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ABSTRACT: The equilibrium mechanical properties of a cross-linked gel
of telechelic star polymers are studied by rheology and Brownian dynamics
simulations. The Brownian dynamics model consists of cores to which
Rouse arms are attached. Forces between the cores are obtained from a
potential of mean force model developed by Likos and co-workers. Both
experimentally and in the simulations, networks were created by attaching
sticker groups to the ends of the arms of the polymers, which were next
allowed to form bonds among them in a one to one fashion. Simulations
were sped up by solving the Rouse dynamics exactly. Moreover, the Rouse
model was extended to allow for different frictions on different beads. In order to describe the rheology of the non-cross-linked
polymers, it had to be assumed that bead frictions increase with increasing bead number along the arms. This friction model
could be transferred to describe the rheology of the network without any adjustments other than an overall increase of the
frictions due to the formation of bonds. The slowing down at intermediate times of the network rheology compared to that of the
non-cross-linked polymers is well described by the model. The percentage of stickers involved in forming inter-star bonds in the
system was determined to be 25%, both from simulations and from an application of the Green−Tobolsky relation to the
experimental plateau value of the shear relaxation modulus. Simulations with increasing cross-link percentages revealed that on
approaching the gel transition the shear relaxation modulus develops an algebraic tail, which gets frozen at a percentage of
maximum cross-linking of about 11%.

1. INTRODUCTION
Supramolecular polymeric structures are characterized by
reversible bond formation which reflects the action of
noncovalent bonds such as hydrogen, ionic, or metal−ligand
bonds.1−6 The interplay of association lifetime with the
polymeric time scale dictates the strength and stability of the
formed assemblies.7 The former depends on the fraction,
functionality, and localization of the bonds, and the latter on
the size of polymer segments (between bonds), which may
exhibit Rouse-like and disentanglement relaxation. As a result,
associating polymeric networks possess intriguing tunable
properties such as enhanced elasticity, shape memory, and
self-healing.8−19 Whereas the dynamics of nonionic polymers of
different molecular weights and architectures is reasonably well-
understood,20−23 the situation with associating polymers is
more complicated. Clearly, the dynamics of supramolecular
networks is highly dependent on bond formation and
destruction, polymer dynamics, and the properties of segments
between bonds.24,25 Starting from the network plateau

accounted for by the Green−Tobolsky model,26 the dynamics
of associating polymers containing reversible bonds can be
described through the breaking and reformation process
coupled to chain relaxation by means of the sticky-Rouse27 or
sticky reptation28 models. The former predicts that with
decreasing frequency a transition takes place in the storage
modulus G′ from Rouse dynamics (G′ ∝ ω0.5) toward a plateau
that reflects the number density of elastically active strands.
Eventually, the terminal regime (G′ ∝ ω2) is reached when the
sticky groups dissociate. The latter model is similar in nature
and predicts that reptation of the chain along its tube is not
possible before the stickers disassociate. Briefly, at times longer
than the Rouse time of a strand localized between two
entanglements and/or stickers τe, but shorter than the sticker
dissociation time τ, a first plateau modulus (G1) appears, similar
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to that observed in permanently cross-linked networks. It
includes two contributions, from associations and entangle-
ments: G1 = ρRT(1/Mx + 1/Me), where Mx is the mass
between two stickers and Me is the mass of an entanglement
strand. At time t > τ, the stress due to the stickers relaxes, and
the modulus drops to the entanglement level G2 = ρRT/Me.
The second plateau persists until the terminal relaxation time of
the reversible network, τterminal, which is longer than the
terminal relaxation time of the respective entangled system
without associations. Note that the strength of the physical
bonds dictates the dynamics. If they are very strong (as in the
present case), the sticker relaxation time τ is prohibitively long
to allow for an experimentally accessible terminal relaxation of
the network. Hence, the network is not reversible during
experimental times, albeit physical.
The above framework, irrespective of the strength of physical

bonds, has proven to be highly successful and opened the route
for designing and engineering topologically complex macro-
molecules with selective functionalization, which allows
tailoring properties in order to meet specific technological
needs and at the same time understanding complex processes
occurring in nature.29−31 Therefore, several outstanding
challenges should be addressed in this context. One prominent
example is developing quantitative predictions for the coupling
of supramolecular interactions and topological effects in
polymeric systems with branching architectures.32−35 Given
this background, coupling highly branched architectures with
multifunctional associating groups is expected to yield novel
features due to their ability to link more than two chains at a
time and their capacity to form stronger assemblies, while
making the system dynamics and the associated physics richer,
albeit more complex. The various possibilities for junctions
formation in an associated physical network in such situations
are illustrated in Figure 1. The finger-like configuration for the

multifunctional associating groups (Figure 1a) is responsible for
linking two or more different stars through one or more
associations (inter-star) (circles in Figure 1b), often with very
high activation energy. Concomitantly, two or more arms from
the same star can associate (intra-star) (triangles in Figure 1b)
or simply the fingers of the same arm can bridge (intra-arm)
(squares in Figure 1b). These different possibilities may
facilitate the reformation of junctions after breakup (temper-
ature or shear-induced) through an inter-star/intra-star
dynamic exchange, which could also promote the self-healing
ability of the network.18 It should be remarked that self-healing
can be expected to be more effective in the case of very strong

associations. Related aspects of the sulfur−sulfur bond are
addressed in the recent literature.18,36−38

As described above, recent developments in polymer
chemistry have enabled the synthesis of well-defined star
polymers with multifunctional associating groups, which can
serve as models for testing these ideas and their consequences
on network dynamics.18,39 On the other hand, for the latter,
and more generally, a deeper understanding of the macroscopic
response of these systems in relation to their internal
microstructure, it is often needed to resort to simulations.16

However, before assessing the self-healing properties, it is
important to rationalize and control the rheology of this class of
telechelic stars. This can be achieved with a combination of
well-controlled synthesis, rheological experiments, and Brow-
nian dynamics (BD) simulations, which represent the thrust of
the present work.
The star polymers investigated here consist of a cross-linked

ethylene glycol diacrylate (EGDA) core with an average of 13
arms made of poly(n-butyl acrylate) attached to it and with
three bis(2-methacryloyloxyethyl) disulfide (DSDMA) stickers
(fingers) at the tip of each arm. Stickers can bind strongly to
those from other arms and thereby form a cross-linked physical
network (see Figure 1). The system is coded as SS3 (disulfide
cross-linked with three stickers at the arm tip). The linear
viscoelastic response is measured by means of dynamic
oscillatory measurements using appropriate protocols to ensure
proper equilibration and applying the principle of time−
temperature superposition (TTS). Simulation studies of cross-
linked networks have been reported before.16,40−43 In this study
we concentrate on the rheological behavior of this strong
physical network, starting from its un-cross-linked precursor,
which has no stickers at the arm ends and build up a cross-
linked network from this system. The stress relaxation modulus
G(t) of the cross-linked network decays much slower than that
of its precursor and with increasing cross-link percentage
develops a terminal plateau characteristic of gelation. This
poses severe problems for BD simulations as the speed of the
simulation is set by the time scale of the early decay. Since,
however, the arm lengths in our system are smaller than an
entanglement length and the system is in a melt state, the
standard Rouse model may be assumed to describe the
dynamics of the arms and strands between connected
cores.44,45 This allows us to simulate the latter analytically
without any restriction on the time step by sampling from a
Gaussian distribution.46−48 As a result, the time step is now
limited by the diffusion of the cores which is much slower than
the early decay of the shear relaxation modulus. In addition to
this, we present a generalized version of the Rouse model by
proving that the Rouse modes of a polymer are uncorrelated,
even when an arbitrary distribution of frictions of the beads is
being used. Extensions of the Rouse model to incorporate more
than one friction have been suggested before. However, these
studies were restricted to systems with just two different friction
coefficients49−51 or used a random distribution of frictions to
incorporate dynamic asymmetry.52−54 Here we provide a
completely general method, allowing us to sample from a
Gaussian distribution even in cases where all the beads have
different frictions. In order to establish model parameters
associated with the dynamics, we first study the linear rheology
of the precursor by both simulations and experiments.
The remainder of this paper is arranged as follows. We first

present the simulation models used to describe the precursor
and the network. Next, we present the experimental system, its

Figure 1. Schematic of the un-cross-linked precursor (a) and the
cross-linked network (b). Circles show bonds between stars (inter-
star), triangles show bonds between two different arms of the same
star (intra-star), and squares show the finger-like stickers closing up
among themselves to form an intra-arm bond.
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synthesis and molecular characterization, and give some
additional details of the experimental and simulation methods
used. We then continue with presenting the results and analysis
from the comparison of simulation and experimental data.
Finally we summarize the key conclusions and perspectives.

2. SIMULATION MODEL
In this section we first describe the model that we have used to
simulate the rheology of the precursor, a system containing star
polymers with functionality f and without connections between
the arms on different stars. In the last subsection, we indicate
what changes we made to simulate the cross-linked systems in
which some arms are allowed to connect through interactions
at telechelic ends and by this form bridges from one star to
another.
2.1. Model Hamiltonian and Propagator. 2.1.1. Pre-

cursor. The most detailed picture of a star-polymer system,
relevant for rheology, is the one in which the positions and
interactions of all segments are considered as a function of time.
At a somewhat coarser level, one might consider all positions
and interactions of groups of segments having the size of a
Kuhn length. Using a model like this, in principle, would allow
the calculation of configurational properties such as, for
example, the distribution of the cores in the case of star
polymers and also of rheological properties from time scales of
a few tenths of nanoseconds all the way to minutes.
Unfortunately, with a model like this it would be impossible
to reach the large time scales of interest in the present paper by
means of computer simulations. We therefore suggest an even
coarser model, thereby obviously losing some accuracy with our
predictions.
The Hamiltonian of our model is given by

∑ ∑ ∑ϕ ϕ= +
=

−

= + =

H r( )
I

N

J I

N

IJ
I

N
I
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1

1 1
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The sum over pairs represents entropic interactions between
two stars I and J, with rIJ = | rI⃗ − rJ⃗ | being the distance between
their cores and with rI⃗ being the position of the core of the Ith
star. Nt is the total number of stars in the system. The pair
contributions ϕ(rIJ) are given by the so-called Likos potential:
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where f is the number of arms of the star. The first line in eq 2
describes repulsions at distances smaller than σ, while the
second line describes the smooth decay of these repulsions to
zero at larger distances.
Let us briefly discuss the status of the Likos potential. As

mentioned above, ideally we would study the dynamics of all
Kuhn segments in the system as governed by the mutual
interactions applicable at that level. Having done a simulation
like this, one might be interested in the distribution of the
cores. In order to find this distribution, P, and the
corresponding potential, − kBT ln P, one would simply average
over, i.e. “integrate out”, all other degrees of freedom. One
would end up with the exact distribution and the exact
potential. This potential also governs the exact average forces
between cores and is therefore called the potential of mean

force. The Likos potential is a pairwise approximation of this
potential.55 It is the best potential available today to describe
the configurations and dynamics of the cores of stars.
Figure 2 shows the Likos potential for stars with 13 arms and

for comparison also for stars with 40 arms. With increasing

functionality, star polymers become increasingly colloid-like in
nature,56 which can be seen by the potential becoming steeper
when f increases from 13 to 40. The radial distribution function,
simulated with a melt of 13 arm stars interacting via the Likos
potential, is also drawn in that figure and clearly shows how the
excluded volume prevents the stars from approaching each
other to small distances. We will discuss this picture below.
In order to be able at a later stage to study networks, we need

the positions of the stickers. We obtain them by adding chains
to the cores, 13 to each core since this corresponds to the actual
experimental system. In order not to influence the distribution
of the cores, we choose to add Rouse arms, also called
“phantom arms”, whose dynamics is governed by the second
term in eq 1, with

∑ ∑ϕ = | ⃗ − ⃗ |
= =

−k R R
1
2

I
s

a

f

n

N

a n
I

a n
I

Rouse
1 1

, , 1
2

(3)

which is nothing but the sum of the free energies stored in the
entropic springs connecting consecutive beads along the f arms
of the Ith star. R⃗a,n

I denotes the position vector of the nth bead
along the ath arm of the Ith star, and N is the number of Kuhn
segments (beads) on each arm, 7 in the case of our precursor.
The first bead of each arm a is connected to the central core
with position vector rI⃗ = R⃗a,0

I . The spring constant is

=k
k T
b

3
s

B
2 (4)

where b is the Kuhn length. The arms are called “phantom
arms” because no contributions to the potential energy prevent
the arms from crossing each other. It is well-known that with
relatively short arms the Rouse model mimics the motion of the
Kuhn segments quite well. A somewhat better model might be
based on FENE springs rather than the harmonic springs of the
Rouse model, but this would not allow for the speed up of the

Figure 2. Potential of mean force as a function of dimensionless inter-
star distance for two stars with functionality equal to 13 and 40. The
brown line represents the resulting radial distribution function g(r) for
a melt of 13-arm stars.The parameter σ is fixed by setting the pressure
equal to one atm for the given number density.
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arm dynamics that we describe below. Besides providing the
positions of the stickers, the Rouse arms also reinstate fast
stress fluctuations, which had been removed by the procedure
to calculate the Likos potential, thereby allowing the calculation
of rheological properties at shorter time scales.
During a time step dt, each bead or core, with position vector

R⃗a,n
I , is displaced according to

ξ
⃗ = − ∂

∂ ⃗
+ ⃗R t

H

R
t F td ( )

1
d da n

I

n a n
I a n

I
,

,
,

(5)

where ξn is a friction coefficient and F⃗a,n
I equals Θ⃗

ξ
k T

t a n
I2

d ,
n

B with

Θ⃗a,n
I being a zero mean, unit variance Gaussian vector. Notice

that we allow for the possibility that different beads have
different friction coefficients, the distribution of these frictions
being the same on each arm and each polymer.
2.1.2. Network. In the absence of any interactions between

the beads in the arms on different stars, the only way their
motions can be correlated is through the movements of the
cores. In general, the frictions on the cores will be much larger
than those on the other beads. Therefore, the displacements of
the cores due to interactions with surrounding stars will be very
small on time scales that are characteristic for the Rouse
dynamics. In that case the internal dynamics of the individual
stars and their contributions to rheological properties of
interest can be solved analytically, and there is no need to
include the Rouse part of the Hamiltonian in a full simulation
of the system. This is not true once we have connected a
fraction of the arms in order to form a network. In this case,
however, we must deal with the fact that the small friction on
the beads asks for time steps which are very small to sample all
relevant configurations of the cores. In the next subsection we
describe how the dynamics of the Rouse part of the
Hamiltonian can be simulated efficiently using large time
steps and later indicate changes to be made after bridges have
been formed.
The main objective of our investigations is to simulate the

stress response of the networks obtained by cross-linking some
of the ends of the stars to form bridges from one core to
another. In particular, we are interested in how the shear
relaxation moduli of such systems change with varying cross-
link percentages. The network forming star is exactly the same
as the precursor except for the presence of an eighth bead
representing a sticker group at the end of each arm. After the
creation of a network we have, in addition to dangling arms,
loops from one core back to itself and bridges from one core to
another. In the first case we simply ignore the additional sticker
group, while in the other two cases we combine the two sticker
groups forming the bond into one bead, leaving us with 2N + 1
beads of which bead number N + 1 represents the two stickers.
With these assumptions, the Hamiltonian is given by

∑ ∑ ∑ ∑ ∑ϕ ϕ ϕ= + +
=

−

= + = =
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= +
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Here, ϕ(rIJ) is the same potential of mean force (Likos
potential) as in the case of the precursor. ϕUNCON

I is the Rouse
potential given in eq 3, where f UNCON

I is the number of arms of
star I that are not connected to any other star; in the case of
dangling arms Ns = N and in the case of loops Ns = 2N + 2,
with bead number N + 1 representing the two merged stickers
as mentioned before. As before R⃗a,0

I = rI⃗, while also R⃗a,2N+2
I = rI⃗

in this case. In the second line, ϕCONN
IJ is the Rouse potential for

connected arms between stars I and J, where C(I,J) is the set of
arms connecting these stars; in this case, the first N beads in the
bridges represent the ones contributed by star I with R⃗a,0

IJ = rI⃗,
bead number N + 1 represents the two merged stickers, and
beads N + 2 up to 2N + 1 represent the beads contributed by
star J with R⃗a,2N+2

IJ = rJ⃗. In case C(I,J) is empty, the pair IJ does
not contribute to ϕCONN

IJ .
Notice that we have left the contribution of the core−core

potential of mean force unchanged, still being described by the
same Likos potential as we used for the precursor.

2.2. Normal Mode Simulation Method with Nonuni-
form Friction Coefficients. Explicit solutions of the dynamics
of many Rouse systems have been published in the
literature.44−48 The reason that so many individual cases have
been treated is that the authors were interested in full analytical
solutions that could be explicitly written down. Here, we are
satisfied with any procedure that allows for a very quick
solution, possibly involving some computationally efficient
numerical calculations. Moreover, we want to be able to treat
systems in which the friction forces may differ among the
various beads in the system. Since solutions of the Rouse
dynamics of such general systems does not seem to be easily
accessible in the literature, we briefly outline how to update the
configuration of Rouse systems with time steps dt of any value.
For simplicity, we discriminate the various beads by just a single
index, writing for the position vectors of the beads R⃗i. With this
notation the equations of motion read

∑
⃗

= − ⃗ +
⃗R

t
w
m

T R
F
m

d
d

i

i j
ij j

i

i (9)

Here w = ks/ξ0 is the so-called Rouse rate with ξ0 being some
reference friction, and mi = ξi/ξ0. The factor of m1/ i in the
last term has been introduced for notational convenience. The
vector F⃗i then represents random displacements resulting from
small scale dynamics eliminated from the description. As
before, it is assumed to be a Gaussian random vector with

uncorrelated random components given by Θ⃗
ξ

k T
t i

2
d

B

0
with Θ⃗i

being a zero mean unit variance random vector. The Rouse
matrix T with elements Tij is the incidence matrix of the system
describing which pairs of beads are connected to each other
through springs with spring constant ks. By its very definition
the Rouse matrix is symmetric. An example of a Rouse matrix
for star polymers is given in Liu et al.57 and Zimm and Kilb.58

A set of linear equations like eq 9 is most easily solved by
diagonalizing the corresponding interaction matrix. In order
that the resulting modes, called Rouse modes in the present
case, are independent, the stochastic contributions to the Rouse
mode dynamics must be uncorrelated. This will automatically
be ensured if the transformation matrix that diagonalizes the
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interaction matrix is orthogonal, which fact is not apparent
when the frictions are all different as the factors mi in the
denominators complicate the procedure. Therefore, we first
symmetrize the interaction matrix by introducing coordinates
Q⃗i according to ⃗ = ⃗Q m Ri i i. The equation of motion then
reads

∑
⃗

= − ⃗ + ⃗Q

t
w T Q F

d

d
i

j
ij
m

j i
(10)

with =T T m m/( )ij
m

ij i j , which is still symmetric and therefore

has an orthogonal diagonalizing matrix. Note that this
procedure also works when the springs are all different. In
this case, the differing spring constants must be moved into the
Rouse matrix T, which, however, still is symmetric.
We now proceed in the usual way, defining

∑⃗ = ⃗
=

X Q Sk
i

N

i ik
1 (11)

with S = (Sik) being the orthogonal matrix that diagonalizes the
Rouse matrix, i.e., STTmS = Λ. An important point is that S can
be calculated once and for all at the start of the simulation.
Equation 11 can easily be inverted to obtain Q⃗i = ∑k=1

N SikX⃗k, so
one can switch between using Rouse mode vectors X⃗k and bead
position vectors ⃗ = ⃗R m Qi i i. The Rouse mode vectors at any
time may now be obtained according to

∫⃗ = ⃗ + ′ ⃗ ′ ′τ τ− − −X t X G t t( ) (0)e e ( ) dk k
t

t
t t

k
/

0

( )/k k

(12)

∑⃗ = ⃗
=

G t F t S( ) ( )k
i

N

i
m

ik
1 (13)

Here τ = =
ωλ

ξ
λk k

1

k s k

0 is the characteristic time of mode k, while

λk is the k’th eigenvalue in matrix Λ defined above. G⃗k(t) is a
sum of Gaussian vectors, and therefore is itself a Gaussian
vector. Similarly, the integral in eq 12 is a Gaussian vector with
mean zero and variance σk(t)

2, which can easily be obtained
from the properties of F⃗m. The updates for the Rouse vector X⃗k
then becomes

σ⃗ + = ⃗ + Θ⃗τ−X t t X t t( d ) ( )e (d )k k
t

k k
d / k (14)

σ
ξ

τ= − τ−t
k T

(d ) (1 e )k k
tB

0

2d / k

(15)

These equations solve the Rouse dynamics exactly, so dt may
take any value. Our time step is now not limited anymore by
the fast dynamics of the Rouse system and may therefore be
adjusted to the dynamics of the cores. Once the eigenvalues of
the Rouse matrix are known, the contribution of the Rouse
dynamics to the shear relaxation modulus may easily be
calculated (see eq 20).
We verified our code by comparing simulation and

theoretical results for various time steps and friction models.
Moreover, we verified that the radial distribution function of
the cores is not influenced by the introduction of the arms.
2.3. Arms and Bridges. As mentioned before, because of

the slowness of the motion of the cores, the internal Rouse
dynamics of the individual stars may be calculated independ-
ently of the motion of the cores during time step dt set by the

core dynamics. Assuming, as we do, that the friction on the
cores is much larger than that on the other beads, one may
expect that a star may be considered as consisting of a fixed
core with f arms attached to it. This is corroborated by the
following observations concerning the spectrum of the internal
modes. Besides the diffusive mode with eigenvalue equal to
zero, there are Nf internal modes. N of these give rise to a
unique spectrum while the remaining ones give rise to f − 1
degenerate spectra, each consisting of N eigenvalues. So, in
total there are N + ( f − 1)N = f N internal modes and one
translational mode. The degenerate spectra are each exactly
equal to the spectrum of one arm attached to a fixed core. With
increasing values of the core friction, the eigenvalues of the
unique spectrum gradually change in order to finally become
equal to those of the degenerate spectrum which remained
unchanged all the time.
We conclude that the spectrum of a star with high enough

functionality consists of f degenerate spectra, all equal to that of
one arm with N beads attached to a fixed core (see Figure 3a).

Since G(t) is only dependent on the eigenvalues and not on the
eigenvectors, we may replace the full Rouse dynamics with that
of stars consisting of fixed cores with f independent arms
attached to them. The precise way to handle this case is given
further down in this subsection.
We now describe the propagator for networks. In the case of

bridges and loops, the equation of motion reads

∑ δ δ
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where δn,N is the Kronecker delta, being zero except if n = N, in
which case it equals one. The additional terms are due to the
connection of beads number one and 2N + 1 to cores I and J,
respectively. The Rouse matrix T with elements

=T m m Tmn m n mn
m is shown below and has size of 15 × 15.

The analytical solution of the Rouse modes now becomes
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In the second case, i.e., when the (2N + 1) long chain is looping
from core I back to core I, one just has to put rJ⃗ = rI⃗. In the case
of a dangling arm attached to core I, one simply puts rJ⃗ = 0 ⃗ and
replaces the Rouse matrix by the one given, whose size now is 7
× 7.

Figure 3. (a) Schematic drawing of an arm modeled as a Rouse chain
attached to a core at one end; only three beads are shown for clarity.
(b) Picture of two arms bridging two cores. Each of the two arms has
been provided with a sticker group at its end, which subsequently have
formed a short-range bond resulting in one additional red bead
representing the merged mass of the two sticker groups.
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The stochastic term in eq 17 is obtained as before.
We finally summarize the sequence of updates during a time

step in the case of networks. First, all cores are moved
according to Brownian dynamics with forces derived from the
Likos potential. Next, all beads in dangling arms are updated
according to the equations also used in the case of the
precursor. Finally, all loops and bridges are updated according
to the methods of the present section.
It is worth mentioning one consequence of the use of

phantom arms that will not be shared by the real system.
Creating cross-links in an experimental system will most
probably severely slow down the dynamics of the cores. This
will also hold true for any simulation model in which the beads
experience mutual repulsive interactions besides the spring
interactions present in the Rouse model or in which other
means have been introduced to avoid crossings of chains.59,60

In the present model this can only be achieved by adjusting the
frictions on the beads and the cores. Besides this, the finite
extensibility of the bridges between the cores will limit the
volume that the cores can explore. This is not the case with our
phantom bridges, since the Gaussian springs between the beads
can in principle be stretched beyond any limit, although with
increasingly lower probability. This can be prevented by using
finitely extensible bonds, but then the possibility to use large
time steps as described above will be lost.

3. MATERIALS AND METHODS
3.1. Synthesis and Characterization. The synthesis of the

precursor and the gel are described by Kamada et al.39 In this
reference, the authors synthesized and measured the sizes of stars
consisting of ca. 23 arms containing ca. 63 PnBA units each, attached
to a cross-linked EGDA core.
The present system was synthesized according to the same

procedure, except that as initiator we used methyl 2-bromopropionate
instead of ethyl 2-bromopropionate. The first step consists of
synthesizing an EGDA microgel, whose molecular mass was estimated
to be about 6600 g/mol, leading to a diameter of about 1.4 nm. This is
the “chemical core” to which the arms are attached in the second step.
Using light scattering experiments, the average molecular mass of the
stars was measured. We estimated that on average each star contained
13 arms of mass 16 662 g/mol each, equivalent to ca. 130 PnBA units.
This is the system that we refer to as the precursor. It is important to
realize that the “chemical core” referred to here is not the “core” that
we mentioned when describing the model (section 2.1.1). The latter
will be further discussed below in relation to the rheology of the
precursor and shown to have a diameter of about 6 nm (section 4.1)
Next, the system was cross-linked to form a gel by adding sticker

groups of DSDMA, to the end of each arm, and allowing the stickers
to equilibrate. In principle, each arm was provided with one group of
three stickers. As a result of simultaneous growth and gelation of the
system, the distribution of the stickers over the arms may not be very

sharp; there may be arms with more than three stickers and arms with
no stickers. More details are presented in the Supporting Information.

3.2. Molecular and Simulation Parameters. In order to
determine parameters in Hamiltonian eq 1, we have proceeded as
follows. First, the functionality f was put equal to its average value of
13. For the precursor, this is a harmless assumption, since the Rouse
dynamics of a star is to a very good approximation equal to that of f
individual arms attached to a fixed point. Besides this, we also removed
any polydispersity of the length of the arms. We will argue in section
4.1 that the dynamics of the precursor will be influenced by this
assumption only to a small degree, not affecting the study of the
network. With these assumptions, from the molecular weight per arm
Marm and the total mass density we obtained the number density of
stars ρ. Next we need a method to determine the Likos parameter σ in
eq 2. Since we are dealing with a polymer melt, we know that the
calculated number density applies to a system at a pressure of 1 atm.
Given that the Rouse arms do not contribute to the pressure, we
performed several simulations with the correct number density and
temperature and varied the value of σ until we obtained a pressure of 1
atm. This resulted in σ = 6.1 nm.

Although the above monodispersity assumptions have little or no
influence on the modeling of the precursor, they may have a larger
influence on describing the dynamics of the network. An appropriate
way to prepare networks would be to generate a precursor system by
sampling from some appropriate distribution of functionalities and arm
lengths, next allow for cross-linking as described below, and finally
average calculated shear relaxation moduli over many such boxes until
reasonable statistics would be obtained. As we will see below, it takes
at least ten runs per monodisperse system to obtain reasonable
statistics, which makes an ensemble average as just mentioned
computationally prohibitive. We therefore decided to stick to the
monodisperse system already used for the precursor. Moreover, we
assume that on average one sticker group per arm will be active.

We now turn to the parameters in the Rouse part of the potential.
The spring constant can be calculated when the Kuhn length is known.
We used a Kuhn length b of 4 nm as cited for poly nBA by Pahnke et
al.61 This yields a spring constant ks = 6.67 × 10−4 N m−1. The final
remaining unknown is the number of Kuhn segments, or beads, per
arm N. To obtain this number, we first estimate the average end-end
length Rarm of a polymer arm. Since the Likos potential is basically the
entropy loss of two stars when they overlap, it must have decayed to
zero when the distance between them is roughly twice the average
end-end length of an arm. By looking at the potential in Figure 2, we
see that above Rc = 3.5σ the potential has decayed to an insignificant
value, from which it follows that 3.5σ = 2Rarm = 2√Nb. This leads to
Rarm = 10.6 nm and N = 7. Rc = 3.5σ has been used as a cutoff radius
for the Likos potential.

Obviously, the procedure that we have applied to obtain Rarm and N
depends quite a bit on the chosen value of Rc. Reasonable choices of Rc
lead to numbers of beads per arm ranging from six to eight. Moreover,
we want to mention that a Kuhn length of 4 nm seems to be quite
large but that none of the qualitative results below will change if a
smaller Kuhn length is used. The only difference will be that the
agreement between experimental and simulated shear relaxation
moduli will be extended to somewhat smaller times.

All simulation parameters mentioned so far are given in Table 1,
together with two friction parameters appearing in the propagators.
The friction parameters have been adjusted to obtain the best possible
agreement between theoretical and experimental shear relaxation
moduli. One of them is ξc, the friction on the cores. Below it will turn
out to be equal to 7.6 × 10−3 kg/s. The other is ξ0, occurring in the
Rouse mode dynamics through w = ks/ξ0, which will turn out to be
9.45 × 10−8 kg/s. Various ways to define the mn will be discussed later.
From its molecular mass, we determine that the DSDMA sticker group
is approximately one-sixth of the mass of each Kuhn bead in the
arms.39 As mentioned before, when creating loops and bridges, we
lump together the two sticker groups that form the bond into one
bead, leading to chains of 2N + 1 beads, with the middle bead having a
friction equal to one-third of a normal bead at that position.
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Assuming that the cores should not move by more than one-
twentieth of the radius of the stars, we find that the time step dt should
at most be equal to (Rarm/20)

2ξc/kBT, which is equal to 0.5 s. This is
roughly confirmed from calculations of the mean-square displacements
shown in Figure 4, where it is seen that dt must be less than one-tenth
of a second to capture subdiffusive behavior.

3.3. Creation of Networks. Our main interest in this paper is the
relation between the degree of cross-linking in the network and its
rheological properties. To quantify cross-linking, we introduce a
parameter pext, defined as the number of stickers involved in external
bonds divided by the total number of stickers and next multiplied by
100. This is the same as the total number of external bonds divided by

the total number of possible bonds, also multiplied by 100. For short,
we will call it the percentage of external bonds. In a similar way we
define the percentage of loops and the percentage of dangling chains,
the latter being just the percentage of all stickers that are not involved
in any bond. Since the contribution of a loop to the shear relaxation
modulus is not very different from that of (two) dangling chains, at
least compared to the changes that will occur on creating bridges, from
now on we will not discriminate between the two and restrict ourselves
to systems that have prescribed values for pext. For stars with very long
arms this may not hold true anymore, but then also modeling the arms
by Rouse chains will become invalid.

In order to generate cross-linked networks, we attached an
additional eighth bead with one-sixth the friction of a regular bead
to the end of each arm of the precursor, the factor of one-sixth being
roughly estimated on the basis of the relative sizes of the sticker with
respect to the Kuhn length. Next the system was equilibrated in the
usual way. After this preliminary run, the sticking procedure was
started. To this end, we ran the system with a time step of 1 ms and
included a sticking step after every 100 steps. During the sticking step,
for every sticker, we scanned a spherical volume of one-tenth of a
Kuhn length and formed a bond to the nearest-neighbor in this
volume. The run was stopped as soon as a prescribed value for pext was
obtained. In our case, one-tenth of a Kuhn length corresponds to a few
angstroms. Moreover, the sticking probability in this case is rather
small, so the total runtime for creating a box lasted long enough for the
cores to diffuse over about one diameter.

In order to further reduce the statistical noise in our final results, ten
boxes were created for each value of pext, and the final shear relaxation
moduli were obtained by averaging over these ten boxes. Moreover, in
each case three runs were performed with time steps of 0.1, 1, and 10
ms in order to resolve all time scales from the smallest, allowed by the
coarseness of the model, to the longest, needed to reach the plateau
values of the shear relaxation moduli.

3.4. Methods. 3.4.1. Rheological Experiments. The linear
viscoelastic responses were probed by small-strain amplitude
oscillatory shear measurements with an ARES-2KFRTN1 strain-
controlled rheometer equipped with a force rebalance transducer (TA
Instruments, USA). The TTS principle was applied to build master
curves at the reference temperature of Tref = Tg + 44 °C for all the
samples, where Tg is the glass transition temperature of the sample
considered. The reference temperatures for the precursor and the
network were chosen in order to compare both sets of data at the same
distance from their respective Tg (please see Supporting Information).
For the precursor this amounts to Tref = −15 °C and for the network
to Tref = 0 °C. 8 mm Invar parallel plates with low expansion
coefficient were used and reproducibility of the measurements was
checked by going down in temperature by a step of 10 °C as a first
measurement and up to check the reproducibility of the data at 2 or 3
temperatures (see Supporting Information for details).

3.4.2. Simulation. Simulated stresses were obtained according to

∑ ∑σ = − −t
V

r t r t F t( )
1

( ( ) ( )) ( )xy
j i

ix jx ij y,
(18)

where Fij,y(t) is the y-component of the force exerted by particle j at
position rj⃗ on particle i at position ri⃗. By particle, we mean either core
or bead. The shear relaxation modulus G(t) was calculated according
to

σ σ= ⟨ ⟩G t
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k T
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Applying these equations to the Rouse model leads to the well-known
result
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where λk is the kth eigenvalue of the Rouse matrix. Here Ns stands for
the number of Kuhn segments being considered; for dangling arms
this is N and for bridges 2N + 1.

Table 1. System Parameters

parameter value

butyl acrylate Mw 128.17 g mol−1

DSDMA Mw 290.4 g mol−1

mass per arm Marm 16662 g mol−1

functionality f 13
Kuhn length b 4 nm
mass density ρmass 1.06 g cm−3

temperature precursor Tprec 258 K
temperature gel Tnetw 273 K
number density ρ 2.959 × 1024 m−3

number of particles Nt 300
box length Lbox 46.7 nm
Likos parameter σ 6.1 nm
cutoff radius Rc 21.2 nm
number of beads per arm N 7
spring coefficient kspring 6.67 × 10−4 N m−1

core friction ξc 7.60 × 10−3 kg s−1

reference bead friction ξ0 9.45 × 10−8 kg s−1

Figure 4. Mean-square displacements of the core for various time
steps. The dashed line, corresponding to a time step of 1 s, does not
reproduce the correct diffusive behavior, and thus is too large to obtain
reliable results. The maximum time step used in this study is 10 ms.

Figure 5. Schematic of two sticker groups binding. The central red
bead in the right part represents the merger of the groups to form one
bead of twice the mass.
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4. RESULTS

In Figure 6a, we present the storage and loss moduli G′(ω) and
G″(ω) obtained with the strain-controlled rheometer men-
tioned in section 3.3, both for the precursor and for the
network. Using the method of Schwarzl,62 we transformed
these data into “experimental” shear relaxation moduli shown in
Figure 6b. We refer the reader to the Supporting Information
for the raw data and some additional discussion concerning the
application of the TTS principle. At intermediate and lower
frequencies TTS becomes increasingly difficult, especially in
associating systems and may fail eventually.33

On the basis of extensive experience with similar systems, we
have concluded that the Schwarzl method62 is superior to the
other methods available. This is confirmed in a paper by Emri
et al.,63 who especially address this issue.
4.1. Rheology of the Precursor. We first discuss the

results for the precursor.
As already mentioned before, the motion of the cores is

much slower than that of the Rouse beads, so the early decay of
the shear relaxation modulus is totally determined by the Rouse
dynamics. Moreover, at early times, the contribution of the
core−core interactions to the shear relaxation modulus is
negligibly small compared to those of the Rouse modes. We

therefore neglect at this stage the contribution of the core−core
interactions to the stress and completely concentrate on the
Rouse dynamics. As we have already determined the bead
density, the plateau value of the Rouse contribution is fixed, and
we should only decide about the best possible friction model
and corresponding parameters. As a first try, we used a simple
isofrictional model. The best result was obtained using a
friction value of ξ = 1.89 × 10−6 kg s−1 (for all beads). The
corresponding shear relaxation modulus is shown in Figures 7a
and 7b as a red curve, together with the experimental curve. It is
clear that the agreement is reasonably good, but not perfect. In
particular, the slope of the theoretical curve is different from
that of the experimental curve.
In view of the polydispersity of the experimental system

(section 3.1 and Supporting Information), we tried to
ameliorate the quality of the Rouse model prediction by
including polydispersity. As already mentioned, we only needed
to calculate the contribution to the shear relaxation modulus of
individual arms of various lengths, average the result over a
reasonable distribution of arm lengths, and multiply by 13 (the
nominal number of arms per star). We used discrete Gaussian
distributions with given standard deviations. To be more
explicit, we calculated the Rouse prediction for arms attached to
a fixed point with the arm length running from 4 to 11 Kuhn

Figure 6. (a) Shear relaxation moduli obtained from experiment both for the precursor and for the cross-linked network. The terminal plateau at low
frequencies is an indication of gelation. Two different y-axes are used to clearly distinguish between the two sets of moduli. (b) The corresponding
G(t) for both the network and precursor. The time domain moduli are easier to work with for simulations.

Figure 7. (a) Effect of polydispersity on stress relaxation. Arms sampled from a Gaussian distribution with standard deviation 1 (dashed line) and
standard deviation 5 (dash-dotted line) relax later than the solid line. Also shown is the quadratic-out result (dots, same as dash dotted line in the
panel b. (b) Quadratic friction model with friction increasing quadratically toward the core (dashed line) or outward (dash-dotted line).
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beads, took relative weights for each arm length from a
Gaussian distribution with mean of 7 Kuhn beads and the given
standard deviation, and averaged over the chosen weights; this
result was finally multiplied by 13. The result is shown in Figure
7a for two values of the standard deviation. With all standard
deviations ≥5 we found the same result. It is seen from this plot
that including polydispersity does extend the relaxation to
somewhat larger time scales, for obvious reasons, but does not
change the slope of the curve (in a log−log representation). We
therefore decided to stick to monodisperse arm lengths and
focus on frictions in order to obtain a better model.
Since it is conceivable that frictions on different beads along

the arms may differ substantially, we investigated if better
agreement can be obtained using models with nonuniform
frictions. In order to clearly see the influence of the various
friction models, we decided to keep the total friction on each
arm constant, i.e. we chose all models such that ∑i=1

7 ξi =
13.23 × 10−6 kg s−1.
First, we applied a model with frictions increasing or

decreasing linearly with bead number. The model with frictions
increasing toward the free end slightly improved the results. We
next tried several other models and found good results with a
model in which the bead friction grows quadratically with the
bead number: ξi = ξ0 × i2. The only unknown, ξ0, follows from
the constraint of constant total friction introduced earlier; its
value is given in Table 1. The results are depicted in Figure 7b
along with those of a model for which ξi = ξ0′ × i−2 for
comparison. Clearly, the model with quadratically outward
growing frictions does a very good job, while the one with
quadratically inward growing frictions obviously does not
describe the data as well. Even though this result may be a bit
counterintuitive we continue with this friction model, leaving a
more detailed analysis with different models for future research.
Up to now, we have only been concerned with the Rouse

dynamics of the model that determines the early decay of the
shear relaxation modulus. We now add the contributions from
the core−core interactions and vary the value of the core
friction ξc to obtain the best agreement between theory and
experiment. The final result is presented in Figure 8, for which
ξc = 7.60 × 10−3 kg s−1. We notice that the agreement is good,
given the fact that apart from the two frictions, shifting the two
contributions along the horizontal axis, all parameters were

obtained from considerations totally independent of the
rheological data.
Whereas the agreement is good enough for our purposes

(given the simplicity of the model and the approximations
used), one might argue that the final shear relaxation modulus
appears to relax in a one-step, rather than a two-step process, as
also suggested by the experiment. In this context, we recall that
the Kuhn length of 4.0 nm, as inferred from data in the
literature seems to be quite large. However, if we consider a
model with a Kuhn length half of that, we end up with more
Kuhn beads (28). As a result, the shear relaxation function
starts at a larger value at time zero and extends slightly to
longer times. The latter can be made more pronounced by
using a polydisperse model which includes arm lengths up to 45
beads. This partially fills the gap between the time scales of the
Rouse modes and the core dynamics, thereby smoothing out
the two-step character mentioned above. Since our main goal is
to provide a sound distribution of stickers before starting the
relaxation process, we did not investigate these possibilities
further. This is worth investigating in the future.
Before finishing this section, let us discuss the meaning of

“core” a bit further. By “core” we do not just mean the chemical
unit that has been used to attach the arms to (see section 3.1).
After attaching the arms, the central region of the star will be
rather crowded. In a realistic model, based on Kuhn beads
including mutual repulsions, this means that it will be difficult
for two stars to approach each other closer than a certain
distance. This distance may be considered to be the core
diameter and has to be calculated. From the radial distribution
function in Figure 2 we find that no stars come closer than 0.5σ,
so we could define the diameter to be 0.5σ. This of course
seems like a gross underestimation. A better choice obviously is
to notice that according to Boltzmann statistics, stars will hardly
ever come closer to each other than distances for which the
mutual interaction energy is less than, let us say, 10kBT. This
leads to a diameter of about 1σ and a corresponding volume
fraction of about 0.39. Consequently, the cores still have plenty
of space to move. The same conclusion follows from the fact
that the value of the first peak of the scattering function
(structure factor), which is not shown, equals 1.33, well below
the value of 2.85 where according to the Hansen−Verlet rule64
the system crystallizes. The picture now is that of a collection of
cores in a sea of arms. The sea of arms in a real system is a
rather complicated, dense fluctuating liquid. It will cause a large,
probably distance dependent, friction on the cores, leading to
rather slow motions and corresponding stress relaxation of the
cores. The slowness of the cores is just a reflection of the
complicated motion of the arms that is not fully captured by the
Rouse model.
It may be useful to notice that although the contribution of

the core to the stress relaxation is the slowest in the system, its
stress value is the smallest, and hence its contribution to the
viscosity is rather modest. As a result, one may conclude that
the viscosity of the star systems is dominated by the lengths of
the arms, rather independent of the functionality. This result
has been confirmed for entangled stars with experiments and
tube model theory but only for functionalities not exceeding
32.65−67

4.2. Network. After having studied the precursor, we added
a sticker to the arms of the stars, making them telechelic, and
proceeded to generate a network.39 We measured the
rheological response of the resulting network with our strain-
controlled rheometer. The results are shown in Figure 6a. As

Figure 8. Best fit (dashed line) to the precursor experimental G(t)
(symbols). The contribution of the potential of mean force is shown
separately (dash-dotted line). In the simulation model the bead
friction increases quadratically along the arms of the star.
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with the precursor, we transformed the data into G(t) by means
of the method of Schwarzl.62 The resulting “experimental” G(t)
is shown in Figure 6b together with the one of the precursor.
The first thing to notice is that both curves agree at times below
about 10−5 s, after which they begin to differ substantially. For
times larger than 103 s the modulus of the network reaches a
plateau value, caused by the network structure.
Before continuing with a discussion of the rheological results,

let us quickly sketch how the motion of the cores is influenced
by the introduction of bridges. In Figure 9, we have plotted the

mean-square displacements of the cores in networks for various
values of pext. It is clearly seen that in the network the mean-
square displacements of the cores level off beyond times of
about 100 s, depending somewhat on the degree of cross-
linking. It is clearly seen that the cores explore a volume with a
diameter of about 1 or 2 times the radius of a star, even for
cross-link percentages of 60% to 80%. So, at lower cross-link
percentages, it may be expected that all cores, including those

in star clusters, have the freedom to move over about one
diameter.
It is not fully clear what causes the slowing down of the

network in the intermediate region, indicated by the difference
of the slopes of the two curves. One might argue that cross-
linking the stars has resulted in topologies of the arms in which
some of them are constrained to slide along others in order to
relax stresses whose removal requires larger displacements of
the beads then needed to relax short-range stresses. Another
point of view might be that there is a distribution of clusters (of
connected stars), each contributing with their own character-
istic relaxation times, which increase with increasing cluster
sizes.
An important aim of our simulations is to shed light on these

matters. Moreover, we wish to establish the degree of cross-
linking in the system.
In order to allow for reasonable statistics with the simulated

results, we prepared ten boxes of cross-linked systems for a
range of cross-link percentages pext. Since the bond energy of a
sulfur−sulfur bond68−70 is about 250 kJ mol−1/R ≈ 30 000 K,
where R is the gas constant, the lifetime of a bond is extremely
long, and fluctuations caused by association and dissociation
can safely be ignored. Since the network response spans several
decades in time, we ran each of these boxes for three different
timesteps of 0.1, 1, and 10 ms and then merged the resulting
shear relaxation moduli into one smooth curve. The results of
all these calculations are shown in Figure 10a, together with the
experimental curve. As is clear from this picture, the simulated
results meet the experimental data very well when a cross-
linking percentage of 25% is assumed. In Figure 10b, we
present the simulated G(t) again, but now together with G(t) ±
σst(t), where σst(t) is the standard deviation of the average
obtained with the ten simulation boxes. Comparing Figure 10a
with Figure 10b, it seems safe to say that the actual cross-link
percentage is 25 ± 10%.
There is a second way to estimate the actual pext. With

increasing cross-linking, the terminal plateau seems to converge
to a value of about 70 kPa for a fully cross-linked network
(confirmed by simulations with larger pext, not shown to save
the picture from becoming unreadable). This result is in

Figure 9. Mean-square displacement (MSD) of the cores with
increasing cross-link percentage. The MSD decreases with increasing
pext, showing that the cores find it increasingly difficult to move with
higher degrees of cross-linking. This slowing is due to the tethering
effect of the bridge chains between cores.

Figure 10. (a) Stress relaxation moduli for various cross-link percentages. The terminal plateau, which first appears at 15%, keeps increasing with
increasing degrees of cross-linking. The model with 25% of maximum cross-linking describes the experimental modulus best. (b) Stress relaxation
modulus for 25% of maximum cross-linking along with two curvesone standard deviation above (dashed line) and one below (dash-dotted line)
average. Each of the latter two is represented twiceonce for a run with a short time step and once for a run with a larger time step. Besides these, in
both figures the experimental curve is shown.
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agreement with an estimate suggested by van Ruymbeke et al.34

According to these authors, the maximum cross-link percentage
is given by νmax = ρmNAv/2Ma, where ρm is the mass density of
stars, NAv is the Avogadro number, and Ma = 16.6 kg/mol the
mass of one arm (including the sticker). With the Green−
Tobolsky relation Gmax = νmaxkBT one again obtains Gmax = 70
kPa. Now, with an experimental plateau value of about 14 kPa
and the proportionality of the plateau value to the cross-link
percentage, we conclude that the degree of cross-linking is
about 20%, in reasonable agreement with the previous estimate.
It is worth reflecting as to why the percentage of all possible

cross-links that finally materialize is so low. As is clear from the
binding energy of a disulfur bond, 30 000 K, this cannot be due
to reversible association and dissociation of the bonds. From
the description of the synthesis, however, it is clear that some
arms may have no sticker groups while others may have more
than one. Also, two out of three fingers at the end of an arm can
become inactive by intrasticker association. This will influence
the efficiency with which cross-links can be formed. Similarly,
during the cross-linking process sticker groups must diffuse
over substantial distances to find possible partners. This
becomes increasingly more difficult with increasing degree of
cross-linking already established, so stickers may finally get
kinetically trapped in regions with few or no free partners. This
also means that after annealing at elevated temperatures the
percentage of cross-linking may slightly have gone up. Note
that this is contrary to the effect of temperature with lower
association energies, when a reversible association dissociation
equilibrium is established.
We now turn our attention to the intermediate time scales

between 10−5 and 102 s. In order to obtain good agreement
between our simulated results and the experimental data at
times shorter than 10−5 s, we have multiplied all frictions by a
constant factor of 2.65, no other modifications being applied.
From this we draw two conclusions: First, the fact that the
friction of the beads in the network is much larger than those in
the precursor agrees with our earlier hypothesis that cross-
linking the system results in topologies with enhanced friction
when chains move in order to relax their stresses. This, of
course, is not reproduced by phantom chains and therefore had
to be introduced by hand. Second, the fact that no further
changes of relative frictions are needed confirms that the
remaining slowing down, indicated by the smaller frequency
slope of moduli for the network than for the precursor, is
indeed reproduced by our phantom chains. It must therefore be
a result of the distribution of cluster sizes occurring in the cross-
linked system, as suggested before.
Stresses in the network again consist of two components:

one due to entropic interactions between stars, described by the
potential of mean force, and the other due to Rouse springs.
The first contribution is small in magnitude but plays an
important role in keeping the stars apart, and its relaxation is
roughly identical to that of the precursor shown in Figure 8 for
all the different cross-link percentages. Only for cross-link
percentages of 60% or more the relaxation becomes slightly
slower than that of the precursor. Given their non-negligible
size, it may be a bit surprising that the Likos forces do not
contribute to the final plateau. The reason for this is that their
actual volume fraction is rather small. The connection to other
cores through rather flexible Rouse arms is also not very
restrictive topologically. Therefore, as we have seen above, the
cores have plenty of space to wiggle around, thereby reducing
their contribution to the stress correlation. Of course, since the

cores are now part of a physical network, they cannot diffuse
over all space anymore, but the remaining space is sufficient to
allow for core−core stress relaxation, without the need (or
possibility) to hop from one cage to another. These
considerations do not mean that the cores do not contribute
to the final plateau. Being part of the network, and as such
experiencing forces generated by the Rouse part of the
Hamiltonian, eq 7, the cores do contribute to the stresses
and stress relaxations of the network. This is the part that we
call “the Rouse part” of the stress relaxation.
The Rouse part, dominating in all cases and shown in Figure

11 for the largest time step of 10 ms, has some interesting

characteristics. For all cross-link percentages, there is an onset
of a second plateau at 0.3 s. For 5 and 10% pregel states, this
plateau eventually decays. The magnitude of the plateau
increases with cross-link percentages and eventually segues into
the terminal plateau when gelation occurs at about 15% in the
figure. For percentages higher than 30%, there is one single
plateau due to the whole system being interconnected.
We now analyze the onset of gelation as much as is allowed

by the statistics of our data. Increasing the cross-link percentage
starting with 5.5%, below which the terminal part of G(t)
decays exponentially to zero, G(t) develops a tail, which
roughly may be described by a power law G(t) ∝ t−α. In Figure
12a, we present these tails together with the suggested power
law descriptions for cross-link percentages ranging from 9% to
10.5%. At 11%, G(t), instead of decaying, enters a terminal
plateau region, described by α = 0. Beyond this point the
system finds itself in the gel state. For higher percentages, the
value of the terminal modulus increases as reported earlier. The
exponents of the power law, α, are plotted in Figure 12b.
Included in this figure is a fit of the data according to α(pext) =
A(pG − pext)

β, which yielded A = 0.5283, pG = 10.55%, and the
exponent β = 0.3895. We conclude that the gelation occurs at
about pG = 10.55%. It is tempting to call β a critical exponent
associated with the gel transition, even when this may not be
fully justified, since there is no variable in the system which is
thermodynamically conjugate to pext. Notice that the various
pext were obtained by just freezing them in.

Figure 11. Rouse contribution to stress relaxations for networks of
increasing degree of cross-linking. All curves enter a “Rouse” plateau at
about 0.3 s. With cross-link percentages of 15% and onward they
develop a second plateau, which increases and merges with the first
plateau with increasing cross-linking. G(t) for 10% of full cross-linking
clearly has a power law tail. Circles are obtained with runs of time step
0.1 ms and solid lines with a time step of 10 ms.
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It is clear that the onset of gelation may be attributed to the
appearance of a so-called “giant component”, which is one very
large cluster that connects or spans the whole system. In order
to explore this point, we made histograms of the distribution of
cluster sizes in the system.
Figure 13a shows the distributions of the cluster sizes, in

terms of the fraction of stars P(N) that find themselves in
clusters of size N (not the bead number here), which is
represented along the x-axis. First, consider the top panel of
Figure 13a which shows the cluster size distribution at 9% of
maximum cross-linking. Most stars in the system are
unconnected, represented by the bar at 1 on the extreme left.
The largest cluster at the extreme right has 24 stars. From the
figure we read P(24) = 0.16, from which we conclude that there
are 0.16 × 300/24 = 2 clusters of size 24. At 10%, shown in the
middle panel, the biggest cluster increases in size, to include 72
stars. The corresponding bar is the rightmost one, after the axis
break. From the figure we read P(72) = 0.24, so there is only
one largest cluster in this case, which takes about 25% of all
stars in the box. There is still a substantial fraction of
unconnected stars and clusters of varying sizes up to a

maximum of 25. However, with just a 1% increase of the cross-
link percentage, at 11%, the situation is quite different. From
the bottom panel of Figure 13a, we notice a substantial change
of the structural properties of the system. The rightmost bar is
now dominant and represents one giant cluster of 172 stars,
which is a little over 50% of the total number of stars in the
system. The proportion of unconnected stars has reduced a lot,
and the sizes of the small clusters now range only up to nine.
The big component has come to existence by eating the small
clusters. As the sticking percentage is increased, this cluster
continues to grow, as shown in Figure 13b, where the fraction
of stars in the largest cluster is plotted as a function of the
cross-link percentage. First of all, this analysis shows that
gelation is strongly related to the growth of the largest cluster in
the system, as expected. Second, the largest cluster does not yet
span the whole system at the cross-link percentage where
according to rheology gelation takes place. One procedure to
extract a pG from this data might be to draw the tangent line to
the curve at the inflection point and read the value of pext where
this line crosses unity. This procedure leads to a value of pG =
11−12%, in rough agreement with the rheology-based value.

Figure 12. (a) Appearance of a power law tail with G(t)’s for 9%, 10%, and 10.5% of maximum cross-linking; the dashed straight lines represent the
suggested power laws. (b) Power law exponents α of the terminal parts of G(t) as a function of percentage of maximum cross-linking (squares) and
fit revealing the gelation point at 10.55% of maximum cross-link percentage (solid line).

Figure 13. (a) Distribution of cluster sizes for 9%, 10%, and 11% of maximum cross-linking. The rightmost bar in the middle and bottom panes after
the x-axis break represents the size of the largest cluster. At 10% of maximum cross-linking about 25% of all stars in the sample are in this big cluster,
which number increases to 50% at 11% of maximum cross-linking. (b) Fraction of the largest cluster in the sample as a function of percentage of
maximum cross-linking. The tangent at the inflection point intersects the line y = 1 at 12.5% of maximum cross-linking.
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This analysis shows the connection between the statistics of
the clusters and the onset of the power law tail in the G(t). It is
clear from Figure 12a that at 10% of full cross-linking a power
law tail in G(t) has developed. At the same time, we see the
appearance of a large cluster represented by the rightmost bar
in the middle panel of Figure 13a. This was a feature that was
observed in all 10 simulation boxes. With increasing pext both
the size of the large cluster increases, and the power law decay
slows down. We checked that pG obtained with the structural
analysis is equal in boxes with 300 stars and boxes with 1000
stars.

5. SUMMARY AND CONCLUSIONS
In this paper, we have studied the rheological and gelation
properties of a star polymer melt consisting of telechelic stars
with 13 arms of seven Kuhn segments each, both using
experimental and simulation methods. First, we studied the
non-cross-linked precursor and next cross-linked networks of
various degrees of cross-linking. The agreement between theory
and experiment is very good. This allowed us to analyze the
origin of the gel transition in some detail, using our simulation
techniques.
As usual with soft matter systems, the information about

molecular properties of the various constituents of the system is
rather limited. For example, knowing the hydrodynamic radius
of the molecule is of little help when it comes to deciding about
the structure of the molecule in the melt. Here we decided to
use a thermodynamically consistent model in which the stars
are treated as point particles dressed with phantom, or Rouse
chains. Forces between the point particles are governed by the
potential of mean force, which we modeled with a function that
has extensively been used by Likos and co-workers. Adjusting
the only unknown parameter in this function until the pressure
of the system was equal to 1 atm, we managed to fully
determine the potential of mean force. Since only the Kuhn
length was known, but not the mass of the corresponding
segment, we estimated the length of the arms by simply
choosing a cutoff for the potential of mean force and equating
this to twice the length of an arm. The results in this paper
seem to fully justify this procedure. Even so, the suggested
procedure is not uniquely defined and in other cases may even
not be applicable at all. In those cases independent information,
like for example from SAXS or other scattering experiments will
be of great help.
The remaining parameters in the model are the friction

coefficients for the cores and for the Rouse beads. These were
adjusted to obtain agreement between theory and experiment
for the precursor system. In order to obtain good agreement, it
turned out to be necessary to assume that the frictions on the
beads depend on their position along the arms. It turned out
that a model in which the friction increases quadratically with
the bead number along the arm, starting with one for the bead
connected to the core, does a perfect job. We derived the exact
Rouse dynamics for cases with variable frictions in order to be
able to use large time steps needed to reach the extremely long
decay times of the shear relaxation moduli, also in the case of
cross-linked networks.
We created and simulated cross-linked networks with various

degrees of cross-linking. Without any further parameter
tweaking, i.e., just using the parameters obtained for the
precursor, we found that simulations with 25% of all the arms
involved in cross-links to other stars yield shear relaxation
moduli in very good agreement with the experimental results.

We analyzed the long time tails of the shear relaxation moduli
for systems approaching the gel transition and found algebraic
decays with exponents decaying to zero as also observed with
thermodynamic properties of systems near second-order phase
transitions. We confirmed that the gel transition is strongly
related to the growth of the largest cluster in the system.
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