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ABSTRACT
Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging
surveys like the Rubin Observatory Legacy Survey of Space and Time (LSST) are all critically dependent on estimates of
photometric redshifts. Capsule networks are a new type of neural network architecture that is better suited for identifying
morphological features of the input images than traditional convolutional neural networks. We use a deep capsule network
trained on 𝑢𝑔𝑟𝑖𝑧 images, spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ∼400,000 Sloan Digital Sky
Survey (SDSS) galaxies to do photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a
fraction of catastrophic outliers that are comparable to or better than current methods for SDSS main galaxy sample-like data
sets (𝑟 ≤ 17.8 and 𝑧spec ≤ 0.4) while requiring less data and fewer trainable parameters. Furthermore, the decision-making
of our capsule network is much more easily interpretable as capsules act as a low-dimensional encoding of the image. When
the capsules are projected on a 2-dimensional manifold, they form a single redshift sequence with the fraction of spirals in a
region exhibiting a gradient roughly perpendicular to the redshift sequence. We perturb encodings of real galaxy images in this
low-dimensional space to create synthetic galaxy images that demonstrate the image properties (e.g., size, orientation, and surface
brightness) encoded by each dimension. We also measure correlations between galaxy properties (e.g., magnitudes, colours,
and stellar mass) and each capsule dimension. We publicly release our code, estimated redshifts, and additional catalogues at
https://biprateep.github.io/encapZulate-1.

Key words: galaxies: distances and redshifts – methods: statistical – methods: data analysis

1 INTRODUCTION

Wide-field extra-galactic sky surveys collect photometric or spectro-
scopic measurements to create 3-dimensional maps of the Universe
bymeasuring on-sky positions and redshifts of a variety of astronom-
ical objects. These maps help us study the growth of the Universe
and its large-scale structure over time by measuring various observ-
able quantities as a function of redshift. For example, Hubble (1929)
studied distances to nearby galaxies as a function of redshift to dis-
cover the expansion of the Universe and more recently, Riess et al.
(1998) and Perlmutter et al. (1999) studied the relationship between
luminosity distances of Type Ia supernovae and their redshifts to
discover cosmic acceleration and hence dark energy. Detection of
Baryon Acoustic Oscillations (BAO) using large redshifts surveys
(Cole et al. 2005; Eisenstein et al. 2005) similarly gave us another
independent measurement of the cosmic acceleration and other pa-
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† NASA Einstein Fellow

rameters of the concordance model of cosmology. Cosmological
redshifts are a proxy for the distance to extra-galactic objects thereby
allowing us to measure their intrinsic properties (like luminosity,
mass, star formation rate, etc.) and enabling studies of the formation
and evolution of galaxies. Accurate redshift measurements of satel-
lite galaxies in the nearby Universe allow us to study the nature and
distribution of dark matter and help us constrain models of galaxy
formation and evolution. Redshift measurements also help with rapid
identification of host galaxies of transient sources for follow-up as
made evident by the recent discovery of gravitational wave sources
with electromagnetic counterparts (Abbott et al. 2017).

Given the long exposure times required and the limited multi-
plexing of spectroscopic instruments, high precision spectroscopic
redshifts (spec-𝑧’s) can only be measured for a tiny fraction of galax-
ies for which we have images. For example, it will be possible to
measure spectroscopic redshifts for less than 1% of the galaxies that
will be used in the Rubin Observatory Legacy Survey of Space and
Time (LSST) studies of galaxy evolution and cosmology (LSST Sci-
ence Collaboration et al. 2009). Because of this limitation, it will be
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2 Dey et al.

necessary to infer redshift information using imaging data alone; the
resultingmeasurements are called photometric redshifts or photo-𝑧’s.
Accurate photo-𝑧 estimates along with well-calibrated uncertainties
will be crucial to achieve the ambitious science goals set for the next
generation of photometric surveys like LSST.
Most photo-𝑧 estimation methods involve finding a non-linear

mapping between photometrically observed properties of galaxies
(like apparent magnitudes and colours) and redshift. This is achieved
either by fitting the observed photometry with redshifted templates
of galaxy spectral energy distributions (SED) (e.g., LePhare, Arnouts
et al. 1999, Ilbert et al. 2006, Ilbert et al. 2009; BPZ, Benítez 2000;
ZEBRA, Feldmann et al. 2006; EAZY, Brammer et al. 2008; Phos-
phoros, Apostolakos et al. 2019, Paltani et al. in prep.; MAGPHYS,
Battisti et al. 2019; Lee & Chary 2020) or using a machine learning
(ML) based model trained on galaxies with spectroscopic redshifts
to approximate this relationship. The optimal method generally de-
pends on the amount and quality of data available and the scientific
questions to be addressed. Template-based methods work well for
deep, high redshift surveys where the faintness of the galaxies and
the broad redshift range covered makes it prohibitively expensive to
collect large data sets. However, SED templates often rely on as-
sumptions on galaxy physics (like star formation history or initial
mass function), have incomplete coverage of the entire wavelength
range and model dust attenuation poorly, all of which are significant
sources of errors (Salvato et al. 2019).
In contrast, in regimes with more complete training data like that

provided by shallow low redshift spectroscopic surveys, common
statistical methods like linear regression (e.g., Connolly et al. 1995;
Beck et al. 2016) or classical machine learning techniques such as
decision trees and random forests (e.g., Carliles et al. 2010; Dalmasso
et al. 2020; Zhou et al. 2021; Li et al. 2022), support vector machines
(e.g., Wadadekar 2005; Jones & Singal 2017), 𝐾-nearest neighbours
(e.g., Ball et al. 2008; Graham et al. 2018), self-organized mapping
(e.g., Carrasco Kind & Brunner 2014; Geach 2012; Wright et al.
2020; Myles et al. 2021), Gaussian processes (e.g., Way et al. 2009;
Almosallam et al. 2016) and simple neural networks (e.g., Firth et al.
2003; Tagliaferri et al. 2003; Collister & Lahav 2004; Cavuoti et al.
2017; Razim et al. 2021) tend to outperform template-based methods
(Hildebrandt et al. 2010; Schmidt et al. 2020; Euclid Collaboration
et al. 2020).
A challenge for photo-𝑧 estimation methods that take magnitudes

and colours as inputs is that there is not enough information available
to break various degeneracies in the colour–redshift relation. One
way to break these degeneracies is to include information about
morphology, orientation, surface brightness, ratios of magnitudes,
or visual appearance in general (e.g., Stabenau et al. 2008; Jones &
Singal 2017; Gomes et al. 2018; D’Isanto et al. 2018; Nakoneczny
et al. 2021). A galaxy may appear red not just because its stellar
population is intrinsically red but because it is a dusty edge-on spiral
galaxy.Moreover, the fact that farther objects appear to be smaller and
fainter to an observer also give us an additional piece of information
to help break degeneracies. Most traditional methods for quantifying
galaxy morphology, like ellipticity and Sérsic index, cannot fully
encode all of the visual information that an image of a galaxy provides
and hence methods that use images of galaxies directly as inputs (e.g.
Pasquet et al. 2019; Hayat et al. 2021; Schuldt et al. 2021; Henghes
et al. 2022) and rely on artificial neural networks are the current
state-of-the-art.
Artificial neural networks are mathematical models, originally de-

veloped to mimic the logical operations of the human brain. The
simplest unit of such a model (also called an artificial neuron) is a
linear transformation of an input followed by some non-linear func-

tion (also called an activation function). Successive layers of such
transformations arranged together form a deep neural network. The
process of training such a model involves finding a set of parameters
(also called weights) for these transformations which will minimise
a loss function. The optimisation is generally done using the back
propagation algorithm (Lecun 1985; Rumelhart et al. 1986) or some
optimiser based on it like the Adam optimiser (Kingma & Ba 2015).
The simplest deep neural network architecture called multi-layer per-
ceptrons or fully connected (FC) networks use successive matrix and
non-linear transformations to connect every input feature to an out-
put. A sufficiently deep or wide fully connected network can be used
to approximate any function (Cybenko 1989; Hornik et al. 1989;
Hornik 1991) and hence can be used to effectively predict photomet-
ric redshifts.
If the input data are images, then the number of trainable weights

required for a fully connected neural network architecture becomes
very large, making them very inefficient to train and prone to over-
fitting to the training data. Convolutional Neural Networks (CNNs;
Fukushima & Miyake 1982; LeCun et al. 1989), on the other hand,
perform convolution operations using filters whose parameters are
learned. Since the same set of filters are reused by stepping across the
input images, it reduces the number of trainable parameters. More-
over, each successive convolution layer can extract more complex
features which in turn increases the model accuracy while reducing
the complexity of the model. Various multi-layered neural network
architectures (i.e., deep neural networks; LeCun et al. 2015) built us-
ing CNNs have been used to make state-of-the-art photo-𝑧 prediction
algorithms as they can leverage the pixel level data to extract addi-
tional information thereby achieving even better prediction accuracy.
Hoyle (2016) modified the ImageNet challenge-winning AlexNet
(Krizhevsky et al. 2012) to 𝑔𝑟𝑖𝑧 images of ∼64,000 SDSS galaxies,
finding comparable accuracy to the best tree-based classical machine
learning algorithms. D’Isanto & Polsterer (2018) combined a CNN
and a mixture density network to produce photo-𝑧 Probability Den-
sity Functions (PDFs) generated using Gaussian mixture models and
achieved comparable performance to existing efforts in the literature.
As larger training data sets become available along with advances
in Graphical Processing Unit (GPU) hardware and associated soft-
ware, training CNNs have become very efficient and currently form
the backbone of most state-of-the-art photo-𝑧 algorithms. Pasquet
et al. (2019) produced the current best photo-𝑧’s using a supervised
algorithm for the SDSS Main Galaxy Sample, which consists of ∼
500,000 𝑢𝑔𝑟𝑖𝑧 images with spec-𝑧’s in the range 𝑧 = 0 − 0.4. They
applied an innovative deep CNN that included five inceptionmodules
(Szegedy et al. 2015, 2016) which use multiple filter sizes within the
CNN operating at the same level rather than being stacked sequen-
tially to capture information on different scales efficiently. Recently,
self-supervised learning-based approaches have shown promising re-
sults on astronomical data sets (e.g., Stein et al. 2021, Sarmiento et al.
2021). Hayat et al. (2021) used a self-supervised training scheme
paired with a ResNet50-based CNN (He et al. 2016) to achieve sim-
ilar results but with less data. They pre-trained their network on a
very large unlabelled data set to find similarities between different
augmentations of the inputs and then fine-tuned the network to pre-
dict photometric redshifts. When fine-tuned using the whole SDSS
main galaxy sample, they achieve state-of-the-art results.
Deep neural network-based methods are continuing to improve

but have substantial limitations in terms of the interpretability of the
features learnt from images and efficiency in training. Models with
larger number of trainable parameters not only require more data and
computational resources to train but also are prone to over-fitting.
To alleviate some of these issues, we explore the use of a modern
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Photo-z’s using Capsule Networks 3

deep learning method called capsule networks (Hinton et al. 2011)
to jointly predict photo-𝑧’s and basic morphological types of galax-
ies (spiral/elliptical). Capsule networks are robust to rotations and
invariant to viewpoint—a useful quality for analysing randomly ori-
ented galaxies and require less training data and trainable parameters
than CNNs because they generalise much better to novel viewpoints
(Mazzia et al. 2021). Capsule networks also learn a low-dimensional
representation of the input images, which provides us with a way to
interpret the features learnt by the model.
In this workwewill focus on predicting photo-𝑧 point estimates but

ideally we would like to quantify the uncertainty in our estimates by
predicting full photo-𝑧 probability density functions (PDFs). How-
ever, producing properly calibrated photo-𝑧 PDFs remains extremely
challenging. PDFs predicted by neural networks are often poorly
calibrated (see e.g., Guo et al. 2017) and provide very misleading
uncertainty estimates. Moreover, most methods currently used to
check the quality of photo-𝑧 PDFs (like distributions of probabil-
ity integral transform, etc.) focus on checking the calibration of the
entire sample of PDFs (i.e. global calibration) rather than focusing
on the calibration of individual PDFs (i.e. local/individual calibra-
tions). Amaro et al. (2019) and Schmidt et al. (2020) show that such
metrics can be optimised by pathological but non-physical photo-𝑧
PDFs. Zhao et al. (2021) show that global calibration of PDFs does
not imply local calibration and proposes new diagnostics which may
be used to check for local calibration. In a future paper, we plan to
extend our methods and produce locally calibrated PDFs following
the procedure described in Dey et al. (2021, 2022). That being said,
the prediction errors on our photo-𝑧 point estimates are sufficiently
small that we can safely use these estimates for studies of the evo-
lution of galaxies, their connection with dark matter halos, and the
localisation of transient sources. where photo-𝑧 PDFs are not strictly
required.
The paper is organised as follows. In Sec. 2, we discuss the various

data sets used in this work. In Sec. 3 we introduce the concept of
capsule networks and explain our network architecture. In Sec. 4
we describe the process of training a multi-task capsule network. In
Sec. 5 we present our results for photo-𝑧 point estimates and compare
our results with other similar works. We also provide interpretations
of the features learnt by the capsule network in order to predict
photo-𝑧’s. Lastly, in Sec. 6 we summarise our results.

2 DATA

2.1 SDSS Imaging and Spectroscopic Redshifts

To train and test our models, we use the same pre-processed images
and spectroscopic redshifts that were used by Pasquet et al. (2019)
for their CNN-based photo-𝑧 estimation method and were gener-
ously made publicly available by the authors1. The data set contains
516,525 galaxies with de-reddened 𝑟 band petrosian magnitudes,
𝑟 ≤ 17.8, and spectroscopic redshifts, 𝑧 ≤ 0.4 selected from the
12th Data Release (DR12) of the Sloan Digital Sky Survey (SDSS;
Gunn et al. 1998, 2006; York et al. 2000; Smee et al. 2013; Alam
et al. 2015). The sample is mainly defined by the magnitude limit as
the redshift limit removes only a few tens of galaxies. The 12th data
release of SDSS was used as that was the most recent data release
available when this work began. Moreover, there has not been any
changes to the data for this particular set of galaxies since DR8, mak-
ing all SDSS data releases since DR8 equivalent for our purposes.

1 https://deepdip.iap.fr/#item/60ef1e05be2b8ebb048d951d

For this set of galaxies, Pasquet et al. (2019) pre-processed the
raw 5 band images after obtaining them from the 8th Data Release of
SDSS (Aihara et al. 2011). They stacked and re-sampled the images to
a common 64× 64× 5 pixel grid centred on the spectroscopic target.
The images were background subtracted and photometrically cali-
brated with the same zero point (Blanton et al. 2011; Padmanabhan
et al. 2008). No foreground/background objects were removed. Most
of the galaxies had only 1 or 2 imaging frames per band, whereas
galaxies in Stripe 82 (Jiang et al. 2014) had up to 64 imaging frames.
So, the Stripe 82 galaxies which satisfy our magnitude and redshift
cuts defining the parent sample have significantly less noise than
the other images. The Stripe 82 galaxies form less than 4% of the
entire data set and can be used to check how amount of noise in
the images affect our methods (see Sec. 5.2). All the galaxies in the
data set are spatially resolved, so their sizes, surface brightnesses,
morphologies in each band, and the presence of neighbouring and
background galaxies provide additional information not captured in
spatially integrated photometry. A detailed description of the image
processing steps can be found in Sec. 2.1 of Pasquet et al. (2019).
The processed images along with their spectroscopic redshifts used
in this work are publicly available.

2.2 Galaxy Zoo-1 Morphological Class Labels

We use a deep capsule network to jointly predict the basic mor-
phology of a galaxy along with its redshift. We use crowd-sourced
morphological class labels of galaxies from the Galaxy Zoo-1 project
(Lintott et al. 2011) to train our capsule network. Galaxy Zoo-1 labels
galaxies as spirals (with various sub-classes), ellipticals, mergers,
or stars-and-artefacts. The classifications are considered “confident”
only if the de-biased fraction of votes received for a class is greater
than 0.8. Since the numbers of mergers and artefacts in the images of
the SDSS-MGS are very low, we use the spiral and elliptical classes
only. This gives us high-quality morphological classifications for
177,442 of the galaxies in our parent data set. We generate morpho-
logical class labels for the remaining 339,083 galaxies in our data
set, using an iterative semi-supervised system where we train a deep
capsule network using the confident class labels and use it to gen-
erate the labels for all other galaxies (see Sec. 4.1 for details). Out
of these 339,083 galaxies that do not have a confident classification,
we obtain the fraction of votes received in Galaxy Zoo-1 for each
class for 296,767 galaxies which we use to cross-check our results.
For the remaining 42,316 galaxies, no morphology information was
available since they did not pass some of the quality cuts imposed
by Galaxy Zoo-1. We do not use these galaxies to asses the quality
of our morphological class prediction and only their deep capsule
network generated class labels are used for redshift prediction.

2.3 Catalogue of Galaxy Properties

To interpret the features learnt by our deep capsule network, we mea-
sure correlations between the low-dimensional encodings of the input
images produced by the capsules and various other galaxy properties
(see Sec. 5.3.3). For this purpose, we created a cross-matched cata-
logue of various observed and estimated physical properties for the
galaxies in our data set.
For all galaxies, we query their model magnitudes, composite

model (cmodel) magnitudes2 and extinction due to Milky Way dust
from Schlegel et al. (1998) for each of the five SDSS photometric

2 https://www.sdss.org/dr12/algorithms/magnitudes/
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bands from the SDSS DR12 database (Alam et al. 2015). We also
query the velocity dispersion (𝜎𝑣 ) measured from the spectra. We
use the extinction corrected cmodel magnitudes as a measure of the
galaxymagnitudes and use extinction corrected model magnitudes to
calculate the colours of the galaxies. We also query measurements of
stellar mass (M★), star formation rate (SFR), and specific star forma-
tion rate (sSFR) from the Max Planck Institute for Astrophysics and
the Johns Hopkins University (MPA-JHU) value-added catalogue3
available as a part of SDSS DR12. These measurements are based on
the methods developed in Kauffmann et al. (2003), Brinchmann et al.
(2004), and Tremonti et al. (2004). For estimates of absolute mag-
nitudes (M𝑢/𝑔/𝑟/𝑖/𝑧) we use the measurements from the New York
University Value Added Galaxy aCatalog4 (NYU-VAGC; Blanton
et al. 2005) for objects common between our data set and the NYU-
VAGC within a tolerance of 1 arcsecond. We also use measurements
of Sérsic-index in the 𝑟 band (𝑛𝑟 ) and the corresponding 90% light
radius (𝑅90,𝑟 ) from the NYU-VAGC as a proxy for a galaxy’s size.
A small number of objects in our data set do not have matches with

the external catalogues and there are also somemeasurements in these
catalogues that are problematic. We only use the objects in our data
set that have cross matches with the external catalogues for each of
the galaxy properties. We also remove measurements of any property
which are more than 5 units of median absolute deviation (scaled to
replicate Gaussian standard deviation) away from the median of that
property. This step is done to remove the small number (< 1%) of
problematic measurements of galaxy properties that can affect our
analysis.

3 CAPSULE NETWORKS

Convolutional Neural Networks (CNNs; Fukushima&Miyake 1982;
LeCun et al. 1989) are currently the de facto standard for neural net-
work architectures when the input data are images. They work by
learning weights for a set of convolutional filters which extract use-
ful features from the images. As the filters are reused by translating
them across the input, CNNs have fewer trainable parameters com-
pared to their fully connected counterparts and also invariant to small
translations of the object of interest with respect to the background.
Each successive layer of the deep network extracts more and more
complex features in an hierarchical fashion. CNNs have been im-
mensely successful in solving problems in computer vision (e.g.,
Krizhevsky et al. 2012; Szegedy et al. 2015; Liu et al. 2022 ) and
have been used extensively for predicting photometric redshifts from
images (e.g., Hoyle 2016; D’Isanto & Polsterer 2018; Pasquet et al.
2019; Hayat et al. 2021; Henghes et al. 2022).
Though CNNs are invariant to translations by design (LeCun et al.

1998; Lee et al. 2009), they use pooling layers (i.e. replacing the input
with the local maximum or average value) to locally combine the
signal and reduce dimensionality (Ranzato et al. 2007). This comes
at the cost of losing precise location and pose information (see e.g.,
Hinton et al. 2011; Hinton 2021). To solve this problem, Hinton et al.
(2011) proposed that artificial neural networks should be organised
as local groups that perform complex computations on their inputs
and encapsulates the results into highly informative output vectors.
These vector counterparts of artificial neurons are called capsules
and the entire computational chain is termed as a capsule network.
Each capsule vector should learn to recognise the presence of a visual

3 https://www.sdss.org/dr12/spectro/galaxy_mpajhu/
4 http://sdss.physics.nyu.edu/vagc/

entity irrespective of its orientation, viewing conditions, etc. They
should not only encode the probability of the object being present
but also encode a set of “instantiation parameters” for the entity (e.g.,
location, size, orientation, colour, etc.). For an ideal capsule network,
the encoded probability of an object being present should stay the
same but the instantiation parameters should change when the input
image goes through some transformation (like, rotation, translation,
occlusion, etc.).
Though Hinton et al. (2011) introduced the idea of a capsule

network, a concrete architecture and training methodology was not
proposed. More recently, Sabour et al. (2017) proposed a training
method called the dynamic routing algorithm which made capsule
networks viable. Their architecture encodes the “probability” of an
object being present using the length of the capsule vectors. Dur-
ing the training process, information from each capsule is weighted
before passing it onto the next layer of capsules via the dynamic
routing algorithm (Sabour et al. 2017). The elements of the trans-
formation matrices between two successive capsules are determined
by the gradient descent algorithm whereas the routing weights are
determined so as to maximise the cosine similarity (i.e., vector dot
product) between the capsule vectors of the two consecutive layers
in an iterative fashion. Dynamic routing allows capsule networks to
focus on specific sections or traits of the input data while making
decisions. After each routing step, the capsules are scaled using the
nonlinear squashing function, 𝑓 (v) = ‖v‖2

1+‖v‖2
v
‖v‖ which re-scales the

length of each capsule to be between 0 and 1 and acts as the nonlinear
activation function for the layer.
The original implementation of capsule networks in Sabour et al.

(2017) was geared towards the classification of grey-scale handwrit-
ten digits. The same implementation was adapted for an astronomical
application by Katebi et al. (2019) for morphological classification
of galaxies, both of which are easier problems compared to photo-𝑧
estimation. Consequently, they got state-of-the art results while us-
ing only a single layer of capsules and a routing algorithm that does
not train efficiently if multiple capsule layers are present. To do well
in more complicated tasks, it is helpful to have multiple layers of
capsules (i.e., a deep capsule network). For this work we adopt the
deep capsule network architecture and dynamic routing algorithm
as proposed in Rajasegaran et al. (2019). They propose convolution
operation based capsule network layers and a 3D-convolution based
routing algorithm which reduces the number of trainable parameters
and makes the routing process significantly more efficient thereby
making deep capsule networks possible. They also use skip connec-
tions (He et al. 2016) which add outputs of earlier layers with the
outputs of layers ahead of it to improve the convergence of the train-
ing process by preventing the gradients from vanishing and allowing
information from earlier capsules to flow efficiently to later ones.
Rajasegaran et al. (2019) also introduced an improved class inde-
pendent decoder network which reconstructs the input image from
the final layer capsules and thereby enforces that the components of
the capsule vectors form a low-dimensional encoding of the input
image. The class-independent nature of the decoder ensures that the
capsule dimensions encode the same properties for both morpho-
logical classes. A mathematical description of the capsule network
layers and routing algorithms mentioned in this section is given in
Appendix A.

3.1 Our Capsule Network Architecture

The network architecture we use has three main components: a deep
capsule network-based classification-and-encoding network, a class
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independent decoder network, and a redshift prediction network. We
use a combination of classification-and-encoding network and the
decoder network to generate morphological class labels for the entire
data set as a preliminary step and then use a combination of all three
networks to jointly predict the morphology and photo-𝑧 as described
below and shown in Fig. 1.

The classification-and-encoding network (Fig. 1 left column) in-
herits its architecture from Rajasegaran et al. (2019). It takes the 5
band 64 × 64 pixel images of a galaxy as inputs and uses a set of
convolutional filters to convert the image into capsules. Next four
blocks of skip connected convolutional capsule cells are used. The
convolutional capsule layers were introduced in Rajasegaran et al.
(2019) and use 3D-convolution operations to perform routing be-
tween two capsule layers more efficiently. Skip connections refer to
the element-wise summing of outputs of an earlier layer with the
output of a nonconsecutive layer ahead of it. This improves the con-
vergence of the training process by preventing the gradients from
vanishing and allowing information from earlier capsules to flow ef-
ficiently to later ones. The output of the final layer is a set of two
16-dimensional capsule vectors that we use to represent the spiral
or elliptical morphological class of a galaxy. The Euclidean lengths
of these capsules denote the probability of the input image being a
spiral or elliptical. The individual dimensions of the vectors encode
information about the input image, which can be used to predict the
photometric redshift and reconstruct the input image. This part of
the network has about 7.5 million trainable weights.

The class independent decoder network (Fig. 1 middle column) is
composed of successive transposed convolutional layers (also called
de-convolution layers) which take one of the capsule vectors as in-
put and try to reconstruct the input image as its output. Transposed
convolution layers are mathematically similar to convolution layers
except their input and outputs are switched. During the training pro-
cess, we use the capsule representing the correct morphological class
as the input of this network. During inference, the capsule with the
largest length (i.e., the capsule representing the most probable class)
is passed as the input to the decoder network. The decoder network
acts as a regulariser and enforces that each dimension of the capsule
vector represents a low-dimensional encoding of the input. The de-
coder network also helps us visually interpret the features encoded by
the capsules. Using the same decoder network for both capsules (i.e.,
class independent decoder) makes the dimensions for both capsules
represent similar properties. The decoder network has 0.88 million
trainable weights. Some examples of the input and reconstructed
images of galaxies are shown in Fig. 2.

The redshift regression network (Fig. 1 right column) is a set of
five fully connected neural network layers for redshift estimation. It
takes as input the capsule corresponding to the correct morphological
class during training and the capsulewith the highest class probability
during inference. This network has about 13,000 trainable weights.

3.2 Loss Functions

The weights of the networks are obtained by minimising a composite
loss function which is a weighted sum of the losses calculated from
the outputs of the three networks. The outputs from each of the
networks are used to calculate a different loss function, a weighted
sum of which is minimised depending on the task we are trying
to solve. Following Sabour et al. (2017), we use the output of the

classification-and-encoding network to calculate the Margin Loss
(also called the Hinge loss) defined as:

𝐿margin =
2∑︁
𝑗=1
𝑇 𝑗 max(0, 𝑚+−‖v 𝑗 ‖)2)+𝜆(1−𝑇 𝑗 )max(0, ‖v 𝑗 ‖−𝑚−)2,

(1)

where 𝑇 𝑗 represent the class labels and 𝑇 𝑗 = 1 when a galaxy corre-
sponding to class 𝑗 is present in the input image and 𝑇 𝑗 = 0 other-
wise,𝑚+ = 0.9,𝑚− = 0.1 and 𝜆 = 0.5. The parameters𝑚+/− define a
threshold for the length of the capsule above which the classification
is considered correct/incorrect. The 𝜆 parameter down-weights the
margin loss for an absent morphological class, preventing the lengths
of all the capsules from shrinking during the initial learning phase.
The loss is summed over each class (2 in our case). This loss function
is optimised to ensure that the length of one of the capsules is close
to 1 and the other one close to 0 when the input is a spiral galaxy and
vice versa when the input is an elliptical galaxy.
We use the output of the decoder network to calculate the sum

of squared errors between the input and reconstructed image pixels
defined as:

𝐿decoder =
5∑︁

𝑘=1

64∑︁
𝑗=1

64∑︁
𝑖=1
(𝑥𝑖 𝑗𝑘 − 𝑥𝑖 𝑗𝑘 )2, (2)

where, x and x̂ denote the input and reconstructed images respectively
and the summation is carried out over all the 64 × 64 pixels and 5
imaging bands.
Similarly, we use the output of the redshift regression network to

calculate the squared error between the spectroscopic redshift and
the predicted photometric redshift defined as:

𝐿photo−𝑧 = (𝑧spec − 𝑧phot)2, (3)

All the losses are then averaged over the number of objects present
in the training batch. The exact weighting of these losses will be
discussed in the next two sections.

4 TRAINING PROCEDURE

4.1 Generating Morphological Class Labels

Morphological class labels from Galaxy Zoo-1 are available for only
34% of the galaxies in our data set (see Sec. 2.2). We follow a fully
supervised learning approach, and our capsule network design relies
on the availability of morphological class labels. Therefore, we need
to generate morphological class labels for the remainder of the data
set to train the network to predict redshifts. To achieve this, we train a
deep capsule network that is a combination of the classification-and-
encoding network and the decoder network. The decoder network
acts as a regulariser. We minimise the weighted sum of the margin
loss for classification and the total squared error for reconstruction
with a weight of 1 on the margin loss and 0.005 on the reconstruction
loss. So, for this task we the loss function (𝐿) given by:

𝐿 = 𝐿margin + 0.005 × 𝐿decoder, (4)

We divide the set of 177,442 galaxies with good morphological
class labels into a training set (80%), validation set (10%) and test
set (10%). We train the network to classify the galaxies as spirals
or ellipticals and achieve over 99% classification accuracy on the
test set. We then use this network to predict morphology labels for
the galaxies that do not have a label from Galaxy Zoo-1. We then
calibrate the predicted class probabilities with isotonic regression
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Figure 1. Schematic representation of the neural network architecture we use. The design of the classification and encoder network is based on Rajasegaran et al.
(2019). The classification network takes 𝑢𝑔𝑟𝑖𝑧 images as inputs and produces two 16-dimensional capsule vectors as outputs, each representing a morphological
class (spiral or elliptical). During training, the capsule corresponding to the correct morphological class is used as an input for the decoder and redshift regression
networks whereas during inference the capsule vector with the largest magnitude (i.e., highest class probability) is used as the input for the subsequent networks.
The numbers in each box represent the shape of the layer being used. For convolutional capsule layers (i.e. Conv-Caps and 3D-Conv-Caps layers), they stand
for the width × height, the number of capsules and the total number of dimensions for each capsule, respectively. For convolutional or transposed convolutional
layers, they represent the width × height of the convolution filter kernel followed by the number of such filters being used. For fully connected layers, the number
represents the number of nodes in the layer. We use a combination of the classification-and-encoding network and decoder network to generate morphological
class labels for all the galaxies as a preliminary step and then use a combination of the three networks to predict redshifts. Details of the mathematical operations
performed by the various kinds of capsule layers can be found in Appendix A.

(Zadrozny & Elkan 2001, 2002) using the validation set for training
the isotonic regression model and the test set to verify the calibra-
tion. This step ensures that the class probabilities predicted by the
network are statistically consistent. We then select galaxies with cali-
brated class probabilities over 0.8, assign them to their corresponding
class label and merge them with the initial training set. We train the
same network again with this new training set and follow the same
procedure above to assign labels and extend the training set. We do

this step one more time and find that 99.6% of the galaxies in our
parent set has a class label with more than 0.8 class probability. For
the remaining 0.4% of the galaxies, we assign a label corresponding
to the class with the highest probability.
We are generating morphological class labels for 339,083 galaxies

based on a human labelled training set of 177,442 galaxies. The bulk
of the galaxies do not have a confident morphological class label
in Galaxy Zoo-1 as a strong consensus was not achieved among
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the human volunteers. This either might be because the shape of
the galaxy is ambiguous or there were some artefacts in the image.
A visual inspection of the galaxies in the test set which do not
have a label from Galaxy Zoo-1 shows that the objects can almost
always be classified into a spiral or elliptical galaxy by the authors
and the predictions of our model for those objects matches with
the judgement of the authors. The number of images which have
ambiguous morphology or where an artefact or merger makes the
morphology difficult to infer are negligibly small ( 0.1%). Since
our main goal is to improve photo-𝑧 prediction performance, we
are comfortable with using the smaller training set with only good
classifications to generate class labels for the entire data set and
ignoring the very small number of ambiguous cases. As a separate
cross-check we compared the class labels generated by our method
for the galaxies which do not have a confident label from Galaxy
Zoo-1 with the most voted Galaxy Zoo-1 class label and find that
they are in agreement for over 70% of the objects.

4.2 Training for Photo-𝑧 Estimation

Once we have morphological class labels for all the galaxies in our
data set, we now train a neural network that is a combination of
the classification-and-encoding network, the redshift regression net-
work, and the class independent decoder network. The classification-
and-encoding network gives us a low-dimensional representation of
the input image which is then used by the redshift regression network
to predict the photometric redshift. Although the decoder network
doesn’t directly help with redshift prediction, it has been shown to
have a regularisation effect on capsule networks (Sabour et al. 2017).
The decoder network also ensures that the low-dimensional encod-
ing learnt has physically meaningful information, which can be used
to reconstruct the input image. In Sec. 5.3.2, we use the decoder
network to interpret the features learnt by the capsule network.
During the training process, the capsule corresponding to the cor-

rect morphological class is used as an input for both the decoder and
redshift regression networks whereas during inference the capsule
vector with the largest Euclidean length (i.e., highest class probabil-
ity) is used as their inputs. To find the optimum set of weights for the
network, we minimise a composite loss function which is a weighted
sum of the losses from each of the three networks. Similar to Sec. 4.1,
we use the weighted sum of the margin loss and total squared error
for the classification and reconstruction tasks, but now we also add
the squared error of the predicted redshift to the total loss (𝐿):

𝐿 = 𝐿margin + 0.005 × 𝐿decoder + 𝐿phot−𝑧 . (5)

The classification, reconstruction, and redshift regression losses are
given the weights of 1, 0.005, and 1 so that they contribute an equal
amount towards the total value of the loss. This allows us to put
equal importance on each of the individual tasks as all of them help
to improve the accuracy of photometric redshifts. Some examples of
reconstructed images of galaxies obtained after training the network
are shown in Fig. 2.
Instead of directly predicting the redshifts, we scale the redshifts

using the logistic transformation defined as:

ℎ(𝑧) = log
(
𝑧 − 𝑧min
𝑧max − 𝑧

)
. (6)

For our data set 𝑧min = 0 and 𝑧max = 0.4. We find that performing
this transformation gives us better performance especially at very
low redshifts (𝑧 < 0.05). This is because the logistic transformation
makes the distribution of the target variable (redshift in our case)

fall gradually at the boundaries, thereby alleviating the problem of
attenuation bias.
We randomly split our data into three subsets; the training set

which is used to train the network, the validation set, which is used
to tune the hyper-parameters of the network and decide when to stop
training and a test set which is used to check the final performance.
All results quoted in this work use a training set that is 80% the
size of the parent data set and have been calculated on the test set
which is 10% the size of the parent set (unless stated otherwise).
The remaining 10% of the data is used as the validation set. We also
check the performance of our photo-𝑧 prediction as a function of the
size of the training set as shown in Fig. 6.
To randomly initialise the weights for the networks, we use the

He-Normal initialiser (He et al. 2015). We use the PReLU (He et al.
2015) activation function for all the hidden layers and a linear ac-
tivation function for the output layers of the decoder and redshift
regression networks. To train all the networks, we use the Adam op-
timiser (Kingma & Ba 2015) with an initial learning rate of 0.001.
After each epoch the learning rate is decreased following the rule:
learning rate = initial learning rate×0.95epoch. We also augment the
training set by randomly rotating the images in steps of 90° or flip-
ping them along the horizontal or vertical axis before passing them
to the networks for training. The same setup is used for both the
morphological label prediction and redshift estimation tasks.
We train the networks for 100 epochs but the training generally

converges within 70 epochs. We choose the epoch which has the best
performance—i.e., the highest classification accuracy when gener-
ating morphology labels and the lowest average redshift prediction
error on the validation set. Since the model is initialised randomly,
each training run can result in a different set of optimal weights.
Hence we run the training process 5 times and take the average of
their output as our photo-𝑧 prediction. For this reason, we also select
epochs that have a low bias and moderate variance since bias stays
roughly the same whereas variance decreases when averaged.
The models are defined in Keras with Tensorflow 1.15 as the back

end. The training is done on an Alienware Area 51 PC with an Intel
Core i7 9800X processor, 2 RTX 2080Ti GPUs and 64GB of RAM.
We use a batch size of 400 which takes about 8 hours to train for 100
epochs. The model is copied onto the two GPUs and the training is
parallelised by sending half of the batch to each GPU.

5 RESULTS

5.1 Photo-𝑧 Evaluation Metrics

In this work, we are focusing only on photo-𝑧 point estimates and not
full PDFs. We will therefore assess the performance of our photo-𝑧
estimates bymeasuring howmuch the spectroscopic and photometric
redshifts for each galaxy in the test set differ. We use the following
three common metrics:

• Prediction bias defined as 〈 Δ𝑧
1+𝑧spec 〉, i.e. the average value of

the prediction error.
• Normalised Median Absolute Deviation (𝜎𝑁𝑀𝐴𝐷) defined

as 1.4826 ×Median( | Δ𝑧
1+𝑧spec −Median(

Δ𝑧
1+𝑧spec ) |). This is a robust

measure of the spread of prediction errors.
• Fraction of Outliers (foutlier) defined as the fraction of photo-

𝑧 predictions for which | Δ𝑧
1+𝑧spec |> 0.05, i.e. the fraction of cases

where the prediction error is very high. We chose the threshold of
0.05 to easily compare our results with other similar works.
The specific choice of the metrics and the threshold to define an
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Figure 2. Comparison of the observed and reconstructed 𝑔𝑟𝑧 images of a few randomly selected spirals (left) and ellipticals (right) from the test set. The
reconstructions were produced by the decoder network using the 16-dimensional capsule corresponding to the predicted morphological type. We see that the
reconstructions capture basic properties of the input like shape, orientation, and colour.

outlier is based on convention and allows us to easily compare our
results with recent similar work.

5.2 Photo-𝑧 Point Estimate Predictions

When trained on 80% and tested on 10% (with the remaining 10%
used as validation set) of the parent data set and results averaged
over an ensemble of 5 models, our photo-𝑧 estimates have 𝜎NMAD =

0.00898, foutlier = 0.19% and 〈 Δ𝑧
1+𝑧spec 〉 = 7 × 10

−5. For comparison,
other deep learning based methods which take images as inputs like
Pasquet et al. (2019) achieve 𝜎NMAD = 0.00912, foutlier = 0.31%
and 〈 Δ𝑧

1+𝑧spec 〉 = 1 × 10
−4 when trained on the same data set and

Hayat et al. (2021) achieves 𝜎NMAD = 0.00825, foutlier = 0.21%
and 〈 Δ𝑧

1+𝑧spec 〉 = 1 × 10
−4, by first pre-training on a large unlabelled

data set (about twice as big as our data set) and then fine tuning on a
data set similar to ours. Both of them use models with about 3 times
as many trainable parameters compared to ours (∼24 million vs ∼8
million). Our algorithm has comparable 𝜎NMAD and better foutlier
performance among these deep learning based methods.
We show a comparison between the photometric and the spec-

troscopic redshifts for the test set in Fig. 3. We see that the scatter
is tight and distributed symmetrically about the 𝑧phot = 𝑧spec line.
The scatter in the points and distribution of outliers look random and
show no visible patterns of a sudden change in performance at the
limits of training data (𝑧spec ≈ 0 and 𝑧spec > 0.3) indicating stable
performance across the redshift range. We also see no evidence of
attenuation bias (i.e., almost constant predictions for a subset of in-
puts; see Freeman et al. 2009 for a discussion on attenuation bias
in photo-𝑧 algorithms). The images used to train the networks in-

clude observations of Stripe 82 (Jiang et al. 2014), which are about
2 magnitudes deeper and have less noise than the rest of the images.
Since Stripe 82 is a small fraction (< 4%) of the whole data set,
we do not account for this varying depth by weighing data points
differently. We find a significantly smaller spread in the predictions
(𝜎NMAD = 0.00741) and a fraction of outliers consistent with the rest
of the sample (foutlier = 0.35%), given the small number of Stripe
82 objects in the test set. Galaxies in the test set outside of Stripe
82 produce photo-𝑧’s with 𝜎NMAD = 0.00906 and foutlier = 0.19%.
This shows that having images with a higher signal-to-noise ratio
improves the quality of photo-𝑧 predictions.
When the test set is split into subsets based on morphology, we

find that the photo-𝑧 predictions have a lower spread for ellipticals
than spirals (𝜎NMAD = 0.00844 vs. 0.00956) with a comparable
fraction of outliers (0.18% vs 0.20 %). This might be because el-
liptical galaxy populations have similar rest-frame colours as older
stellar populations tend to change very little in colour with time.
The observed colours and magnitudes (or any other measure of flux)
therefore trace the redshift well making it is easier to predict red-
shifts of elliptical galaxies than spirals. When we split the test set
based on the availability of human labelled morphology, we find
that photo-𝑧 prediction performance is better when human labelled
morphology is available (𝜎NMAD = 0.00815, foutlier = 0.11% vs.
𝜎NMAD = 0.00948, foutlier = 0.23%). Although human labelled
morphology improves the performance, the lack of it does not re-
duce the performance drastically.
We performed a visual inspection of the images of the galaxies

which were photo-𝑧 prediction outliers. We find that around 18%
of these outliers have bad or missing photometry. Removing these
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Figure 3. Comparison of photometric redshift point estimates predicted by
our capsule network with the corresponding spectroscopic redshifts for galax-
ies in the test set. The central grey line shows 𝑧phot = 𝑧spec, i.e., a perfect
photo-𝑧 estimate. The outer dashed lines mark | Δ𝑧

1+𝑧spec |= 0.05. Any point
lying outside these limits (i.e. | Δ𝑧

1+𝑧spec |> 0.05 ) is considered to be an
outlier. The colour on the scatter plot shows the number of data points present
in each pixel of the figure. We see that the scatter is tight and symmetrically
distributed about the 𝑧phot = 𝑧spec line and with a negligible bias. The scatter
looks random and shows no visible patterns at the limits of training data
(𝑧spec ≈ 0 and 𝑧spec > 0.3) indicating stable performance across the redshift
range.

objects from our test set reduces our outlier fraction to foutlier =

0.16%. We kept these rare objects in the parent data set for easy
comparisons with Pasquet et al. (2019).
The distribution of prediction errors is shown in Fig. 4. They

follow a symmetric distribution centred about 0 indicating little if
any systematic preference for over or under-estimation. Since the
fraction of outliers is very small and we see that the distribution of
prediction errors closely resembles a Gaussian distribution, 𝜎NMAD
can be treated as the 1𝜎 Gaussian uncertainty around each prediction
up to a good approximation.
We also check the performance (prediction bias and 𝜎NMAD) of

our photo-𝑧 estimates as a function of the spectroscopic redshift and
𝑟-band Petrosian magnitude of galaxies as shown in Fig. 5. We use
the Petrosian magnitude as it was used to define the faintness cut
of the data set we are using. As a function of redshift, the absolute
magnitude of the bias is small though it is positive at low redshifts
and negative at high redshifts with the inflection point being at the
median redshift (≈ 0.1) of our data set. This kind of pattern is
common for ML-based algorithms. When seen as a function of 𝑟-
band magnitude, the bias is almost constant and negligibly small in
magnitude throughout the entire range of magnitudes. 𝜎NMAD tends
to increase both as we go to higher redshifts and fainter magnitudes.
This can be attributed to the fact that there is less training data and
increased noise in the images at these regimes. We also see that
𝜎NMAD (∼ 0.006) is significantly lower than the global value at low
redshifts (𝑧 < 0.05) even though the number of training samples
available is small in this regime due to lower survey volume. We
suspect this is because, at very low redshifts resolved information in
the images like morphology, size, and surface brightness. contains
rich information about galaxy distances. Better photo-𝑧 performance
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Figure 4. Normalised distribution of the redshift prediction errors. The blue
histogram shows the distribution of redshift prediction errors of our algorithm
on the test set. The orange line shows a Gaussian distribution with the location
and scale parameters set as the prediction bias and 𝜎NMAD respectively. The
distributions are normalised to have unit area under the curves. The shaded
region marks the threshold for outliers. The distribution of the prediction
errors is symmetric, centred around 0 and closely resembles a Gaussian
distribution, indicating little if any systematic preference for over- or under-
estimation.

at very low redshifts can aid in the identification of satellite galaxies
that require a massive spectroscopic effort to get redshifts (e.g., Geha
et al. 2017, Mao et al. 2021).
Obtaining spectroscopic redshifts is often an expensive process,

so it is important that machine learning-based methods can perform
well when the training data sets are smaller. To see how the photo-𝑧
performance of our algorithm changes, we train our capsule network-
based model using varying sizes of training data by random sub-
sampling of the parent data set (after obtainingmorphological labels)
into smaller subsets while keeping everything else the same in the
training process. The results are shown in Fig. 6 and also compared
with other similar works like Pasquet et al. (2019), Hayat et al. (2021)
and Beck et al. (2016). The data for Pasquet et al. (2019) and Beck
et al. (2016) were obtained from Table 2 in Pasquet et al. (2019), the
data for Hayat et al. (2021) were obtained from their Fig. 4 using the
WebPlotDigitizer (Rohatgi 2020). The metrics for Beck et al. (2016)
provided here are calculated on their photo-𝑧 estimates of the same
objects as ours. They train on a much larger data set spread over a
larger redshift range compared to ours which maybe one reason for
higher prediction errors. We always use 10% of the parent data set
as the validation set and use the remaining amount of data to test
the performance. We observe that we outperform Beck et al. (2016),
which is a widely used source of SDSS photo-𝑧 estimates using just
2% of the parent sample (or ∼ 104 galaxies) as a training set. Many
surveys of the high redshift Universe like CANDELS (Grogin et al.
2011; Koekemoer et al. 2011) have spectroscopic observations for a
similar number of galaxies, albeit across a larger redshift range and
ourmethod could potentially be used to improve the photo-𝑧 estimates
for them. We see that our method has performance comparable to
other deep learning-based photo-𝑧 estimation methods like Pasquet
et al. (2019) or Hayat et al. (2021) when both are trained on random
subsets of data.
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Figure 5. Prediction bias (〈 Δ𝑧
1+𝑧spec 〉) and 𝜎NMAD of our photometric redshift estimates as a function of spectroscopic redshift (𝑧spec, left) and 𝑟 -band Petrosian

magnitude (right). The metrics have been calculated for 10 bins of equal population. We use bins with varying widths but equal populations so that the standard
errors on the binned statistics are comparable across all bins. The grey points show the distribution of individual galaxies. Due to the relatively large number
of samples in each bin, the standard errors on the statistics are very small. We see that 𝜎NMAD increases at higher redshifts (where we have less training data)
and for fainter galaxies (where the signal to noise ratio of the images are lower). Though the bias on average is very small, it is higher at the lowest and highest
redshift bins but with opposite signs with an inflection at the median 𝑧spec (≈ 0.1). The bias is constant and negligible in magnitude over the entire range of
𝑟 -band Petrosian magnitudes.

1 2 20 50 80

Size of training set (%)

0.008

0.009

0.010

0.011

0.012

0.013

0.014

N
M

AD

This work
Pasquet et al. 2019
Hayat et al. 2021
Beck et al. 2016

1 2 20 50 80

Size of training set (%)

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

f o
ut

lie
r (

%
)

This work
Pasquet et al. 2019
Hayat et al. 2021
Beck et al. 2016

51
65

10
33

0
10

33
05

25
82

62

41
32

20
Size of training set (count)

51
65

10
33

0
10

33
05

25
82

62

41
32

20
Size of training set (count)

Figure 6. Performance of photometric redshift prediction algorithm as a function of the size of training data. The standard errors on the statistics are negligibly
small and hence not shown. Our algorithm has comparable 𝜎NMAD and better foutlier performance to the two deep learning-based efforts (Pasquet et al. 2019;
Hayat et al. 2021) and significantly better performance than the classical ML-based technique (Beck et al. 2016) while requiring less training (or pre-training)
data and fewer trainable parameters (∼8 million vs. ∼23 million).

5.3 Interpreting the Features Learnt by the Capsule Network

As machine learning-based methods have started replacing more tra-
ditional physics-based methods to model astrophysical phenomena
and make predictions that reduce the need for making extra obser-
vations, it is becoming increasingly important to peer inside these
complex mathematical models to identify what physical features they
are learning. Thiswill not only help us to validatewhat the algorithms
are predicting but also help us bridge the gap between the traditional
physics-driven and the newer data-driven approaches.
In our work, we use the capsule vectors along with the decoder

network to shed some light on the features learnt by the network.

Since the capsules composing the output layer of the morphology
classification network are trained to represent a morphological class
of galaxies along with holding enough information to predict the
redshift and a reconstruction of the input image, we expect the com-
ponents of the capsule vector to learn a low-dimensional encoding of
the input galaxy image. Moreover, we expect that each of the com-
ponent will learn properties so that all capsule dimensions combined
can effectively predict the morphology, redshift and a reconstruction
of the input image.

The features learnt by the networks are not constrained to be easily
identifiable visual properties or commonly used physical quantities
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derived from images. We will therefore perform both visual explo-
ration of these features and also measure how well these features
correlate with galaxy properties.

5.3.1 Visualising the Capsule Encoded Space

We first take a look at how the capsules corresponding to each galaxy
in the test set are organised in their manifold. We use UniformMani-
fold Approximation and Projection (UMAP;McInnes&Healy 2018)
to embed the 16-dimensional capsules into a 2-dimensional space to
visualise and interpret any structures, if present. UMAP is a non-
linear dimensionality reduction method that uses techniques from
manifold learning and topological data analysis to embed a high-
dimensional data set into a low-dimensional manifold. To ensure that
the relative local density of data is preservedwhenwe project the cap-
sules onto a 2-dimensional space, we use DensMAP (Narayan et al.
2020), which computes the estimates of local density and uses them
as a regulariser in the optimisation of the 2D UMAP representation.
UMAP with the DensMAP regulariser preserves the local structure
of the data while capturing global structure better than many other
similar algorithms and is also computationally efficient.
Fig. 7 shows the 2-dimensional UMAP embedding of the 16-

dimensional capsules colour coded by various properties. When
coloured by photometric or spectroscopic redshift (top row), the
embedding shows a nearly perfect redshift sequence. As UMAP
places nearby capsules in the high-dimensional space close together
in their 2-dimensional projection, we can infer that the capsules
track a smooth redshift sequence. This is in contrast to the represen-
tations generated by self-organising maps (SOMs; Kohonen 1981,
1982), which group galaxies with similar spectral energy distribu-
tions together using their photometry but impose a geometry that can
force adjacent cells to have wildly different redshifts (Masters et al.
2015). Currently, SOMs are widely used to determine regions with
incomplete spectroscopic data (e.g., Masters et al. 2015, 2019), but
dimensionality reduced capsules may perform better at this task due
to its smooth redshift distribution.
If we colour the points based on the fraction of spirals among the

80 nearest neighbours in the 2D space (bottom left), we see that the
spirals and ellipticals tend to occupy separate regions of the space al-
though there is a significant overlap. The fraction of spirals exhibits
a gradient almost perpendicular to the redshift sequence thereby
effectively encoding both redshift and morphology, properties the
capsules were trained to learn. When colour-coded by the redshift
prediction errors (bottom right) and compared with the plot showing
the fraction of neighbouring spirals, we notice that regions domi-
nated by spirals tend to have slightly higher redshift prediction errors
compared to regions dominated by ellipticals. This was quantified
in Sec. 5.2 where we noted that spirals have slightly higher value
of 𝜎NMAD compared to ellipticals but equivalent foutlier. Visually
from Fig. 7 it may seem that there are more outliers which are spirals
than ellipticals but many of those outliers are ellipticals which lie
close to the region dominated by the spiral galaxies in the 2D UMAP
representation.
Most of the galaxies in the 2D UMAP representation lie on the

large crescent shaped sequence. A small number (about 1-2%) of
galaxies deviate from this sequence forming a smaller sequence en-
circled by the larger crescent. These galaxies all have higher values
for dimension 10 of their capsules. Synthetic images generated by
perturbing capsule dimensions (see appendix B) shows that higher
values of dimension 10 tend to increase the extended component
of the galactic disk. Some of the dimension 10 outliers in the main
redshift sequence clearly have stars in the image. However, our in-

vestigation of the dimension 10 outliers in the smaller sequence has
yet to yield a clear interpretation. These galaxies are a 50/50 mix
of spirals and ellipticals, and the majority do not have neighbour-
ing stars, galaxies, or artefacts. A systematic study of these outlier
galaxies will be done in a future work. The other galaxies that ran-
domly scatter away from the two large sequences almost always have
a neighbouring star, galaxy, or an artefact.

5.3.2 Generating Synthetic Images by Perturbing Capsule
Dimensions

To check whether the components of the capsules represent any
visually identifiable properties of the galaxies, we take the capsule
corresponding to the predicted morphology of a galaxy and add a
small perturbation to one of the components keeping all the others
fixed. The perturbation is added in units of standard deviation of the
values of the components in our test set. We pass on this perturbed
capsule vector to the decoder network to see how the reconstructed
image of the input changes.
Fig. 8 shows the synthetic galaxy images generated from the per-

turbed capsule vectors for two galaxies (the first instance of each
morphological type from Fig. 2). We can see that perturbing specific
components change properties like size (i.e., the angular size of the
galaxy and how fast the light profile falls off), orientation, amount
of central bulge, and surface brightness. This shows that some of the
features learnt by the capsule network correspond to physical prop-
erties of galaxies. Visual properties like size and surface brightness
change with the distance of the galaxies and can help to break de-
generacies in the colour-redshift relation and provide better redshift
inference. Fig. 8 shows the synthetic images from perturbed capsules
for only a subset of dimensions for which the change in the images is
easily identifiable visually. Appendix B shows the synthetic images
generated by perturbing all 16 of the dimensions individually.

5.3.3 Correlations of Capsule Dimensions with Physical Properties

To check whether any physical properties of the galaxies are en-
coded by the capsules that cannot be identified by simply looking
at synthetic images generated from perturbed capsules, we measure
the correlations between each dimension of the capsules and vari-
ous global galaxy properties. Since we expect the correlations to be
non-linear in nature, we use the distance correlation (Székely et al.
2007) to measure them. The distance correlation quantifies the de-
pendence between two random variables by measuring how much
the Euclidean distance between two samples of one random variable
changes for a given change in distance between two samples of an-
other random variable. This makes the distance correlation sensitive
to any kind of dependence between two random variables, unlike
Pearson or Spearman correlations which measure linear and strictly
monotonic relationships respectively. The distance correlation has a
value between 0 and 1, where 0 would mean that the random vari-
ables are independent whereas a value of 1 would mean the linear
sub-spaces spanned by the two random variables are almost equal,
indicating a very high degree of dependence.
Fig. 9 shows values of distance correlation between each of the

components of the capsule vector corresponding to the predicted
morphology and global properties of galaxies in the test set. Unsur-
prisingly, we find that many of the capsule components have strong

6 https://biprateep.github.io/encapZulate-1/viz/explore_
UMAP_DenseMAP.html
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Figure 7. Two dimensional UMAP embedding of the 16-dimensional capsules colour-coded by photometric redshift (top left), spectroscopic redshift (top right),
fraction of spiral galaxies in the neighbouring region (bottom left), and redshift prediction error (bottom right). The photo-𝑧 outliers are shown in black in the
bottom right panel. The UMAP embedding of the capsules creates a nearly perfect redshift sequence indicating that the capsules learn a good representation of
redshift. Spirals and ellipticals tend to occupy separate regions though there is a region with overlap with morphology producing a gradient almost perpendicular
to the redshift sequence. We notice that regions dominated by spirals tend to have slightly higher redshift prediction errors compared to regions dominated
by ellipticals. Though spirals and ellipticals have almost the same fraction of outliers, visually it may seem that there are more outliers which are spirals than
ellipticals. Many of those outliers are actually ellipticals which lie close to the region dominated by the spiral galaxies in the 2D UMAP representation. An
interactive version of this figure showing galaxy image thumbnails is available online6.

correlations with the spectroscopic redshift, with dimensions 8, 14
and 3 being the strongest. The capsule dimensions that show strong
correlationswith spectroscopic redshift also show strong correlations
with observed frame galaxy colours and apparent magnitudes which
are known to be good predictors of photometric redshift. Given this
pattern, we also expect them to be well correlated with galaxy abso-
lute magnitudes (M𝑢/𝑔/𝑟/𝑖/𝑧) which we can also verify from Fig. 9.
Sérsic index (n𝑟 ) correlates the most with dimension 13 which we
saw controls the amount of a galaxy’s central bulge (see Fig. 8).
Similarly, dimension 2 which we saw control the visual size of the
galaxy image has the strongest correlation with the 90% light radius
(𝑅90,𝑟 ) among all capsules and also correlates well with Sérsic index
which are the two quantities which together quantify the visual size
of the galaxy on the sky. We can therefore infer that the capsules
successfully encode almost all of the photometric properties of the
galaxy image. A few illustrative examples of these correlations in
form of scatter plots can be found in appendix C.

Many capsule dimensions show correlation with physical proper-
ties like stellar mass (M★) and velocity dispersion of the spectra (𝜎𝑣 )
and a small number of dimensions show strong correlations with star
formation rate (SFR) and specific star formation rate (sSFR). Most
likely, these correlations arise because SFR and sSFR depend on
galaxy magnitudes and spectroscopic redshifts which the capsules
efficiently encode, but the capsules may also encode some physi-
cal properties of the galaxies. Even though we focus on predicting
photometric redshifts in this work, we expect that capsule-based
encodings can be used to create a general purpose image-based in-
ference methodology for physical properties of galaxies and will be
explored in a future work.

5.3.4 Feature Importance Using SHAP Values

As shown in the Secs. 5.3.2 and 5.3.3, each capsule dimension tends
to encode a somewhat different property of the input image, so we
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(a) The first spiral galaxy from Fig. 2
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(b) The first elliptical galaxy from Fig. 2

Figure 8. Synthetic galaxy images generated by perturbing capsule dimensions. Each column shows the decoded image when one of the 16 dimensions of the
capsule vector is perturbed in units of its standard deviation (keeping all the others fixed). The 0𝜎 column shows the decoded image from the unperturbed
capsule and are identical for each row. We show a subset of the dimensions here for which the perturbations have a clear interpretation (see Appendix B for a
version with all the dimensions). We see that some of the capsule dimensions, encode physical features like size, orientation, amount of central bulge and surface
brightness of the galaxies.
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Figure 9. Measurements of the distance correlation between the capsule dimensions corresponding to the predicted morphological class and global galaxy
properties (as described in Sec. 2.3). The values have a range between 0 and 1 where a value of 0 means the two random variables being compared are independent
and a value of 1 indicates a high level of dependency. We have grouped the galaxy properties into two sets: properties which solely depend on photometry (top)
and properties which include knowledge of the spectroscopic redshift along with photometry (bottom). 𝑢, 𝑔, 𝑟 , 𝑖, 𝑧 represent the extinction corrected cmodel
magnitudes. 𝑢 − 𝑔, 𝑔 − 𝑟 , etc. represent galaxy colours calculated using extinction corrected model magnitudes. 𝑛𝑟 and 𝑅90,𝑟 represent the Sérsic index and the
90% light radius obtained from the Sérsic profile fit to 𝑟 -band photometry and are used as a proxy for a galaxy’s size. 𝑧spec denotes the spectroscopic redshift;
M𝑢/𝑔/𝑟/𝑖/𝑧 represent the absolute magnitudes in each of the five bands.M★ stands for the stellar mass, SFR stands for the star formation rate, and sSFR stands
for the specific star formation rate. 𝜎𝑣 represents the velocity dispersion of the spectra. We see that the components of the capsule vectors are not only correlated
with the spectroscopic redshift but also correlated with the apparent magnitudes and colours, measurements that are traditionally used by photometric redshift
prediction algorithms. We also see that they are well correlated with parameters of a Sérsic fit which are indirect indicators of morphology as well as physical
properties of the galaxies that would traditionally require spectroscopic measurements.

would like to see which of the dimensions are most useful in predict-
ing photo-𝑧’s. To quantify this, we calculate the SHapley Additive
exPlanations (SHAP; Lundberg & Lee 2017) values for each of the
capsule dimensions that are used by the redshift prediction network
using the test data. SHAP is a method to explain a prediction by
computing the contribution of each feature. It takes a game theory
approach to optimally distribute credit to each feature for a given pre-
diction using Shapley Values (Shapley 1953). The Shapley value for
a feature is defined as the average marginal contribution of a feature
across its all possibilities for a given prediction. The SHAP value
is then calculated via a weighted sum of Shapley values to ensure
that the contribution of each feature to a prediction add up to the

value of the prediction. Since it would be prohibitively expensive to
calculate contributions across all possibilities of the feature space,
we use the expected gradients method which combines ideas from
Integrated Gradients (Sundararajan et al. 2017), SHAP (Lundberg &
Lee 2017) and SmoothGrad (Smilkov et al. 2017) to approximately
calculate the SHAP values for a neural network. A positive SHAP
value indicates that the particular value of the feature increases the
value of the output, a negative SHAP value indicates that the output
is decreased, whereas a value of zero means that the feature does not
contribute towards the output for that specific prediction. We then
rank the features (i.e., capsule dimensions) based on their magnitude
of SHAP values averaged over all predictions in the test set. Thus, a
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capsule dimension is deemed to be the most important if it influences
the output most across all the predictions.
We show the SHAP values for each prediction in the test set in the

summary plot shown in Fig. 10. The capsule dimensions are listed
in decreasing order of their importance (i.e., average magnitude of
SHAP values). The points are also colour coded as per the value of
the feature which helps us to qualitatively identify how much the
prediction changes based on a change in the value of the dimension.
We see that capsule dimensions 8 and 14 are the most important,
followed by dimensions 3 and 6. The next four capsule dimensions
still contribute significantly to the prediction as dimensions 9, 7, 10,
12 have relatively high SHAP values. All the other dimensions con-
tribute to the prediction significantly only a small number of times.
For many of the dimensions, we see a pile up of SHAP values around
0. This indicates that the particular feature does not contribute much
towards the prediction for that specific case. This can happen if the
input features are correlated and the model gets similar information
from a different dimension for that specific prediction. This is also
evident from the fact that the 2D UMAP projection of the capsules
form a nearly perfect redshift sequence (see Fig. 7) suggesting that the
data do not fully span the 16-dimensional latent space. We therefore
define the importance ranking of a capsule dimension as an average
over the entire test set and the ranking may be different for a specific
prediction.
Dimension 8 has the highest SHAP feature importance. Although

we cannot clearly discern what physical property it represents from
the synthetic images generated from perturbed capsules, we can see
from the figures in appendix B that perturbing this dimension causes
the image to morph from an elliptical galaxy to a spiral galaxy.
We hypothesise that dimension 8 learns a representation which is a
combination of the morphological type, colour, and orientation of
the galaxy which helps it to distinguish between an elliptical galaxy
which is intrinsically red and an edge-on spiral galaxy which ap-
pears to be reddened because of dust. This helps the capsule network
to learn representations of galaxy colour while being aware of the
morphology and orientation which can be very useful to break de-
generacies in the colour-redshift relation. We also see that dimension
14 is the second most important feature. Fig. 8 shows that dimension
14 encodes information about the surface brightness of the observed
galaxy. A lower value of dimension 14 corresponds to a brighter ob-
ject. From Fig. 10 we see that a lower value of dimension 14 reduces
the redshift prediction since they have a negative SHAP value. This
shows that the neural network assigns a lower redshift to objects with
higher surface brightness. Surface brightness is a very good proxy to
the distance of a galaxy (and therefore redshift) since objects farther
away appear fainter at a fixed luminosity. Learning a representation of
surface brightness hence helps the network to better predict redshifts.

6 SUMMARY AND DISCUSSION

In this paper, we use a deep capsule network to produce photometric
redshift point estimates from images of galaxies and provide inter-
pretation of the features learnt by the network. We use ∼ 400, 000
SDSS 𝑢𝑔𝑟𝑖𝑧 images, their spectroscopic redshifts, and morpholog-
ical class labels from Galaxy-Zoo-1 (see Sec. 2) to train our deep
capsule network. Capsule networks are a new type of neural net-
work architecture that are better suited for identifying morphological
features than traditional CNNs.We use a deep capsule network archi-
tecture that uses 3D convolution based routing mechanisms and skip
connections to efficiently train the network (see Sec. 3 and Fig. 1).
We achieve a photometric redshift prediction accuracy comparable
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Figure 10.A SHAP summary plot showing the SHAP values of each capsule
dimension for the entire test set. The capsule dimensions are listed in decreas-
ing order of their importance (i.e. average magnitude of SHAP values). The
points are colour-coded as per the value of the capsule dimension. We see
that dimensions 8 and 14 are the most important followed by dimensions 3
and 6. The pile-up of points at a SHAP value of zero indicates that the dimen-
sion does not contribute towards the prediction for this specific case and the
network gets similar information from another capsule dimension. This can
happen when features are correlated. We do see that all the dimensions have
some non-zero SHAP values, indicating that all the dimensions contribute
towards the prediction at least sometimes.

to or better than current methods while requiring less data and fewer
trainable parameters (see Figs. 3 & 6). The performance of our algo-
rithm is stable across the brightness and redshift range of our data set
(see Fig. 5). Moreover, the decision-making of our capsule network
is easier to interpret as capsules act as a low-dimensional encoding of
the input image and can be used to produce reconstructed images (see
Fig. 2).We useUMAP, a non-linear dimensionality reductionmethod
to embed the capsules in 2-dimensional space and show that the cap-
sules produce an almost perfect redshift sequence with the fraction of
spirals in a region exhibiting a gradient roughly perpendicular to the
redshift sequence (see Fig. 7). We then perturb the encodings of real
galaxy images to generate synthetic galaxy images that demonstrate
the image properties (e.g., size, orientation, and surface brightness)
encoded by each capsule dimension (see Fig. 8). We calculate the
feature importance of each capsule dimension using their SHAP
values to rank them based on their usefulness towards predicting
photo-𝑧’s (see Fig. 10). We also demonstrate that galaxy properties
(e.g., magnitudes, colours, and stellar mass) correlate strongly with
each capsule dimension (see Fig. 9). This tells us that the capsule
dimensions encode and use visual and morphological properties of
galaxy images (like surface brightness, orientation) in addition to
measures of amount of light (like colours and magnitudes) to infer
the photometric redshift.
Here we have presented photo-𝑧 point estimates, though for many

science cases photo-𝑧 PDFs are more desirable and sometimes nec-
essary for meaningful analyses. However, current ML-based photo-𝑧
PDF estimation efforts suffer from poor calibration (Schmidt et al.
2020). In future work, we plan to incorporate methods described
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in Dey et al. (2021, 2022) to properly calibrate ML-based photo-z
PDFs based on a galaxy’s position in input space with capsule net-
work photo-𝑧 PDFs serving as a natural example to demonstrate the
expected improvements.
More generally, the future of capsule network-based photo-𝑧 es-

timation looks bright. Their high training efficiency will allow for
deeper and wider models with greater capacity to handle the massive
training sets from current and future spectroscopic surveys like DESI
(DESI Collaboration et al. 2016) and PFS (Takada et al. 2014) that
extend to higher redshifts, span a wider redshift range, and probe
to fainter magnitudes. Specifically, we plan to enable early DESI
science by estimating photo-𝑧’s for objects in the DESI Legacy
Imaging Surveys (Dey et al. 2019) before the DESI spectroscopic
survey is complete. At even higher redshifts, we are optimistic that
capsule networks can leverage morphology—especially the evolu-
tion of galaxy morphologies from 𝑧 ∼ 2 to 𝑧 < 0.5—from space-
based high-resolution imaging to help break the SED degeneracies
that plague template-fitting methods at high-𝑧. With growing high-𝑧
spectroscopic training sets and rapidly progressing capsule network
architecture development, we are optimistic that capsule networks
will provide complementary constraints or even superior photo-𝑧’s
to template-based methods at high-𝑧.
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APPENDIX A: CAPSULE NETWORKS AND ROUTING
MECHANISMS

To construct the classification-and-encoding network, we first use a
set of convolutional filters, the outputs of which are reshaped into a
set of tensors which are treated as the initial set of capsules. We then
use two main kind of capsule layers, dynamic routing-based class
capsules and convolution routing-based capsules (i.e., Conv-Caps
and 3D-Conv-Caps layers in Fig. 1). As shown in Fig. 1, the convo-
lution routing based capsules are used to construct the hidden layers
whereas the dynamic routing based capsules are used to construct the
output layer of the classification-and-encoding network where each
capsule represents a morphological type. In this section we give a
brief overview of the mathematical aspects of the capsule layer archi-
tectures used in this work. This is intended to be a short summary and
interested readers are recommended to refer to Sabour et al. (2017)
for a detailed discussion on capsules with dynamic routing and Ra-
jasegaran et al. (2019) for convolutional capsules. We have tried to
follow the same mathematical notation used by these two works for
easy reference.

A1 Dynamic Routing (i.e. Routing by Agreement)

Let u𝑖 denote the 𝑖th capsule vector in layer 𝑙 of the network and v 𝑗

denote the 𝑗 th capsule vectors in layer 𝑙 + 1. To obtain the capsules
in layer 𝑙 + 1 from the ones in layer 𝑙 we define an intermediate
“prediction” vector (û 𝑗 |𝑖) as:

û 𝑗 |𝑖 = W𝑖 𝑗u𝑖 , (A1)

where W𝑖 𝑗 is a weight matrix learnt by gradient descent. The cap-
sules in the following layer (v 𝑗 ) are calculated using a weighted sum
of these prediction vectors after being passed through a non-linear
activation function called the squashing function defined as:

v 𝑗 =
‖s 𝑗 ‖2

1 + ‖s 𝑗 ‖2
s 𝑗
‖s 𝑗 ‖

, (A2)

where s 𝑗 is the weighted sum given by:

s 𝑗 =
∑︁
𝑖

𝑐𝑖 𝑗 û 𝑗 |𝑖 , (A3)

where 𝑐𝑖 𝑗 are the coupling coefficients determined by an iterative
process. To ensure that they always add up to 1, they are defined in
terms of the softmax transformed variables 𝑏𝑖 𝑗 as:

𝑐𝑖 𝑗 =
exp(𝑏𝑖 𝑗 )∑
𝑘 exp(𝑏𝑖𝑘 )

. (A4)

The variables 𝑏𝑖 𝑗 can be treated as the log prior probability that the
capsule 𝑖 in layer 𝑙 is coupled to the capsule 𝑗 in layer 𝑙+1. In a single
pass of back propagation, we begin with 𝑏𝑖 𝑗 = 0 to provide equal
weights to all the capsules initially, and then the coupling coefficients
are iteratively updated by measuring the agreement between the cur-
rent output of each capsule in layer 𝑙 + 1, i.e., v 𝑗 and the prediction
made by the capsules in layer 𝑙, i.e., û 𝑗 |𝑖 . The agreement is defined
as the scalar product v 𝑗 .û 𝑗 |𝑖 and is added to 𝑏𝑖 𝑗 before computing
the coupling coefficients. So, for each step in the iteration:

𝑏𝑖 𝑗 ← 𝑏𝑖 𝑗 + v 𝑗 .û 𝑗 |𝑖 . (A5)

The number of iterations is a tunable hyper-parameter. Larger number
of iterations will provide better estimates of the coupling coefficients
at the cost of increasing the number of computations. We use 3 itera-
tions as it was found to work reasonably well by Sabour et al. (2017)
who proposed this algorithm. Since these capsules (v 𝑗 ) form the final

layer of the classification-and-encoding network, we calculate their
Euclidean norms which are used as a measure of the class probabil-
ities the capsules represent. These predicted class probabilities are
then used as inputs to the margin loss function (eq. 1).

A2 Convolution based routing

One of the drawbacks of the dynamic routing algorithm described in
Sec. A1 is that the computations are done in a way analogous to fully
connected neural networks. This means that the number of train-
able weights increase dramatically for a deep network architecture
required for complex tasks like predicting photo-𝑧’s. To solve this
problem, Rajasegaran et al. (2019) proposed capsule network layers
that use computationally efficient convolutional operations. We use
them as the intermediate layers of our classification-and-encoding
network. The weights of the convolution filters are determined us-
ing gradient descent whereas the coupling coefficients for routing
are determined by an iterative process. In the initial layers, the fea-
ture maps obtained from convolution operations is large and iterative
routing can be expensive. So, following Rajasegaran et al. (2019), we
use a mix of two kinds of convolutional capsule layers, one which
does one routing iteration (viz. Conv-Caps) and another one doing 3
routing iterations (viz. 3D-Conv-Caps) in our network architecture
(see Fig. 1).
To facilitate convolution operations, the capsules start out as 3D

tensors which are flattened into 1D capsule vectors when we reach
the final layer in our architecture. Let the output of the convolutional
capsule layer 𝑙 be𝚽𝑙 ∈ R(𝑤 𝑙 ,𝑤 𝑙 ,𝑐𝑙 ,𝑛𝑙) , where 𝑤𝑙 denotes the height
and width, 𝑐𝑙 the depth, and 𝑛𝑙 the number of 3D capsule tensors.
Similarly, let 𝚽𝑙+1 ∈ R(𝑤 𝑙+1 ,𝑤 𝑙+1 ,𝑐𝑙+1 ,𝑛𝑙+1) represent the output of
the layer 𝑙 + 1.
The Conv-Caps layer first reshapes 𝚽𝑙 into a tensor of shape
(𝑤𝑙 , 𝑤𝑙 , 𝑐𝑙 × 𝑛𝑙) and convolves with (𝑐𝑙+1 × 𝑛𝑙+1) number of fil-
ters, producing (𝑐𝑙+1 × 𝑛𝑙+1) number of feature maps of shape
(𝑤𝑙+1, 𝑤𝑙+1). They are then reshaped into a tensor of shape
(𝑤𝑙+1, 𝑤𝑙+1, 𝑐𝑙+1, 𝑛𝑙+1). This 3D tensor (𝑆𝑝𝑞𝑟 ) is then used as the
input to a nonlinear squashing function defined by:

𝑆𝑝𝑞𝑟 =
‖𝑆𝑝𝑞𝑟 ‖2

1 + ‖𝑆𝑝𝑞𝑟 ‖2
𝑆𝑝𝑞𝑟

‖𝑆𝑝𝑞𝑟 ‖
. (A6)

Since we will use just one iteration of routing for this layer, the output
of the squashing function is treated as the output of the layer (i.e.,
𝚽𝑙+1 = Ŝ).
For the 3D-Conv-Caps layer, we first reshape 𝚽l into a tensor of

shape (𝑤𝑙 , 𝑤𝑙 , 𝑐𝑙 × 𝑛𝑙 , 1). Then, it is convolved with (𝑐𝑙+1 × 𝑛𝑙+1)
number of 3D convolution kernels of appropriate shape so as to
produce a tensor of shape (𝑤𝑙+1, 𝑤𝑙+1, 𝑐𝑙 , 𝑐𝑙+1 × 𝑛𝑙+1). It is then
reshaped into a tensor, Ṽ of shape (𝑤𝑙+1, 𝑤𝑙+1, 𝑐𝑙 , 𝑛𝑙+1, 𝑐𝑙+1) which
acts as the intermediate “prediction” tensor. The capsules of the
following layer are then calculated via the weighted sum of tensors
given by:

𝑆𝑝𝑞𝑟 =
∑︁
𝑠

𝑘 𝑝𝑞𝑟𝑠 .�̃�𝑝𝑞𝑟𝑠 . (A7)

Then S is used as an input to the tensor squashing function defined
in eq. A6 to obtain the squashed tensor, Ŝ which after the iterative
updates will be treated as the output capsules(�̂�𝑙+1). The coupling
coefficients for the weighted sum (𝑘 𝑝𝑞𝑟𝑠) are determined by an it-
erative process. To ensure that they are normalised they are defined
in terms of softmax transformed variable B ∈ R(𝑤 𝑙+1 ,𝑤 𝑙+1 ,𝑐𝑙+1 ,𝑐𝑙)
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given by:

𝑘 𝑝𝑞𝑟𝑠 =
exp (𝑏𝑝𝑞𝑟𝑠)∑

𝑥

∑
𝑦

∑
𝑧 exp (𝑏𝑥𝑦𝑧𝑠)

. (A8)

In a single pass of back propagation we begin with 𝑏𝑝𝑞𝑟𝑠 = 0
to provide equal weight to all capsules initially and then the cou-
pling coefficients are iteratively updated 3 times by measuring the
agreement (via the scalar product) between the current output of the
capsules and the intermediate prediction tensors in each iteration i.e.,

𝑏𝑝𝑞𝑟𝑠 ← 𝑏𝑝𝑞𝑟𝑠 + 𝑆𝑝𝑞𝑟 .�̃�𝑝𝑞𝑟𝑠 . (A9)

Finally, when the output of the convolutional capsules are used as
inputs to the capsules with dynamic routing, the tensors in a layer 𝑙 of
shape (𝑤𝑙 , 𝑤𝑙 , 𝑐𝑙 , 𝑛𝑙) are flattened to the shape (𝑤𝑙 ×𝑤𝑙 × 𝑐𝑙 , 𝑛𝑙), i.e.
we get 𝑛𝑙 number of capsule vectors each with 𝑤𝑙 × 𝑤𝑙 × 𝑐𝑙 number
of dimensions.

APPENDIX B: SYNTHETIC IMAGES FROM PERTURBED
CAPSULE COMPONENTS

Here we show an extended version of Fig. 8 with synthetic galaxy
images generated from perturbing all 16 of the dimensions individ-
ually. Each column shows the decoded image when one of the 16
dimensions of the capsule vector is perturbed in units of its standard
deviation (keeping all the others fixed). The 0𝜎 column shows the
decoded image from the unperturbed capsule and are identical for
each row. Since the capsule network training process does not disen-
tangle the features learnt by each dimension, not all the dimensions
control a single easily identifiable feature. A subset of the dimensions
for which the the features are easily identifiable are shown in Fig. 8.

APPENDIX C: CORRELATIONS OF CAPSULE
DIMENSIONS WITH PHYSICAL PROPERTIES

A few illustrative examples of strong correlations between capsule
dimensions and physical properties of galaxies have been visualised
using scatter plots in Fig. C1. We observe that the value of the
capsule dimensions varies with the galaxy property indicating some
correlation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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(a) The first spiral galaxy from Fig. 2
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(b) The first elliptical galaxy from Fig. 2

Figure B1. Reconstructions from perturbed capsule vectors. Each column shows the reconstructions when one of the 16 components of the capsule vector is
perturbed in units of their standard deviation (keeping all the others fixed). This is an extended version of the Fig. 8 and shows reconstructions from perturbations
of all the dimensions.
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Figure C1. A few examples of strong correlations between capsule dimensions and physical properties of galaxies visualised using scatter plots. 𝑔 represents
the extinction corrected SDSS 𝑔-band cmodel magnitude. 𝑔 − 𝑟 and 𝑔 − 𝑧 represent galaxy colours calculated using extinction corrected model magnitudes. 𝑛𝑟
represents the Sérsic index obtained from a Sèrsic profile to the 𝑟 -band photometry. We observe that the value of the capsule dimensions varies with the galaxy
property indicating some correlation.
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