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Abstract
This paper provides an epistemological and methodological
analysis of the practice of using neural language models to
simulate brain language processing. Firstly, neural language
models are introduced; a study case showing how neural lan-
guage models are being applied in cognitive neuroscience for
simulative purposes is then presented; after recalling the main
epistemological features of the simulative method in artificial
intelligence, it is finally examined how the simulative method
is modified when using neural language models. In particular,
it is argued that the epistemic opacity of neural language mod-
els requires that the brain itself be used to simulate the model
and to test hypotheses about the model, in what is called here
a co-simulation.
Keywords: Philosophy of cognitive science, epistemology of
computer simulations, neural language models, language pro-
cessing, deep learning.

Introduction
Roughly speaking, two main paths can be identified along
which the rise of artificial intelligence (AI) has unfolded
in the last ten years, driven by the new Artificial Neural
Networks (ANN) marked by Deep Learning (DL) (LeCun,
Bengio, & Hinton, 2015; Goodfellow, Bengio, & Courville,
2016). In the first five years, the most successful path was
vision, leading for the first time to artificial systems with a vi-
sual recognition ability similar to that of humans (Krizhevsky,
Sutskever, & Hinton, 2012; Simonyan & Zisserman, 2015;
Szegedy et al., 2015), arousing surprise and interest in the
science of vision (Gauthier & Tarr, 2016; VanRullen, 2017;
Grill-Spector, Weiner, Gomez, Stigliani, & Natu, 2018).

Five years later, it was the turn of language, a path opened
by the Transformer model (Vaswani et al., 2017), quickly
followed by various evolutions and variants (Devlin, Chang,
Lee, & Toutanova, 2019; Brown et al., 2020; Ouyang et al.,
2022; Touvron et al., 2023), generically called here Neu-
ral Language Models (NLMs). In this case too, the sud-
den and unexpected availability of artificial systems with
linguistic performances not so far from human ones has
deeply shaken the scientific community of language scholars
(Alishahi, Chrupałla, & Linzen, 2019; Baroni, 2019; Boleda,
2020; Green & Michel, 2022; Pavlick, 2023).

The unexpectedly exceptional performance of NLMs has
prompted a new line of research in cognitive neuroscience
which uses Transformer-based models to simulate brain ac-
tivities. More specifically, NLMs are used to predict cortex
activations while processing language (Caucheteux, Gram-
fort, & King, 2023; Caulfield, Johnson, Schamschula, & In-
guva, 2001; Kumar et al., 2023). Seemingly, this line of
research is in continuity with simulative AI, wherein com-
putational systems are developed to simulate human agents
involved in some cognitive task. Simulations here involve
predictions and explanations of human behaviours.

By contrast, this paper provides an epistemological analy-
sis of NLM applications to the study of brain language pro-
cessing to argue that significant methodological differences
arise with the simulative method as examined in the philoso-
phy of cognitive science. In traditional simulative AI, cogni-
tive hypotheses are tested by experimenting on the simulative
system, as long as one cannot directly experiment on the sim-
ulated system, or when the latter is epistemologically opaque.
However, NLMs are epistemically opaque as well, since one
does not know about the inner structure of the model ones it
is trained.

To examine how the simulative method is challenged in
NLM simulations, this paper initially introduces NLMs; it
shows how they are being used in cognitive neuroscience
for simulative purposes; then it recalls what the simulative
method in AI is; finally it analyses how the simulative method
is applied and modified in NLM simulations.

Neural Language Models
The conquest of natural language has been one of the most
difficult challenges for AI, and for a long time, artificial neu-
ral networks (ANN) have played a secondary role compared
to conventional Natural Language Processing. The initial at-
tempts in this direction (Rumelhart & McClelland, 1986; El-
man, 1990) had to confront an apparently irreconcilable gap
between the world of language and that of ANN. Language
presents itself as a sequence of symbols, directly assimilable
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in traditional computation, but antithetical to the vectors of
real numbers that ANN relies on. The succession of words
in the text creates a complex intertwining of semantic and
syntactic relationships, the latter well captured by conven-
tional algorithms like parsers, but alien to the static structure
of early ANN. A second difficulty that arises from the appli-
cation of ANNs to natural language processing is that repre-
senting words with neural vectors worsens when transitioning
from single-word morphology to syntax. Feedforward ANNs
are static, and establishing a sense of ordering for multiple
words in a sentence are far from straightforward. Moreover,
ANN performs at their best when learning in a supervised
manner, but in the case of language, there isn’t an immediate
partition between input and output, on which to conceive a
supervised task.

Fueling the confidence in those who, despite these neg-
ative premises, have persevered, is the fact that the sym-
bolic nature of language seems antithetical even to the neu-
rons of our brain, which apparently have solved these prob-
lems very well. This confidence was well placed, and fi-
nally crowned by the Transformer architecture (Vaswani et
al., 2017) combining several effective strategies to cope with
the symbolic nature of natural language. It adopts the word
embedding technique, which learns from examples the opti-
mal way to transform words into vectors of neural activity
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). The
numerical vectors can be manipulated with ordinary linear
algebra, yielding results that interestingly respect aspects of
lexical semantics. The relationship among words in a text is
captured by the attention mechanism, initially introduced by
Bahdanau, Cho, and Bengio (2016). The Transformer adopts
an elegant solution that allows one to bypass supervised learn-
ing and which was introduced by (Hinton & Zemel, 1994):
the concept of the autoencoder. The task assigned to the
ANN is simply to reproduce its own output. The architec-
ture that implements it is typically organized into two com-
ponents. The encoder is responsible for producing an internal
representation of the input, and the decoder reproduces the
output from this representation, which coincides with the in-
put.

The remarkable efficiency of the Transformer has led
to many variations, including ViT Vision Transformer
(Dosovitskiy et al., 2021) and BERT (Bidirectional Encoder
Representations from Transformers), where attention is ap-
plied to both the left and right side of the current word (Devlin
et al., 2019). The original Transformer was designed for
translation, so it includes an encoder for the input text and a
decoder for the text generated in a different language. A sim-
plification was later adopted by GPT (Generative Pre-trained
Transformer), which consists only of a decoder part, primar-
ily for generating text by completing a given prompt (Brown
et al., 2020). The autoencoding strategy during learning is the
task of just predicting the next token in a text. The popular
public interface ChatGPT is based on later models of the GPT
family (Ouyang et al., 2022).

The sudden and unexpected availability of artificial sys-
tems with linguistic performances not so far from human ones
offered by Transformer-based models has deeply shaken the
scientific community (Boleda, 2020; Green & Michel, 2022;
Søgaard, 2022; Perconti & Plebe, 2023; Pavlick, 2023). The
crucial philosophical issue has become that of providing ex-
planations for the kind of mind that emerges in NLMs and al-
lows its performance, its “alien intelligence” using the words
of Frank (2023). Explanations that are currently largely lack-
ing, although some initial attempts can be seen.

The almost total absence of explanations for the linguis-
tic abilities of the NLMs contrasts with the relative simplicity
of their computational architecture and their way of learn-
ing. Again, there is a vast technical literature that computa-
tionally illustrates the implementations of the various NLMs
(Tingiris, 2022; Rothman, 2022), but there is a huge gap from
here to identifying what in these implementations gives lan-
guage faculty. One of the best illustrative texts on Trans-
former architectures (Wolfram, 2023, p.71) underscores the
issue well: “It has to be emphasized again that there’s no ul-
timate theoretical reason why anything like this should work.
And in fact, as we’ll discuss, I think we have to view this as
a – potentially surprising – scientific discovery: that some-
how in a neural net like ChatGPT it’s possible to capture the
essence of what human brains manage to do in generating
language.”

Such an explanatory request concerns how the relatively
simple algorithmic components of the Transformer provide it
with the ability to express itself linguistically and to reason
at a level comparable to humans. It’s worth noting that while
linguistics has generated highly sophisticated and detailed de-
scriptions of language, how it is understood and generated by
the brain remains essentially a mystery, much like in NLMs.
At the same time, one of the ambitions of AI has been to
explain aspects of natural cognition by designing their equiv-
alents. However, the presupposition was that these artificial
equivalents would be understandable, which is not the case
with NLMs. Before examining how this challenges the tradi-
tional epistemology of AI, let us preliminarily see how NLMs
are being used in simulative studies of the brain.

Using NLMs to simulate the brain
There is a current line of research which investigates the
relationships between NLM structures and brain structures,
through Functional magnetic resonance imaging (fMRI),
when engaged in the same linguistic task. It is a surprising
inquiry, unexpected even for its own protagonists. Indeed,
apart from the generic inspiration from biological neurons for
artificial neurons, there is nothing specific in the Transformer
mechanisms that has been designed with the brain language
processing in mind. However, early results show surprising
correlations between activation patterns measured in the mod-
els and in the brain, and some analogies in the hierarchical
organizations in models and cortex.

Caucheteux et al. (2023) aim at explaining one main dif-
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ference occurring between NLMs and brain language pro-
cessing, namely that while NLMs are trained to guess the
most probable next word, the brain is able to predict sensi-
bly longer-range words.

Caucheteux et al. (2023), in collaboration with Meta AI,
did several experiments to examine correlations between
NLMs and brain activities using a collection of fMRI record-
ings of 304 subjects listening to short stories, and prompt-
ing the GPT-2 model with the same stories. Individuals were
tested using 27 stories between 7 and 56 minutes, on average
26 minutes for each subject, and a total of 4.6 brain recording
hours for the 304 subjects. The GPT-2 model involved a pre-
trained, 12 layer, Transformer, trained using the Narratives
dataset (Nastase et al., 2021).

The first experiment was turned to correlate activations in
the Transformer to fMRI brain activation signals for each
brain voxel and each individual. Correlations were quantified
in terms of a ‘brain score’, determined through a linear ridge
regression. In particular, GPT-2 activations linearly mapped
on such brain areas as the auditory cortex, the anterior tem-
poral area, and the superior temporal area.

In a second set of experiments, the authors evaluated
whether considering longer-range word predictions in the
Transformer produces higher brain scores. Longer-range pre-
dictions were obtained by concatenating the Transformer ac-
tivation for the current word with what the authors named a
‘forecast window’, that is, a set of w embedded future words,
where w is called the width of the window, and where each
word is parameterised by a number d, designating the dis-
tance of the word in the window with the current word. The
experiment yielded higher predictions scores, in this case
called ‘forecast score’ (on average +23%) for a range of up
to 10 words (w = 10), with a peak for a 8 word-range (d = 8).
Again, forecast score picks correlate model activations with
brain activation in cortex areas that are associated with lan-
guage processing.

In the third, most revealing, experiment, Caucheteux et al.
(2023) started by the consideration that the cortex is struc-
tured into anatomical hierarchies and asked whether different
layers in the cortex predict different forecast windows w. In
particular, they aimed at evaluating the hypothesis that the
prefrontal area is involved in longer-range word predictions
than temporal areas. Similarly, the authors considered the dif-
ferent Transformer layers and looked for correlations between
activations of the cortex layer and activations of GPT-2 lay-
ers. Subsequently, they computed, for each layer in each brain
voxel, the highest forecast score, that is, the highest predic-
tions from Transformer layer activations to brain activations.
The experiment results were in support of initial hypothesis.1.

As stated at the beginning of this section, the work of
Caucheteux et al. (2023) belongs to a whole line of research
looking for correlations between brain structures and NLM
structures. To quickly given another example, Kumar and

1For technical details the reader should refer to (Caucheteux et
al., 2023)

coworkers at the Princeton Neuroscience Institute (Kumar et
al., 2023) investigated possible correlations between the in-
dividual attention heads2 in the Transformer, and brain areas
when listening to stories. They used the simple model BERT,
with 12 layers and 12 attention heads, and applied Princi-
ple Component Analysis to the 144 model activations along
the story, correlating them with brain areas obtained through
fMRI.

What emerges from this line of research, is that Trans-
former based NLMs are used to model and predict activation
patterns in the brain, usually observed through fMRI, in or-
der to collect additional evidence on the brain areas involved
in specific linguistic tasks. Schematically, both systems, the
NLM and the brain, are given the same task, namely elaborat-
ing acoustic signals (the listened story) to process language
understanding. The artificial system is then used to predict
behaviours (brain activations) of the natural one. This method
can be preliminarily considered an instance of the simulative
method in AI, that we now turn to analyse.

The simulative method in cognitive science
The simulative method in science (Winsberg, 2010; Durán,
2018), consists in representing a target, natural, system by
a means of a mathematical model, usually a set of differen-
tial equations, implementing the model in a computational
model, typically a simulative program, and executing the lat-
ter to provide predictions of the target system behaviours.
One characterising feature of computer simulations in science
is that they are required to mimic the evolution of the target
system in order to provide faithful predictions.

In the realm of cognitive science, the simulative method
amounts to implementing an artificial system, either a robot
or a computer program, aimed at testing some given hy-
potheses on a natural cognitive system (Boden, 2008; Dat-
teri, 2017). That is, the main aim of simulations in cogni-
tive science is epistemological: their characterising feature is
that they are involved in advancing and testing cognitive hy-
potheses over the simulated system by building an artificial
system and experimenting on it. Experimental strategies are
thus performed on the artificial system in place of the natu-
ral one. Given a cognitive function, hypotheses usually con-
cern the mechanism implementing that function in the natural
cognitive system.3 The simulative or, as it is often called, the

2Embedded vectors in the Transformer are actually divided into
portions, called heads, and the attention mechanism is applied sep-
arately to each head, and only in the end are the various portions
re-joined. The idea is that an embedded vector combines different
properties of a word, and that certain categories–for example, the
tense of verbs or the gender and number of nouns and adjectives–
always occupy the same portions of the vector, and therefore it is
convenient to process separately the network of relationships be-
tween the separate characteristics of the various words in the text.

3By mechanism it is referred here to biological mechanism as
intended in (Machamer, Darden, & Craver, 2000), namely as a set
of “entities and activities organized such that they are productive of
regular changes from start or set-up to finish or termination condi-
tion” (p. 3). See (Piccinini & Craver, 2011) for how mechanisms of
this sort are able to implement cognitive functions.
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“synthetic” method in cognitive science develops an artificial
cognitive system implementing that mechanism for the given
function and compares the behaviours of artificial and nat-
ural systems. Hypothesised mechanisms play the epistemic
role of program specifications for artificial computational sys-
tems.4 In case the displayed function of the simulative system
matches with the behaviours of the simulated system, the ini-
tial hypothesis concerning how the function under interest is
realised in terms of the implemented mechanisms is corrob-
orated. Once corroboration is achieved, simulations on the
artificial system are used to predict, and explain, the future
behaviours of the natural system. Additionally, new mech-
anisms identified in the artificial system for some displayed
function are used as hypotheses for explaining similar be-
haviours in the natural system.

The synthetic method in cognitive science finds in the In-
formation Processing Psychology (IPP) of Newell and Simon
(1972) one important pioneering application. In the approach
of Newell and Symon, a human agent is given a problem solv-
ing task, typically a logic exercise or the choice of moves in a
chess game, asking him to think aloud, thus obtaining a verbal
account of her mental processes while carrying out the task.
Verbal reports are analyzed in order to identify the solution
strategies adopted by the agent and the specific operations
performed while carrying out the task. The analysed verbal
reports are then used to develop a program that simulates the
behaviour of the human agent. Subsequently, new problem
solving tasks are given to both the program and the human
agent, and verbal reports of the latter are compared with the
execution traces of the simulative program to ascertain that
the two systems use the same solution strategies. Finally, the
program execution traces for new tasks are used for predict-
ing the strategies and mental operations that the human agent
performs when given the same tasks.

In the IPP approach, human agents’ verbal reports are used
to hypothesise the mechanism used by the agents to profitably
solve the administered cognitive task. The solution strategies
hypothesised by Newell and Symon typically consisted in re-
search mechanisms in decision trees. Research mechanisms
of this sort are used as program specifications to develop com-
puter programs, using such programming languages as Infor-
mation Processing Language and List Processor (LISP), be-
ing able to realise those solution strategies. The Logic Theo-
ries and the General Problem Solver are well-known exam-
ples of such programs. Computer programs are then used
to test the initial hypothesis, namely the solution strategy
advanced on the basis of the verbal reports. The hypothe-
sis is tested by administering new cognitive task to the pro-
gram, such as proving logic theorems from Russel and White-
head’s Principia Mathematica. In case the solution strategies
adopted by the simulative programs are the same used by the
tested human agent, the initial hypothesis is considered as

4Program specifications in computer science express the be-
havioural properties that the system to be developed must realise
(Turner, 2011), and their formulation is the first step of most soft-
ware development methods.

corroborated.
The synthetic method has been also, and more recently ap-

plied, to biorobotics. For instance, Datteri and Tamburrini
(2007) argue that the syntactic method in simulative AI is the
method applied, among others, to the robotic simulation of
chemiotaxis in lobsters (Grasso, Consi, Mountain, & Atema,
2000).5 Grasso et al. (2000) hypothesise the biological mech-
anism implementing lobster chemiotaxis, namely the ability
to trace back the source of food, leaving chemical traces in the
sea, through chemical receptors put on the two antennae. The
very simple advanced mechanism is that the receptor stimu-
lation activates, in a proportional manner, the motor organs
of the side opposite to that of the antenna. In other words,
the stimulation of receptors of the right antenna activates the
left motor organs and the stimulation of receptors of the left
antenna activates the right motor organs. The higher the re-
ceptor stimulus, the higher the motor organ activation. This
simple mechanism would, according to Grasso et al. (2000),
allow lobsters to constantly steer towards the food source fol-
lowing the chemical trail.

Such a hypothesis is tested by building a small robot lob-
ster, named RoboLobster, provided with two chemical recep-
tors, put on the left and right side, and wheels in place of
legs. RoboLobster implements the hypothesised mechanism:
the left artificial receptor causes, upon stimulation, a directly
proportional activation of the right wheel, the right receptor
activates the left wheel. RoboLobster was tested in an aquar-
ium containing a pipe releasing a chemical trail. However, the
robot was able to trace back the pipe only when put within a
60 cm distance from the pipe; while when put 100 cm away
from the chemical source the robot was unable to locate the
pipe. The synthetic experiments led the author to falsify and
reject the hypothesis.

Datteri and Tamburrini (2007) are very careful to notice
that when the initial hypothesis gets falsified while testing the
artificial system, researchers still use the simulation to under-
stand why the hypothesis was falsified and whether the prob-
lem was the hypothesis itself or rather other side phenom-
ena. In other words, they look for an explanation concerning
why the supposed mechanism is not able to implement the
interested cognitive function. Researchers usually evaluate
whether the developed artificial system is a faithful imple-
mentation of the hypothesised mechanism. Another source
of mistake may be that the mechanism implemented by the
developed system is not a faithful description of the biologi-
cal mechanism.6

5Other biorobotic applications of the synthetic method can be
found in the simulation of phonotaxis in crickets (Webb, 2002), ants
homing (Lambrinos, Möller, Labhart, Pfeifer, & Wehner, 2000), or
rats navigation (Burgess, Donnett, Jeffery, & O-keefe, 1997).

6In the context of the epistemology of computer simulations in
science, the two problems are known as the verification and vali-
dation problem for simulative models. Verification is about ascer-
taining that the simulative system is a correct implementation of the
simulative model; validation is about evaluating whether, and the
extent to which, the simulative model is a faithful representation of
the target simulated system.
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Grasso et al. (2000) suppose that RoboLobster was unable
to trace the chemical source because of a wrong distance be-
tween the two receptors or of the initial orientation of the
robot in the aquarium. However, even modifying the receptor
distance and the robot orientation, RoboLobster is still un-
able to find the pipe when put 100 cm away from it. The au-
thors conclusion is that RoboLobster fails since from a certain
distance the chemical trail is scattered and is not informative
enough for the robot about the direction to take.

In this third case, the artificial system is used to discover
new hypothesis about the natural cognitive system and its en-
vironment. It is indeed hypothesised that chemical trails are
informative with respect to the food location for real lobsters
only at a certain distance, the reason being that lobster recep-
tors at a certain distance are not able to detect a difference in
chemical concentrations.

To sum up, the synthetic method in cognitive science is a
simulative approach applied in all those cases in which test-
ing a cognitive hypothesis directly on the natural system is
not feasible. An artificial system is built, in the form of a
computer program or robot, and the hypothesis is tested on
the artificial system instead. This is done by implementing
the hypothesis, in the form of a mechanism for the given cog-
nitive function, in the artificial system and comparing the be-
haviours of the simulative system with those of the simulated
one. In case the artificial system performs the same cognitive
function of the natural simulated system, the initial hypoth-
esis is corroborated, otherwise the hypothesis is falsified. In
both cases, artificial system can be used to advance new hy-
pothesis about the behaviours of artificial and natural systems
which are tested again on the artificial one.

Co-simulations of neural activations using
NLMs

Even though NLMs have been developed with engineering
purposes only, namely for developing language processing
systems, the early work of Caucheteux et al. (2023) and of
Kumar et al. (2023) show how they are being fruitfully ap-
plied to simulative AI as well.7 However, the way NLMs
are used to predict and explain brain activations in the cortex
puts significant methodological challenges for the synthetic
method in simulative AI.

One first main difference between the simulative method
in AI and the application of NLMs in neuroscience is that
NLMs are not developed so as to implement mechanisms cor-
responding to hypotheses about linguistic functions of the
brain. The aim of NLMs is not that of corroborating any
such hypotheses, as it happens with the simulative method in
traditional AI. From an epistemological and methodological
point of view, NLMs seems not to be simulative models. And
nonetheless, NLMs are used to simulate the brain, that is, to

7It should be indeed recalled that AI has been historically char-
acterised by two main research traditions, an engineering one, con-
cerning the development of artificial system showing intelligent be-
haviour, and a simulative one, using artificial intelligent systems to
study natural cognitive systems.

obtain predictions of cortex activations. It is astonishing how,
as the work of Caucheteux et al. (2023) shows, even though
NLMs were developed without considering structural proper-
ties of the cortex, once trained they bear structural similarities
with language processing areas of brain. An astonishment
one also feels while considering deep neural models involved
in vision.8

In the synthetic method, hypothesised mechanisms are
used as specifications to develop simulative systems and, as
stated above, it is required that simulative programs or robots
be correct implementations of those mechanisms. As it is
in software development, the specification set determines a
blueprint of the system to be developed and both correct and
incorrect behaviours of the implemented system are defined
and evaluated by looking at the specifications (Turner, 2018).
In the case of a correctly implemented system, the specifi-
cation set provides a means to represent and explain the be-
haviours of the systems (Angius & Tamburrini, 2017). The
opportunity to understand and explain machine behaviours
allows scientists to use computational systems for simulat-
ing natural systems which, by contrast, are not known and
explained.

ANNs in general, and DL models in particular, do not fall
under this epistemological framework. DL systems are not
developed so as to comply with a set of specifications, that
is, functions are not declared and then implemented in a DL
network, as it is for traditional software. Functions do not de-
pend only from the network architectural choices, but they
rather emerge from the model during training and depend
much more on the training dataset (Angius & Plebe, 2023).
Again NLMs are not developed as implementing neurological
mechanisms one supposes realise linguistic functions. The
absence of a specification set for NLMs is at the basis of the
known epistemic opacity of those models: except from some
architectural choices (i.e. kind of DL models or the num-
ber of models) and hyper-parameters (such as the number of
neuron layers or the size of the layers) one is unaware of the
inner structure of a trained model. In particular, one cannot
come to know how the model parameters are updated at each
backpropagation of the network.

In the synthetic method, simulative systems are used as
some sort of proxy for the simulated cognitive system: since
one cannot directly experiment on the cognitive system,as
long as it is opaque to the scientist, an artificial system is
built and hypotheses are evaluated over it. In the case of
Newell and Symon’s IPP, since one does not know whether
the hypothesised solution strategies for a given task are the
ones actually implemented in the brain, the identified research
mechanisms for decision trees are implemented in a computer

8The neuroscience of vision is another field wherein neural ar-
chitecture keeps some feature of the natural system, and impor-
tant similarities have been found between deep learning models and
the visual cortex (Güçlü & van Gerven, 2015; Khaligh-Razavi &
Kriegeskorte, 2014). Deep learning models have been even found
to reproduce structural hallmarks of the visual face network in the
inferior temporal cortex (Lee et al., 2020).
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program that is then used to test the hypothesised solution
strategy.

The second main epistemological difference of simulations
using NLMs is that that they are opaque systems as well and
cannot play the epistemic role of proxies for the simulated
systems. As what concerns the language function, one is
in the difficult situations in which both the natural and the
AI system need to be explained. Our knowledge about how
the brain processes language is limited in the same way as it
is our knowledge about why NLMs show linguistic abilities
close to those of humans. Such an explanatory gap has been
recognized and theorised in one of the most recent technical
introduction to NLMs, namely (Wolfram, 2023).

What the work of Caucheteux et al. (2023) shows is that,
in front of two opaque systems, they are used to understand
each other. As already noted, the simulation starts with no
initial hypothesis, being the NLM developed independently
from any previous study of the brain language processing.
Subsequently, and in accordance with the standard synthetic
method, both the natural cognitive systems (the 304 tested
subjects) and the NLM (GPT-2) are given the same task,
namely listening (and processing) 27 short stories, and it is
evaluated whether behaviours of the artificial system cope
with behaviours of the natural system. In this case, it is tested
whether activations in the Transformer can be correlated with
fMRI brain activation signals.

Once obtained a positive answer, new experiments are per-
formed to test whether considering longer-range word predic-
tions would decrease the correlation score. One should notice
that a hypothesis in involved here, namely that the Trans-
former differs from the brain while processing language in
that the former is ably to predict only short-range words, typ-
ically the next word in a context. However, the hypothesis
does not concern the simulated system but the simulating one!
The outcome of the experiment is that the Transformer corre-
lates to the brain more than expected, viz. while predicting to
up-to-10-range words.

The third experiment is devoted to understand why this is
the case, that is, why the initial hypothesis was partly fal-
sified. Notice that this is what happens with the synthetic
method too: in case the initial hypothesis gets falsified, fur-
ther experiments on the simulative system are carried out to
understand why this happened. In the case of RoboLobster,
once the initial hypothesis concerning the mechanism allow-
ing chemiotaxis was falsified, researches supposed that the
inability of the robot to trace back the chemical source, when
put on a 100 cm distance, was due to the distance between the
two receptors or to the initial orientation of the robot, rather
than to the falsity of the hypothesis per se. The robot was
tested at different orientations in the aquarium and changing
the distance between antennae: experiments were still carried
over the artificial system.

Getting back to the GPT-2 experiment, Caucheteux et al.
(2023) try to evaluate whether the fact that the artificial sys-
tem and the natural one are both able to predict long-range

words can be related to structural similarities between the
cortex and the Transformer. This is achieved by considering
the cortex as a model of the Transformer! In particular, it is
hypothesised that the hierarchical organization of the cortex
resembles, both structurally and functionally, the hierarchical
organization of the Transformer. The hypothesis is tested by
administering again the same task to both systems and com-
puting the forecast score, obtaining positive evidence.

When NLMs are used for simulation purposes, one is deal-
ing with a system which is at least as opaque as the natural
system about which she would like to acquire knowledge. In
the work of Caucheteux et al. (2023) the problem is tackled by
modifying the simulative approach in such a way that the two
opaque systems are used to simulate each other, and thus to
acquire knowledge about both in the form of corroborated, or
falsified, hypotheses. In what can be called a co-simulation,
the NLM is initially used to simulate the brain by looking for
correlations while involved in the same task. In this case, hy-
potheses to be tested relates to the brain (its ability to predict
longer-range words) and correlations are Transformer predic-
tions of brain activations. In case one needs additional infor-
mation concerning why a certain hypothesis was corroborated
or falsified, the natural system is used to simulate the artificial
one. Hypotheses now concern the Transformer (its hierarchi-
cal organization) and simulations involve brain predictions of
Transformer activations.

Conclusions

Current trends of DL applications involve simulative contexts
wherein there is the implicit emergence, inside a model ex-
posed to data of a natural system, of structures that bear some
correspondences with structural features of that system. An
example is the convolutional DL model used by Monk (2018)
to simulate parton shower, where each level of decomposi-
tion within the model corresponds to a different angular scale
for emissions. And in the neural model by Choudhary et al.
(2020), simulating the Hénon-Heiles potential, the internal
autoencoder layer with four neurons encodes the four dimen-
sions of the Hénon-Heiles system.

This paper examined another crucial field wherein DL sim-
ulations are being applied, namely cognitive neuroscience.
NLMs, initially engineered to automatise language transla-
tion and generation, are now applied to the simulative inves-
tigations of brain language processing. Whereas using artifi-
cial computational systems to simulate natural ones is a well-
affirmed practice in AI, this paper showed how the applica-
tions of NLNs in brain simulations involves significant episte-
mological and methodological modifications of the synthetic
method in cognitive science. The epistemic opacity of NLMs
implies that, while they are used to simulate the brain, knowl-
edge is attained about the model as well. This is achieved by
a co-simulation wherein the brain is used as a model of the
NLM, providing predictions of the Transformer behaviours,
and corroborating hypotheses about the latter.
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