarial risk, are similar to those considered in practical tasks. Specifically, they are a
subset of encoded states with a distribution smoothly generated from a Gaussian latent space.
Theorem 3 demonstrated that, contrary to previous claims [118], there is no guarantee that
quantum classifiers are exponentially more vulnerable to in-distribution attacks in higher-
dimensional Hilbert space. We shall now show that the theorem applies to unconstrained
attacks as well.

Unconstrained Adversarial Robustness

Unconstrained adversarial attacks are arbitrary perturbations in X to a sample ρ. In a
broader context in which the instability of the quantum classifier is concerned, this may
derive from density matrices subject to decoherence in a classification task. It is clear that
εunc(ρ) ≤ εin(ρ),∀ρ ∈ X and thus, it holds by changing the in-distribution perturbations in
Theorem 3 to unconstrained ones, and the same bound in Eq. (3.7) applies.

We argue that there does not exist a tighter upper bound that holds for general quantum
classifiers for unconstrained robustness. Consider a particular family of quantum classifiers
that project any state onto the data manifold, namely to map any state to its closest in-
distribution state, before classifying. These classifiers can be shown to satisfy 1/2εin(ρ) ≤
εunc(ρ) ≤ εin(ρ),∀ρ ∈ X 5. Even in the worst case where εunc(ρ) = 1/2εin(ρ),∀ρ ∈ X , their
unconstrained robustness is as large as half of the in-distribution one. We stress that,

5It is proven in Theorem 2 in [117].
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although robust, such a quantum classifier is inefficient in our setting since there is no
apparent tractable way to obtain the closest pure product state to an arbitrary state.

≤ 1 − γ ∥ρ − σ∥1 ≤ ∥u − v∥1 ≤

RPC
ϵ (h, ν) 4d−nλ1 = Ω(d−n) 2n

π cos−1 [(1 − 2d−nλ1)
1

(d−1)n ]

RPC
ϵ (h, ξ) ω(λ2) ≥

√
1 − cos2n(d−1) ( π

2nω1 (λ2)) = Ω(
√

d
n) ω1 (λ2) = Ω(1)

Table 3.1: Summary of the adversarial robustness, namely the size of perturbations nec-
essary for the adversarial risk to be upper bounded by some constant, of any quantum
classifier obtained within the prediction-change adversarial attack setting. In this setting,
the prediction-change adversarial risk over the Haar-random distribution ν (RPC

ϵ (h, ν)) and
over a smoothly generated distribution ξ (RPC

ϵ (h, ξ)) are both upper bounded by (1−γ) (col-
umn 0). d denotes the qudit dimension in Eq. (3.2) and n denotes the number of encoded
qudits or the length of the encoding vectors (number of pixels in the image classification
example). Parameters λ1 and λ2 are defined as λ1 = [ln(2

√
2/η)]1/2 + [ln(2

√
2/γ)]1/2 and

λ2 =
√
ln (π/(2γ2)). Row 1 summarizes the adversarial robustness when a pure state ρ sam-

pled from the Haar-random distribution ν is perturbed to a state σ. The robustness is shown
both in the trace norm (column 1), as well as in its translation to the robustness measured in
the ℓ1 norm of the set of encoding vectors (from Corollary 1 of Theorem 2) (column 2). Both
upper bounds decrease exponentially in n. Row 2 summarizes the adversarial robustness
when a pure state ρ sampled from a smoothly generated distribution ξ from a Gaussian la-
tent space is perturbed to a state σ (column 1), and the robustness when the intermediately
generated vector u is perturbed to v (column 2) (from Proposition 1 and Theorem 3)
. Note that when the robustness in adversarially perturbing a vector scales as Ω(1), e.g.,
when the intermediate vectors are generated Lipschitz continuously, that in perturbing an

encoded pure state scales as Ω(
√
d/n).

Inspired by this strategy, we propose that one can construct a family of efficient quantum
classifiers h̃ on n-qubit density matrices X with unconstrained robustness εunc(ρ) lower
bounded for any ρ ∈ X . To be specific, we construct h̃ from any h with the following
procedure.

Let the original sample ρ ∈ S be a pure product-state density matrix with n qudits as in
Eq. (3.1). A perturbation ϵunc ≡ ϵ leads to a sample σ ∈ X . First, we perform single qubit
tomography on every qubit of σ to reconstruct a product-state density matrix from these
single qubits. We denote this mapping as P ∶ X → X , σ ↦ ⊗n

i=1 tr{j≠i}(σ). Subsequently,
we numerically fit the pixel values {si} to P (σ) to find its closest density matrix σ̃ within
our data manifold S. We use a symbol σ̃ to represent the density matrix attained from this
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procedure. σ̃ is then replacing σ when fed to the quantum classifier h. We have the following
theorem,
Theorem 4 . For every n-qubit ρ ∈ S ⊆ X , let ρ̃ be the density matrix within the data
manifold attained from the above procedure. For any quantum classifier h, let h̃ ∶ X → L be
such that h̃(ρ) = h(ρ̃), then

2 − 2(1 − εin(ρ)
2

16
)

1
ne

≤ εunc(ρ) ≤ εin(ρ),

where ne = n for even n and ne = n + 1 for odd n.
The proof can be found in Section 3.11. We note that the procedure can be applied to
any product state encoding scheme. This procedure yields an explicit lower bound to the
unconstrained adversarial perturbation when it is possible to estimate the in-distribution
adversarial perturbation by, for example, sampling in the latent space [158] or gradient
descent search in the latent space [152] before mapping to the density matrices. This h̃
constructed from h amounts to a feasible tomographic preprocessing of input states. It
guarantees that the unconstrained robustness of each sample ρ is bounded from below and
may be used as a defense strategy against unconstrained adversarial attacks in practice.
However, we note that when n is large, this lower bound can be several orders of magnitude
smaller than the upper bound.

3.4 Confidence Difference and Distance between States
We show that the predictive confidence difference in any QML protocol is upper bounded
by the distance between the input density matrices up to some constant factor, where this
distance is measured in the trace norm L1, the Hilbert-Schmidt norm L2, the Bures distance,
or the Hellinger distance.

Considering density matrices ρ and σ, the trace norm between them is defined to be
∥ρ − σ∥1 = tr(∣ρ − σ∣). Consider a set of POVMs {Πl} and a quantum channel E such that
E(ρ) = ∑iMiρM

†
i and ∑iM

†
iMi = I. We have,

tr(E(ρ)Πl) − tr(E(σ)Πl) = tr(∑
i

Mi(ρ − σ)M †
i Πl)

= tr((ρ − σ)∑
i

M †
i ΠlMi)

≡ tr((ρ − σ)E∗(Πl)).

We note that E∗ is the dual map of E and {E∗(Πl)} is still a set of POVMs, since E∗(Πl)
is hermitian, non-negative because tr(ρE∗(Πl)) = tr(E(ρ)Πl) ≥ 0, and complete because
∑i,sM

†
i ΠlMi = ∑iM

†
iMi = I.

For each particular measurement, we can expand in its eigenbasis E∗(Πl) = ∑k bk ∣ϕk⟩ ⟨ϕk∣ ≡
∑k bkPk. Let {∣ψi⟩} and {λi} be the eigenbasis and eigenvalues of (ρ − σ), so ∥ρ − σ∥1 =
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∑i ∣λi∣ ∈ [0,2]. We then expand E∗(Πl) = ∑i,j,k bkaik ∣ψi⟩a∗jk ⟨ψj ∣ such that ∑i∣aik∣2 = 1,∀k and
∑k bk = tr(E∗(Πl)) ≥ 0 due to the non-negativity. We have

tr((ρ − σ)E∗(Πl)) = tr
⎛
⎝
(ρ − σ)∑

i,j,k

bkaik ∣ψi⟩a∗jk ⟨ψj ∣
⎞
⎠

=∑
k

bk tr(∑
i,j

aika
∗
jk ⟨ψj ∣ (ρ − σ) ∣ψi⟩)

=∑
i,k

bk∣aik∣2λi ≤∑
k

bk∥ρ − σ∥1

= tr(E∗(Πl))∥ρ − σ∥1.

(3.8)

Therefore,
∣tr(E(ρ)Πl) − tr(E(σ)Πl)∣ ≤ tr(E∗(Πl))∥ρ − σ∥1.

When tr(E∗(Πl)) is not too large the above inequality suggests that the confidence change
will be small when the trace norm between the two density matrices is small. However,
tr(E∗(Πl)) may be very large in high dimensions and in that case, the upper bound becomes
very weak.

We resort instead to the physical interpretation of trace distance being a generalization
of the classical total variation distance. The trace distance between two quantum states is
an achievable upper bound on the total variation distance between probability distributions
arising from measurements performed on those states [8]:

1

2
∥ρ − σ∥1 =

1

2
max
{Πl}
∑
l

∣tr[(ρ − σ)Πl]∣,

where the maximization is over all POVMs {Πl} and the factor of 2 is to restrict the maximal
trace distance to be 1. Using the contractive property of the trace norm under any CPTP
map, we conclude that the trace norm constitutes an upper bound to the sum of confidence
changes of all POVMs:

∑
l

∣tr(E(ρ − σ)Πl)∣ ≤ ∥E(ρ) − E(σ)∥1 ≤ ∥ρ − σ∥1. (3.9)

Considering the Hilbert-Schmidt norm defined as ∥ρ − σ∥22 = tr[(ρ − σ)2], if we regard
∥ρ − σ∥2 as the inner product of the two vectors (1,1,⋯,1) and (∣λ0∣, ∣λ1∣,⋯, ∣λN−1∣), then
from the Cauchy-Schwarz inequality we find ∥ρ − σ∥1 ≤

√
N∥ρ − σ∥2. But this bound is

very weak in high-dimensional Hilbert space. A better upper bound is given in [159] that
∥ρ − σ∥1 ≤ 2

√
R∥ρ − σ∥2, where R = rank(ρ)rank(σ)/[rank(ρ) + rank(σ)]. This implies that,

even when one state is full rank, if the other state is low rank, then the Hilbert-Schmidt
norm is of the same order of magnitude as the trace norm. This is the case when we consider
any perturbation to an encoded pure state density matrix ρ whose rank is 1. Combined with
Eq. (3.9), we arrive at a similar upper bound,

∑
l

∣tr(E(ρ)Πl) − tr(E(σ)Πl)∣ ≤ 2
√
R∥ρ − σ∥2.
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Considering the Bures distance defined as ∥ρ−σ∥2B = 2(1−
√
F (ρ, σ)), it is an extension

to mixed states of the Fubini-Study distance for pure states [160]. We have

∥ρ − σ∥1 ≤ 2
√

1 − (1 − 1

2
∥ρ − σ∥2B)

2

= 2
√
∥ρ − σ∥2B −

1

4
∥ρ − σ∥4B ≤ 2∥ρ − σ∥B,

where the first inequality is proven in [161, 160] and saturated for pure states. Therefore,
together with Eq. (3.9), we conclude that

∑
l

∣tr(E(ρ)Πl) − tr(E(σ)Πl)∣ ≤ 2∥ρ − σ∥B. (3.10)

Finally, considering the Hellinger distance defined as ∥ρ − σ∥2H = 2 − 2 tr(√ρ
√
σ), it is

shown that ∥ρ − σ∥B ≤ ∥ρ − σ∥H [160] and thus, the same upper bound applies by changing
∥ρ − σ∥B to ∥ρ − σ∥H in Eq. (3.10).

In QML, if ρ and σ are close in these norms and are separated by any class boundary,
say between class l = s and class l = t, then tr(E(ρ)Πs) > tr(E(σ)Πs) while tr(E(ρ)Πt) <
tr(E(σ)Πt). This suggests that no small perturbation to density matrices in these norms
can significantly change the measurement outcome and thus, alter the prediction, unless the
original sample is near the boundary. In other words, viewing tr(E(ρ)Πs) as the confidence of
predicting l = s, it implies that no small perturbations can result in a high-confidence sample
in one class perturbed to a low-confidence sample in the same class, or a high-confidence
sample in a different class.

3.5 Adversarial Attacks Exploiting Quantum Classifier
Reversibility

We propose a method to perform adversarial attacks in our first set-up in Section 3.1 on
quantized data. This method can be carried out on quantum hardware when the computation
is classically intractable. We assume a noiseless QML model for this analysis, so the quantum
channel is unitary. Considering, for example, the unitary tree tensor network (TTN) in [138,
162] among other types of parametrized unitary quantum circuits, the adversary can run
it reversely starting from a density matrix with any designated wrong class label l = t
such that tr(σ′Πt) = 1 while tr(σ′Πl≠t) = 0. Any qubit that is traced out in the forward
direction is initialized to an arbitrary state and passes through the network in the reverse
direction. The output of the reversal circuit is a set of density matrices {U †σ′U} ≡ {σ}
such that tr(UσU †Πt) = 1 whereas tr(UσU †Πl≠t) = 0. Thus, this set of density matrices will
be classified in the wrong class by the POVM Πt with high confidence. Suppose that the
original samples are {ρ} in the class s ≠ t and tr(UρU †Πs) = 1/2 + δ with some δ ∈ (0,1/2].
The adversary then replaces an ϵ-portion of the transmitted quantum states {ρ} with the
{σ} to attack the receiver.
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To achieve a prediction change, the adversary demands tr(U[(1 − ϵ)ρ + ϵσ]U †Πs) < 1/2.
This requires

ϵ > 1 − 1

1 + 2δ
, (3.11)

which means that the portion of {ρ} being substituted with {σ} increases with higher-
confidence of {ρ}. We note that this effectively creates a perturbation of size

∥ρ − [(1 − ϵ)ρ + ϵσ]∥1 ≥ ϵ∑
l

∣tr(U(ρ − σ)U †Πl)∣

= ϵ[∑
l≠t

tr(UρU †Πl) + (1 − tr(UρU †Πt))]

= ϵ[2 − 2 tr(UρU †Πt)] ≥ ϵ(1 + 2δ),

where the first inequality follows from Eq. (3.9). As a result, a misclassification by the attack
demands a perturbation of size ∥ρ− [(1− ϵ)ρ+ ϵσ]∥1 ≥ 2δ where we substituted in Eq. (3.11).

3.6 Proof of Eq. (3.4)
We present a condensed proof based on the proof to Theorem 3.7 in [113]. Let ϵ1 >√
1/(Nk2) ln (k1/µ(M)) and ϵ2 >

√
1/(Nk2) ln (k1/γ). Then the concentration function

satisfies α(ϵ1) < µ(M) and α(ϵ2) < γ. As such, by directly applying Part 2 of Theorem
3.2 in [113], we conclude RER

ϵ (h, c, ν) > 1 − γ for ϵ = ϵ1 + ϵ2. It can be shown that SU(N)
is a (

√
2,1/4)-normal Lévy family and so k1 =

√
2 and k2 = 1/4 [118]. The contrapositive

statement on RER
ϵ (h, c, ν) ≤ 1 − γ then gives the necessary condition Eq. (3.4).

3.7 Proof of Theorem 2
Proof. We let ϵ1 >

√
1/(Nk2) ln (2k1/η) and ϵ2 >

√
1/(Nk2) ln (2k1/γ), then the concentration

function satisfies α(ϵ1) < η/2 and α(ϵ2) < γ/2. Therefore, by applying Part 1 of Theorem
A.2 in [113], we conclude that for ϵ = ϵ1 + ϵ2, RPC

ϵ (h, ν) > 1−γ. For completeness, we present
our explained version of the proof below.

Let ϵ = ϵ1 + ϵ2. By assumption that ν(hl) ≤ 1 − η,∀l ∈ L, it can be easily verified by
contradiction that ∃l1 ∈ L s.t. ν(hl1) ∈ (η/2,1/2]. Let hl1,C = X ∖hl1 . On one hand, we know
that ν(hl1) > η/2 > α(ϵ1) where the last inequality is given by our assumption. We prove by
contradiction that ν(hl1ϵ1) > 1/2. Suppose not, then we have for S = X ∖hl1ϵ1 , ν(S) = 1−ν(hl1ϵ1) ≥
1/2. Then by the definition of the concentration function in Eq. (3.3), ν(Sϵ1) ≥ 1 − α(ϵ1).
Combining with what we obtained that ν(hl1) > α(ϵ1), we have ν(Sϵ1) + ν(hl1) > 1. Thus,
∃x ∈ ν(Sϵ1) ∪ ν(hl1). This implies ∃y ∈ S ∣d(y, x) ≤ ϵ1. But this same y must also be in hl1ϵ1
since the same x is also in hl1 . However, this raises a contradiction since S and hl1ϵ1 are
disjoint by definition, i.e., ∄y∣y ∈ S, y ∈ hl1ϵ1 . Now, ν(hl1ϵ1) > 1/2 means, by the definition of
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the concentration function in Eq. (3.3), as well as the assumption that γ/2 > α(ϵ2), we have
ν(hl1ϵ ) ≥ 1 − α(ϵ2) > 1 − γ/2.

On the other hand, knowing that ν(hl1,C) ≥ 1/2, we have that ν(hl1,Cϵ2 ) > 1 − γ/2 followed
by simply replacing the hl1ϵ1 in the previous sentence with hl1,C since they both have measure
at least 1/2. We then also have ν(hl1,Cϵ ) > 1 − γ/2. Hence, using the inequality µ(∩ni=1Ai) ≥
∑n

i=1 µ(Ai)−(n−1), one can conclude that ν(hl1ϵ ∩hl1,Cϵ ) > 1−γ and so, by the prediction-change
risk’s definition, RPC

ϵ (h, ν) ≥ ν(hl1ϵ ∩ h
l1,C
ϵ ) > 1 − γ.

It can be shown that SU(N) is a (
√
2,1/4)-normal Lévy family and so k1 =

√
2 and

k2 = 1/4 [118]. The contrapositive statement on RPC
ϵ (h, ν) ≤ 1 − γ then gives the necessary

condition Eq. (3.5).

3.8 Proof of Corollary 1
Proof. We have from Theorem 2 that the necessary condition for RPC

ϵ (h, ν) ≤ 1−γ on SU(N)
is ∥U − V ∥2 ≤

√
4/Nλ1 where λ1 = [[ln(2

√
2/η)]1/2 + [ln(2

√
2/γ)]1/2]. Let σ = V ∣0⃗⟩ ⟨0⃗∣V †.

From the Proof of Theorem 3 in [118], we have ∥U − V ∥22 ≥ 2N(1 − ∣⟨ϕ∣ψ⟩∣). The Fuchs–van
de Graaf inequality for pure states is

2 − 2
√
F (ρ, σ) ≤ ∥ρ − σ∥1 = 2

√
1 − F (ρ, σ), (3.12)

where the fidelity F (ρ, σ) = ∣⟨ϕ∣ψ⟩∣2. Based on Eq. (3.12), we obtain

2N(1 − ∣⟨ϕ∣ψ⟩∣) ≥ 2NT (ρ, σ)2
(1 + ∣⟨ϕ∣ψ⟩∣)

≥ NT (ρ, σ)2,

where T is the trace distance. As such, we need
√

4

N
λ1 ≥ ∥U − V ∥2 ≥

√
NT (ρ, σ) =

√
N

2
∥ρ − σ∥1,

which gives ∥ρ − σ∥1 ≤ 4/Nλ1 = 4d−nλ1.
We translate this upper bound on the distance between two density matrices to that

between their encoding vectors g1(z) and g1(z′). Altogether with the necessary condition
and Eq. (3.12), we have

4d−nλ1 ≥ ∥ρ − σ∥1 ≥ 2 − 2
√
F (ρ, σ). (3.13)

For density matrices ρ, σ ∈ X respective to two images, we have ρ = ∣ϕ⟩ ⟨ϕ∣ =⊗i ∣ϕi⟩⊗i ⟨ϕi∣ =
⊗i ∣ϕi⟩ ⟨ϕi∣ =⊗i ρi and σ =⊗i ∣ψi⟩ ⟨ψi∣ =⊗i σi, which are mapped from images g1(z) = s⃗ and
g1(z′) = t⃗, respectively. All i-indices run from 1 to n. And ∣ϕi⟩ and ∣ψi⟩ are featurized from
pixels of value si and ti, respectively. It can be shown by induction that

F (ρ, σ) =∏
i

cos2(d−1) (∣si − ti∣
π

2
) . (3.14)
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For d = 2, we have that F (ρ, σ) = tr(⊗i ρi⊗i σi) = ∏i tr(ρiσi) = ∏i∣⟨ϕi∣ψi⟩∣2 = ∏i cos
2(∣si −

ti∣π/2). It then suffices to show ⟨ϕi∣ψi⟩ = cosd−1(∣si − ti∣π/2) for the qudit encoding d > 2. We
drop all π/2 factors and the subscripts i in si and ti hereafter. Suppose for d = k, we have
⟨ϕi∣ψi⟩ equal to

k

∑
j=1

(k − 1
j − 1
) cosk−j(s) cosk−j(t) sinj−1(s) sinj−1(t) = cosk−1(s − t). (3.15)

Then for d = k + 1, we have ⟨ϕi∣ψi⟩ equal to

k+1

∑
j=1

( k

j − 1
) cosk+1−j(s) cosk+1−j(t) sinj−1(s) sinj−1(t)

= cos(s) cos(t) [
k

∑
j=1

β( k

j − 1
) cosk−j(s) cosk−j(t) sinj−1(s) sinj−1(t)]

+ sin(s) sin(t) [
k+1

∑
j=2

(1 − β)( k

j − 1
) cosk+1−j(s) cosk+1−j(t) sinj−2(s) sinj−2(t)] ,

(3.16)

where β = (k + 1 − j)/k.
Identifying the two expressions in the square brackets as both equal to Eq. (3.15), we

obtain the desired outcome ⟨ϕi∣ψi⟩ = cosk(s − t), and the induction completes.
Combining Eq. (3.13) and Eq. (3.14), we have

4d−nλ1 ≥ 2 − 2∏
i

cosd−1 (∣si − ti∣
π

2
) ≥ 2 − 2 cos(d−1)n (∑i∣si − ti∣

n

π

2
) . (3.17)

where the last inequality follows from the inequality cosn(∑i xi/n) ≥ ∏i cos(xi). It can be
readily shown for n ≥ 2 using the following trick. Consider any pair xi and xj and let
xm be their arithmetic average so xi = xm + d and xj = xm − d for some d ≠ 0. Then
cos(xi) cos(xj) = cos(xm + d) cos(xm − d) = cos2(xm) − sin2(d) ≤ cos2(xm). Therefore, one
can maximize the overall cosine product, while maintaining the sum of the arguments, by
replacing any pair cos(xi) and cos(xj) with cos(xm) and cos(xm), and successively replacing
every pair till every factor converges to cos(∑i xi/n) with the same argument.

Solving for ∑i∣si − ti∣ = ∥g1(z) − g1(z′)∥1 in Eq. (3.17) yields the upper bound on the
perturbation size in (I, ℓ1).

3.9 Proof of Proposition 1
Proof. We decompose g into g2 ○ g1 where g1 ∶ (Z, ℓ2) → (I, ℓ1) is desired to be smooth in
practice. It can be generalized to ℓp norm on I and similar proof follows since the ℓp norm of
any given vector does not grow with p. We have ∥g1(z) − g1(z′)∥1 ≤ ω1(∥z − z′∥2),∀z, z′ ∈ Z.
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We show that it is also smooth for the qudit encoding g2 ∶ (I, ℓ1)→ (X , L1) as in Eq. (3.2).
Applying the qudit feature map and similar to that in Section 3.8, it can be shown that

∥ρ − σ∥1 = 2
√

1 −∏
i

cos2(d−1) (∣si − ti∣
π

2
). (3.18)

Since ω(⋅) is used in an upper bound in Theorem 3, we need to obtain the scaling of
a lower bound to ω(⋅). The ω(⋅) that forms a tight upper bound in Eq. (3.6) must have
ω(∥z − z′∥2) upper bounding Eq. (3.18) for arbitrary z, z′ ∈ Z. Hence, it is equivalent to
finding the scaling of a lower bound to Eq. (3.18). That is, we have ∀z, z′ ∈ Z,

ω(∥z − z′∥2) ≥ 2
√

1 −∏
i

cos2(d−1) (∣si − ti∣
π

2
)

≥ 2
√

1 − cos2(d−1)n (∑i∣si − ti∣
n

π

2
)

= 2
√

1 − cos2(d−1)n ( π
2n
∥g1(z) − g1(z′)∥1),

where the second inequality follows from the inequality cosn(∑i xi/n) ≥∏i cos(xi) proven for
Eq. (3.17). Since the above inequality holds for any z, z′ such that ∥z − z′∥2 = τ for any τ ,
and since we assume ω(⋅) forms a tight upper bound in Eq. (3.6), g is smooth with

ω(τ) ≥
√

1 − cos2n(d−1) ( π
2n
ω1(τ)), ∀τ > 0.

In terms of the scaling with respect to n and d, if ω1(⋅) = Ω(1), such as when g1 is
Lipschitz continuous, we have ω(⋅) = Ω(

√
d/n).

3.10 Proof of Theorem 3
Proof. If letting ϵin ≥ ω(

√
ln [π/(2γ2)]), then γ ≥

√
π/2 exp(−ω−1(ϵin)2/2). By the definition

of the generator and the latent space, we have Nm(g−1(ρ)) = ξ(ρ), ∀ρ ∈ S ⊆ X . Let us
define hi→ = {ρ ∈ hi∣d(ρ,∪j≠ihj) ≤ ϵin} which is the set of density matrices that are at positive
distance at most ϵin from ∪j≠ihj, then following Definition 3,

RPC
ϵin
(h, ξ) = Pr

ρ←ξ
[min
σ∈S
{∥σ − ρ∥1∣h(σ) ≠ h(ρ)} ≤ ϵin]

= ξ(∪ihi→)) = Nm(g−1(∪ihi→)),
(3.19)

since hi→ are disjoint for different class i. Hence, it can be shown that RPC
ϵin
(h, ξ) ≥ 1−γ when

ξ(hi) ≤ 1/2,∀i from Theorem 1 in [117]. The contrapositive yields the necessary condition
Eq. (3.7). For completeness, we present our condensed version of the proof below.

We write the cumulative distribution function of the standard Gaussian distribution
N (0,1) as Φ(x) = 1/

√
2π ∫

x

−∞
exp(−u2/2)du.
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Theorem 5 (Gaussian isoperimetric inequality)[147, 122]. Let Nm be the canonical Gaussian
measure on Rm. Let Σ ⊆ Rm be any Borel set and let Σϵ = {z ∈ Rm∣∃z′ ∈ Σ s.t. ∥z − z′∥2 ≤ ϵ}.
If Nm(Σ) = Φ(a) then Nm(Σϵ) ≥ Φ(a + ϵ).
Lemma 1 [117]. Let p ∈ [1/2,1], we have for all η > 0,

Φ(Φ−1(p) + η) ≥ 1 − (1 − p)
√
π

2
e−

η2

2 . (3.20)

If p = 1 − 1/K for K ≥ 5 and η ≥ 1, we have

Φ(Φ−1(1 − 1

K
) + η) ≥ 1 − 1

K

√
π

2
e−

η2

2 e
−η

√

log( K2

4π log(K)). (3.21)

We first introduce the following sets in the latent space (Rm, ℓ2,Nm): H i = g−1(hi) and
H i
→ = {z ∈H i∣d(z,∪j≠iHj) ≤ ω−1(ϵin)}. We note that H i

→⋃∪j≠iHj is the set of points that are
at distance at most ω−1(ϵin) from ∪j≠iHj. Then by Theorem 5 applied with Σ = ∪j≠iHj and
a = a≠i ≡ Φ−1(Nm(∪j≠iHj)), we have Nm(H i

→)+Nm(∪j≠iHj) ≥ Φ(a≠i+ω−1(ϵin)). Rearranging,
Nm(H i

→) ≥ Φ(a≠i + ω−1(ϵin)) −Φ(a≠i). As H i
→ are disjoint for different class i, we have

Nm(∪iH i
→) ≥

K

∑
i=1

[Φ(a≠i + ω−1(ϵin)) −Φ(a≠i)] .

By the definition of ω(⋅), we have g(H i
→) ⊆ hi→. It leads to Nm(g−1(hi→)) ≥ Nm(H i

→) and
Nm(∪ig−1(hi→)) ≥ Nm(∪iH i

→). Therefore, we obtain the result for arbitrary decision bound-
ary,

Nm(∪ig−1(hi→)) ≥
K

∑
i=1

[Φ(a≠i + ω−1(ϵin)) −Φ(a≠i)] .

Equivalently by Eq. (3.19),

RPC
ϵin
(h, ξ) ≥

K

∑
i=1

[Φ(a≠i + ω−1(ϵin)) −Φ(a≠i)] .

Suppose ξ(hi) = Nm(H i) ≤ 1/2 and Nm(∪j≠iHj) ≥ 1/2,∀i. Using Eq. (3.20) in Lemma 1
in the second inequality below,

RPC
ϵin
(h, ξ) ≥

K

∑
i=1

[Φ(Φ−1(Nm(∪j≠iHj)) + ω−1(ϵin)) −Nm(∪j≠iHj)]

≥
K

∑
i=1

[1 − (1 −Nm(∪j≠iHj))
√
π

2
e
−ω−1(ϵin)2

2 −Nm(∪j≠iH i)]

= (1 −
√
π

2
e
−ω−1(ϵin)2

2 )
K

∑
i=1

[1 −Nm(∪j≠iH i)]

= 1 −
√
π

2
e
−ω−1(ϵin)2

2 > 1 − γ,
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provided that γ >
√
π/2 exp(−ω−1(ϵin)2/2). The contrapositive yields the results in our

Theorem 3 that ϵin ≤ ω(
√
ln [π/(2γ2)]) is necessary for RPC

ϵin
(h, ξ) ≤ 1 − γ.

When there are at least 5 equiprobable classes [117], substituting Eq. (3.21) in Lemma 1
into the above inequality yields

RPC
ϵin
(h, ξ) ≥ 1 −

√
π

2
e
−ω−1(ϵin)2

2 e
−ϵin

√

log( K2

4π log(K)).

Hence, the in-distribution robustness of h decreases with the number of equiprobable classes.
Alternatively, a numerically looser upper bound on ϵin can be derived from the fact

that (Rm, ℓ2,Nm) resembles a normal Lévy family but the concentration function decays
independently of N . By Theorem 5, any Borel set Σ there such that Nm(Σ) = Φ(a) satisfies
Nm(Σϵ) ≥ Φ(a + ϵ). In particular, for all Borel sets A with measure at least 1/2, we have
a ≥ 0 and thus, 1 −Nm(Aϵ) ≤ 1 − Φ(ϵ) ≤ exp(−ϵ2/2) where the last inequality follows from
the Gaussian tail bound. By definition of the concentration function in Eq. (3.3), α(ϵ) =
supA{1 −Nm(Aϵ)} ≤ exp(−ϵ2/2).

By substituting the statement and the proof of Theorem 2 with k1 = 1 and k2 = 1/
√
2 and

N = 1, we have the following. Let η ∈ [0,1/2] be such that Nm(H l) = ξ(hl) ≤ 1 − η, ∀l ∈ L.
If ϵin ≥ ω(

√
ln(4/γ2) +

√
ln(4/η2)), then by acting ω−1(⋅), which is a strictly increasing

function, on both sides, we obtain ω−1(ϵin) ≥
√
ln(4/γ2) +

√
ln(4/η2). This implies that

RPC
ω−1(ϵin)

(h,Nm) ≥ 1 − γ. Since RPC
ω−1(ϵin)

(h,Nm) ≤ RPC
ϵin
(h, ξ) (this is equivalent to g(H i

→) ⊆
hi→), it therefore implies RPC

ϵin
(h, ξ) ≥ 1 − γ. The contrapositive yields, for RPC

ϵin
(h, ξ) ≤ 1 − γ,

it is necessary to have ϵin ≤ ω(
√
ln(4/γ2)+

√
ln(4/η2)). When η = 1/2, it can be verified that

this necessary upper bound is looser than that in Theorem 3 for the same γ.

3.11 Proof of Theorem 4
Proof. We have the mapping to obtain a product state density matrix P ∶ X → X , σ ↦
⊗n

i=1 tr{j≠i} σ where n is the number of qubits. This is not a CPTP map on the set of dn ×dn
density matrices X since it is non-linear. Nonetheless, it can be viewed as a CPTP map Λ
on X⊗n as Λ ∶ X⊗n → X , σ⊗n ↦ tr{j≠i}([σ⊗n]i) where [σ⊗n]i denotes the i-th copy of σ, which
involves only partial tracing. In particular, for a product state ρ⊗a with the integer a ≥ 1,
Λ(ρ⊗a) = ρ.

Consider ρ ∈ S ⊆ X an n-qubit density matrix, namely ρ = g(z) for some z ∈ Z. Let σ ∈ X .
We have

∥ρ − P (σ)∥1 = ∥Λ(ρ⊗n) −Λ(σ⊗n)∥1 ≤ ∥ρ⊗n − σ⊗n∥1
≤ 2
√
1 − F (ρ⊗n, σ⊗n) = 2

√
1 − F (ρ, σ)n,

where the first inequality follows from the contractive property of the trace norm under any
CPTP map and the last equality follows from the multiplicativity of fidelity with respect
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to tensor products. By Eq. (3.12), we have F (ρ, σ) ≥ (1 − ∥ρ − σ∥1/2)2. Substituting in, we
obtain

∥ρ − P (σ)∥1 ≤ 2

¿
ÁÁÀ

1 − (1 − ∥ρ − σ∥1
2

)
2n

.

Let σ̃ ∈ S be the closest in-distribution sample to P (σ), which can be found by fitting
parameters {si} in Eq. (3.1). Therefore, ∥P (σ) − σ̃∥1 ≤ ∥P (σ) − ρ∥. We then obtain

∥ρ − σ̃∥1 ≤ ∥ρ − P (σ)∥1 + ∥P (σ) − σ̃∥1 ≤ 4

¿
ÁÁÀ

1 − (1 − ∥ρ − σ∥1
2

)
2n

. (3.22)

Recall that for the quantum classifier h̃, h̃(σ) = h(σ̃). Taking minimum over all σ such that
h̃(σ) ≠ h̃(ρ) (i.e., h(σ̃) ≠ h(ρ)),

εin(ρ) ≤min{∥ρ − σ̃∥1} ≤ 4

¿
ÁÁÀ

1 − (1 − min{∥ρ − σ∥1}
2

)
2n

, (3.23)

we obtain

εin(ρ) ≤ 4

¿
ÁÁÀ

1 − (1 − εunc(ρ)
2
)
2n

. (3.24)

Notice that to obtain an inequality between εin(ρ) and εunc(ρ) like in Eq. (3.24), it is
sufficient to have Eq. (3.23) hold after taking the minimum, and it is not necessary to have
Eq. (3.22) hold for a generic σ. Since for n-qubit density matrices which are separable with
respect to some equal bipartition of the system, denoted as {ρb}, form a dense subset [163],
we can effectively realize the same minimum in Eq. (3.23) over σ ∈ {ρb} such that h̃(σ) ≠ h̃(ρ)
instead. For equal bipartite states, the number of copies to make a CPTP map Λ′ acting
on them to obtain P (σ) reduces to n/2 if n is even and reduces to (n + 1)/2 if n is odd.
For instance, given a 4-qubit σ whose qubit 1 is only entangled with 2 and qubit 3 is only
entangled with 4, Λ′(σ⊗2) = tr{1,3}(σ)⊗tr{2,4}(σ) = P (σ) = Λ(ρ⊗4). Therefore, we can replace
the exponent 1/(2n) in Eq. (3.24) with 1/n for even n and 1/(n + 1) for odd n.

We recall εunc(ρ) ≤ εin(ρ), ∀ρ ∈ X and rearrange,

2 − 2(1 − εin(ρ)
2

16
)

1
ne

≤ εunc(ρ) ≤ εin(ρ),

where ne = n for even n and ne = n + 1 for odd n.

3.12 Discussion
A summary of the upper bounds on the prediction-change adversarial robustness over pure
states sampled from the Haar-random distribution ν and a smoothly generated distribution
ξ, is presented in Table 3.1.
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In this work, we first showed the prediction-change adversarial robustness over Haar-
randomly distributed pure states, and compared this with the previously demonstrated error-
region robustness of [118] over the same distribution. Both types of adversarial robustness
show similar extreme vulnerabilities exponential in the number of qudits. However, in this
work, we have argued that these vulnerabilities for Haar-random pure states are not of
practical interest. This is because, in practice, the adversarial risk of a quantum classifier
should be computed on a distribution over some subset of meaningful states, such as a
subset of qubit encoding states featurizing some images, in order to infer the extent of the
vulnerability. In general, practical quantum classification tasks classify a subset of encoded
states with some commonly used qubit encoding schemes. For such tasks, we have shown
that we can use the concentration of measure phenomenon to derive the robustness of any
quantum classifiers in situations where the distribution of states to be classified can be
smoothly generated from a Gaussian latent space, as quantified in Eq. (3.6). In this situation,
we have shown that one finds only a mildly polynomially decreasing robustness in the number
of such encoded qubits, specifically with scaling as O(

√
1/n) in the trace norm.

As noted for Theorem 3, it is the upper bound on the perturbation size necessary for the
adversarial risk to be bounded from above that scales as Ω(

√
1/n). This upper bound is

usually not tight and the actual adversarial robustness could therefore be smaller. We have
also proposed a feasible modification of any quantum classifier with product-state inputs –
namely, by performing single qubit tomography before numerically fitting the closest encoded
qubit state – to obtain a lower bound on the unconstrained robustness and to defend against
unconstrained adversarial attacks.

Most importantly, our analysis provides QML protocols some relief from adversarial at-
tacks in real-world tasks. For example, when classifying on some qubit states encoding
MNIST images, the robustness decreases only as O(

√
1/n), in contrast to the extreme vulner-

ability of quantum classifiers in classifying Haar-random pure states (Theorem 2 and [118]).
In the future, it will be interesting to experimentally compare the adversarial robustness
of particular QML models for real-world data on a distribution of states smoothly mapped
from a Gaussian latent space with the bounds that we have derived here.

We note that the polynomially decreasing robustness in n is derived from the qudit
encoding scheme. The concentration of measure due to the Gaussian isoperimetric inequality
for the latent space only contributes to the argument of Eq. (3.7). It will be interesting to
investigate whether a different encoding scheme can give better scaling in the robustness,
and also to determine whether quantum data that derives naturally from a distribution
other than the Haar-random distribution is robust to attacks. In Section 3.5, we propose a
method to perform white-box adversarial attacks on classically intractable input states with
QML models. It will be interesting to further explore white-box attacks, assuming that the
adversary is capable of devising these. In practice, with current NISQ-era hardware, it will
also be useful to examine how robust QML models are against adversarial attacks under
noise and decoherence.
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Chapter 4

Tensor Network Quantum Machine
Learning Models

This chapter is derived from the previously published work by Liao, Convy, Yang, and Wha-
ley [162], which analyzed and simulated the competing effect between having decoherence in
the tensor network quantum machine learning models and increasing bond dimension of the
network. Liao contributed primarily to all of the numerical experiments, and both Liao and
Ian contributed to the theoretical analysis.

4.1 Background on Tensor Networks
Tensor networks (TNs) are compact data structures engineered to efficiently approximate
certain classes of quantum states used in the study of quantum many-body systems. We
often encounter high-dimensional objects in many-body quantum physics—when dealing
with the large number of component spaces, we suffer the “curse of dimensionality”. As
a simple example, a general quantum state of a lattice of spin-12 fermions can be written
as ∣ψ⟩ = ∑i1,i2,...,in Ci1i2...in ∣i1⟩ ∣i2⟩⋯ ∣in⟩. It is difficult to store and manipulate the complex-
valued high-order tensor Ci1i2...in given the exponentially scaling number of elements (2n)
specifying it. However, should there be a way to form this high-order tensor from smaller
component tensors through contraction, e.g., Ci1i2...in = ∑2

j,k=1Ai1...in
2
jkBjkin

2 +1...in
, we only

need to store two lower order tensors A and B, which have a total size of 2× 2n
2
+2 ≪ 2n as n

becomes large. This illustrates the principle of tensor network as a compact representation
of wavefunctions. Such a contraction of lower-order tensor can be not exact—the matrix
product state (MPS) with a small bond dimension often requires the truncation of small
singular values in its construction through successive singular value decomposition (SVD).
To simplify the computation and presentation of these lower-order component tensors, a set
of diagrammatic rules consistent with linear algebra is used to indicate the contraction of
different dimensions, leading to the commonly-used Penrose graphical notation, or tensor
diagrams. We provide one example of such on copy tensors as follows.
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Copy Tensors

A copy tensor of order n is defined to be ∆n = ∑i e
⊗n
i where ei is the ith basis vector, whose

conventional tensor diagram is given as a solid dot with n bonds [164, 165]. An order-one
copy tensor contraction can be viewed as a marginalization, while an order-three copy tensor
can be used to denote conditioning on the same vector, as shown in Fig. 4.1. The contraction
of two third-order copy tensors with a density matrix and with themselves while leaving two
bonds uncontracted is taking the diagonals of a matrix: δiklMijδjkm =Mijδijlm =Mijδij.

Figure 4.1: Left: using a third-order copy tensor contracting with a basis state vector results
in an outer product of the basis vector, which can be thought of as conditioning on the same
basis state upon contraction with two nodes. Right: Obtaining the diagonals of a density
matrix, or a matrix in general, can be done by contracting the matrix with two third-order
copy tensors and contracting one bond of each of the copy tensors together.

Many tensor network topologies are designed to represent the low-energy states of phys-
ically realistic systems by capturing certain entanglement entropy and correlation scalings
of the state generated by the network [166, 167, 168, 169]. First note that the Schmidt
decomposition may be regarded as a SVD of the matrix Cij of the coefficients that form
∣ψ⟩ [168]

∣ψ⟩ =∑
ij

Cij ∣iA⟩ ∣jB⟩ = ∑
ijα1α2

Viα1Sα1α2Uα2j ∣iA⟩ ∣jB⟩

=∑
ijα

λαViα ∣iA⟩Uαj ∣jB⟩ =∑
α

λα ∣sAα ⟩ ∣sBα ⟩ ,
(4.1)

where λα are the singular values, which are equal to the Schmidt coefficients. By the defini-
tion of entanglement entropy1, the entanglement entropy is [168]

E(A,B) = −
m

∑
α=1

∣λα∣2 log(∣λα∣2) ≤ log(m), (4.2)

where the inequality is saturated when all singular values are 1/
√
m. Therefore, the bipartite

entanglement entropy is upper bounded by the logarithm of the dimension of the virtual
bond connecting the two bipartitions. Moreover, there can be in general a set of virtual
bonds connecting the two bipartitions, e.g., the inner patch of a 2D lattice of the projected

1For a pure state defined by the joint density matrix ρAB with reduced density matrices ρA and ρB
corresponding to the bipartitions A and B, the entanglement entropy is defined as the von-Neumann entropy
of ρA, or equivalently of ρB as E(A,B) = −Tr[ρA log(ρA)]
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entangled pair states (PEPS) and the outer patch are interfaced by a rectangle, along which
all virtual bonds are responsible for the bipartite entanglement entropy. It is then readily
seen that MPS, tree tensor network (TTN) (see Sec. 4.2 for more details)2, and PEPS all
have some boundary as the bipartition interface, as opposed to the volume, i.e., two points
(boundary of a line segment), are the interface for bipartitions of an MPS, and a rectangle
(boundary of a finite plane) is the interface for bipartitions of a PEPS. Therefore, they
capture boundary-law scaling of bipartite entanglement entropy. This is in sharp contrast
to a Haar-random quantum state whose bipartite entanglement entropy has a volume-law
scaling [170].

The density matrix renormalization group (DMRG) technique can employ MPS ansatz
to approximately generate the ground states of common Hamiltonians because these ground
states are not Haar-randomly sampled, but instead tend to have boundary-law bipartite
entanglement. Such scaling patterns have been proven for the ground states of 1D gapped
quantum systems [171], and for harmonic lattice systems of arbitrary dimension [172]. They
have also been conjectured to exist in the ground states of most local, gapped quantum
systems regardless of dimension [173].

To bipartition a multi-scale entanglement renormalization ansatz (MERA) (see Sec. 4.2
for more details) is different—we need to cut a number of virtual bonds that is proportional
to log(L) (L is the size of the system), creating a logarithmic correction to the boundary-law
scaling, which is in turn found in many critical-phase Hamiltonians [174].

4.2 Background on Tensor Network Quantum Machine
Learning

Some tensor networks allow for interpretations of coarse-grained states at increasing levels
of the network as a renormalization group or scale transformation that retains information
necessary to understand the physics on longer length scales [175, 176]. This motivates the
usage of such networks to perform discriminative tasks, in a manner similar to classical
machine learning (ML) using neural networks with layers like convolution and pooling that
perform sequential feature abstraction to reduce the dimension and to obtain a hierarchical
representation of the data [177, 178]. In addition to applying TNs such as the tree tensor
network (TTN) [179] and the multiscale entanglement renormalization ansatz (MERA) [180]
for quantum-inspired tensor network ML algorithms [181, 182, 183], there have been efforts
to variationally train the generic unitary nodes in TNs to perform quantum machine learning
(QML) on data-encoded qubits. The unitary TTN [184, 185] and MERA [184, 186] have
been explored for this purpose mindful of feasible implementations, such as normalized input
states, on a quantum computer.

Tensor network QML models are linear classifiers on a feature space whose dimension
grows exponentially in the number of data qubits and where the feature map is non-linear.

2An MPS can be viewed as the most unbalanced TTN with all nodes on one branch of a tree.
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Such models employ fully parametrized unitary tensor nodes that form a rich subset of larger
unitaries with respect to all input and output qubits upon tensor contractions. They provide
circuit variational ansatze more general than those with common parametrized gate sets [187,
188, 189], although their compilations into hardware-dependent native gates are more costly
because of the need to compile generic unitaries.

Unitary Tree Tensor Network (TTN)

Unitary tree tensor network (TTN) is a classically tractable realization of tensor network
QML models, with a topology that can be interpreted as a local coarse-graining transfor-
mation that keeps the most relevant degrees of freedom, in a sense that the information
contained within each subtree is separated from those contained outside of the subtree. We
focus on 1D binary trees. A generic binary TTN consists of log(m) layers of nodes where
m is the number of input features, plus a layer of data qubits appended to the leaf level of
the tree. A diagram of the unitary TTN is shown in Fig. 4.2 (left). Every node in a unitary
TTN is forced to be a unitary matrix with respect to its input and output Hilbert spaces.
Each unitary tensor entangles a pair of inputs from the previous layer. At each layer, one
of the two output qubits is unobserved and also not further operated on, while the other
output qubit is evolved by a node at the next layer. If the classification is binary, at the
output of the last layer, namely the root node, only one qubit is measured. Accumulation of
measurement statistics then reveals the confidence in predicting the binary labels associated
with the measurement basis. After variationally learning the weights in the unitary nodes,
we recover a quantum channel such that the information contained in the output qubits of
each layer can be viewed as a coarse-grained representation of that in the input qubits, which
sequentially extracts useful features of the data encoded in the data qubits. A dephased uni-
tary TTN has local dephasing channels inserted between any two layers of the network, as
depicted in Fig. 4.2 (right).

Multi-scale Entanglement Renormalization Ansatz (MERA)

In tensor network QML, the multi-scale entanglement renormalization ansatz (MERA) topol-
ogy overcomes the drawback of local coarse-graining in unitary TTN by adding disentanglers
U , which are unitaries, to connect neighboring subtrees. Its subsequent decimation of the
Hilbert space by a MERA is achieved by isometries V that obey the isometric condition
only in the reverse coarse-graining direction, i.e., V †V = I ′ but V V † ≠ I. From the perspec-
tive of discriminative QML, these unitaries correlate information from states in neighboring
subtrees. We thus refer to these unitaries as entanglers.

By the design of MERA [180], the adjoint of an isometry, namely an isometry viewed in
the coarse-graining direction in QML, can be naively achieved by measuring one of the two
output qubits in the computational basis and post-selecting runs with measurements yielding
∣0⟩. However, this way of decimating the Hilbert space is generally prohibitive, given the
vanishing probability of sampling a bit string of all output qubits with most of them in ∣0⟩.
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Figure 4.2: Left: A unitary TTN on eight input features encoded in the density matrices
ρin’s forming the data layer, where the basis state ℓ is measured at the output of the root
node. Right: Dephasing the unitary TTN is to insert dephasing channels with a dephasing
rate p, assumed to be uniform across all, into the network between every layer.

Hence, operationally an isometry is replaced by a unitary node, half of whose output qubits
are partially traced over, which is the same as a unitary node in the TTN. The MERA can
now be understood as a unitary TTN with extra entanglers inserted before every tree layer
except the root layer, such that they entangle states in neighboring subtrees, as shown in
Fig. 4.3 (left). Its dephased version is similar to the dephased unitary TTN, as depicted in
Fig. 4.3 (right).

Probabilistic Graphical Models

Let a set of vertices and an edge set of ordered pairs of vertices form a directed graph G =
(V,E), and letX = {Xv},∀v ∈ V be a set of discrete random variables indexed by the vertices.
Let pa(v) or Xpa(v) denote the set of parent vertices/variables each of which has an edge
directed towards v. A directed edge represents some conditional probability of the variable
on its parent. We say that X is a discrete Bayesian network (a.k.a. belief network) with
respect to G if G is acyclic, namely, it is a directed acyclic graph (DAG), or equivalently if the
joint probability mass function of X can be written as a product of the individual probability
mass functions conditioned on their parent variables, i.e., P (X) = ∏v∈V P (Xv ∣Xpa(v)). An
undirected graphical model (UGM) is a type of probabilistic graphical model that represents
the conditional dependencies between variables through an undirected graph. One of the
strengths of UGMs is their ability to capture the symmetrical relationships between variables.

It was shown by Robeva et al. [190] in Theorem 2.1 that the data defining a UGM is
equivalent to that defining a tensor network (TN) with non-negative nodes, but with dual
graphical notations that interchange the roles of nodes and edges. Hence, we have discrete
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UGM=non-negative TN, where = represents that the two classes of model can produce the
same probability distribution using the same number of parameters, i.e., they are equally
expressive.

The Born machine (BM) [191, 164], which models a probability mass function as the ab-
solute value squared of a complex function, is a family of more general probabilistic models
built from TNs that arise naturally from the probabilistic interpretation of quantum mechan-
ics. The locally purified state (LPS), first discussed by Glasser et al. [191] and generalized by
Miller et al. [164], adds to each node in a BM a purification edge, allowing it to represent the
most general family of quantum-inspired probabilistic models. Glasser et al. [191] showed
that LPS is more expressive than BM, i.e., LPS>BM.

The decohered Born Machine (DBM) was introduced by Miller et al. [164], which adds
to a subset of the virtual bonds BM decoherence edges that fully dephase the underlying
density matrices. A BM all of whose virtual bonds are decohered is called a fully-DBM.
Miller et al. [164] showed that fully decohering a BM gives rise to a discrete UGM, and
conversely, any subgraph of a discrete UGM can be viewed as the fully-decohered version of
some BM. Hence, we have fully-DBM=discrete UGM.

Theorem 3 and 4 by Miller et al. [164] showed that any DBM can be viewed as an LPS,
and vice versa [164], i.e., LPS=DBM, since each purification edge joining a pair of LPS cores
can be expressed as a larger network of copy tensors, and each decoherence edge of a DBM
can be absorbed into nearby pair of tensors and form a purification edge. Following this
view of LPS=DBM and the fact that LPS>BM, one arrives at DBM>BM, which can also be
understood as BM being a special case of DBM with an empty set of decohered edges added.

A summary of the relative expressiveness is given in Tab. 4.1.

Table 4.1: The relative expressiveness, defined as the probability distributions a model can
produce with the same number of parameters, among the discrete graphical model (UGM),
the tensor network (TN) with non-negative nodes, the Born machine (BM), the decohered
Born machine (DBM), and the locally purified state (LPS).

Relative Expressiveness Ref.
discrete UGM = non-negative TN [190]

fully-DBM = discrete UGM [164]
LPS > BM [191]

LPS = DBM > BM [164]

The unitary TTN and the MERA, dephased or not, are DBMs or equivalently LPSs.
Each partial tracing in them is represented by a purification edge, while each dephasing
channel acting on the input of a unitary node in them can be viewed as a larger unitary
node contracting with some environment node and the input node, before tracing out the
environment degree of freedoms using a purification edge. Each of the tensor networks
produces a normalized joint probability once the data nodes are specified with normalized
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quantum states and the readout node is specified with a basis state. Fully dephasing every
virtual bond in the network gives rise to a fully-DBM, which can be also viewed as a discrete
UGM in the dual graphical picture. We describe in Sec. 4.4 that, by directly taking into
account the effect of the partial tracing or the purification, the fully dephased networks can
also be viewed as Bayesian networks via some directed acyclic graphs (DAGs).

4.3 Decohering Tensor Network Quantum Machine
Learning Models

In this study, we focus on discriminative QML. We investigate and numerically quantify
the competing effect between decoherence and increasing bond dimension of two common
tensor network QML models, namely the unitary TTN and the MERA. By removing the
off-diagonal elements, i.e., the coherence, from the density matrix of a quantum state, we
reduce its representation down to a classical probability distribution over a given basis. The
evolution through the unitary matrices at every layer of the model, together with the full
dephasing of the density matrix at input and output, then becomes successive Bayesian
updates of classical probability distributions, thus removing the quantumness of the model.
This process can occur between any two layers of the unitary TTN or the MERA, and should
in principle reduce the amount of information or representative flexibility available to the clas-
sification algorithm. However, as we add and increase the number of ancillas and accordingly
increase the virtual bond dimension of the tensor networks, this diminished expressiveness
may be compensated by the increased dimension of the classical probability distributions
and their conditionals, manifested in the increasing number of diagonals intermediate within
the network, as well as by the increased sized of the stochastic matrices encapsulated by
the corresponding Bayesian networks in the fully dephased limit. The possibility that an
increased bond dimension fully compensates for the decoherence of the network would indi-
cate that the role of coherence in QML is not essential and it offers no unique advantage,
whereas a partial compensation provides insights into the trade-off between adding ancillas
and increasing the level of decoherence in affecting the network performance, and therefore
offers guidance in determining the number of noisy ancillas to be included in NISQ-era [104]
implementations.

Dephasing Qubits after Unitary Evolution

A dephasing channel with a rate p ∈ (0,1] on a qubit is obtained by tracing out the environ-
ment after the environment scatters off of the qubit with some probability p. We denote the
dephasing channel on a qubit with a dephasing rate p as E , such that

E[ρ] = (1 − 1

2
p)ρ + 1

2
pσ3ρσ3 =∑

ij

(1 − p)1−δij ⟨i∣ρ∣j⟩ ∣i⟩⟨j∣ =∑
ij

(1 − p)1−δijρij ∣i⟩⟨j∣, (4.3)
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where the summation goes from 0 to 1 for every index hereafter unless specified otherwise,
whose effect is to damp the off-diagonal entries of the density matrix by (1 − p). The
operator-sum representation of E[ρ] can be written as with the two Kraus operators3,

K0 =
√

1 − p
2
I, K1 =

√
p

2
σ3, (4.4)

defined such that E[ρ] = ∑iKiρK
†
i and ∑iK

†
iKi = I. Assuming local dephasing on each

qubit, the dephasing channel on the density matrix ρ of m qubits, entangled or not, is given
by

E[ρ] = ∑
i1,...,im

(
m

⊗
n=1

Kin)ρ(
m

⊗
n=1

K†
in
) . (4.5)

If we allow a generic unitary U to act on E[ρ] for a single qubit, we have the purity of
the resultant state given by

Tr [(UE[ρ]U †)2] = Tr [((1 − p
2
)ρ + p

2
σ3ρσ3)

2

] = Tr (ρ2) − 4pρ201 (1 −
p

2
) ≤ Tr (ρ2) , (4.6)

where we used Eq. (4.3) in the first line. Therefore, in a given basis, successive applications of
a dephasing channel and generic unitary evolution decrease the purity of any input quantum
state, until the state becomes maximally mixed4. Successively applying the dephasing chan-
nel alone decreases the purity of the state until it becomes fully decohered, namely diagonal
in its density operator in a given basis. It is thus a process in which quantum information
of the input is irreversibly and gradually (for p < 1) lost to the environment until the state
becomes completely describable by a discrete classical probability distribution.

Dephasing Product-state Encoded Input Qubits

When inputting data into a tensor network, it is common to featurize each sample into a
product state, or a rank-one tensor. The density matrix of such a state with m features is
given by ρ =⊗m

n=1 ∣f (n)⟩⟨f (n)∣ =⊗m
n=1 ρ

(n), where ∣f (n)⟩ is a state of dimension d that encodes
the nth feature. Assuming local dephasing on each data qubit, it is expected that the product
state density matrix after dephasing is the product state of the dephased component density
matrix, i.e., E[ρ] = (⊗m

n=1 E(n))[⊗m
n=1 ρ

(n)] =⊗N
n=1 E(n)[ρ(n)].

In the context of our tensor network classifier, the effect of dephasing can be seen by
considering just a single feature. If we normalize this feature such that its value is x(n) ∈ [0,1],
then we can utilize the commonly-used qubit encoding [192, 193, 95] to encode this classical
feature into a qubit as

∣f (n)⟩ = [sin (
π
2x
(n))

cos (π2x(n))
] , (4.7)

3A more commonly-used, but less computationally efficient in terms of Eq. (4.5), representation uses
three Kraus operators: K0 =

√
1 − pI and K1/2 =

√
p

2
(I±σ3) such that E[ρ] = ∑2

i=0KiρK
†
i and ∑2

i=0K
†
iKi = I.

4Unitary evolution on the d-dimensional maximally mixed states, which are the only rotationally invariant
states, does not produce coherence.
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Figure 4.3: Left: A MERA on eight input features encoded in the ρin’s forming the data
layer, where the basis state ℓ is measured at the output of the root node. Right: Dephasing
the MERA is to insert dephasing channels with a dephasing rate p, assumed to be uniform
across all, into the network between every layer.

respectively. A notable property of these encodings is that the elements of ∣f (n)⟩ are always
positive, so there is a one-to-one mapping between ∣⟨i(n)∣f (n)⟩∣2 and ⟨i(n)∣f (n)⟩ for all i(n).
This means that every element of ρ(n) = ∣f (n)⟩⟨f (n)∣ ≡ ρ can be written as a function of
probabilities λ(n)0 ≡ λ0 and λ(n)1 ≡ λ1, where

ρ00 = λ0, ρ01 = ρ10 =
√
λ0λ1, ρ11 = λ1. (4.8)

Using Eq. (4.16), we get

λ′0 = ∣U00∣2λ0 + ∣U01∣2λ1 + 2
√
λ0λ1R(U00U01) (4.9)

λ′1 = ∣U11∣2λ1 + ∣U10∣2λ0 + 2
√
λ0λ1R(U10U11), (4.10)

where it is clear that the new probabilities λ′i are non-linear functions of the old probabilities
λj. Specifically, there is a dependence on

√
λ0λ1. Such non-linear functions cannot be

generated by a stochastic matrix acting on diag(ρ(n)), since the off-diagonal
√
λ0λ1 terms

will be set to zero. By fully dephasing the input state before acting the unitary, the fully
dephased output is less expressive in the sense that we lose the regressor

√
λ0λ1. But knowing

the relative phase of the encoding, this lost regressor does not contain any extra information
than the regressors λ0 and λ1, so in that sense the information content of the encoding is
unaffected by the dephasing.

Impact on Regressors by Dephasing

To understand the dephasing effect on the linear regression induced by the unitary TTN
network topology, it is illuminating to study the evolution of TrA(UE[ρ]U †) which is un-
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dertaken by a unitary node acting on a pair of dephased input qubits followed by a partial
tracing over one of the output qubits. The diagonals of the output density matrix before
partial tracing, i.e., the diagonals of UE[ρ]U †, are

ρ′ii = ∣Ui0∣2ρ00 + ∣Ui1∣2ρ11 + ∣Ui2∣2ρ22 + ∣Ui3∣2ρ33+
2(1 − p) [R(Ui1U

∗
i0ρ10) +R(Ui2U

∗
i0ρ20)+

R(Ui3U
∗
i1ρ31) +R(Ui3U

∗
i2ρ32)]+

2(1 − p)2 [R(Ui3U
∗
i0ρ30) +R(Ui2U

∗
i1ρ21)] ,

(4.11)

for i ∈ {0,1,2,3}, where every diagonal term is a linear regression on all elements of input
ρ with regression coefficients set by the unitary matrix elements Uik, k ∈ {0,1,2,3}. We
note that terms such as the R(Ui1U∗i0ρ10) = Ui0U∗i1ρ01 + Ui1U∗i0ρ10 are each composed of two
regressors. In particular, the dephasing suppresses some of the regressors by a factor of
(1−p) or (1−p)2. Since the norm of each element in U and U † is upper bounded by one, the
norm of the regression coefficients is suppressed by these factors induced by dephasing. The
suppression is stronger by a factor of (1 − p)2 for regressors that are anti-diagonals of the
input density matrix, i.e., ρ30 and ρ21. While the regression described above is to obtain the
diagonals of the output density matrix, the regression to obtain off-diagonals of the output
density matrix has a similar pattern of suppression of certain regressors.

This suppression of regression coefficients is carried over to the reduced density matrix,
which can be written as

Tr2(ρ′) = [
ρ′00 + ρ′11 ρ′02 + ρ′13
ρ′20 + ρ′31 ρ′22 + ρ′33

] . (4.12)

When the input pair of qubits ρ is a product state of two data qubits, we have

ρ = ρ(1) ⊗ ρ(2) ≡ [ λ0
√
λ0λ1√

λ0λ1 λ1
]⊗ [ µ0

√
µ0µ1√

µ0µ1 µ1
] , (4.13)

where the λ’s and µ’s are defined like Eq. (4.8) for the two data qubits ρ(1) and ρ(2). Substi-
tuting Eq. (4.13) into Eq. (4.11) and (4.12), we see that all regressors containing √µ0µ1 or√
λ0λ1 are suppressed by a factor of (1 − p) after the first-layer unitary, while the regressor√
λ0λ1µ0µ1 is suppressed by a factor of (1 − p)2. The output density matrix elements then

become the regressors for regressions performed by subsequent upper layers, as follows.
For unitary TTN without ancillas, Eq. (4.11) and (4.12) are carried over to the output

of every layer of the network, since there is no entanglement in the input pair of qubits.
However, at the upper layers, the regression onto the output density matrix element has
regressors already composed of terms that were suppressed in previous layers, as described
above for ρ → ρ′. Viewing the regressors at the input of the last layer, the suppression on
most of them by some power of (1−p) resembles the concept of regularization in regressions
but does not involve a penalty term on the coefficient norm in the loss function.

In cases where there can be entanglement in each of the input qubits, such as the inter-
mediate layers in a MERA or in a unitary TTN with ancillas, the pattern of suppressing
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certain regressors is similar, where the coherence of the input is suppressed by some power
of (1 − p). In particular, the regressors on the anti-diagonals are most strongly suppressed
by a factor of (1 − p)m where m is the number of input qubits.

4.4 fully dephased Unitary Tensor Networks
When the network is fully dephased at every layer, all of the off-diagonal regressors are
removed. Each diagonal term of the output density matrix then becomes a regression on only
the diagonals of the input density matrix. In Sec. 4.4, we show that in this situation each node
of the unitary tensor network Uij reduces to a unitary-stochastic matrix Mij ≡ ∣Uij ∣2. When
the output of the unitary node is partially traced over, the overall operation is equivalent to
a singly stochastic matrix SiBj ≡ ∑iA ∣UiAiBj ∣2, where iA enumerates the traced-over part of
the system. The tensor network QML model then reduces to a classical Bayesian network
(see Sec. 4.2) with the joint probability factorization Eq. (4.21) which shall be presented in
Sec. 4.4 and 4.4.

Fully-dephasing Qubits after Unitary Evolution

To fully dephase a quantum state, we simply choose a basis to represent the density matrix
and then set all off-diagonal elements of the matrix to zero, leaving the diagonal elements
unchanged. If we represent the fully-dephasing (p = 1) superoperator as D, then

D[ρ] =∑
i

⟨i∣ρ∣i⟩ ∣i⟩⟨i∣ =∑
i

ρii∣i⟩⟨i∣. (4.14)

For convenience, we adopt the notation λi ≡ ρii, where the λi can be identified as probabilities
from some discrete distribution. If we allow a generic unitary U to act on ρ before it is fully
dephased, then we have

D[UρU †] =∑
i

⟨i∣UρU †∣i⟩ ∣i⟩⟨i∣ =∑
ijk

ρjk ⟨i∣U ∣j⟩ ⟨k∣U †∣i⟩ ∣i⟩⟨i∣, (4.15)

so that the new probabilities λ′i encoded in the fully dephased state are given by

λ′i = D[UρU †]ii =∑
jk

ρjk ⟨i∣U ∣j⟩ ⟨k∣U †∣i⟩ =∑
jk

ρjkUijU
∗
ik (4.16)

From Eq. (4.16), we can see that each probability is a function of the entire density matrix,
along with the elements of U . If ρ is assumed to be fully dephased already, then ρjk = λjδjk
and therefore

λ′i =∑
jk

λjδjkUijU
∗
ik =∑

j

λj ∣Uij ∣2 =∑
j

Mijλj. (4.17)

By the unitarity of U , Mij ≡ ∣Uij ∣2 is doubly stochastic, i.e., ∑iMij = ∑i∣Uij ∣2 = 1j and
∑jMij = ∑j ∣Uij ∣2 = 1i, which maps the old probabilities λ to new probabilities λ′ that are
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normalized, i.e., ∑i λ
′
i = ∑ijMijλj = ∑j 1jλj = 1. Such doubly stochastic matrices M that

correspond to some unitaries are called unitary-stochastic matrices. For N ≤ 2, all N ×N
doubly stochastic matrices are also unitary-stochastic. But unitary-stochastic matrices form
a proper subset of doubly stochastic matrices for N ≥ 35 [195, 194].

Fully-dephasing a Reduced Density Matrix after Unitary Evolution

In some tensor networks such as the TTN, the effective size of the feature space is reduced
by tracing over some of the degrees of freedom after each layer. The combined effects of
the unitary layer and partial trace produce a quantum channel, whose output is then fully
dephased. If we partition the Hilbert space of an input density matrix ρ into parts A and
B, then the outputs λ′iB after tracing over part A are given by

λ′iB = [TrA (D[UρU †])]
iBiB

=
⎡⎢⎢⎢⎣
∑

iAiBjk

TrA (ρjk ⟨iAiB ∣U ∣j⟩ ⟨k∣U †∣iAiB⟩ ∣iA⟩⟨iA∣∣iB⟩⟨iB ∣)
⎤⎥⎥⎥⎦iBiB

= ∑
iAjk

ρjk ⟨iAiB ∣U ∣j⟩ ⟨k∣U †∣iAiB⟩Tr (∣iA⟩⟨iA∣)

=∑
jk

ρjk∑
iA

UiAiBjU
∗
iAiBk.

(4.18)

We can again see that the output diagonals depend on all elements of ρ and U . If ρ is already
fully dephased, then we have

λ′iB =∑
jk

λjδjk∑
iA

UiAiBjU
∗
iAiBk =∑

j

λj∑
iA

∣UiAiBj ∣2 =∑
j

SiBjλj, (4.19)

where SiBj ≡ ∑iA ∣UiAiBj ∣2 is a rectangular singly stochastic matrix with respect to index
iB only, i.e., ∑iB SiBj = ∑iAiB ∣UiAiBj ∣2 = 1j. It again maps the old probabilities λ to new
probabilities λ′ which are normalized, i.e., ∑iB λ

′
iB
= ∑iBj SiBjλj = ∑j 1jλj = 1. We remark

that the output index iB runs from 1 to dim(B), while the input index j runs from 1 to
dim(A) ⋅ dim(B), and the Bayesian update by this singly stochastic matrix applies only in
the coarse-graining direction.

Fully-dephasing the Unitary TTN

Dephasing a unitary TTN is to apply local dephasing channels on each pair of output bonds
before contracting with the node at the next layer, as shown in Fig. 4.2 (right). In terms
of the underlying density matrix, the dephasing channel is to apply Eq. (4.5) to the bonds,

5The dimension of the parameter space for N ×N unitary-stochastic matrices is (N − 1)2 as for doubly
stochastic matrices. The parameter space covered by unitary-stochastic matrices is, however, in general,
smaller than that covered by doubly stochastic matrices [194].
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each of which may represent a higher-dimensional state if there are ancilla qubits added as
discussed in Sec. 4.5. We note that assuming local dephasing, there is no need to dephase
before partially tracing out some generally entangled qubits out of the unitary TTN node,
say tracing over part A of the output system AB, since there exists a UAE on ρAB ⊗ ρE by
the definition of dephasing such that

TrA (EA [ρAB]) = TrA [TrE (UAEρAB ⊗ ρEU †
AE)] = TrA(ρAB). (4.20)

A diagram of the dephased unitary TTN is shown in Fig. 4.2 (right).
As shown in Sec. 4.4, fully decohering after partially tracing out every composite node

of a unitary TTN leads to a TTN composed of nodes each of which is a rectangular singly
stochastic matrix S (reduced from a unitary-stochastic matrix), acting on a vector of the
diagonals of a density matrix, that only preserves the normalization in the coarse-graining
direction. The fully dephased TTN then exhibits a chain of conditional probabilities and can
be interpreted as successive Bayesian updates across layers. A diagram using the third-order
copy tensors (see Sec. 4.1) to fully dephase the unitary TTN is shown in Fig. 4.4 (left), and
the dual graphical picture as a Bayesian network is depicted in Fig. 4.4 (right).

Formally, a fully dephased unitary TTN can be viewed as a discrete Bayesian network via
a DAG with input quantum states as parent variables. In other words, the Bayesian network
provides a dual graphical formulation of the fully dephased unitary TTN, with the graph
edges functioning as the tensor nodes while the graph vertices acting as the virtual bonds [190,
164]. The graph vertices in the Bayesian network, which is dual to the virtual bonds in the
TTN composed of stochastic matrices, represent vector variables λ(k,j) ≡ diag(ρ(k,j)), where
k and j denotes the j-indexed vertices at the kth layer of the network with 0 indexing the
layer with parent variables, and ρ is the corresponding density matrix in the dual tensor
network picture. We use the shorthand λ(k) ≡ {λ(k,0), . . . , λ(k,nk)} to group all nk vertices at
the kth layer into a set. The output vertex of the Bayesian network stands for a readout
variable ℓ specifying the basis state of the measurement. The Bayesian network then yields a
joint probability once the parent variables are specified with normalized quantum states, i.e.,
the joint probability represented by the network can be written in the following factorized
form

P (λ(0) . . . , λ(log(m)), ℓ) = P (ℓ∣λ(log(m)))
log(m)

∏
k=1

P (λ(k)∣λ(k−1))P (λ(0)), (4.21)

where m ≡ n0 is the number of vertices at the data layer. P (λ(k)∣λ(k−1)) is the conditional
probability represented by the edges between the (k − 1)th and kth layer of the Bayesian
network, or equivalently by the rectangular singly stochastic matrices at the kth layer of
the dual tensor network. P (ℓ∣λ(log(m))) is the conditional probability of obtaining the basis
vector ℓ.
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Figure 4.4: Left: Fully-dephasing a unitary TTN, where the third-order copy tensor ∆3 is
defined as ∆3 = ∑i e

⊗3
i with ei the qubit basis state (see Sec. 4.1). Right: The dual graphical

picture of the fully dephased unitary TTN as a Bayesian network via a directed acyclic graph
(DAG). The transition matrices conditioning on each pair of input vectors are rectangular
singly stochastic matrices S’s reduced from some unitary-stochastic matrices.

When, for instance, the unitary TTN is fully dephased to become a Bayesian network,
both schemes of adding ancillas, as described in Sec. 4.5, give rise to networks that share
the same form of factorized conditional probabilities as shown in Eq. (4.21). The difference
between the two schemes lies in that adding ancillas per node leads to λk,j fixed at two
dimensional ∀k, j, whereas adding ancillas per data qubit allows λk,j’s dimension to grow
with the number of ancillas ∀k ∈ {1, . . . , log(m)},∀j, since increasing virtual bond dimension
increases the number of diagonals.

Fully-dephasing the MERA

Similar to the fully dephased unitary TTN, the fully dephased MERA is shown in Fig. 4.5
(left), whose dual graphical formulation as a Bayesian network is shown in Fig. 4.5 (right),
such that the joint probability yielded by the network upon specifying the input quantum
states as the parent variables has the same factorized form as Eq. (4.21). An entangler
with fully dephased input and output transforms to a unitary-stochastic matrix M , and the
partially-traced-over unitary, serving as the “isometry”, with fully dephased input and output
transforms to a singly stochastic matrix S (reduced from a unitary-stochastic matrix) with
respect to the coarse-graining direction. We note that the dimension of the vector variables
dual to the output bonds of entanlgers in the tensor network picture is twice as large as
other variables, since they represent correlated variables outputted by the unitary-stochastic
matrices. Each of the two outgoing directed edges from these variables can be interpreted
as a conditional probability conditioning on half of the support of these discrete variables.
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Figure 4.5: Left: Fully-dephasing a MERA. Right: Equivalently, the dual graphical picture of
the fully dephased unitary TTN as a Bayesian network via a DAG, since the fully dephased
MERA is a tensor network composed of unitary-stochastic matrices M ’s and rectangular
singly stochastic matrices S’s with respect to the coarse-graining direction, with input being
the diagonals of the encoded qubits.

4.5 Adding Ancillas and Increasing the Virtual Bond
Dimension

The Stinespring’s dilation theorem [10, 196] states that any quantum channel or completely
positive and trace-preserving (CPTP) map Λ ∶ B(HA) → B(HB)6 over finite-dimensional
Hilbert spaces HA and HB is equivalent to a unitary operation on a higher dimensional
Hilbert space HB ⊗HE, where HE is also finite-dimensional, followed by a partial tracing
over HE. A motivating example demonstrating directly that ancillas are necessary to allow
the evolution of fully dephased input induced by a generic unitary to be as expressive as that
induced by a singly stochastic matrix is presented in Sec. 4.5. In particular, the dimension
of the ancillary system HE can be chosen such that dim(HE) ≤ dim(HA)dim(HB) for any
Λ7 [10]. In terms of qubits, the theorem implies that there need to be at least 2no ancilla
qubits to achieve an arbitrary quantum channel between ni input qubits and no output
qubits. This is because the total combined number of ni input qubits and na ancilla qubits
should equal the total combined number of no output qubits and the qubits that are traced
out as environment degrees of freedom. Using Stinespring’s dilation theorem, we can show
2ni+na−no ≤ 2ni2no which leads to na ≤ 2no.

In the scheme of adding ancillas per node in a unitary TTN, every node requires then in
6We denote the convex set of positive-semidefinite linear operators with unit trace, namely the set of

density operators, on a complex Hilbert space H (thus Hermitian and bounded) as B(H).
7In the Stinespring’s representation of such a CPTP map Λ, there exists an isometry V ∶ B(HA) →

B(HB ⊗HE) such that Λ(ρ) = TrE(V ρV †),∀ρ ∈ B(HA).
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principle at least two ancilla qubits to achieve an arbitrary quantum channel, because there
are two input qubits coming from the previous layer and one output qubit passing to the
next layer.

Figure 4.6: Adding one ancilla qubit, initialized to a fixed basis state, per data qubit to a
unitary TTN classifying four features, with a corresponding virtual bond dimension increased
to four. Only one output qubit is measured in the basis state ℓ regardless of the number
of ancillas added per data qubit. We always decimate the Hilbert space by half between
consecutive layers of unitary nodes.

However, in practice, we have found it more expressive to instead add ancillas to the
data qubits and to trace out half of all output qubits per node before contracting with the
node at the next layer. We call this the ancilla-per-data-qubit scheme. This scheme is
able to achieve superior classification performance in the numerical experiment tasks that
we conducted compared to the ancilla-per-unitary-node scheme described above (see details
towards the end of this Section), despite the fact that the two schemes share the same number
of trainable parameters when adding the same number of ancillas. A diagram of this ancilla
scheme is shown in Fig. 4.6. This scheme effectively increases the virtual bond dimension of
the network, which means that the network can represent a larger subset of unitaries on all
input qubits.

Although the ancilla-per-data-qubit scheme achieves superior classification performance,
it never produces arbitrary quantum channels at each node. To see this, for any unitary
node in the first layer, the number of input qubits is ni = 2, that of ancillas is na = nik = 2k
where k ∈ Z is the number of ancillas per data qubit, and that of output qubits passing to
the next layer is no = 1 + k such that na < 2no,∀a ∈ Z. As a result, the channels achievable
via the first layer of unitaries constitute only a subset of all possible channels between its
input and output density matrices. For any unitary node in subsequent layers, there are no
longer any ancillas, whereas there is at least one output qubit observed or operated on later.
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Consequently, the channels achievable via each layer of unitaries then also constitute only a
subset of all possible channels between its input and output density matrices.

Comparing the Two Ancilla Schemes in the Unitary TTN

As shown in Tab. 4.2, adding one ancilla per data qubit and accordingly doubling the virtual
bond dimension yields superior performance to adding two ancillas per unitary node, in the
task of classifying 1902 8 × 8-compressed MNIST images each showing a digit 3 or 5. Both
ancilla-added unitary TTNs are trained on 5000 samples using the Adam optimizer and
validated on 2000 samples. The two ancilla schemes share the same number of trainable
parameters.

Table 4.2: Average testing accuracies over five trials between adding two ancillas per unitary
node and adding one ancilla per data qubit, when the dephasing rate p = 0 or p = 1, in the
same classification task.

Per unitary node Per data qubit
p = 0 0.938 ± 0.001 0.972 ± 0.001
p = 1 0.912 ± 0.002 0.940 ± 0.002

Ancillas Are Required to Achieve Evolution by Singly Stochastic Matrices

Ancillas are necessary to allow the evolution of fully dephased input induced by a generic
unitary to be as expressive as that induced by general singly stochastic matrices. Consider
a singly stochastic matrix

[1 1 1 1
0 0 0 0

] , (4.22)

which maps an input state in {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩} to ∣0⟩. Note that this is naturally a
mapping between fully dephased input and fully dephased output. But this mapping cannot
be achieved by acting a unitary on the data qubit alone. To achieve that, we need to
unitarily evolve a combined system including at least one ancilla. After tracing out the
ancilla, it is possible to leave the data qubit in ∣0⟩. Namely, {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩}→ ∣0⟩⊗ ∣0⟩E
or {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩} → ∣0⟩ ⊗ ∣1⟩E is achievable by a unitary on the combined system.
Note that this is also a mapping between fully dephased input and fully dephased output
naturally. Therefore, considering generic unitary evolution such as contracting with a node
in the unitary TTN, it is necessary to include ancillas to achieve what can be mapped by a
singly stochastic matrix between the fully dephased input and fully dephased output.
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Figure 4.7: Average testing accuracy over five runs with random batching and random
initialization as a function of dephasing probability p when binary-classifying 8×8 compressed
MNIST, KMNIST, or Fashion-MNIST images. In each image dataset, we group the original
ten classes into two, with the grouping shown in the titles. Every layer of the unitary TTN,
including the data layer, is locally dephased with a probability p. Each curve represents the
results from the network with a certain number of ancillas added per data qubit, with the
error bars showing one standard error. The dotted reference line shows the accuracy of the
non-dephased network without any ancilla.
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4.6 Numerical Experiments
To demonstrate the competing effect between dephasing and adding ancillas while accord-
ingly increasing the bond dimension of the network, we train the unitary TTN to perform
binary classification on grouped classes on three datasets of different levels of difficulty8.
Recall that ni, na, and no respectively denote the number of input data qubits, ancillas, and
output qubits, of every unitary node in the first layer of the TN. We employ TTNs with
ni = 2, na ∈ {0, ni,2ni,3ni}, and no = 1/2(ni + na) for every unitary node in the first layer,
and with virtual bond dimensions equal 1/2(ni + na). We also employ MERAs with ni = 2,
na ∈ {0, ni}, and no = 1/2(ni + na) for every unitary node in the first layer, and with virtual
bond dimensions equal 1/2(ni + na). The root node in either network has one output qubit
measured for a binary prediction.

We vary both the dephasing probability p in dephasing every layer of the network, and
the number of ancillas, which results in a varying bond dimension of the TTN. In the fully
dephased limit, the unitary TTN essentially becomes a Bayesian network that computes a
classical joint probability distribution (see Sec. 4.4).

In each dataset, we use a training set of 50040 samples of 8 × 8-compressed images and
a validation dataset of 9960 samples, and we employ the qubit encoding given in Eq. (4.7).
The performance is evaluated by classifying another 10000 testing samples. The unitarity of
each node is enforced by parametrizing a Hermitian matrix H and letting U = eiH . In all of
our cases where the model can be efficiently simulated9, they can be optimized with analytic
gradients using the Adam optimizer [55] with respect to a categorical cross-entropy loss func-
tion, with backpropagations through the dephasing channels. Values of the hyperparameters
employed in the optimizer (learning rate) and for initialization of the unitaries (standard de-
viations) are tabulated in Sec. 4.6. The ResNet-18 model [197], serving as a benchmark of
the state-of-the-art classical image recognition model, is adapted to and trained/tested on
the same compressed, grayscale images.

For the first 8 × 8-compressed, grayscale MNIST [198] dataset, and the second 8 × 8-
compressed, grayscale KMNIST [199] dataset, we group all even-labeled original classes into
one class and group all odd-labeled original classes into another, and perform binary clas-
sification on them. For the third 8 × 8-compressed, grayscale Fashion-MNIST [200] dataset,
we group 0,2,3,6,9-labeled original classes into one class and the rest into another. The
binary classification performance on each of the three datasets as a function of dephasing
probability p and the number of ancillas is shown for the unitary TTN in Fig. 4.7. Due to
high computational costs, we simulate a three-ancilla network with p values equal to 0 and
1 only. This suffices to reveal the performance trends in both the non-decohered unitary
tensor network and the corresponding Bayesian network.

There are two interesting observations to make on the results in Fig. 4.7. First, the
classification performance is very sensitive to small decoherence and decreases the most

8Example images of the three datasets are shown in Sec. 4.6.
9If the model cannot be efficiently simulated, stochastic approximations such as the simultaneous per-

turbation stochastic approximation (SPSA) with momentum algorithm [185] can be used for training.
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rapidly in the small p regime, especially in networks with at least one ancilla added. Further
dephasing the network does not decrease the performance significantly, and in some cases,
it does not further decrease the performance at all. A similar observation is made for
the MERA (see Fig. 4.9). Second, in the strongly dephased regime where the ancillas are
very noisy, adding such noisy ancillas helps the network regain performance relative to that
of the non-dephased no-ancilla network. On all three datasets, the performance regained
after adding two ancillas across all dephasing probabilities is comparable to the performance
with the no-ancilla non-dephased network. This suggests that in implementing such unitary
TTNs in the NISQ era with noisy ancillas, it is favorable to add at least two ancillas to the
network and to accordingly expand the bond dimension of the unitary TTN to at least eight,
regardless of the decoherence this may introduce.

However, due to the high computational costs with more than three ancillas added to
the network, our experiments do not provide sufficient information about whether the cor-
responding Bayesian network in the fully dephased limit will ever reach the same level of
classification performance as the non-dephased unitary TTN by increasing the number of
ancillas. Despite this, we note that in the KMNIST and Fashion-MNIST datasets, the rate
of improvement of the Bayesian network as more ancillas are added is diminishing.

Fig. 4.7 shows that when classifying the Fashion-MNIST dataset, adding three ancillas
in the non-decohered network leads to a slightly worse performance than just adding two
ancillas. This may be attributed to the degradation problem in optimizing complex models,
which is well-known in the context of classical neural networks [197]. For neural networks,
this is manifested by a performance drop in both training and testing as more layers are
added, and is distinguished from overfitting where only the testing accuracy drops. In the
current unitary TTN calculations, the eight-qubit unitaries that arise in the three-ancilla
setting are significantly harder to optimize than the six-qubit unitaries that arise in the two-
qubit setting. The optimization was unable to adequately learn the eight-qubit unitaries and
thus there is a small drop in performance seen on increasing the ancilla count from two to
three.

Dephasing the data layer is special compared to dephasing other internal layers within the
network, since the coherence in each of the product-state data qubits has not been mixed to
form the next-layer features. Since the coherences are non-linear functions of the diagonals of
ρ, given the linear nature of tensor networks, it is not possible to reproduce the coherence in
the data qubits in subsequent layers once the input qubits are fully dephased. To examine to
what extent the observed performance decrement may be attributed to decoherence within
the network as opposed to decoherence of the data qubits, we perform the same numerical
experiment on the Fashion-MNIST dataset but keep the input qubits coherent without any
dephasing. The result, shown in Fig. 4.8, indicates that the decoherence of the virtual bonds
in the unitary TTN alone is a significant source causing the classification performance to
decrease, accounting for more than half of the performance decrement.
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Figure 4.8: Average testing accuracy over five runs as a function of dephasing probability
p when classifying 8 × 8 compressed Fashion-MNIST images. Each curve represents the
results from the network with a certain number of ancillas added per data qubit. The circles
(triangles) show the performance of the unitary TTN when every layer including (except)
the data layer is locally dephased with a probability p. The dotted reference line shows the
accuracy of the non-dephased network without any ancillas.
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Figure 4.9: Average testing accuracy over ten runs with random batching and initialization
as a function of dephasing probability p in dephasing a 1D MERA structured tensor network
to classify the eight principle components of non-compressed MNIST images. Ancillas are
added per data qubit. The dotted reference line shows the accuracy of the non-dephased
network without any ancilla.
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Datasets and Hyperparameters for the Numerical Experiments

Samples from the three datasets used here are illustrated in Fig. 4.10. Compression of
the images to dimension 8 × 8 allows tractable computation and optimization when ancillas
are added to the tensor network QML models. Each pixel of an image is featurized through
Eq. (4.7). The three datasets have different levels of difficulty in terms of binary classification
of grouped classes, with the MNIST dataset being the easiest one while the Fashion-MNIST
dataset being the most challenging.

For each dataset, the numbers of training validation, and testing samples are 50040, 9960,
and 10000, respectively. The batch size used for training each model is 250. We find that
initializing the Hermitian matrices around zero, or equivalently the unitaries around the
identity, yields better model performance. We use random normal distributions to initialize
the entries (both the real and imaginary parts) of the Hermitian matrices, with means set
to 0 and standard deviation values tabulated below.

4.7 Discussion
In this study, we investigated the competition between dephasing tensor network QML mod-
els and adding ancillas to the networks, in an effort to investigate the advantage of coherence
in QML and to provide guidance in determining the number of noisy ancillas to be included
in NISQ-era implementations of these models. On one hand, as we increase the dephasing
probability p of every layer of the network, every regressor associated with each layer of
unitary nodes will have certain terms in it damped by some power of (1 − p). The damping
cannot be offset by the regression coefficients which are given in terms of the elements of
the unitary matrices. The effect of this damping of the regressors under dephasing decreases
the classification accuracy of the QML model. When the network is fully dephased, these
regressors are eliminated, and the tensor network QML model becomes a classical Bayesian
network that is completely describable by classical probabilities and stochastic matrices. On
the other hand, as we increase the number of input ancillas and accordingly increase the
virtual bond dimensions of the tensor network, we allow the network to represent a larger
subset of unitaries between the input and output qubits. As a result, the performance of
the network improves, as demonstrated by adding up to two ancillas and a corresponding
increment of the virtual bond dimension to eight in our numerical experiments. This im-
provement applies to all decoherence probabilities. We also find that adding more than two
ancillas gives either diminishing or no improvement (Fig. 4.7). The numerical experiments
are insufficient to show whether the performance of the corresponding Bayesian network can
match that of the non-decohered network as more than three ancillas are added, although
we did find that in the KMNIST and Fashion-MNIST datasets the rate of improvement of
the Bayesian network as more ancillas are added is diminishing. It remains an open question
where coherence provides any quantum advantage in QML.

Most importantly, we find that the performance of the two-ancilla Bayesian network,
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1 3 5 7 9

(a) 8 × 8-compressed MNIST images
0 (o) 2 (su) 4 (na) 6 (ma) 8 (re)

1 (ki) 3 (tsu) 5 (ha) 7 (ya) 9 (wo)

(b) 8 × 8-compressed KMNIST images
0 (T-shirt/top) 2 (Pullover) 3 (Dress) 6 (Shirt) 9 (Ankle boot)

1 (Trouser) 4 (Coat) 5 (Sandal) 7 (Sneaker) 8 (Bag)

(c) 8 × 8-compressed Fashion-MNIST images

Figure 4.10: Example images of each original class in the three datasets, with the class label
shown above each example. In each dataset, the classes in the top row are grouped into one
and the classes in the bottom row are grouped into another for binary classification.
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namely the fully dephased network, is comparable to that of the corresponding non-decohered
unitary TTN with no ancilla, suggesting that when implementing the unitary TTN, it is
favorable to add at least two arbitrarily noisy ancillas and to accordingly increase the virtual
bond dimension to at least eight.

We also observe that the performance of both the unitary TTN and the MERA de-
creases most rapidly in the small decoherence regime. With ancillas added, the performance
decreases and quickly levels off at around p = 0.2 for the unitary TTN. The MERA with one
ancilla added also exhibits this level-off performance after around p = 0.4. However, without
any ancilla added, neither the unitary TTN nor the MERA shows a level-off performance
and their performance decreases all the way until the networks are fully dephased. This
contrast is an interesting phenomenon to be studied in the future.

We note that the ancilla scheme discussed in Sec. 4.5 and the theoretical analysis of the
fully-decohered network presented in Sec. 4.4 are also relevant to other variational quantum
ansatz states beyond tensor network QML models. For example, the analysis applies to non-
linear QML models consisting of generic unitaries, such as those incorporating operations
conditioned on mid-circuit measurement results of some of the qubits [186]. They may
behave similarly under the competition between decoherence and adding ancillas, and it is
an interesting problem for future investigation.
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