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Abstract of the Dissertation 

 

Optimization of Spark-Plasma Sintering Efficiency:  
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The efficiency of Spark Plasma Sintering (SPS) is optimized by means of a 

temperature-based procedure. The correlations between temperature, porous material structure 

and tooling geometry are explored. The issue of agglomeration, cause of the formation of 

hierarchical porous structures in the powder compact, is addressed with an analytical and 

numerical approach. Densification kinetics, sintering stress, bulk and shear moduli of 

agglomerated compacts are modeled as functions of the hierarchy characterizing the porosity 

and the nonlinear viscous rheology of the material. The material nonlinearity is expressed by 



xxi 

the strain-rate sensitivity parameter, which in turn is dependent on temperature. An 

empirically-based explicit formulation of strain-rate sensitivity as a function of temperature is 

provided. A subsequent tuning of the strain-rate sensitivity allows the optimization of the 

thermal regime in order to obtain in situ de-agglomeration of the SPS specimen or the 

production of tailored material structures. In order to guarantee that the optimized thermal 

conditions are experienced by the entire specimen, we study the geometry of the SPS tooling 

setup. The tooling influence on temperature distributions is assessed in both the radial and the 

axial directions by means of a combined experimental and finite-element study. The 

phenomena underlying the presence of thermal gradients are individuated and controlled by 

tailoring the design of the tooling setup. Novel geometries are proposed for the components of 

the tooling, capable to annihilate the temperature disparities and thus complete the 

optimization of the SPS procedure. A comprehensive finite-element framework, in which both 

agglomerated powder compacts and tooling setup can be reconstructed and improved, is 

therefore developed.  
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Chapter 1 

Introduction:  

Uniformity of Materials Consolidated by Spark Plasma Sintering 

 

Spark Plasma Sintering (SPS), also known as a low-voltage mode of Field-Assisted 

Sintering Techniques (FAST), is a powder consolidation technology that has been gaining 

growing attention in the last decades. Its distinguishing capabilities of densifying particulate 

materials within minutes instead of hours and with enhanced final chemical and mechanical 

properties are among the reasons lying behind such interest. The distinctions with respect to 

conventional sintering technologies do not consist solely in the application of an electric field, 

whose effects are still under controversial investigation and vary widely with the type of 

material considered, but extend to high heating rates and a consequent rapid volumetric 

heating of the entire powder specimen.
1–16

 The specifications of a typical spark plasma 

sintering apparatus consist of low voltages (5-10 V) and high current (1-10kA), accompanied 

by heating rates up to 1000 °C/min and maximum attainable temperatures around 2400 °C 

(depending on the tooling material). The applicable loads range between 50 and 250 kN, again 

depending on the material of the tooling employed. Because of this combination of features 

SPS has been successfully employed to process a variety of different advanced materials, such 

as refractory metals and intermetallics, ultra-high temperature ceramics (UHTC), transparent 

polycrystalline ceramics, nano-structured materials, functionally graded materials (FGM), 

non-equilibrium materials, ceramic matrix composites, and many more.
17

  

Even though largely applied in a variety of contexts, SPS still lacks deep 

understanding of these phenomena that render it so successful, and investigations on how to 

improve the procedure are needed. In the attempt of clarifying the role played by electric 
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fields in SPS, a new field-assisted sintering technique, flash sintering, was developed by Raj 

and coworkers.
18–22

 Here, by applying higher voltages to non-conducting ceramics without the 

aid of an external tooling, densification can be attained in a few seconds timeframe, thanks to 

thermal runaway phenomena, and possibly to the role played by atomistic defects. A 

significant amount of work has been conducted on the individuation of the onset of the flash 

phenomenon by Luo et al., Pereira da Silva et al., Chen et al., and Todd et al., but the 

mechanisms leading to densification in such reduced timeframes are still unclear.
23–30

 A hybrid 

between flash sintering and spark plasma sintering can be individuated in the high voltage 

electric discharge compaction (HVEDC), in which a specimen is inserted in an insulating die 

before applying high voltages (several kV) and pressures (greater than 100 MPa), leading to 

densification in a milliseconds timeframe.
31, 32

 In the area of FAST we can also consider 

microwave sintering, which enables a rapid volumetric heating and can be applicable to both 

ceramics and metals. Consolidation can be attained in timeframes that are somewhat in 

between conventional sintering and SPS.
33,  34

 All these field-assisted sintering techniques 

other than SPS involve, nevertheless, additional complex phenomena that go beyond the 

purposes of the present work. We will thus focus our attention on spark plasma sintering, 

better understood and widely employed in the materials processing community.     

When studying spark plasma sintering optimization possibilities, several aspects can 

be considered, because of the "multi-physical" nature of the process itself, involving electric 

currents, heat transfer, solid and sometimes liquid mechanics, chemical reactions, phase 

transformations, and many more. The present work focuses on temperature-based optimization 

opportunities. The temperature parameter is already extremely wide in definition and 

implications. Both its temporal evolution and spatial distribution play a fundamental role 

during any SPS process. Additionally, its series of effects on the material system properties 

cannot be neglected. The analysis of temperature in SPS therefore needs to be initially 
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conducted from a basic point of view, in which temperature is considered as a major 

controlling parameter, and subsequently integrated into the complexity of the global SPS 

framework.  

We can distinguish between temperature evolution in time, which is the sintering 

regime applied to the material that we aim at densifying, and its distribution in space, that can 

consider the only specimen or the entire SPS tooling setup employed in experimental 

procedures. The former allows the powder to undergo sintering, but also has substantial effects 

on the porous material structure. The latter controls the homogeneity of the final densified 

specimen, affects the overall tooling integrity and the procedure's safety, and can be controlled 

by means of the tooling geometry itself. 

A temperature-based optimization procedure of SPS can, thus, proceed on two 

different levels, that also correspond to two different scales: material structure, which looks at 

the local morphology of the powder compact, and tooling design, which considers the entire 

SPS setup containing the specimen. We will first consider the former, and subsequently move 

to a larger scale and analyze the inter-relations between thermal distributions and tooling 

setup. 

 

1.1 Material structure topology during spark plasma sintering 

 

The material structure of a particulate medium can assume different meanings, and 

therefore the related studies on the optimization of SPS and other sintering techniques concern 

a variety of methodologies. In particular in the case of SPS, the high heating rates and the 

consequent fast processing time allow the development of strategies to address the issues of 

porosity non-uniformities in a particularly efficient way. This step is also specifically critical 

in SPS because of the recent shift of interest towards the consolidation of nanopowders.
10, 35–43
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These kinds of particulate materials are extremely interesting for their high sinterability, which 

allows them to reach high final density values with excellent microstructural properties. 

Nanosized powers have led to the successful production of multi-functional ceramics, 

combining ultra-strength, hardness, translucency, transparency, or light-emission properties. In 

the field of multi-functional transparent and light-emitting nanoceramics, great progress has 

been attained lately by Garay et al.
44–53

 At the same time, nanopowders are very prone to the 

formation of hierarchical porous structures. Being spark plasma sintering claimed to guarantee 

the best outcomes in terms of nanopowders densification, the optimization of the porous 

material structure during this type of processing technique acquires a fundamental role for its 

successful application.  

A first definition of porous material structure associates the hierarchical porous 

structure concept with bimodal or multimodal particle size distributions. The utilization of 

powder systems constituted by non-uniform powder particle sizes has been suggested since 

the early stages of conventional sintering in order to allow faster and more efficient 

densification. Studies similar to what conducted here, namely analyzing the densification 

kinetics of inhomogeneous powder mixtures, were conducted by Li et al.
54

 and German et 

al.,
55

 who both developed models for the consolidation of bimodal sized particle systems. The 

former considered hot isostatic pressing (HIP) of superalloys and, by assuming forces 

variation at the inter-particle contacts and considering the local deformations at such contacts, 

individuated densification rates for monomodal or bimodal particle systems. German et al. 

pointed out the significant improvements that bimodal powder systems allow in the green 

density of the specimens and developed expressions for the sintering kinetics of both sizes in 

order to allow predictions of the overall final density. This allowed the definition of 

optimization procedures for the particle size distributions, which were subsequently applied to 

experimental data on metals and ceramics. Even though such results were concerning 
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conventional sintering instead of SPS, they provided first attempts to optimize the powder 

consolidation regime by looking at the specimen’s porous structure, and assessed the 

importance of the distributions of pore and particle sizes when aiming at obtaining uniform 

densification. 

The same type of bimodal material structure was addressed my means of computer 

simulations, initially by Pan et al.
56

 for spherical particles, and later by Cheng et al.
57

 for 

cylindrical particles. Both determined shrinkage rates by considering the combined effect of 

grain boundary diffusion and surface diffusion and proposed optimization strategies. Recent 

works addressed the same problem with DEM techniques,
58

 revealing that this type of 

bimodality affects all the stages of compaction in both metallic and ceramic particulates, and 

experimentally,
59

 for tungsten, finally considering SPS instead of conventional sintering.  

The study of multimodal powder sizes leads to the analysis of particle rearrangement 

during sintering. The analytical investigation of the role played by the disposition of particles 

in the powder compact was initiated by Petzow et al.,
60

 who evidenced the importance of 

uniform arrangements to prevent localized stresses. Powder particle rearrangement has been 

frequently addressed by means of numerical simulations and discrete element methods. Leu et 

al. conducted a broad study of topological effects during sintering, 
61

 individuating a univocal 

averaged densification rate for inhomogeneous material structures in both elastic and creep 

regimes. Kim et al. considered cold compaction,
62

 while DEM were utilized by Martin et al., 

still for cold compaction,
63

 and Henrich et al. for conventional sintering with a variety of 

loading conditions.
64

 Both these last two analyses revealed the importance of material 

structure evolution and particle rearrangement, both in the pre-SPS cold compaction stage and 

in the sintering process itself, for the macroscopic properties of a porous medium. 

The same denomination of multimodal material structures has been applied to 

composites too, whose behavior has been studied analytically, from a continuum perspective 
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for both hot isostatic pressing and spark plasma sintering,
65, 66

 and with combined 

experimental and numerical approaches for materials that have well-assessed characteristics 

when considered separately, such as copper and alumina.
67

  

A few more peculiar cases involved unconventional material structures in terms of 

powder particles shapes, such as compaction of hollow spheres.
68

 

Non-uniform material structures definitions that are closer to the ones that we will 

consider in the present work consist in inhomogeneous pores distributions. A comprehensive 

analytical model of the behavior of such a porous medium was proposed by Skorokhod et 

al.,
69

 who applied a continuum approach to a domain characterized by different values of 

porosity fraction in separate zones. The pores size was instead uniform.  

In spite of the classifications listed above, the inhomogeneous material structure that 

is the most typical and critical in sintering and especially SPS processes is agglomeration. 

Agglomeration phenomena and the consequent bimodal porous structures were first addressed 

by Rhodes and Lange,
70, 71

 and such topics are currently becoming progressively more 

relevant. The reason why this phenomenon has become progressively more significant is the 

above-mentioned widespread utilization of nanopowders, for whose consolidation spark 

plasma sintering is particularly suitable. Since these extremely fine powders are rapidly 

monopolizing the SPS applications field, and because of their very high tendency to 

agglomerate, the issue of hierarchical porous structures due to agglomeration has become of 

central importance in the analysis and optimization of SPS efficiency.  

Powder agglomeration is the consequence of weak interactions among particles before 

compaction, leading to the formation of hierarchical porous structures. The hierarchy consists 

in the presence of multiple porosity sizes, typically small pores inside the agglomerates and 

larger ones among them (bimodal). Namely, weak forces, such as Van deer Waals phenomena, 

tend to form agglomerates inside the loose powder, areas in which the particles are kept at 
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close distances, while large inter-agglomerate pores are left in the adjacent zones.  Such 

hierarchical porous structures significantly hamper densification. The small size intra-

agglomerate pores tend to sinter faster, so that the agglomerated areas become fully dense 

while large inter-agglomerate pores are still undergoing consolidation. Once the agglomerates 

have reached full density, large pores become difficult to eliminate, while in the dense areas 

grain growth starts happening. Thus, hierarchical porous structures lead to non-negligible 

amounts of residual voids and inhomogenous microstructure of the final product.
72–75

  

The agglomeration problem has been experimentally detected in any type of material. 

Empirical strategies to prevent or solve the issue have been attempted.
76,  77

 In certain cases the 

addition of opportune agents prevents the formation of porosity hierarchies.
78, 79

 It has been 

shown that agglomeration also serves as obstacle in the production of transparent materials, 

such as YAG systems,
80

 and a solution was found in the utilization of lyophilized YAG gels. 

Other approaches consisted in applying suitable pre-sintering powder treatments, typically 

milling and annealing.
81, 82

 

We have mentioned that the risk of formation of hierarchical porous structures 

increases when dealing with nanosized powders, which present new challenges in terms of 

agglomeration prevention and elimination. Complex mechanochemical processing is 

necessary to prevent it and a careful optimization of the milling and chemical agents addition 

route is required.
83

 The problem becomes even more significant in nanocomposites. Schmid et 

al. shown that in alumina/silicon carbide nanocomposites the agglomerates of SiC were 

causing the stabilization of big pores.
84

 In alumina/copper composites the alumina particulates 

present agglomeration problems both in hot pressing and spark plasma sintering.
85

 In 

nanocomposites of carbon nanotubes and copper porosity tends to increase because of the 

nanotubes tendency to agglomerate.
86

 Severe agglomeration issues are encountered in metal 

composites, but in certain specific cases they can be reduced with the tuned addition of 
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reinforcements, such as fullerenes.
87

 It is worth mentioning that in some situations 

agglomeration is appositely produced to in-situ control the sintering process. This is usually 

the case in reactive sintering, and an example of successful application was offered by 

Cabouro et al.,
88

 who created agglomerates in a MoSi2 powder by high-energy planetary ball-

milling. Tailored biporous structures have also become interesting for the energy sector, and 

specifically for the production of fuel cells components with maximized gas absorption 

capabilities.
89–91

  

These procedures are extremely specific and cannot be generalized to become more 

comprehensive guidelines. There is also a lack of investigations on how to eliminate 

agglomerates in situ instead of by means of preventive treatments. Pre-SPS processing can 

indeed be made vain by the subsequent necessary manipulation of the powder before the 

effective beginning of the sintering process. Anselmi-Tamburini et al. are among the few who 

addressed the hierarchical porous structure issue from this viewpoint.
92

 They were able to 

process nanopowders of zirconia, pure ceria and samaria-doped ceria by SPS and reach 

elevated final densities notwithstanding the presence of agglomeration. They achieved this 

result thanks to the application of extremely high pressures, up to 1 GPa, which caused 

particle rearrangement and agglomerates destruction in the initial stages of the process, and 

plastic or superplastic deformation in the subsequent steps. Such approach is effective, but 

limited in applications, since not any SPS device and tooling setup allows the utilization of 

these high pressure values.  

Purely experimental approaches therefore present several limitations, since they tend 

to provide local empirical solutions to a problem that requires a more generic understanding. 

An exception consists in an experimental study by Ada et al. on agglomerated alumina that 

aimed at deriving the sintering kinetics parameters as functions of temperature.
93

 This aspect is 

of particular importance, since we will show in the present work how significant the role 
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played by temperature in the reorganization of a hierarchical porous structure can be. Notice 

that in this case conventional sintering was the object of the study, while the analogous 

procedure has not been attempted for spark plasma sintering yet, even though the high heating 

rates of the latter offer promising opportunities of process optimization. Nevertheless, in the 

work by Ada et al. the kinetics studies concern the neck growth rate, and not the overall 

porosity evolution, which we will address in this work. Also, only intra-agglomerates kinetics 

were considered, due to the extremely elevated agglomeration content, around 80%.  

Another more rigorous approach to the study of agglomeration was conducted by Liu 

et al. for zirconia powders, in which a quantification of the phenomenon was defined by 

means of the size ratio of sedimentationally-measured particles and primary particles.
77

 Their 

results confirmed the strong influence of pore size hierarchy on both the green density and the 

sintering process, and in particular they evidenced that the presence of agglomerates enhances 

localized densification. 

Among the most recent works, the investigation by Lichtner et al. is of particular 

interest, since they explored the characteristics of hierarchical porous structures by creating 

porosities with tailored morphology and geometry, thanks to a sequence of freeze-casting and 

partial sintering. It emerged that different mechanisms govern the shrinkage of large and small 

pores, where large and small sizes are defined relatively to the grain size of the material under 

consideration. Diffusion or shift of entire grains inside the voids can occur, depending on the 

dimensions of the pores and on the load applied.
89

 

It is thus evident that a more thorough analysis of agglomeration phenomena in 

sintering is necessary, namely by developing analytical models and numerical simulations of 

such hierarchical porous structures. At the same time, an experimental reference framework is 

necessary in order to conduct a reliable investigation. The present study will mainly refer to 

the most recent work of Lee et al.,
94

 who reinvigorated the experimental investigation on 
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agglomerations issues by proposing a refined approach to powder de-agglomeration in the 

context of powder injection molding. By controlling the interface volume of agglomerates, 

they were able to enhance material transport, and analyze the densification process and 

microstructure evolution. Note that the case of SPS is even more critical than any other 

powder consolidation technique when dealing with agglomerated structures. The characteristic 

short processing time presents both advantages and disadvantages in the treatment of 

hierarchically porous materials. The disadvantages lay in the fact that such process rapidity, if 

the SPS regime is not appropriately tuned, and the powder shows the presence of 

agglomerates, can “crystallize” this hierarchy of the porosity and maintain the consequent 

non-uniformities in the final densified specimen. This combines with the high tendency of 

SPS-typical nanosized powders to form agglomerates. We, thus, need to exploit the 

advantageous side of the short processing times, by optimizing the holding temperature in 

order to obtain in situ de-agglomeration and prevent previous material rearrangements thanks 

to the high heating rates that only SPS can achieve. In order to do so, a necessary preliminary 

step of the study consists in modeling the behavior of inhomogeneous porous material 

structures.  

While the presence of hierarchical porous structures and the related issued were 

individuated and addressed experimentally, some purely analytical and numerical studies 

arose, attempting to model these material structures and to make prediction on their evolution 

during sintering regimes. A first approach was suggested by Scherer, who developed a 

"cylindrical" model to simulate a porous medium.
95

 It consisted of a net made of dense tubes 

with the porosity being constituted by the voids left by the net. This implies that the porosity is 

open, namely all interconnected and in communication with the external environment, and that 

therefore we are dealing with the initial stages of sintering, when pores are not isolated yet. By 

applying his analysis to a linear viscous biporous domain, i.e. with two sizes of pores 
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involved, he proved that large size pores are extremely difficult to remove. More interestingly, 

he also considered the domain from a macroscopic point of view, and individuated the 

effective elastic constants and densification kinetics for a medium containing two distinct 

types of porosities.  

This latter aspect, the individuation of effective parameters by switching from a local 

scale to a global perspective, is of high interest when dealing with hierarchical porous 

structures, and was investigated by other authors in the following years. Kadushnikov and 

Skorokhod developed computer simulations in which they distinguished and reconstructed 

both the micro-scale, the local contacts among particles, and the macro-scale, the overall 

behavior of the agglomerated powder material.
96,97

 They investigated on the different 

mechanisms influencing densification kinetics and derived global parameters as functions of 

agglomeration. Since they did not use a continuum approach, the material parameters on 

which they focused were the mean coordination number and contact extent among particles. 

Analogously, but with an analytical study instead of numerical, Liu and German proceeded to 

emphasize the importance of mean nearest distance among the particles in agglomerated 

powder systems.
98

  

More recently, DEM simulations have been employed with similar purposes.
99,100

 In 

both cases, nevertheless, only cold compaction was analyzed, so that their results can provide 

valuable insight only on the pre-sintering route used to produce green specimens. In particular, 

Martin et al. conducted a comprehensive study in which the agglomerates presence was 

simulated by introducing additional interparticle contact forces. They studied the strength of 

agglomerates under compression, individually and globally during pressing in a rigid die. A 

notable influence of agglomerates crushability, morphology and rearrangement of 

densification emerged.  



12 

 

Perrin et al. combined analytical and numerical approaches in the study of the 

evolution of a biporous domain under hydrostatic tension.
101

 They introduced a convenient 

domain constituted by a hollow porous sphere, and treated the porous layer with Gurson's 

model,
102

 while the central hole was simulating the large porosity. Again, it emerged that large 

pores tend to not collapse or even grow, because of the coalescence of small pores adjacent to 

the large one with this large void itself. Gurson is the author of one of the principal theories on 

the plastic deformation of porous media, in which he defined yield criteria and flow rules for 

ductile materials containing voids.  

Most of the models described above consider conventional sintering techniques, since 

they were developed in years in which spark plasma sintering was not well known and 

assessed as it is starting to be now. Indeed, these same works are limited to the description of 

the evolution of powders during the consolidation process, but they lack the proposal of 

strategies in order to improve the porous material structure, which is a possibility that non-

SPS technologies do not offer. They, nevertheless, provide a valuable insight in the role 

played by agglomeration during densification, and inspirational suggestions on how to 

proceed to the modeling stages, also for SPS.   

When aiming at optimizing the porous material structure by eliminating 

agglomeration in situ, and in particular during the SPS holding time, a fundamental step 

consists in the derivation of the densification kinetics of the two types of porosity present in 

the domain. The most significant works in this direction were conducted by means of the 

continuum theory of sintering. Olevsky and Rein were the first to investigate on the kinetics 

evolution with time for large size porosity and small size porosity separately, together with the 

global one. They derived analytical expressions for the porosities changes with time for a 

linear viscous material, but did not reformulate the porous material properties as a function of 

the hierarchical structure.
103

 The subsequent works expanded their analysis, by deriving the 
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biporous material's mechanical properties, still for a linear viscous case, and utilizing 

numerical methods for the application of their results to a variety of loading schematics and 

external constraints.
104–106

 It was found that hot isostatic pressing leads to the fastest 

densification rates, while the process is slower in sintering in a rigid die, and even slower in 

sinterforging.
107

 Large and small pores revealed to be very sensitive to the enforced constraints 

and loading paths, and this offered the possibility of optimizing both these parameters in order 

to control the two porosities kinetics, even though the most common case consisted in the 

faster densification of small pores with respect to the large size ones, as confirmed 

experimentally. Some disadvantages of this approach lie in the chance of having local 

increases in porosity and material instability. It also arose, by using a mean square strain rates-

based analysis of the solid phase, which also allows the generalization to the macroscopic 

scale, that it is possible to have non-zero energy dissipation even in absence of macroscopic 

strains when agglomeration is present. This implies that collapse and growth of both types of 

pores are simultaneously possible, explaining the extreme instability and uncontrollability of 

hierarchical porous structures when spark plasma sintering technologies are not taken into 

consideration.
108

  

The abovementioned studies of hierarchical porous material structures are all based on 

a continuum approach. The porous material is considered as a continuum, whose mechanical 

properties are corrected in order to take into account the effects of the voids. The continuum 

theory of sintering was developed by Skorokhod, Olevsky and others.
109–113

 The related 

publications proposed a constitutive equation for sintering processes, now well assessed in the 

literature, for linear and non-linear viscous materials, together with applications to a variety of 

case studies. The development of a continuum theory of sintering requires that the main 

mechanical properties of the domain considered are adjusted in order to take into account the 

presence of the pores. The first study that individuated the elastic constants of porous 
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materials was conducted by Mackenzie,
114

 and many others followed. Another fundamental 

parameter during sintering processes is the sintering stress, a consequence of the Laplace 

pressure that tends to minimize the free surface in the medium and thus to cause the shrinkage 

of a sintering specimen.  Shuttleworth was among the first to theorize sintering stress and to 

individuate appropriate quantitative expressions.
115

 Sintering stress is a fundamental parameter 

of the theory of sintering, both with a continuum and with a particle approach. A large number 

of studies were therefore dedicated to the analysis of this parameter during the initial 

developments of sintering science.
116–132

 In later stages these investigations decreased in 

number, because of the dominating use of external pressures which values such that sintering 

stresses became negligible (hot pressing, sinter-forging, or spark plasma sintering of micro-

sized powders). Most recently, nevertheless, the advent of nanopowders made this parameter 

non-negligible, as sintering stress is inversely proportional to the particle size.
133–137

 A 

fundamental contributor to the definition of sintering stress was Wakai, who proposed 

methods for the calculation of this parameter in a variety of contexts.
138,139

 

The great majority of the works on hierarchical porous structures conducted until now 

do not consider all these aspects simultaneously, and in the few cases in which they did, the 

material considered was assumed to be endowed with a linear viscous rheology. Such 

assumption easies the problem of individuating biporous materials' properties and kinetics, but 

cannot be considered applicable to a wide variety of case studies. A linear viscous behavior of 

the solid material in a sintering specimen is typical of amorphous materials, or of crystalline 

materials sintered in absence of external loads, where mass transfer through diffusion 

mechanisms is predominant.
140–143

 This implies that in the typical sintering and SPS processes, 

which generally deal with crystalline materials and employ external pressures to favor 

densification while hampering the undesired grain growth, the rheology of the material will be 

nonlinear viscous. 
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A nonlinear viscous behavior can be described as the creeping of the material due to 

the high temperatures and static loads to which it is subjected. The presence of creep has been 

assessed experimentally for most of the materials treated in spark plasma sintering and 

conventional sintering, for both metals and ceramics.
144,145

 Cannon and Langdon devoted a 

broad review publication, in two parts, in which he summarized the available experimental 

data and reported the existing models for the creep of ceramics, proving that even this kind of 

materials, characterized by brittleness, could present significant creep phenomena.
146,147

  

The deformation under creep of porous materials has often been studied starting from 

the solution of creep problems in opportune domains, typically spheres and cylinders 

presenting an internal hole. Simple analytical solutions or more complex ones are available in 

the literature,
148–150

 and they were used as sources of data on stresses and strain rates in the 

studies of sintering for the derivation of densification kinetics of a porous nonlinear viscous 

material. Comprehensive analytical models were developed by Kuhn and McMeeking for the 

case of open porosity,
151

 and by several other authors for closed porosity.
73, 145, 152–161

 More 

details of these works will be given later (Chapter 3), but it is already worth mentioning that 

they consist in analytical and numerical investigations on the power-law creep of monoporous 

media, thus not including the hierarchy characteristic of the porous structures that are the 

object of the present study. Their importance in the present context lies in providing valuable 

inspiration for the broadening of the problem to agglomeration's analyses and a series of 

useful comparisons for the model that we will develop, when we assume that the large inter-

agglomerates pores disappear. The first and one of the most significant works in this direction 

was conducted by Wilkinson and Ashby,
152

 who derived densification kinetics for a porous 

material with nonlinear viscous rheology in all the stages of sintering. Their analysis was 

subsequently expanded by considering more complex loading conditions than the initial hot 

isostatic pressing, and formulating expressions for bulk and shear moduli that would take into 
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account both the presence of porosity and the power-law creep behavior characterizing the 

skeleton of the powder specimen.
155

 Another fundamental model for the compression of 

powder materials with viscoplastic rheology was proposed by Carroll, Holt and Nesterenko. 

They considered dynamic loading conditions and the dependence of the powder material’s 

viscosity and yield stress on temperature. Their results showed how the hollow sphere 

approximation is valid also for large amounts of voids, and that the temperature dependence of 

the mechanical characteristics of the powder leads to a good agreement with experimental 

results.
162–164

  

All the proposed approaches dealt with the nonlinearity of the material as a set 

component of the process. What we aim at doing in the present study is connecting such 

nonlinearity with the treatment of hierarchical porous structures. While the previously 

conducted works considered either agglomerated structures with linear viscous rheology or 

non-agglomerated structures with nonlinear behavior, here we develop a semi-analytical 

approach to identify the densification kinetics, mechanical properties and sintering stress of a 

hierarchical porous structure characterized by a power-law creep rheology.  

This is the where the optimization of the material structure becomes possible: the 

strain-rate sensitivity characterizing the type of creep that the material is undergoing is a 

temperature-dependent parameter. Even though it is well known that strain-rate sensitivity, the 

indicator of the nonlinearity of a creeping material, is not constant with temperature,
165

 the 

literature lacks investigations about such a dependency. Norton points it out,
166

 Follansbee et 

al. proposed an expression of strain-rate sensitivity as a function of the material's mechanical 

properties, dislocations, activation energy, applied stress and temperature.
167

 Another 

expression, empirical, was proposed by Schindler et al., for whom strain-rate sensitivity was a 

linear function of temperature, at least in a specific range of this parameter.
168, 169

 These are 

mainly empirical formulations, with validity restricted to the specific material system utilized 
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and hardly generalizable. Even less explored are the optimization approaches of the sintering 

material's structure based on temperature, with the only exception being, to the best of our 

knowledge, a work by Olevsky and Molinari analyzing the problems of instability in the early 

stages of compaction, for both free sintering and hot isostatic pressing, and developing an 

optimization procedure for the sintering route able to control such undesired effects.
170

 Being 

spark plasma sintering a relatively new technology, an analogous type of optimization, aimed 

at eliminating agglomeration in situ and supported by the high temperatures and heating rates 

that only this technology can achieve, has not been conducted yet and will be the main topic of 

our study.  An efficient de-agglomeration stage is vital in order to achieve the best possible 

outcomes in terms of uniformity of the sample’s density and microstructure, and therefore to 

attain optimal mechanical properties in the entirety of the final products.   

Once developed a theoretical framework in which the main features of the biporous 

material are expressed as a function of the strain-rate sensitivity, by simply assuming this 

parameter as piecewise constant for the various levels of temperature considered, we will 

perform our in situ elimination of agglomerates thanks to a suitably optimized thermal route. 

Spark plasma sintering makes this possible thanks to its intrinsically high heating rates, which 

do not allow for material reorganization and pre-holding densification at non-optimized 

temperatures. Chapter 3 will consider this temperature-based modeling and optimization of 

hierarchical porous material structures. 

 

1.2 Spark plasma sintering tooling setup and temperature 

 

As anticipated at the beginning of this introduction, for spark plasma sintering it is not 

enough to perform an optimization of the temperature regime. In order to guarantee that such 

regime is effectively experienced by the overall powder specimen, one needs to ensure that the 
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thermal spatial distribution within the specimen is uniform. Such a step is not trivial in spark 

plasma sintering. The flow of current through the SPS setup, to which the temperature 

distribution is entangled, can follow several paths, depending on the powder system that is 

being consolidated and the geometry of the tooling setup. Since the first parameter cannot be 

altered if not slightly, by means of dopants and additives aimed at enhancing densification 

more than homogenizing it, a thermal distribution optimization needs to be based on the latter.  

The presence of an articulated tooling setup, made of several components assembled 

around the powder specimen, is unavoidable in SPS, but at the same time this creates severe 

temperature gradients issues. The larger the size of the setup, the more significant such 

inhomogeneities become.
171–175

 Depending on the electrical resistivity of the powder relative 

to the tooling material's one, the current will flow through the powder compact or around it, 

thus creating localized overheating at the center or at the edge of the specimen, depending if 

we are dealing with a conductor or an insulator. Significant localized overheating phenomena 

can also appear in zones further from the specimen, therefore not hampering the densified 

product's properties directly, but endangering the integrity of the tooling and the safety of the 

process, together with creating undesired energy wastes. A non-optimized SPS tooling setup 

is, therefore, the origin of a series of problems during experimental procedures, ranging from 

non-uniform density and microstructure in the densified specimen to serious damages of the 

tooling and the entire device.  

Since these thermal gradients are very intense even within the powder specimen itself, 

it is immediate to infer that a thermal route optimization cannot be applied successfully unless 

such disparities are annihilated. A material structure optimization cannot be considered 

complete without a temperature distributions optimization, which can only rely on a redesign 

of the geometry such that it is guaranteed that the entirety of the specimen will experience the 

selected temperature profile.  
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Even though the fundamental role played by the SPS tooling geometry has been 

broadly assessed, among the approximately 700 yearly publications addressing current-

assisted sintering techniques, only a few works investigated on the role played by the tooling 

setup characteristics and on the relative possibility of optimization, treated with experimental 

approaches, numerical modeling or a combination of both. Such studies analyzed the 

consequences of modifying the constituent material,
176–180

 the geometrical design of the 

components,
171, 172, 181

 the manufacturing machine’s combination with characterization 

technologies,
182, 183

 or the scalability of the process.
184, 185

 Being this last aspect of fundamental 

importance in the understanding of how thermo-electrical phenomena distribute within the 

powder specimen and the entire setup, since an increase in the characteristic dimensions 

unfailingly causes the development of augmenting internal temperature gradients, it is rather 

surprising that so far non-uniformities have been assessed only for small sample diameters.
186

  

Some more specific analysis were operated in order to customize the die shape for the 

production of complexly shaped axial symmetrical parts and of functionally graded 

materials,
187

  evidencing how extensive and versatile SPS-tooling optimization procedures can 

be. More efforts are needed in order to attain satisfactory results in terms of reproducible 

production of bulky parts with homogeneous property distributions, suitable for industrial 

production.
188

  

When considering the SPS or FAST equipment, certain distinctions have been 

individuated and defined, in the context of comprehensive reviews of the various 

methodologies and patents released since the introduction of these electrically-assisted 

densification technologies.
31, 189, 190

  

Even in this variety of approaches, an analysis fully dedicated to the optimization of 

the tooling design in order to mitigate thermal gradients has not appeared yet. A setup 

optimization process needs to follow a thorough analysis of the conventional configurations' 
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conditions, in which the influencing factors can be pointed out, classified and investigated. 

Therefore a preliminary study of the internal temperature distributions needs to be performed 

as a first step. 

The SPS devices present intrinsic difficulties in measuring the sample actual 

temperatures, since the process happens in a closed chamber and in vacuum conditions. The 

temperatures can be measured only at specific points, usually by means of a single probe 

(thermocouple or pyrometer), or by two separate ones in the best case scenario. After a few 

experimental approaches to the temperature distributions’ reconstruction,
191–193

 numerical 

tools have revealed to be particularly effective in compensating for this lack of experimental 

data.
194, 195

 Finite element models have been developed, capable to simulate the electrical and 

thermal evolutions of the specimen and tooling components during SPS procedures.
47, 186, 196–

201
  

These were the first attempts to the building of temperature and current mapping 

methods by means of numerical simulations, and involved only the respective electricity and 

heat transfer simulations. Nevertheless, in order to faithfully recreate the experimental 

conditions, fully coupled models, combining electrical currents, heat transfer, mechanics and 

densification kinetics, need to be implemented. The complex interconnected phenomena 

happening during a SPS procedure require the simultaneous combination of all these physics 

to consider a numerical framework reliable. A variety of studies have addressed this issue, 

providing indispensable information on the inherent mechanisms of such innovative 

densification techniques.
202–213

  

Thermal gradients in the axial and in the radial cross-section planes of the SPS setup 

have usually been addressed separately. This study aims at mitigating both. A broader section 

(Chapter 4) will be dedicated to the radial temperature disparities, since these are the ones that 

generate the most significant non-uniformities in the specimen, and thus their annihilation is 
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an immediate requirement for the completion of our material structure optimization study. We 

do not want to neglect the axial inhomogeneities either, which will be considered in the same 

Chapter 4. Axial thermal disparities have resulted to be even more intense than the radial ones, 

and can directly hamper the specimen's evolution for when the aspect ratio between the height 

and the diameter of the powder compact is close to 1. They also have a high potential for 

tooling damaging.  

We have, thus, shown how broad and interrelated the temperature-related aspects of 

SPS optimization can be. The aspects that need to be considered when aiming at uniformizing 

the conditions experienced by the powder compact, and therefore its morphology, range from 

the distribution and size of the pores to the geometry of the tooling setup. This implies that the 

problem can be addressed at multiple scales. Multi-scale approaches are indeed showing their 

high potential for advanced materials processing, and particularly for spark plasma 

sintering.
214, 215

 

We can look at the so-called meso-scale, the one relative to the porous material 

structure. At this level the problems related to agglomeration phenomena have been 

experimentally evidenced by a variety of authors, and modeled, analytically or numerically, by 

a few, but never for SPS, which is the technology in which these issues are most influential. 

The important role played by the strain-rate sensitivity for the densification kinetics of 

hierarchical porous structures has barely been identified in the literature, in which this 

nonlinearity parameter has been taken into consideration only for materials in which porosity 

is assumed to be uniform in size and distribution. The temperature dependence of this same 

strain-rate sensitivity has also been investigated in a very limited fashion. We, therefore, aim 

at compensating for this lack of analyses on hierarchical porous structures in materials with 

nonlinear viscous rheology (that is the most common situation in SPS) by connecting all these 

aspects. A semi-analytical model will be developed throughout Chapter 3. We will not only 
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derive the densification kinetics of the various types of porosities contained in an 

agglomerated powder, but we will also evaluate the effects of the compresence of multiple 

pore sizes on the overall mechanical properties of the specimen. By defining parameters such 

as bulk modulus, shear modulus and sintering stress - which until now have only been 

investigated for non-hierarchical structures and linear viscous rheologies - for the more 

comprehensive and reality-adherent case of nonlinear viscous materials presenting 

agglomeration, we will also be empower our modeling framework with a macro-scale 

perspective that looks at the entire specimen. We will therefore have a variety of tools 

allowing us to individuate the most suitable SPS processing temperatures such that strain-rate 

sensitivity reaches values that can lead to in situ powder de-agglomeration. Multi-scale FEM 

modeling of biporous structures will also be addressed.   

An even larger scale can be reached in this field of temperature-based optimization of 

spark plasma sintering, since we need to look at the entire tooling setup in order to understand 

how thermal effects distribute within the specimens. The fundamental influence of the tooling 

geometry on the formation of significant temperature gradients within the SPS setup has been 

recently the object of a large number of studies, which, nevertheless, fail to investigate on the 

physical phenomena underlying such mechanisms and to propose improvement strategies. 

Chapter 4 will be dedicated to this larger scale of the temperature optimization study. Thermal 

gradients will be thoroughly analyzed by means of an extensive experimental and numerical 

campaign, until the main factors affecting temperature distributions in SPS are individuated. 

We will finally apply the acquired knowledge into the redesign of the geometry of certain 

tooling components able to uniformize the temperatures within the entire tooling and 

specimen assembly. 

The combination of thermal route and thermal distribution improvements results in a 

spark plasma sintering efficiency optimization capable of guaranteeing the best outcomes in 
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terms of specimen's uniformity and mechanical characteristics. Such results are reached with 

an investigation that includes the development of a novel analytical model for hierarchical 

porous structures with nonlinear viscous rheology and of a FEM framework for the 

reconstruction of any SPS procedure. 
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Chapter 2 

Research Objectives:  

Optimization of Spark Plasma Sintering Efficiency  

 

In the previous chapter we have provided an overview of the several aspects involved 

in the study of how to optimize Spark Plasma Sintering (SPS) efficiency with temperature as 

the main parameter. We have explained that the SPS temperature regime and distribution both 

play fundamental roles in the characteristics of the final densified product. The thermal route 

impacts the uniformity of the porous material structure, while the temperature spatial 

distribution is strongly dependent on the geometry of the employed tooling.  

We can therefore identify two major research objectives for the present work: 

1. Material structure optimization; 

2. Temperature uniformization within SPS specimen and tooling. 

The two objectives are subsequent to each other. Namely, material structure 

optimization relies on the selection of the ideal thermal route for SPS procedures, which thus 

needs to be uniformly experienced by the entirety of the processed powder specimens (while 

keeping the SPS tooling setup in safe conditions by avoiding overheating issues). 

The first objective can, in turn, be subdivided into two sub-categories, depending on 

what type of final result one is interested in achieving: 

1. Material structure optimization 

a. In situ de-agglomeration (porous structure uniformization); 

b. Production of tailored hierarchically porous structures. 
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Each objective has a corresponding major research task, namely: 

Objective 1. Ideal SPS thermal routine selection; 

Objective 2. Improved tooling geometry design. 

as we have pointed out how the thermal routine controls the material structure 

evolution and the tooling geometry influences the temperature distribution within the SPS 

setup.  

For Objective 1, we will also explore collateral factors that need to be tuned, together 

with the thermal routine, in order to be able to achieve de-agglomeration during processing. 

Specifically, we will focus on the role played by the initial porous material structure, namely 

the relative dimensions of agglomerates and powder particles (or, equivalently, small and 

large voids), which have a direct influence on the shrinkage kinetics of a porous specimen.  

The associated research tasks need to take into account the main features of 

nanopowders undergoing spark plasma sintering processing.  

A realistic porous material structure subjected to spark plasma sintering is 

characterized by the presence of agglomerates and in most cases by a nonlinear viscous 

rheology. The formation of hierarchical porous structures is due to the growingly widespread 

utilization of nanopowders, for which SPS is considered to be particularly suitable, but that 

also tend to undergo non-negligible agglomeration phenomena. A nonlinear viscous rheology 

is characteristic of the processing of crystalline materials at high temperatures with the 

application of external loads, which is the case in most of the SPS applications. A lack of 

comprehensive analyses has been revealed during the associated literature review, thus we aim 

here at creating an analytical framework to describe material structures presenting both these 

aspects. We will describe hierarchical porous structures by means of a simplified spatial 

domain and we will derive expressions of the main mechanical characteristics.  
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The research tasks associated with the first research objective therefore consist in the 

development of analytical expressions for: 

 Densification kinetics of the different types of porosities; 

 Bulk and shear moduli; 

 Sintering stress. 

Since we will consider a power-law creep behavior of the solid material, all the 

parameters listed above will be dependent on the material’s nonlinearity, which is expressed 

by the strain-rate sensitivity parameter. Being strain-rate sensitivity a function of temperature, 

by opportunely tuning the SPS temperature route we will be able to mitigate the undesired 

consequences of agglomeration. Specifically, we aim at individuating the optimal holding 

temperature, which is the highest temperature reached during the consolidation process, and 

corresponds to the stage in which most of the specimen’s shrinkage happens and the 

microstructural characteristics are defined. A specific value of strain-rate sensitivity will 

correspond to this optimal temperature value. A fourth research task necessary to accomplish 

the first research objective thus consists in: 

 Individuation of the correlation between strain-rate sensitivity and  

                          temperature. 

The power of SPS in this context relies on the high heating rates that this technique 

allows, such that the optimal holding temperature is reached in very short times (few minutes), 

and that the reorganization of the material structure typical of heating ramps in conventional 

sintering is here prevented.  

The obtained material properties for biporous structures will also enable the 

formulation of a multi-scale FEM-based modeling framework. Simulations can be 
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implemented to reconstruct the simultaneous evolution of entire specimen and the various 

types of porosities. This numerical tool will become valuable for both de-agglomeration and 

design of tailored hierarchical porous structures. The last research task associated with the 

material structure optimization research objective is then: 

 Implementation of a multi-scale FEM simulation platform for  

                          densification processes. 

We have subsequently noted that for this thermal route optimization to be successful, 

we need to ensure that the temperatures are uniformly distributed throughout the entire 

specimen. This is the second research objective.  

The non-triviality of this aspect in the context of SPS has been assessed by a variety 

of authors. We will therefore complete our study by developing a strategy to homogenize 

temperatures within the powder compact and even in the rest of the tooling setup.  

The necessity, typical of SPS, to locate the powder compact into an articulated tooling 

setup is the cause of a complex distribution of the flow of current through the tooling itself, 

and consequently of the heat generated by Joule effect. The geometry of this tooling greatly 

affects the conditions experienced by the powder compact. Some studies have explored the 

consequences of changing the dimensions, and more rarely the design, of the various 

components of the tooling assembly, but a lot still needs to be done to understand the 

underlying mechanisms behind thermal gradients and how to control them in a convenient 

way.   

The thermal gradients that appear during SPS can be distinguished based on the cross-

section they interest, i.e. radial thermal gradients, in particular in the central cross-section of 

the specimen, and axial thermal gradients, which involve all the tooling components. 
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We aim at developing optimal tooling redesign strategies capable of annihilating the 

specimen’s non-uniformities and guaranteeing the safety of the SPS device and process. We 

want to propose novel tooling designs of simple realization that exploit the knowledge gained 

from the temperature distribution analysis. We will do so with an extensive campaign of 

finite-element simulations and with the appropriate experimental verification.  

The research tasks corresponding to the second research objective are thus found in 

the following sequence of steps: 

 Experimental individuation of temperature non-uniformities; 

 Development of a multi-physics FEM framework involving both 

specimen and tooling; 

 Punch redesign for radial thermal gradients mitigation; 

 Transition redesign for axial thermal gradients mitigation. 

The meaning of the above-listed tooling components will be clarified in the following 

sections. 

We, finally, plan to integrate the two developed aspects of SPS optimization in a 

multi-scale and multi-physics modeling framework in which predictions on densification 

uniformity and tailored material structures can be obtained, and again experimentally verified.  

The following flow chart identifies the present work’s research objectives, the 

associated research tasks, and the relative interconnections.  
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Figure 2.1 – Flow chart of the research objectives. 
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Chapter 3 

Modeling of Consolidation of Hierarchical (Agglomerated) Porous 

Structures with Nonlinearity of the Material’s Constitutive Behavior 

 

3.1 Semi-analytical modeling of hierarchical porous structures densification  

      kinetics 

 

3.1.1 Definition of hierarchical porous structures 

 

As introduced in the previous chapters, an optimization of the spark plasma sintering 

process based on the role played by the temperature can be conducted on different levels. 

While an improvement in the spatial temperature distribution is to be performed by means of 

an improved tooling design (Chapter 4),
173–175

 a very important aspect lies in the temperature 

regime to be applied. The role played by the latter does not consist merely in the selection of 

the most suitable values of heating rate and holding temperature in order to allow densification 

to happen. The temperature regime has a more indirect, but certainly non-negligible, influence 

on the evolution of the porous structure of the specimen at the so called “meso-scale”.  

There is a sort of “loop” effect between the SPS material structure and temperature 

uniformization. The powder material structure controls how temperature is distributed within 

the specimen itself, such that material structure homogeneization implies temperature 

uniformization. This, in turn, leads to controlled and homogeneous pore and grain structure 

evolution. Such a feedback effect is what the proposed spark plasma sintering optimization 

relies on. 
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In a powder compact, three scales can be individuated. The macro-scale considers the 

entire specimen, and deals with its global shrinkage and other macroscopic characteristics. 

The micro-scale goes down to the level of the grains constituting the single powder particles, 

and it is the aspect we refer to when analyzing grain growth and local defects, such as 

vacancies and dislocations. The meso-scale is introduced because of the powders’ natural 

tendency to form inhomogeneous porous structures since the stages antecedent to sintering 

itself, and it is roughly comparable to the particle size, or slightly larger. It is at the meso-scale 

that hierarchical porous structures are identified. Such non-uniform configurations of the loose 

powder morphology are due to weak interactions among the particles, mainly Van der Waals 

forces tending to attract the powder particles towards each other. These interactions are 

responsible for the formation of groups of agglomerated powder particles, another definition 

of hierarchical porous structures.   

Figure 3.1 depicts a typical agglomeration phenomenon, in the loose powder (top) and 

after partial densification (bottom). These images were obtained during a study on the 

consolidation of vanadium carbide by means of conventional sintering and SPS.
72

 Even 

though the focus of the study was on the neck growth kinetics and on the individuation of the 

VC’s surface diffusion parameters, some interesting side aspects appeared. Conventional 

sintering resulted to be not capable of processing vanadium carbide, since, even after long 

exposures to supposedly optimal temperatures, the sintered specimen appeared to have started 

densification only at the center, while the outer area was extremely crumbly. Spark plasma 

sintering provided better outcomes, but agglomeration issues arose, as the bottom part of the 

same figure shows.  
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Figure 3.1 – Agglomeration in a vanadium carbide powder: loose powder (top)  

and after spark plasma sintering (bottom). 

(Giuntini et al., Int. J. Refract. Met. Hard Mater., 2013)
72
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Agglomerates are fragile unions of powder particles, but the proximity that the 

involved particles experience is a cause for intra-agglomerates preferential densification. If the 

agglomerates are not removed prior to the application of raising temperatures, they will tend to 

undergo a faster sintering process with respect to the looser adjacent powder, characterized by 

larger distances among the particles and therefore hampered diffusion phenomena. 

Agglomerated areas can therefore reach quasi-full density while the neighboring areas are still 

at the initial consolidation stages. Once such localized and uneven densification is attained, the 

specimen’s meso-scale morphology will consist in a number of “stones”, namely fully dense 

zones, hard to deform and surrounded by a highly porous matrix, whose voids’ elimination 

will now be extremely complex. Figure 3.2, Figure 3.3 and Figure 3.4 show further examples 

of this phenomenon. The preferential densification within the agglomerates is evident. Figure 

3.4 highlights how relevant agglomeration becomes in the case of nano-sized powders, and 

depicts the respective schematics.  

 

 

  
 

Figure 3.2 – Effects of agglomeration in loose powder and sintered materials. 

(Sacks M. D. and Pask J. A., J. Am. Ceram. Soc.,1982)
216
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Figure 3.3 – Partially sintered agglomerated alumina.  

(Ada K. et al., Powder Tech., 2006)
93

 

 

 

 

 

 

   
 

Figure 3.4 – Agglomeration in iron nanopowders and schematics of its effects. 

(Lee J.S. et al., Materials, 2013)
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At this point it is clear how agglomeration is a phenomenon that greatly damages 

sintering processes, leading to strong non-uniformities in density and grain size in the final 

product. Once the agglomerated areas have reached full density, indeed, grain growth 

phenomena will start occurring locally, while the same phenomena are prevented from 

occurring in the still porous proximities. The inhomogeneities due to hierarchical porous 

structures are comparable to the ones caused by uneven temperature distributions or localized 

stresses due to differential shrinkage (processing of composites), and therefore deserve a 

careful analysis.  

Both the prevention and the elimination of agglomerates are difficult tasks to perform. 

Such difficulty becomes more significant when reducing the size of powder particles from the 

micrometer to the nanometer order of magnitude. Nanopowders are gaining growing attention 

in the spark plasma sintering field, because of the improved density and microstructure 

properties that they allow the final product to attain, together with their intrinsic capability of 

enhancing consolidation thanks to the large available free surface area, whose minimization is 

the driving force for sintering. Their use is becoming widespread for the production of 

advanced ceramics, such as high surface area components used in supercapacitors, 

rechargeable batteries and gas absorbers. At the same time, nanopowders are obviously more 

prone to be subjected to agglomeration phenomena.  

Whatever the particles size is, nevertheless, directly impeding the formation of 

hierarchical porous structures is a delicate and sometimes even unfeasible step. Even though 

the employment of apposite additives or of optimized mixing and milling procedures as pre-

sintering steps has shown successful applications, the handling of the powder subsequent to 

these steps, such as its simple relocation or the preparation of the green sample, can 

significantly reduce the just obtained beneficial effects by leading to the creation of new 

hierarchical structures.  
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We, therefore, chose to address the problem at a different stage of the SPS process: we 

considered in situ de-agglomeration. Here is where the importance of the temperature regime 

in optimizing SPS efficiency lies. De-agglomeration operated during the consolidation process 

itself relies on the applied pressure and, mainly, temperatures. It has been shown, as 

anticipated in the introductory chapter, that the pressures necessary for in situ removal of 

pores hierarchy are of the GPa order of magnitude, which are values hard to attain in 

conventional SPS devices.
92

 Temperatures offer a more technologically feasible option. 

A crystalline material, especially if sintered with the aid of an external pressure, 

presents a nonlinear viscous rheology during sintering. In such a case, the behavior of the 

skeleton (the solid portion of a porous domain) is described by means of the power-law creep 

behavior, which can be expressed as follows 

𝜎(𝑊) = 𝐴𝑚𝑊
𝑚                                                              (3.1) 

where 𝜎 is an equivalent stress (Pa), 𝑊 an equivalent strain rate (1/s), 𝑚 the strain-rate 

sensitivity (1) and 𝐴𝑚 a factor with an Arrhenius-type dependence on the activation energy for 

power-law creep (Pa·s
m
). The subscript m has been added in order to distinguish it from the 𝐴 

utilized in the most common creep equations, such as Ashby’s model,
217

 where strain rate is 

given as a function of stress, and not vice versa. We will denote this most common factor with 

𝐴𝑛, since the corresponding creep law is usually given as 

𝜀̇ = 𝐴𝑛𝜎
𝑛                                                                    (3.2) 

Here the strain rate has been indicated by 𝜀̇ instead of 𝑊 because such power-law 

creep equation, in its most general form, does not necessarily consider porous materials. It is 

also immediate to see that 

𝐴𝑚 =
1

(𝐴𝑛)
𝑚
                                                                (3.3) 
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and 

𝑚 =
1

𝑛
                                                                      (3.4) 

which are useful relationships, since in the literature one can generally find tabulated the 

values of 𝐴𝑛 and 𝑛 for a variety of materials.  

By observing this formulas, we immediately see that when 𝑛 = 1 the linear viscous 

case is represented, while when 𝑛 → ∞ we are ideally in a regime of perfect plasticity. It 

follows that 

0 < 𝑚 < 1 

with 𝑚 = 0 being the perfectly plastic case, and 𝑚 = 1 the linear viscous one.  

The meaning of equivalent stress and equivalent strain rate of equation (3.1) are 

relative to the continuum theory of sintering
113

 and will be clarified in detail later.  

As for now it is important to emphasize that the possibility of optimizing the SPS 

efficiency by means of an opportune holding temperature lies in the role played by the strain-

rate sensitivity 𝑚. Even though it has almost always been treated as a constant value, mainly 

for simplicity’s sake and lack of experimental data, there is a general agreement on 

recognizing that strain-rate sensitivity changes with temperature.
165

 Such dependence is not of 

immediate determination, but a good approximation can be defined by analyzing it as 

piecewise constant, suitable to the individuation of the optimal holding temperature. The 

empirical models proposed in the literature for the description of creep phenomena can also be 

employed, together with the available data, to find the relation between strain-rate sensitivity 

and the soaking temperature chosen for the powder consolidation process. The latter is the 

approach selected for the present work, described in detail in section 3.2. Thanks to the high 

heating rates typical of SPS, we will be able to reach the optimized holding temperature values 
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in an extremely rapid fashion, therefore preventing undesired effects of material structure 

reorganization during the heating ramp. 

We will show how 𝑚, which is also an index of the nonlinearity of the material’s 

viscous behavior, influences all the main parameters of sintering, namely its kinetics and the 

properties of a porous material. More specifically, we will derive densification equations, 

sintering stress, bulk and shear moduli for a hierarchical porous structure with nonlinear 

viscous constitutive behavior, and consequently identify how a change of strain-rate 

sensitivity (caused by a change in temperature) can positively affect spark plasma sintering. A 

dependence on temperature is found in 𝐴𝑚 too, since 

𝐴𝑛 = 𝐴0exp (−
𝑄𝑃𝐿𝐶
𝑅𝑇

)                                                      (3.5) 

where 𝐴0 is a pre-exponential factor depending on the material considered (1/s/Pa
n
), 𝑄𝑃𝐿𝐶 the 

activation energy for power-law creep (J/K/mol) and 𝑅 the Boltzmann constant (J/K/mol). 𝐴𝑚 

will also be taken into account in order to optimize the SPS thermal regime. A comparative 

study on the influence of both 𝐴𝑚 and 𝑚 will be conducted in order to identify the power-law 

creep parameter which has the strongest impact on the consolidation of hierarchical porous 

structures, and on such comparison the structural optimization procedure will be based.   

In order to address the densification kinetics problem, a suitable domain describing 

hierarchical porous structures needs to be defined. One can first consider a typical morphology 

at the meso-scale of a green specimen. Since agglomerates consist in powder particles kept at 

a closer distance with respect to the neighboring ones, it is reasonable to assume that the pores 

inside an agglomerate will be of smaller size than the inter-agglomerates ones. We can 

therefore describe a green specimen as a biporous structure, with small size intra-agglomerates 

porosity and a large size inter-agglomerates one. We will denote the former as 𝜃𝑆 and the 

latter as 𝜃𝐿, while the overall porosity will be simply called 𝜃. By porosity, in general, we 
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indicate the volume fraction of the domain considered that is occupied by voids, and it is 

therefore a dimensionless parameter.  

Figure 3.5 provides the schematics employed for the identification of the study 

domain. We imagine considering a large, inter-agglomerate pore, surrounded by agglomerates 

that are themselves porous with small internal voids.  We approximate the large pore as 

spherical, and we take a concentric spherical layer of agglomerated material to complete the 

domain. We therefore have a large central spherical void surrounded by a concentric porous 

spherical shell. The geometry of the domain is fully defined by the two radii a and b, a being 

the internal radius (large pore radius) and b being the external radius of the entire domain.  

 

 

Figure 3.5 – Definition of the study domain representative of hierarchical porous structures. 

 

 

While the small size porosity 𝜃𝑆 will be directly treated with the continuum theory of 

sintering,
113

 and consequently embedded in the external layer as an intrinsic material property, 
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large size and total porosities can be easily defined through geometrical considerations. 𝜃𝐿 is 

the ratio of the volume occupied by the large central hole divided by the entire domain’s one, 

and 𝜃 is calculated as the sum of the two volume fractions (small and large voids).  

It follows that 

𝜃𝐿 = (
𝑎

𝑏
)
3

                                                                   (3.6) 

and 

𝜃 =  𝜃𝐿 + (1 − 𝜃𝐿)𝜃𝑆                                                          (3.7) 

 

We will consider the process of spark plasma sintering assisted by an externally 

applied pressure operating on our domain. We assume the spherical biporous layer to be 

located in the middle of a specimen characterized by the repetition of such type of hierarchical 

structure, so that it is reasonable to also consider the domain as subjected to a hydrostatic 

compression at its outer border, which we will call 𝑃𝑒𝑥𝑡, as Figure 3.6 shows.  The same 

Figure 3.6 also shows that at the internal boundary of the shell a load is applied, called 𝑃𝐿0𝐿. 

This is the surface sintering stress due to the surface tension, which is the force responsible for 

the voids progressive shrinkage and ultimate disappearance.  

We will dedicate a section of the present chapter to the sintering stress definition for a 

hierarchical porous structure endowed with nonlinear viscous constitutive behavior. Here we 

will limit to clarify the notation utilized. 𝑃𝐿 is the general denomination chosen for sintering 

stress, since the stress caused by surface tension is often called Laplace pressure. We 

distinguish between 𝑃𝐿, a body stress characteristic of a porous body undergoing sintering 

(and therefore shrinkage), and 𝑃𝐿0, the surface stress acting at the boundary of a single void 

and leading to its closure. The former is the result of averaging the effects of all the pores 

present in a material and trying to minimize their free surface area, when enough energy is 
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provided in the form of temperature. The latter is directly proportional to the surface tension 

of the material considered, and inversely proportional to the pore characteristic size.  

 

 

Figure 3.6 – Geometry and loading schematics acting on the biporous study domain. 

 

In the case of spherical pores, the factor of proportionality has been found to be 3 

(while it would be 2 for cylindrical pores).
111

 The subscripts S and L will generally always be 

indicating if we refer to small or large size porosity.  

Thus, 𝑃𝐿0𝐿 is the surface sintering stress acting on the large pore, which is 

𝑃𝐿0𝐿 =
3𝛼

𝑟𝑝
=
3𝛼

𝑎
                                                            (3.8) 

with 𝛼 surface tension of the material considered (J/m
2
) and 𝑟𝑝 radius of the pore (m), in this 

case equivalent to the large pore radius a. 
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3.1.2 Sintering kinetics of hierarchical porous structures 

 

The final aim of our study consists in optimizing the SPS outcomes in terms of 

density and microstructure uniformization (or, alternatively, building tailored porous 

structures). In a biporous domain, a necessary condition to attain such homogeneity consists in 

eliminating the porosity “duality” itself, by reducing the size of the large pores until it reaches 

the typical dimensions of the small ones. It is crucial that the large porosity shrinkage occurs 

at a faster pace than the small porosity one, in order to avoid the formation of preferentially 

densified areas (the abovementioned “stones”) and their undesired consequences. We aim at 

designing temperature regimes that allow a quick densification of large size porosity, such 

that, once 𝜃𝐿 becomes comparable in size to 𝜃𝑆, the spark plasma sintering will be applied to a 

homogeneous, monoporous powder compact, as ideal consolidation conditions require.  

Thus, we need to analyze how sintering kinetics evolve during SPS in the case of a 

hierarchical porous structure. Namely, we search for two equations capable to describe the 

densification rates of the two porosities as functions of the applied load, material properties 

and temperature regime, indirectly involved by the power-law creep parameters, and 

especially by the strain-rate sensitivity.
218

  

In synthesis: 

𝜃̇𝑆 = 𝑓(𝜃𝑆, 𝜃𝐿 , 𝑃𝑒𝑥𝑡, 𝐴𝑚, 𝛼,𝑚) 

𝜃̇𝐿 = 𝑔(𝜃𝑆, 𝜃𝐿, 𝑃𝑒𝑥𝑡 , 𝐴𝑚, 𝛼,𝑚) 

When plotting large and small size porosities with respect to time, we investigate on 

how to reach the ideal condition of having the two curves not crossing each other, at least until 

the very end of the SPS regime. We, indeed, reasonably assume to have an initial large size 

porosity value 𝜃𝐿(𝑡 = 0) =  𝜃𝐿0 that is lower than the small size porosity one 𝜃𝑆(𝑡 = 0) =

 𝜃𝑆0, and therefore the uniformization of the porosity size translates in a progressive reduction 
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of the central void volume while 𝜃𝑆 has not reached zero yet. On the contrary, if the two 

curves crossed each other, this would be indication of the agglomerates having reached full 

density while the large inter-agglomerate pore is still undergoing the shrinkage process.  

To derive the two functions f and g the continuum theory of sintering is applied to our 

biporous domain.
113

 By applying the appropriate boundary conditions to the sintering 

characteristic equations, we can obtain the kinetics of 𝜃𝑆, and therefore derive the evolution 

𝜃𝐿by means of geometrical considerations.  

The constitutive equation of the porous material behavior during sintering is 

𝜎𝑖𝑗 =
𝜎(𝑊)

𝑊
[𝜑𝜀𝑖̇𝑗 + (𝜓 −

𝜑

3
) 𝑒̇𝛿𝑖𝑗] + 𝑃𝐿𝑆𝛿𝑖𝑗                                (3.9) 

in which 𝜎𝑖𝑗 is the stress tensor (Pa), 𝜀𝑖̇𝑗 the strain rate tensor (1/s), 𝑒̇ the first strain rate tensor 

invariant, namely the trace of the tensor (1/s), 𝜑 the normalized shear modulus (1), 𝜓 the 

normalized bulk modulus (1),  𝛿𝑖𝑗 the Kronecker delta, 𝑃𝐿𝑆 the volumetric sintering stress due 

to the presence of small pores in the matrix (Pa).  

While, as anticipated in the previous paragraphs, the surface sintering stress, tending 

to cause the closure of the pore to which it is applied, is purely a function of surface tension 

and pore size, the volumetric sintering stress is an averaged parameter that comes into play 

when considering a material endowed with a very high number of pores, which we decide to 

treat as a continuum. If we have a porous matrix that contains a distribution of small pores, 

which we will assume to be isotropically distributed, the application of a continuum theory 

requires that the properties of the bulk (fully dense) material constituting the layer are 

appropriately modified in order to embed the effects of the pores on the overall material 

domain. This translates in deriving suitable formulations for bulk and shear moduli (that 

indeed here are functions of porosity), and in adding to the main equation a term that accounts 

for the tendency of the porous material to shrink. Such term is the sintering stress, which is 
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expressed as the surface sintering stress associated with a small pore multiplied by a function 

ℎ of the porosity that we are including in our continuum, as 

𝑃𝐿𝑆 =
3𝛼

𝑟𝑠𝑝
ℎ(𝜃𝑆)                                                              (3.10) 

We will show in the next sections of this chapter how ℎ can be individuated and how 

the expression of the sintering stress is altered when dealing with a hierarchical porous 

structure. It is worth mentioning now that the surface sintering stress is generally well 

approximated as independent of temperature, since it has been found experimentally and for a 

variety of materials that the changes in surface tension with temperature can be considered 

negligible in the SPS context (while obviously porosity is evolving with temperature).
219

 The 

study of 𝑃𝐿 that we will propose later will nevertheless include an indirect correlation with the 

thermal conditions experienced by the sintering sample, because we will search for an 

expression that considers the sintering stress dependence on the material’s nonlinear rheology, 

namely on the strain-rate sensitivity 𝑚. Being 𝑚 a function of temperature, the volumetric 

sintering stress will start playing a role in the optimization of the temperature regime to be 

applied in order to eliminate agglomeration. The more common assumption of  𝑃𝐿 being 

independent on temperature holds only as long as the material power-law creep behavior is not 

considered as a significant contribution, or as long as we take the strain-rate sensitivity as a 

constant value. Thus, we aim at individuating more precise expressions for the sintering stress, 

paying particular attention at its variations when switching from a homogeneous monoporous 

powder compact to a hierarchical porous structure as the one described by our domain (Figure 

3.5).   

Finally, the equivalent stress and strain rate 𝜎(𝑊) (Pa) and 𝑊 (1/s), are the two 

parameters that take into account the contribution of the skeleton, which is the fully dense 

material located in the external porous spherical layer. In the case of a crystalline material 
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being deformed at high temperatures with the aid of an externally applied load, the skeleton 

deforms following a power-law creep behavior.  

The equivalent stress 𝜎(𝑊) is thus expressed as a function of the equivalent strain 

rate as reported in equation (3.1), and 𝑊 is written as 

𝑊 = √
𝜓𝑒̇2 + 𝜑𝛾̇2

1 − 𝜃𝑆
                                                         (3.11) 

where the only still undefined parameter is 𝛾̇, the second invariant of the strain rate tensor 

(1/s), associated with the domain’s change of shape and expressed as a function of the 

deviatoric part of the tensor 𝜀𝑖̇𝑗
′  as 

𝛾̇ = √𝜀𝑖̇𝑗
′ 𝜀𝑖̇𝑗

′                                                               (3.12) 

Before proceeding with our derivations, it is important to underline here that the 

sintering constitutive equation has been written only in terms of the small size porosity, 𝜃𝑆. 

All the parameters, such as 𝑊 and 𝑃𝐿𝑆, even the ones that have not been defined yet, 𝜑 and 𝜓, 

do not include the large size porosity. This can be better understood by looking at our domain 

definition again. We have a porous spherical matrix surrounding a concentric large hole. The 

porous spherical matrix contains the small pores, in an extremely high number and whose 

distribution is unknown, but assumed to be widespread enough to render the overall matrix 

isotropic. Such is the condition that allows the treatment of a porous domain as a continuum. 

The large size porosity, on the other hand, is represented by a single central void, whose 

sintering will coincide with its progressive volume shrinkage due to the external load and to 

the shrinkage of the surrounding matrix. Therefore, the continuum theory of sintering is solely 

applied to the external layer, endowed with the small size porosity, while the large porosity 

change will be evaluated geometrically, thanks to the derivation of the velocities of the 

internal and external boundaries of the domain (at a and b). 
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Once defined all the parameters and clarified this point, we can proceed to substitute 

the power-law creep law in the constitutive equation, which becomes  

𝜎𝑖𝑗 = 𝐴𝑚𝑊
𝑚−1 [𝜑𝜀𝑖̇𝑗 + (𝜓 −

𝜑

3
) 𝑒̇𝛿𝑖𝑗] + 𝑃𝐿𝑆𝛿𝑖𝑗                                (3.13) 

Note that we have only substituted 𝜎(𝑊) and 𝑊, while we have left open the 

formulations for 𝜑, 𝜓 and  𝑃𝐿𝑆. Even though in the literature many models have been 

proposed for the normalized moduli and the sintering stress, only a small number of them 

consider the case of nonlinear viscous rheology,
155, 156, 160

 even less the case of agglomerated 

(hierarchical) structures,
104

 and none of them the combination of both effects. These 

parameters will therefore be individuated in the following paragraphs and only finally 

included in our densification kinetics formulations.  

The boundary conditions for our domain (Figure 3.6) are 

𝜎𝑟|𝑎 = −𝑃𝐿0𝐿                                                                (3.14)  

𝜎𝑟|𝑏 = −𝑃𝑒𝑥𝑡                                                               (3.15) 

The strain rate tensor first and second invariants, in spherical coordinates and taking 

into account the symmetries, become respectively 

𝑒̇ = 𝜀𝑟̇ + 2𝜀𝜑̇                                                             (3.16) 

and 

𝛾̇ = √
2

3
|𝜀𝑟̇ − 𝜀𝜑̇|                                                           (3.17) 

with the strain rate radial and tangential components, again considering the symmetries, 

expressed as a function of the radial velocity 𝑉𝑟 (m/s) only 

𝜀𝑟̇ =
𝜕𝑉𝑟
𝜕𝑟
                                                                 (3.18) 

𝜀𝜑̇ =
𝑉𝑟
𝑟
                                                                 (3.19) 
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Thus what we need is 𝑉𝑟. In order to derive it we can notice the following 

𝜕𝑉𝑟
𝜕𝑟

+ 2
𝑉𝑟
𝑟
= 𝑒̇                                                            (3.20) 

and also that 

𝜕𝑉𝑟
𝜕𝑟

+ 2
𝑉𝑟
𝑟
=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑉𝑟)                                                  (3.21) 

so that 

𝜕

𝜕𝑟
(𝑟2𝑉𝑟) = 𝑒̇𝑟

2                                                             (3.22) 

from which, assuming that 𝑒̇ is constant with the radius r, we obtain 

𝑉𝑟 =
1

3
𝑒̇𝑟 +

𝐶

𝑟2
                                                               (3.23) 

In order to find C, we can employ the so-called sintering similitude equation, which is 

an equation that relates stress and strain rate invariants by means of the bulk and shear moduli: 

𝜓
𝑒̇

𝑝 − 𝑃𝐿𝑆
= 𝜑

𝛾̇

𝜏
                                                           (3.24) 

The similitude condition applied to the continuum theory of sintering arises from an 

analogy with the theory of plasticity. In the theory of plasticity we find an association rule 

between stress and strain fields. Its most common version is the similitude condition, 

according to which the stress and the deformation tensors are organized in an analogous 

fashion. This propagates to the invariants, leading to an expression that relates the ratios 

between first and second stress and strain invariants, with the appropriate proportionality 

coefficients. In the context of plasticity, these coefficients are constants, the plastic 

multipliers; while here we have the normalized bulk and shear moduli, functions of porosity, 

and strain rates instead of strains. Note that we also correct the first stress invariant, p, by 

subtracting the compressive hydrostatic contribution of the sintering stress.  
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In our spherical domain, writing the tensors invariants in terms of their components 

and substituting in (3.24), the similitude condition becomes   

𝜓
𝑒̇

𝜎𝑟 + 2𝜎𝜑
3

− 𝑃𝐿𝑆

= 𝜑
𝜀𝑟̇ − 𝜀𝜑̇

𝜎𝑟 − 𝜎𝜑
                                              (3.25) 

where the various components denominations are self-explaining.  

Rearranging and substituting our expressions for the strain rates, we get 

𝜎𝑟 − 𝜎𝜑 =
𝜑

𝜓

(−3𝐶
𝑟3⁄ )

𝑒̇
(
𝜎𝑟 + 2𝜎𝜑

3
− 𝑃𝐿𝑆)                                 (3.26) 

Now, in order to find C, we apply the boundary condition at r = a, i.e. the large pore 

sintering stress acting on the internal boundary of the porous layer.  

We find that C is 

𝐶 = 𝑒̇𝑎3
𝜓

𝜑

𝑃𝐿0𝐿
𝑃𝐿0𝐿 + 3𝑃𝐿𝑆

                                                   (3.27) 

Therefore the radial velocity is expressed as 

𝑉𝑟 =
1

3
𝑒̇𝑟 + 𝑒̇

𝑎3

𝑟2
𝜓

𝜑

𝑃𝐿0𝐿
𝑃𝐿0𝐿 + 3𝑃𝐿𝑆

                                            (3.28) 

and consequently the radial and tangential strain rates become 

𝜀𝑟̇ =
1

3
𝑒̇ − 2𝑒̇

𝑎3

𝑟3
𝜓

𝜑

𝑃𝐿0𝐿
𝑃𝐿0𝐿 + 3𝑃𝐿𝑆

                                            (3.29) 

𝜀𝜑̇ =
1

3
𝑒̇ + 𝑒̇

𝑎3

𝑟3
𝜓

𝜑

𝑃𝐿0𝐿
𝑃𝐿0𝐿 + 3𝑃𝐿𝑆

                                              (3.30) 

From now on, for simplicity of notation and derivations, we will denote the sintering 

stresses ratio as follows 

𝑘 =
𝑃𝐿0𝐿

𝑃𝐿0𝐿 + 3𝑃𝐿𝑆
                                                             (3.31) 
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By substituting the obtained strain rates expressions in the constitutive equation, and 

rearranging, we arrive at the following formulation for the radial stress component 𝜎𝑟 

𝜎𝑟 = 𝐴𝑚𝑒̇
𝑚(1 − 𝜃𝑆)

1−𝑚
2 𝜓

𝑚+1
2 (6𝑘2

𝑎6

𝑟6
𝜓

𝜑
+ 1)

𝑚−1
2

(1 − 2𝑘
𝑎3

𝑟3
) + 𝑃𝐿𝑆           (3.32) 

At this point, with the aim of obtaining the small size porosity kinetics, we can utilize 

the indissolubility condition.  

Reminding that 𝑒̇ is the change in volume of the porous shell, and that 𝜃𝑆 is the 

volume fraction occupied by small pores in that same shell, conservation of mass imposes 

𝑒̇ =
𝜃̇𝑆

1 − 𝜃𝑆
                                                              (3.33) 

so that the expression for the radial stress becomes 

𝜎𝑟 = 𝐴𝑚 (
𝜃̇𝑆

1 − 𝜃𝑆
)

𝑚

(1 − 𝜃𝑆)
1−𝑚
2 𝜓

𝑚+1
2 (6𝑘2

𝑎6

𝑟6
𝜓

𝜑
+ 1)

𝑚−1
2

(1 − 2𝑘
𝑎3

𝑟3
) + 𝑃𝐿𝑆         (3.34) 

We can now impose the remaining boundary condition for 𝜎𝑟, at r = b. By doing that 

and remembering the definition of the large size porosity 𝜃𝐿, we get 

−𝑃𝑒𝑥𝑡 = 𝐴𝑚𝜃̇𝑆
𝑚 (𝜃𝑆 − 1)

1−𝑚

(1 − 𝜃𝑆)
𝑚+1
2

𝜓
𝑚+1
2 (6𝑘2𝜃𝐿

2𝜓

𝜑
+ 1)

𝑚−1
2
(1 − 2𝑘𝜃𝐿) + 𝑃𝐿𝑆           (3.35) 

and rearranging we finally derive the densification rate of the small size porosity, as 

𝜃̇𝑆 = [
𝑃𝑒𝑥𝑡 + 𝑃𝐿𝑆

𝐴𝑚(2𝑘𝜃𝐿 − 1)
(6𝑘2𝜃𝐿

2𝜓

𝜑
+ 1)

1−𝑚
2
(
1 − 𝜃𝑆
𝜓

)

𝑚+1
2
(𝜃𝑆 − 1)

𝑚−1]

1
𝑚

          (3.36) 

We can now proceed to the derivation of the large size porosity evolution, namely to 

the individuation of an expression for 𝜃̇𝐿. Because of the reasons explained above, 𝜃̇𝐿 can be 

individuated by means of simple geometrical considerations, such as 

𝜃̇𝐿 =
𝑑 (𝑎

3

𝑏3
⁄ )

𝑑𝑡
=
3𝑎2

𝑏3
𝑑𝑎

𝑑𝑡
−
3𝑎3

𝑏4
𝑑𝑏

𝑑𝑡
                                         (3.37) 



50 

 

with 

𝑑𝑎

𝑑𝑡
= 𝑉𝑟|𝑎 = 𝑒̇𝑎 (

1

3
+ 𝑘

𝜓

𝜑
)                                                  (3.38) 

𝑑𝑏

𝑑𝑡
= 𝑉𝑟|𝑏 = 𝑒̇𝑏 (

1

3
+ 𝑘𝜃𝐿

𝜓

𝜑
)                                               (3.39) 

Substituting the boundary radial velocities in the 𝜃̇𝐿 expression we obtain 

𝜃̇𝐿 = −3𝑘𝜃𝐿(1 − 𝜃𝐿)
𝜓

𝜑

𝜃̇𝑆
1 − 𝜃𝑆

                                                (3.40) 

and ultimately 

𝜃̇𝐿 = −3𝑘𝜃𝐿 (
1 − 𝜃𝐿
1 − 𝜃𝑆

)
𝜓

𝜑
[
𝑃𝑒𝑥𝑡 + 𝑃𝐿𝑆

𝐴𝑚(2𝑘𝜃𝐿 − 1)
(6𝑘2𝜃𝐿

2𝜓

𝜑
+ 1)

1−𝑚
2
(
1 − 𝜃𝑆
𝜓

)

𝑚+1
2
(𝜃𝑆 − 1)

𝑚−1]

1
𝑚

 

                                                                                                            (3.41) 

Equations (3.36) and (3.41) provide the sintering kinetics of a biporous material. They 

need to be solved numerically, for instance with a Runge-Kutta (4,5) scheme, so that we can 

get the curves of 𝜃𝑆 and 𝜃𝐿 versus time. This is the only not purely analytical step in this 

section of our optimization study, which therefore has to be more correctly addressed as semi-

analytical. As an aside, notice that, on the other hand, Section 3.2 will be mostly numerical, 

with the wide employment of finite element methods, and such will also be a substantial part 

of Chapter 4.  

Together with the kinetics of the two porosities volume fractions, it is interesting to 

also monitor the evolution of the pores size with time.  

The shrinkage rate of a small pore can be expressed as
103

 

𝑟̇𝑠𝑝 = 𝑟𝑠𝑝
𝜃̇𝑆

3𝜃𝑆(1 − 𝜃𝑆)
                                                    (3.42) 

which can be easily derived if we consider a spherical domain with a central small 

pore, as shown in Figure 3.8 of the following sections.  



51 

 

The shrinkage rate of a large pore is immediately inferred from the radial velocity 

field in our domain as given above. Considering the large pore’s surface, 𝑟 = 𝑎, we retrieve 

equation (3.38), such that, with the necessary substitutions 

𝑎̇ = 𝑎 (
1

3
− 𝑘

𝜓

𝜑
)

𝜃̇𝑆
1 − 𝜃𝑆

                                                  (3.43) 

The evolutions of small and large size porosities (volume fractions and radii) are 

given as a function of strain-rate sensitivity, material properties and externally applied load. 

Again, the temperature dependence is well expressed by the presence of 𝑚 and 𝐴𝑚 in our 

equations. We begin to notice now why we are focusing our temperature-based optimization 

on 𝑚 and not on 𝐴𝑚. Indeed, 𝐴𝑚 appears in both kinetics expressions in an analogous way, 

which implies that a change in its value plays a parallel role in both the evolution of small and 

large pores. This means that the densification curves will shift, but no significant changes will 

occur in terms of their behavior with respect to each other, such as the time at which they 

intersect. 

Note also that all the other involved parameters, sintering stress and moduli, have 

been left explicitly mentioned in both equations. The reason behind this temporary choice is 

that, instead of using formulations provided by previous studies, we are interested in deriving 

our own expressions for all these parameters, expressions that need to take into account both 

the nonlinearity of the skeleton’s viscosity and the hierarchical character of the meso-scale 

porous structure.  

In the following sections we will, therefore, proceed to the derivation of our own 𝑃𝐿𝑆, 

𝜓 and 𝜑 expressions. We will find such parameters for both the monoporous and the biporous 

case. The former is what we need to examine in order to find formulas to plug into the 

densification equations that we have just found, since, again, the matrix mechanics require that 

we consider the volumetric sintering stress and moduli relative to the small size porosity only 
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(therefore a monoporous context). The latter is an extension of the study that is needed if we 

want to shift from the meso-scale to the macro-scale. Finding sintering stress, bulk and shear 

moduli of a biporous structure corresponds to individuating the global macroscopic 

mechanical properties of a powder characterized by non-negligible phenomena of 

agglomeration. Individuating the properties of a biporous domain allows us to replace our 

domain composed by a spherical porous layer with an internal large void, with a homogenous 

and isotropic spherical domain, whose mechanical characteristics will already be taking into 

account the internal presence of two porosity sizes, and therefore the effect of the 

agglomerates.  

The explicit densification kinetics equations for the two porosities, (3.36) and (3.41), 

for the pores sizes, (3.42) and (3.43), and the macroscopic sintering stress and moduli, 

therefore, provide a complete framework for the analysis of the hierarchical porous structures 

behavior.  

The densification equations are an indispensable resource of information about how 

the shrinkage of the two types of porosities evolves with time, and most interestingly on how 

strain-rate sensitivity (and therefore the thermal regime) can control the consolidation process 

by enhancing the size reduction of the large inter-agglomerates pores while allowing only a 

slower disappearance of the small intra-agglomerates ones (Section 3.2.1).  

The macroscopic properties and sintering stress of a biporous structure provide the 

possibility of treating the SPS specimen by the sole macroscopic perspective, and therefore 

evaluating its sintering globally, by looking at the entire specimen, without any need of 

modeling its internal morphology. Such expressions will also be a very valuable tool for the 

finite-element reconstruction of the SPS of a powder compact with an internal distribution of 

agglomerates, since the knowledge of the macroscopic mechanical properties prevents us from 

needing to simulate a complex multiscale framework in which both the meso-scale and the 
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macro-scale aspects need to be simultaneously considered during the computations (Section 

3.2.2).  

In Section 3.2 we will explore this latter aspect and the general FEM modeling of a 

hierarchical porous structure under SPS conditions, but first we will proceed to the 

individuation of the various sintering stresses (Section 3.1.3), bulk moduli (Section 3.1.4) and 

shear moduli (Section 3.1.5).    

To conclude the biporous structures’ sintering kinetics section, it is worth mentioning 

that a more elegant “time definition” can be utilized in the porosity evolution equations, which 

is the specific time of sintering. By specific time of sintering we mean a normalized time 

expression that varies depending on the rheology of the material and that allows a more 

effective comparison among different cases because of its normalized nature.  

In our case, which is power-law creep with non-negligible sintering stress acting on 

the pores’ surfaces, it can be written as  

𝑡𝑠 = (
𝑃𝑒𝑥𝑡 + 𝑃𝐿0𝑆

𝐴𝑚
)

1
𝑚
𝑡                                                (3.42) 

By replacing the time derivatives of equations (3.36) and (3.41) with the derivatives 

with respect to this specific time of sintering, we obtain  

𝑑𝜃𝑆
𝑑𝑡𝑠

= [
(1 +

𝑃𝐿𝑆
𝑃𝑒𝑥𝑡

)

(1 +
𝑃𝐿0𝑆
𝑃𝑒𝑥𝑡

)

(6𝑘2𝜃𝐿
2𝜓

𝜑
+ 1)

1−𝑚
2 (𝜃𝑆 − 1)

𝑚−1

(2𝑘𝜃𝐿 − 1)
(
1 − 𝜃𝑆
𝜓

)

𝑚+1
2
]

1
𝑚

        (3.43) 

𝑑𝜃𝐿
𝑑𝑡𝑠

= −3𝑘𝜃𝐿
1 − 𝜃𝐿
1 − 𝜃𝑆

𝜓

𝜑
[
(1 +

𝑃𝐿𝑆
𝑃𝑒𝑥𝑡

)

(1 +
𝑃𝐿0𝑆
𝑃𝑒𝑥𝑡

)

(6𝑘2𝜃𝐿
2𝜓

𝜑
+ 1)

1−𝑚
2 (𝜃𝑆 − 1)

𝑚−1

(2𝑘𝜃𝐿 − 1)
 (
1 − 𝜃𝑆
𝜓

)

𝑚+1
2
]

1
𝑚

 

(3.44) 
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It is also interesting to compare our results with what has been done in 1995 by 

Olevsky and Rein
103

 for an analogous spherical biporous domain with linear viscous 

constitutive properties of the skeleton.  

They reported the following kinetics equations 

𝜃̇𝑆 =
𝑃𝐿0𝑆
𝜂0

(1 − 𝜃𝑆)
3 [1 + (

𝑃𝐿0𝐿
𝑃𝐿0𝑆

− 1)𝜃𝐿]

2𝜓(𝜃𝐿 − 1)
                                   (3.45) 

𝜃̇𝐿 = −
𝑃𝐿0𝑆
𝜂0

3(1 − 𝜃𝑆)
2

4𝜑

𝑃𝐿0𝐿
𝑃𝐿0𝑆

𝜃𝐿                                             (3.46) 

As a difference with respect to what we did, they used expressions for ψ, 𝜑 and 𝑃𝐿𝑆 

present in the literature, which explains why they have a factor 𝑃𝐿0𝑆 in the equations. The 

expressions are the ones derived by Skorokhod,
111

given here: 

𝜓 =
2(1 − 𝜃𝑆)

3

3𝜃𝑆
               𝜑 = (1 − 𝜃𝑆)

2              𝑃𝐿𝑆  = 𝑃𝐿0𝑆  (1 − 𝜃𝑆)
2               (3.47) 

The constant value 𝜂0 is the viscosity of the skeleton, which can be related to our 𝐴𝑚 

by considering the power-law creep equation (3.1) with 𝑚 = 1 (linear viscous case), and 

comparing it to the 𝜎(𝑊) expression for the linear viscous rheology, which is 

𝜎(𝑊) = 2𝜂0𝑊                                                            (3.48) 

It is therefore immediate to see that 𝐴𝑚 = 2𝜂0. 

By applying the opportune substitutions and rearrangements, and momentarily 

borrowing the Skorokhod’s expressions, our consolidation equations for the two porosities 

when 𝑚 = 1 end up being almost coincident with the Olevsky-Rein outcomes, therefore 

confirming the reliability of the individuated expressions. Figure 3.7 shows this comparison. 
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Figure 3.7 – Comparison between the present kinetics model (m = 1) and the one derived by 

Olevsky and Rein for linear viscous materials. 

 

 

 

3.1.3 Sintering stress of homogeneous and hierarchical porous structures with nonlinear  

         viscous constitutive behavior 

 

We now proceed to the individuation of the first of the porosity-dependent parameters 

that we still have to define: sintering stress. 

 For both this parameter and the bulk and shear moduli, we will not only find the 

needed expressions for the small size porosity, but we will extend the analysis to the biporous 

case, in order to obtain also the macro-scale versions.  
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From the considerations made in the previous sections of this chapter, we can 

distinguish four categories in which the sintering stress can be classified, based on the meso-

scale porous structure and on the rheology of the dense material constituting the skeleton: 

1. Linear viscous material, monoporous structure; 

2. Linear viscous material, biporous structure; 

3. Nonlinear viscous material, monoporous structure; 

4. Nonlinear viscous material, biporous structure, 

where monoporous is synonym of homogeneous porosity size (absence of agglomeration) and 

biporous is synonym of hierarchical (presence of agglomeration). Previous studies mainly 

considered the first category only,
138

 while for the prosecution of our work we are interested in 

the two last ones. 

Since sintering stress accounts for the tendency of a porous material to minimize its 

free surface area, it is defined as the variation of free surface energy per unit mass with respect 

to the specific volume of the considered domain, and it is thus formulated as  

𝑃𝐿 =
𝑑𝐹𝑆
𝑑𝜗

                                                                 (3.49) 

with 𝐹𝑆 free surface energy (J/kg) and 𝜗 specific volume (m
3
/kg). 

The sintering stress can thus be calculated by means of statistical and thermodynamic 

considerations according to this definition, as done by Skorokhod,
111

 who theorized a general 

formulation for sintering stress, in the case of spherical voids, as 

𝑃𝐿 =
3𝛼

𝑟𝑝
(1 − 𝜃)2                                                        (3.50) 

It is evident that this solution was computed for a monoporous specimen. Skorokhod’s 

sintering stress has revealed to predict experimental results quite well, but we are currently 
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interested in analyzing how its expression diversifies when dealing with more complex 

conditions, like nonlinear rheology and hierarchy of porosity. 

Another approach can therefore be attempted, based on mechanics instead of 

thermodynamics. We can select a suitable domain (somewhat analogous to the one chosen for 

the densification kinetics study) and derive the sintering stress by solving the relative 

boundary value problem and taking into consideration the dissipative potential of the porous 

material. This strategy has been utilized in 1999 by Olevsky and Molinari in the case of a 

monoporous domain with a linear viscous behavior of the skeleton.
170

 Their result is here 

reported, and we will follow an analogous procedure in order to derive the sintering stress for 

the nonlinear viscous biporous case.  

An important notation choice needs to be evidenced here. Since our interest in this 

portion of the study is focused on the optimization of the material structure when hierarchical 

porosities are present, we have based our denominations on the assumption that two types of 

pores are present, distinct because of their size. Specifically, we have defined 𝜃𝑆 and 𝜃𝐿, and 

we have reserved the simple notation 𝜃 for the global porosity, which includes both sizes. 

Since 𝜃 is commonly used to denote porosity in most of the sintering studies, usually dealing 

with only one type of pores, confusion can be generated.  

In order to avoid misunderstandings, we will therefore denominate the porosity of 

every monoporous study as 𝜃𝑆, and not 𝜃. Such choice is based on the fact that, in the present 

work, the parameters of monoporous structures are of interest because they need to be inserted 

in the kinetics equations derived in 3.1.2, which, as explained before, are founded on the use 

of the sintering constitutive equation for the external shell, where only small pores are present.  
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Now that this point has been clarified, it will be immediate to understand why we 

report the Olevsky-Molinari result in the following form 

𝑃𝐿𝑆 =
3

2
𝑃𝐿0𝑆√

3

2
𝜓

𝜃𝑆
1 − 𝜃𝑆

                                                  (3.51) 

where again we avoided substituting 𝜓 with an expression from the literature, while we are 

waiting to derive the bulk modulus for a monoporous material in the following section.  

Notice that even though we will restrict our derivations of the bulk and shear moduli 

to the nonlinear viscous case, it is sufficient to impose 𝑚 = 1 in the obtained equations to 

collapse the solution to the linear viscous case, as done in the end of the previous section in 

order to verify that our kinetics solution could be brought back to the Olevsky-Rein one for a 

linear viscous biporous specimen. 

We will now proceed to derive the expression of 𝑃𝐿𝑆 for a homogeneously porous 

material with nonlinear constitutive characteristics. The previous formulation for the 

corresponding linear viscous case will be a useful verification of the validity of our result.  

Since we are considering a monoporous structure, with no trace of agglomeration 

phenomena, the domain to be employed for our derivations will still be a spherical layer of 

material with a concentric spherical hole, but this time the layer will be fully dense. As Figure 

3.7 shows, we are zooming in inside the matrix of our previous biporous domain, and 

restricting our attention to a little spherical shell of fully dense skeleton material surrounding a 

small pore.  
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Figure 3.8 – Zooming in to define the domain study for the monoporous context. 

 

As a rule of thumb to roughly estimate what scales we are considering in the two 

cases, one needs to think that an average agglomerate size is 10 μm, while a nanopowder 

particle size ranges in the 10-100 nm order of magnitude. It is reasonable, also based on 

experimental data,
72

 to evaluate the large inter-agglomerates pores average size as slightly 

lower with respect to the agglomerate size itself. This implies that with this shift in domain 

from biporous to monoporous we are moving to a scale about one or two orders of magnitude 

lower. It is nevertheless important to point out that such shift does not lead us into what we 

previously defined as micro-scale, since each nanopowder particle is itself crystalline, and 

therefore in order to reach the average grain size we need to move to lower scales. 

Pointing out that our focus is on nanopowders is of particular importance in the 

context of sintering stress investigations. Generally, when conducting pressure-assisted 

sintering of crystalline materials, neglecting the impact of the sintering stress with respect to 
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the external loads has proven to be a more than acceptable approximation. But this ceases to 

be true if we employ powders with particles characteristic dimension below the micron level, 

such as the nanopowders that are becoming progressively more common in the SPS 

technologies field. An explanation can be found by looking at the dependence of sintering 

stress on the size of the pore on which it acts. It is an inverse proportionality, which means 

that if the pores radius is of the nanometer order, 𝑃𝐿 can attain values of several MPa, thus not 

anymore negligible with respect to the externally applied pressures, which in spark plasma 

sintering processes are typically some tens of MPa. The importance of sintering stress in the 

nanopowders context explains why we chose to dedicate a detailed analysis to this parameter 

even if we are generally assuming the application of external loads during the SPS route.  

A convenient approach to individuate the sintering stress from the solution of a simple 

boundary value problem consists in utilizing dissipative potentials definitions and identities, as 

we report here.  

Since dissipative potentials, for both a fully dense and a porous material, are 

expressed as functions of strain rates, the first step needs to be the individuation of radial and 

tangential strain rates in the domain represented in Figure 3.7. We are dealing with a spherical 

shell that is creeping under the action of radial loads. An analogous problem has already been 

solved by Finnie first and Ashby later,
148, 152

 with slightly different boundary conditions.  

In our case, an appropriate loading condition of the dense spherical shell, able to 

provide the sintering stress, consists in applying the sintering stress itself at the internal 

boundary of the shell (or, equivalently, the surface of a small pore) and leaving the external 

boundary free of loads, as shown in Figure 3.8. Note that we have changed the denomination 

of the radii not to ingenerate confusion: 𝑟𝑠𝑝 (radius of the small pore) is the internal radius; 𝑟𝑠𝑑 

(radius of the small domain) is the external one.  
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Strain rates for these geometry and loading conditions are calculated and result to be 

𝜀𝑟̇ = 𝐴𝑛
(𝑟𝑠𝑝𝑟𝑠𝑑)

3

(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

[
3𝑚

2
𝑃𝐿0𝑆]

1
𝑚 1

𝑟3
                                  (3.52) 

𝜀𝜑̇ = −
𝐴𝑛
2

(𝑟𝑠𝑝𝑟𝑠𝑑)
3

(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

[
3𝑚

2
𝑃𝐿0𝑆]

1
𝑚 1

𝑟3
                               (3.53) 

Being the strain rate tensor second invariant for this specific geometry defined as in 

the previous domain case, we find 

𝛾̇𝑆 = √
3

2
𝐴𝑛

(𝑟𝑠𝑝𝑟𝑠𝑑)
3

(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

[
3𝑚

2
𝑃𝐿0𝑆]

1
𝑚 1

𝑟3
                                 (3.54) 

where we have added the subscript s to underline that in the present case it is only the fully 

dense skeleton that is constituting the shell. 

 

 

Figure 3.9 – Geometry and loading schematics acting on the monoporous study domain. 
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We define now the dissipation potential of a porous medium as D and the dissipation 

potential of the skeleton as DS. The following identity holds, usually addressed as Hill’s 

identity 

𝐷 = (1 − 𝜃𝑆) < 𝐷𝑆 >                                                    (3.55) 

in which < 𝐷𝑆 > indicates the volume average over the domain of the skeleton potential, 

which, for a nonlinear viscous material is defined as
113

 

𝐷𝑆 =
𝐴𝑚
𝑚+ 1

𝛾̇𝑠
𝑚+1                                                        (3.56) 

By substituting the expression for 𝛾̇𝑠 found above and averaging over the shell 

volume, we have 

< 𝐷𝑆 >=
𝐴𝑚
𝑚 + 1

{√
3

2
𝐴𝑛

(𝑟𝑠𝑝𝑟𝑠𝑑)
3

(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

[
3𝑚

2
𝑃𝐿0𝑆]

1
𝑚
}

𝑚+1
3∫ 𝑟−3𝑚−1𝑑𝑟

𝑟𝑠𝑑
𝑟𝑠𝑝

𝑟𝑠𝑑
3 − 𝑟𝑠𝑝

3
          (3.57) 

and therefore 

< 𝐷𝑆 >=
𝐴𝑚𝐴𝑛

𝑚+1

𝑚(𝑚 + 1)
[(
3

2
)

𝑚+2
2
𝑚𝑃𝐿0𝑆]

𝑚+1
𝑚

𝑟𝑠𝑝
3

(1 − 𝜃𝑆)(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

                (3.58) 

The dissipative potential of a porous nonlinear viscous material is, on the other hand, 

defined as 

𝐷 =
𝐴𝑚
𝑚 + 1

(1 − 𝜃𝑆)𝑊
𝑚+1                                                 (3.59) 

It is important to notice that D is here considering our domain from a macroscopic 

point of view, since in this specific case the porous medium is constituted by the overall shell- 

void union. In the previous section, instead, the sintering constitutive equation and all its 

parameters were only applied to the porous shell, without including the large internal pore.  
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Evidencing this distinction is of fundamental importance in order to understand why 

in the present case we can express the equivalent strain rate 𝑊 as follows 

𝑊 = √
𝜓

1 − 𝜃𝑆
|𝑒̇|                                                          (3.60) 

that is with an expression that does not include 𝛾̇.  

From a macroscopic perspective, a hydrostatically compressed sphere does not 

undergo any change of shape, which is the physical phenomenon that 𝛾̇ represents. In section 

3.1.2, nevertheless, equating the second strain rate tensor invariant to zero would not have 

been legitimate, because in that case the equivalent strain rate is only referred to the shell, and 

is thus not looking at the overall biporous domain as a whole macroscopic entity. 

At this point, the following equation, an immediate consequence of the sintering 

constitutive equation opportunely applied to calculate the stress invariants, comes into play 

𝑝 = 𝐴𝑚𝑊
𝑚−1𝜓𝑒̇ + 𝑃𝐿𝑆                                                      (3.61) 

where 𝑝 is the first stress tensor invariant, 𝜎𝑘𝑘 3⁄ .  

Again in this macroscopic evaluation context, and in the absence of applied loads, 

𝑝 = 0, and therefore we obtain 

𝑊 = (
𝑃𝐿𝑆

𝐴𝑚√𝜓(1 − 𝜃𝑆)
)

1
𝑚

                                                 (3.62) 

We now have all the necessary parameters to be embedded in the Hill’s identity.  

By doing so and rearranging in order to isolate 𝑃𝐿𝑆 we finally get an equation for the 

sintering stress of a monoporous nonlinear viscous material, as 

𝑃𝐿𝑆 = (
3

2
)

𝑚+2
2
𝑃𝐿0𝑆√𝜓 [

𝑚𝜃𝑆
𝑚

1 − 𝜃𝑆
𝑚 (1 − 𝜃𝑆)

1−𝑚
2 ]

1
𝑚+1

                      (3.63) 

This is what we need to insert in the densification kinetics equations obtained in the 

previous section.  
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If we impose 𝑚 = 1, corresponding to a linear viscous rheology, we immediately 

verify that (3.63) results to be coincident with (3.51), the Olevsky-Molinari outcome that was 

individuated starting from the solution of an similar boundary value problem, but with the 

direct treatment of the material as linear viscous, and therefore using the analogy of such 

constitutive behavior with the elasticity regime.  

We now proceed to the individuation of case number 4 in the classification at the 

beginning of this section: nonlinear viscous biporous material. We shift our attention from the 

meso-scale to the macro-scale, or, better, we provide a first tool to allow ourselves to do so. 

We are, indeed, calculating the first global property of a hierarchical porous structure, the 

macroscopic sintering stress 𝑃𝐿 (no subscript is here used for coherence with the porosity 

notation). The remaining required parameters, i.e. macroscopic bulk and shear moduli, will be 

derived in the following paragraphs, together with their monoporous counterparts and 

following the same line of reasoning laid out in this section.  

We will proceed in an analogous way as in the previous case of absence of 

agglomeration, but this time we consider the biporous domain that we utilized for the kinetics 

derivations (Figure 3.5).  

An essential premise to the macroscopic derivations is the obtainment of the 

indissolubility equation in terms of the two porosities, or, equivalently, the macroscopic 

shrinkage rate, 𝐻̇. Every macroscopic property will be indicated as the capitalized version of 

the analogous parameter at the meso-scale, such as 𝛹 for the normalized bulk modulus and Φ 

for the normalized shear modulus.  

Following the usual definition, 𝐻̇ is 

𝐻̇ =
𝜃̇

1 − 𝜃
                                                                 (3.64) 
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Recovering the initial definition of the total porosity in terms of the small size and 

large size pores contributions, we can calculate the overall porosity evolution with time as 

𝜃̇ =
𝑑

𝑑𝑡
[𝜃𝐿 + (1 − 𝜃𝐿)𝜃𝑆] = 𝜃̇𝐿(1 − 𝜃𝑆) + 𝜃̇𝑆(1 − 𝜃𝐿) =                                     

= 𝜃̇𝑆(1 − 𝜃𝐿) (1 + 3𝑘𝜃𝐿
𝜓

𝜑
)                                                  (3.65) 

where 𝜃̇𝑆 is the one derived in section 3.1.2, reported as (3.36). 

Thus the global shrinkage rate results to be 

𝐻̇ =
𝜃̇

(1 − 𝜃𝑆)(1 − 𝜃𝐿)
=

𝜃̇𝑆
(1 − 𝜃𝑆)

(1 + 3𝑘𝜃𝐿
𝜓

𝜑
)                            (3.66) 

Note that an analogous result can be reached if we consider that 𝐸̇ = 3𝑉𝑟|𝑏/𝑏. 

We can now employ the macroscopic counterpart of (3.61), with the same 

considerations to be applied to the equivalent strain rate 𝑊, so that we have 

𝑃 − 𝑃𝐿 = 𝐴𝑚𝑊
𝑚−1𝛹𝐻̇ =

𝐴𝑚|𝐻|̇
𝑚

(1 − 𝜃)
𝑚−1
2

𝛹
𝑚+1
2                               (3.67) 

with 𝛹 the macroscopic normalized bulk modulus, as anticipated. 

As in the non-hierarchical case, the sintering stress can be individuated by assuming 

loading conditions in which no external pressure is applied, from which we derive 

𝑃𝐿 =
𝐴𝑚𝐻̇

𝑚

(1 − 𝜃)
𝑚−1
2

𝛹
𝑚+1
2                                                   (3.68) 

By substituting the 𝐸̇ of (3.66), we have 

𝑃𝐿 =
𝐴𝑚𝛹

𝑚+1
2

(1 − 𝜃)
𝑚−1
2

𝜃̇𝑆
(1 − 𝜃𝑆)

(1 + 3𝑘𝜃𝐿
𝜓

𝜑
)                                 (3.69) 

This is the sintering stress of a hierarchical porous structure characterized by the 

presence of small and large size pores. Further simplification is possible, but we will postpone 

the final rearrangements to when the appropriate expressions for 𝛹, 𝜓 and 𝜑 will have been 
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obtained. At this point of the study, indeed, we want to gain the maximum possible accuracy 

in our formulations, and therefore we want to consider the influence of the material 

nonlinearity on bulk and shear moduli too.  

 

3.1.4 Bulk modulus of homogeneous and hierarchical porous structures with nonlinear  

        viscous constitutive behavior 

 

In the continuum theory of sintering, the material’s main mechanical properties, bulk 

and shear moduli, become functions of porosity too, together with being dependent on the 

viscosity of the skeleton. This step allows considering the porous medium as homogeneous 

and isotropic, with the effect of the voids being included in the opportunely corrected moduli 

formulations. The literature provides certain general expressions, or some more specific 

formulations for a linear viscous biporous medium or for a nonlinear viscous monoporous.
104, 

155, 160
 We hereby aim at obtaining an even more comprehensive result, i.e. the two moduli for 

a hierarchical porous structure whose skeleton’s material exhibits a nonlinear constitutive 

behavior. It is worth remembering the intrinsic inclusiveness of such formulation, since one 

can easily retrieve the linear viscosity or homogeneous porosity cases by imposing 𝑚 = 1 or 

𝜃𝐿 = 0, respectively.  

Nevertheless, because of the choices operated while setting up the present analysis, 

we found useful to start our derivations from the nonlinear viscous monoporous case, such 

that we could immediately find an expression to plug into the kinetics equations derived in 

3.1.2.  

The previous paragraph’s considerations, therefore, since we are rendering the 

individuations of 𝜓 and 𝛹 separate and independent on each other, will anyways provide an 

interesting verification tool for checking that 𝛹 goes back to 𝜓 when we set the large size 
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porosity to be zero. Analogous steps will be performed for the shear moduli 𝜑 and 𝛷 in 

section 3.1.5. 

For both the monoporous and biporous cases, a derivation procedure in line with what 

done for the sintering stress can be applied.  

The baseline consists in the same equation (3.61), here reported for convenience 

𝑝 = 𝐴𝑊𝑚−1𝜓𝑒̇ + 𝑃𝐿𝑆 

We start with the monoporous study, for which the same fully dense spherical layer 

domain of Figure 3.9 is employed.   

While in the sintering stress analysis context we had to consider the condition of 

absence of externally applied loads, here we will do the opposite, by assuming that we are 

applying pressures on the external boundary that are significant enough for us to neglect the 

sintering stress, at least temporarily, and even for nanopowders.  

By doing this and substituting in the previous equation the expression for the 

equivalent strain rate that does not include the change of shape term (since we are still loading 

the domain with a hydrostatic pressure), we find 

𝑃𝑒𝑥𝑡 = 𝐴𝑚𝜓
𝑚+1
2 |𝑒̇|𝑚(1 − 𝜃𝑆)

1−𝑚
2                                           (3.70) 

Note that here it is 𝜃𝑆 that has to be analyzed from a geometrical viewpoint, because 

we have zoomed in at the meso-scale until we have individuated a single small size pore 

surrounded by a layer of fully dense material (Figure 3.9).  

Accordingly, expressions for porosity and consolidation kinetics, necessary in order to 

obtain 𝑒̇ for the present case, are calculated starting from 

𝜃𝑆 = (
𝑟𝑠𝑝
𝑟𝑠𝑑
)
3

                                                           (3.71) 
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Being 𝑒̇ =
𝜃̇𝑆

1−𝜃𝑆
, we need to derive 𝜃̇𝑆 in the following manner, analogous to what 

done previously for the large size porosity 

𝜃̇𝑆 =
3𝑟𝑠𝑝

2

𝑟𝑠𝑑
3
𝑉𝑟|𝑟𝑠𝑝 −

3𝑟𝑠𝑝
3

𝑟𝑠𝑑
4
𝑉𝑟|𝑟𝑠𝑑                                             (3.72) 

The radial velocity field during the power-law creep of a fully dense sphere with a 

central void is the same utilized in 3.1.3 to obtain the strain rates for the sintering stress of a 

non-agglomerated and nonlinear viscous material, and it is written as 

𝑉𝑟 = −
𝐴𝑛
2

(𝑟𝑠𝑝𝑟𝑠𝑑)
3

(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

(
3

2
𝑚𝑃𝑒𝑥𝑡)

1
𝑚 1

𝑟2
                               (3.73) 

From this we derive 

|𝑒̇| =
3𝐴𝑛
2
(
3

2
𝑚𝑃𝑒𝑥𝑡)

1
𝑚 𝑟𝑠𝑝

3

(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

                                  (3.74) 

which is greater than zero, therefore we can remove the absolute value. After rearranging, 

replacing 𝐴𝑛 with 𝐴𝑚
−𝑛 and elevating to the power 𝑚, we get 

𝑒̇𝑚 = (
3

2
)
𝑚𝑚𝑃𝑒𝑥𝑡

𝐴𝑚

𝜃𝑆
𝑚

1 − 𝜃𝑆
𝑚                                                (3.75) 

From (3.70) we can finally obtain the bulk modulus of a monoporous nonlinear 

viscous material as 

𝜓 =
4

9
[
1 − 𝜃𝑆

𝑚

𝑚𝜃𝑆
𝑚 (1 − 𝜃𝑆)

𝑚−1
2 ]

2
𝑚+1

                                  (3.76) 

A first, immediate, verification of the outcome’s reliability is, again, conducted by 

imposing 𝑚 = 1 and noticing that the solution collapses to a classic result of the theory of 

sintering, individuated by Mackenzie and Shuttleworth for a linear viscous material.
113, 114

   

It is also interesting to compare this formulation of 𝜓 with others from the literature 

for the creep of crystalline materials containing isolated spherical voids. The main models are 
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the ones theorized by Sofronis and McMeeking, who individuated both bulk and shear 

modulus starting from their definitions of stress and strain potentials, in turn obtained via 

finite-element methods applied to the collapse of an isolated pore in a nonlinear viscous 

medium,
155

 and Geindreau and Bouvard, who also worked in the nonlinear framework but 

employed a semi-experimental approach.
160

  

Figure 3.10 compares these two models with our results and with the more general 

Skorokhod’s expression, which is relative to the linear viscous case and is derived by means 

of the elasticity analogy and the differential self-consistent approach.
113

 All the three 

formulations are given in the following Table 3.1.  

Another important aspect is that the derived 𝜓 respects the expected trends when the 

porosity fraction reaches 0% and 100%. In case of absence of porosity, the material becomes 

incompressible, and therefore the bulk modulus tends to infinity. Obviously, the opposite case 

translates in the bulk modulus tending asymptotically to zero (infinite compressibility due to 

the “disappearance” of the material). 

 

Table 3.1 – Expressions of normalized bulk modulus of a monoporous material compared in 

Figure 3.10. 

 

 Present Work Skorokhod 

𝜓 [(
2

3
)
𝑚 (1 − 𝜃𝑆)

(𝑚−1)/2(1 − 𝜃𝑆
𝑚)

𝑚𝜃𝑆
𝑚 ]

2
(𝑚+1)

 
2(1 − 𝜃𝑆)

3

3𝜃𝑆
 

 

 
Geindreau, Doremus and Bouvard Sofronis and Mcmeeking 

𝜓 0.601(
0.43 − 𝜃𝑆

𝜃𝑆
)
1.168

 
4

9
[
3(1 − 𝜃𝑆

𝑚)

𝑚𝜃𝑆
𝑚 ]

2
(𝑚+1)
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Figure 3.10 – Normalized bulk modulus expressions for monoporous materials and different 

values of the strain-rate sensitivity parameter. 
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We now shift again our attention to the main issue of this part of our optimization 

study, namely hierarchical porous structures. We need to individuate 𝛹, the macroscopic 

normalized bulk modulus of a nonlinear viscous material containing agglomerates, and 

consequently two distinct porosity sizes. The importance of this parameter, together with its 

shear counterpart, does not only lie in the sake of completeness of our modeling framework. 

One has to keep in mind that our final aim is optimizing spark plasma sintering efficiency, and 

in this chapter we are attempting to do so by improving the temperature regime to which a 

biporous specimen is subjected. Having the thermal route a direct influence on the variations 

of strain-rate sensitivity 𝑚, when we find fundamental material properties, such as the bulk 

and shear moduli, as a function of this 𝑚 (together with porosities) we are empowering our 

model with the possibility of predicting the indirect effects of temperature on these mechanical 

properties too, without even involving the kinetics equations, as Section 3.2 will show.   

Analogously to what seen in the preceding sections, a hierarchical porous structure is 

successfully reproduced by a domain constituted by a porous spherical shell surrounded a 

concentric large void of much larger size. Therefore we are again employing the domain 

sketched in Figure 3.6, and considering it from a macroscopic perspective, as done in every 

case for the sintering stress and bulk modulus analyses.  

Recalling that the macroscopic shrinkage rate results to be 

𝐻̇ =
𝜃̇

1 − 𝜃
=

𝜃̇

(1 − 𝜃𝑆)(1 − 𝜃𝐿)
=

𝜃̇𝑆
(1 − 𝜃𝑆)

(1 + 3𝑘𝜃𝐿
𝜓

𝜑
)                    (3.66) 

and that equation (3.61) for the macroscopic viewpoint is expressed as 

𝑃 − 𝑃𝐿 = 𝐴𝑚𝑊
𝑚−1𝛹𝐻̇ =

𝐴𝑚𝐻̇
𝑚

(1 − 𝜃)
𝑚−1
2

𝛹
𝑚+1
2                                   (3.67) 
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The individuation of the “biporous” bulk modulus immediately follows from 

imposing 𝑃𝐿 = 0 and performing the necessary substitutions, so that we finally get 

𝛹 =  𝜓
(1 − 𝜃𝐿)

𝑚−1
𝑚+1

(1 − 3𝑘𝜃𝐿
𝜓
𝜑)

2𝑚
𝑚+1

                                                    (3.77) 

The choice of not substituting the “monoporous” 𝜓 with its proper expression was 

aiming at simply checking that the agglomeration-inclusive case collapses to the one without 

any hierarchy of the pore structure, and, indeed, when 𝜃𝐿 = 0 we see immediately that 𝛹 = 𝜓. 

We also have an explicit dependence on a parameter that has not been derived yet: the 

shear modulus for a monoporous nonlinear viscous material, 𝜑, which is the object of the 

following section.  

Recall that, at the end of section 3.1.3, we had left the global (macroscopic for a 

biporous domain) sintering stress as a generic function of this 𝛹 whose calculation we have 

just finished to accomplish. We repeat it here for convenience 

𝑃𝐿 =
𝐴𝑚𝛹

𝑚+1
2

(1 − 𝜃)
𝑚−1
2

𝜃̇𝑆
(1 − 𝜃𝑆)

(1 + 3𝑘𝜃𝐿
𝜓

𝜑
)                                    (3.69) 

Now we can replace 𝜃̇𝑆 and 𝛹 with their respective expressions, until we obtain 

𝑃𝐿 =
𝑃𝐿𝑆

1 − 2𝑘𝜃𝐿
(6𝑘2𝜃𝐿

2𝜓

𝜑
+ 1)

1−𝑚
2
                                        (3.78) 

The decision of not replacing 𝑃𝐿𝑆 with its own formulation is motivated by the same 

considerations made for 𝛹 and 𝜓. Here too we find that 𝑃𝐿 = 𝑃𝐿𝑆 if 𝜃𝐿 = 0.  

For the linear viscous biporous case, on the other hand, we obtain that 

𝑃𝐿 =
𝑃𝐿𝑆

1 − 2𝑘𝜃𝐿
                                                             (3.79) 
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Before we proceed to the analogous derivations for the shear modulus, some further 

refinements of our results can be made.
220

   

Derivations based on the domain depicted in Figure 3.6 are representative of the 

material surrounding a void in a medium that contains isolated pores, such that the influence 

of the neighboring voids can be considered negligible. This is the so-called dilute case, and its 

applicability is limited to amounts of porosity below 5-10%, while typical initial values of 

porosity for any sintering process are around 35-40% volume fractions. The dilute case is 

appropriate only for the last stage of sintering, when the open porosity (interconnected net of 

voids communicating with the specimen’s external surface) has disappeared and we are left 

with closed porosity only. Thus, some extra steps are required in order to guarantee the 

applicability of our model to domains containing arbitrary amounts of porosity, and therefore 

at the entirety of the SPS process.  

We choose to proceed to this type of refinement only for the monoporous case, 

because of practical reasons when it comes to actual experimental procedures. Typically, the 

values of initial small size porosity range between 30-40% of the sample’s volume, while 

large inter-agglomerates voids do not usually occupy more that 10% of the volume. The dilute 

case is thus still considered suitable for the treatment of large pores.  

For the analysis of non-dilute monoporous cases, we will employ a first-order iterative 

procedure consisting in the following steps. We will start with the generic expression of the 

sintering stress proposed by Skorokhod, based on energy considerations and thus independent 

of the skeleton rheology, and at the same time valid for arbitrary values of pores content. By 

means of this expression and the sintering constitutive equation, opportunely written, we will 

obtain the normalized bulk modulus of the porous material, as a function of porosity and 

strain-rate sensitivity, which in turn will be including the effects of the surrounding pores on 

our domain. Finally, thanks to this “macroscopic” (non-dilute) form of the bulk modulus, and 
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by means of the above-mentioned dissipation potentials and the Hill’s identity correlating 

them, we will derive the sintering stress for a porous medium characterized by a nonlinear 

viscous rheology of the skeleton and an arbitrary volume fraction occupied by voids. 

The expressions that we will use have already been introduced in the present and 

previous sections, but will be here reported for the reader’s convenience.  

The starting point of the iterative procedure is a zero order approximation of the 

sintering stress as theorized by Skorokhod, formula (3.50): 

𝑃𝐿𝑆 = 𝑃𝐿0𝑆(1 − 𝜃𝑆)
2                                                     (3.50) 

which has the advantage of being applicable to non-dilute cases, but does not take into account 

the influence of strain-rate sensitivity. 

We also know that, directly from the sintering constitutive equation in absence of 

external loads, we have 

𝑃𝐿𝑆 = 𝐴𝑚𝑊
𝑚−1𝜓|𝑒̇|                                                      (3.61) 

which becomes 

𝑃𝐿𝑆 = 𝐴𝑚(1 − 𝜃𝑆)
1−𝑚
2 𝜓

𝑚+1
2 |𝑒̇|𝑚                                        (3.80) 

This is the relationship that we use for the first step of our iterative procedure. Given 

𝑃𝐿𝑆 from (3.50) and 𝑒̇ from (3.75), here reported 

𝑒̇𝑚 = (
3

2
)
𝑚𝑚𝑃𝑒𝑥𝑡

𝐴𝑚

𝜃𝑆
𝑚

1 − 𝜃𝑆
𝑚                                                 (3.75) 

we obtain an expression for the normalized bulk modulus of a material containing an arbitrary 

amount of voids that takes into account the skeleton’s rheology, as 

𝜓 = [(
2

3
)
𝑚 (1 − 𝜃𝑆)

(𝑚+3)/2(1 − 𝜃𝑆
𝑚)

𝑚𝜃𝑆
𝑚 ]

2
(𝑚+1)

                               (3.81) 
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where the effects of the overall material’s compressibility due to the fact that our Figure 3.9 

unit cell is surrounded by a porous medium, are provided by utilizing the Skorokhod’s 

expression as zero-order approximation of the sintering stress. 

It is worth pointing out that if we consider the linear case, by imposing  𝑚 = 1, this 

expression for the bulk modulus is reduced to the one individuated by Skorokhod for a linear 

viscous material, even if through a different derivation path. 

Figure 3.11 compares the dilute expression obtained above (3.76) with this non-dilute 

one (3.81). As expected, the non-dilute case predicts values of bulk modulus lower than in the 

dilute case, since the latter does not take into account the effects of the neighboring pores. 

This distinction is particularly noticeable for porosity values ranging between 10% and 50%, 

which are the typical amounts present in a sintering specimen before the final (closed 

porosity) stage is reached.  

 

 

Figure 3.11 – Comparison between dilute and non-dilute normalized bulk modulus 

expressions. 
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For the second step of the iterative procedure, we employ the Hill’s identity
113, 221

 

𝐷 = (1 − 𝜃𝑆) < 𝐷𝑆 >                                                    (3.55) 

Where the term on the left-hand side, D, i.e. the dissipation potential for the entire porous 

domain, results from the combination of (3.59) and (3.62), as 

𝐷 =
𝐴𝑚
𝑚 + 1

(1 − 𝜃𝑆) (
𝑃𝐿

𝐴𝑚√𝜓(1 − 𝜃𝑆)
)

𝑚+1
𝑚

                                  (3.82) 

and for the right-hand side we need the previously calculated expression of dissipation 

potential for the solid shell only, which is 

< 𝐷𝑆 >=
𝐴𝑚𝐴𝑛

𝑚+1

𝑚(𝑚 + 1)
[(
3

2
)

𝑚+2
2
𝑚𝑃𝐿0𝑆]

𝑚+1
𝑚

𝑟𝑠𝑝
3

(1 − 𝜃𝑆)(𝑟𝑠𝑑
3𝑚 − 𝑟𝑠𝑝

3𝑚)
1
𝑚

                (3.58) 

The substitution of (3.82) and (3.58) in (3.55) leads to a simple expression for 𝑃𝐿𝑆, as 

follows 

𝑃𝐿𝑆 = 𝑃𝐿0𝑆(1 − 𝜃𝑆)
2/(𝑚+1)                                               (3.83) 

Note that if we impose 𝑚 = 1 we immediately verify that this newly derived 

expression results to be coincident with the Olevsky-Molinari outcome for the linear viscous 

case.
170

 

To the best of our knowledge, this is the first sintering stress expression that includes 

a dependence on the strain-rate sensitivity parameter, and furthermore is applicable to 

arbitrary amounts of porosity.  

As pointed out above, the increasingly widespread use of nanosized powders has 

imposed to acknowledge the importance of role played by the sintering stress during 

densification. In this context, the classic results derived for a material characterized by a linear 

viscous rheology become too rough of an approximation. The dependence on the strain-rate 

sensitivity allows for a direct connection between the driving force of sintering and the 
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mechanism underlying the creep phenomena that are responsible for densification during hot 

deformation of crystalline materials. Furthermore, the proposed expression for sintering stress 

is also applicable to powder compacts containing arbitrary amounts of pores, which for 

sintering typically range between volume fractions of 0 and 40%, thanks to how our iterative 

derivation procedure was organized. Most commonly, the studies of sintering parameters in a 

nonlinear framework are limited to the dilute case, and are therefore applicable only to the 

final stages of sintering, when porosity is lower than 10%, or require complex averaging 

procedures to move from this local scale to a macroscopic solution.
222–225

 All the above 

considerations apply to the normalized bulk modulus too, for which certain models have been 

proposed in the literature, but again mainly valid for small porosity amounts only.
155

 

Figure 3.12 and Table 3.2 provide comparison plots of our model with other cases 

present in the literature (Table 1). Figure 3.12 compares the 𝜓 that we have derived with 

expressions obtained by other authors through different procedures, for various values of  𝑚. 

We plot the same expressions proposed by Skorokhod, Sofronis and McMeeking, and 

Geindreau and Bouvard,
113,155,160

 and additionally the work of Ponte Castaneda and Willis. The 

latter is the most interesting comparison, since they used variational principles to obtain a non-

dilute (self-consistent approximation) and strain-rate sensitivity-dependent expression of the 

bulk modulus.
223

 Indeed, the two respective curves are remarkably close to each other. It is 

interesting to notice that the main distinction between our result and the one by Sofronis and 

McMeeking consists in the factor (1 − 𝜃)(𝑚+3)/2, which arises from our iterative approach 

and is responsible for the generalization from local to macroscopic case. We can see that the 

work by Sofronis and McMeeking overestimates the bulk modulus with respect to the present 

case, in accordance with the fact that the former neglects the influence of neighboring pores, 

while we include it in our treatment. As expected, as 𝑚 approaches 1, the curve relative to the 

present work gets closer to the one relative to Skorokhod’s result.  
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Figure 3.13 and Table 3.3 present the analogous comparison for𝑃𝐿𝑆, again for several 

values of strain-rate sensitivity. In Figure 3.13 we can see that the present solution is located 

in between the models of Skorokhod and Olevsky and Molinari, approaching the former when 

𝑚 tends to 0 and the latter 𝑚 goes to 1. Scherer proposed a microstructural model for the 

linear viscous case,
226

  while Bouvard and McMeeking focused on the early stages of sintering 

by analyzing inter-particle necks evolution during diffusion-controlled creep.
227 

 

Table 3.2 – Expressions of normalized bulk modulus of a monoporous material compared in 

Figure 3.12. 

 

 Present Work Skorokhod Sofronis and Mcmeeking 

𝜓 [(
2

3
)
𝑚 (1 − 𝜃𝑆)

(𝑚+3)/2(1 − 𝜃𝑆
𝑚)

𝑚𝜃𝑆
𝑚 ]

2
(𝑚+1)

 
2(1 − 𝜃𝑆)

3

3𝜃𝑆
 

4

9
[
3(1 − 𝜃𝑆

𝑚)

𝑚𝜃𝑆
𝑚 ]

2
(𝑚+1)

 

 

 
Geindreau, Doremus and Bouvard Ponte Castaneda and Willis 

𝜓 0.601(
0.43 − 𝜃𝑆

𝜃𝑆
)
1.168

 
(𝑚 + 1)(1 − 𝜃𝑆)

2−𝑚

2𝜃𝑆
(
1 − 2𝜃𝑆
1 − 𝜃𝑆/3

)
𝑚

 

 

 

Table 3.3 – Expressions of normalized sintering stress of a monoporous material compared in 

Figure 3.13. 

 

 Present Work Skorokhod 

Olevsky 

and 

Molinari 

Scherer 

Bouvard 

and 

Mcmeeking 

𝑃𝐿
𝑃𝐿0

 (1 − 𝜃𝑆)
2

(𝑚+1) (1 − 𝜃𝑆)
2 (1 − 𝜃𝑆) 

√(1 − 𝜃𝑆)/[𝜋(1 + 2𝜃𝑆)]

(√[𝜋(1 + 2𝜃𝑆)]/(1 − 𝜃𝑆) − 8√2/(3𝜋))
2/3

 (1 − 𝜃𝑆)
5
3 
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Figure 3.12 – Non-dilute normalized bulk modulus expressions for monoporous materials and 

different values of the strain-rate sensitivity parameter. 
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Figure 3.13 - Normalized sintering stress expressions for monoporous materials and  

different values of the strain-rate sensitivity parameter. 
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Finally, we can derive the evolution equation for the time evolution of small size 

porosity, combining (3.75), (3.80), (3.81), (3.83) and remembering the definition of 

normalized sintering time (3.42), as 

𝑑𝜃𝑆
𝑑𝑡𝑠

=
3

2
(

𝑚

1 − 𝜃𝑆
𝑚)

1/𝑚

𝜃𝑆(1 − 𝜃𝑆)
(𝑚−1)/(𝑚+1)                                  (3.84) 

Note that this expression differs from the result obtained by Wilkinson and Ashby
152

 

(developed for hot isostatic pressing but also applicable to the free sintering case) only for the 

power of the factor (1 − 𝜃𝑆), which therefore represents the extension from the local solution 

to the non-dilute case. Figure 3.14 shows how this model fits experimental data relative to 

alumina processing. We considered free sintering of two different powder sizes of alumina, 

300 and 25 nm, and, since such sizes are small enough to render the sintering stress 

contribution significant also when external loads of several MPa are applied, we also added 

data of sinter-forging with a 0.3 MPa load.
228–230

  

 
 

Figure 3.14 - Comparison of the densification kinetics model with experiments for alumina 

powder of different sizes. 
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By plotting the densification curve in function of the normalized time we are allowed 

to compare different powder sizes and temperature regimes, since their influence is embedded 

in the specific sintering time definition itself.  

The choice of alumina was based on the large availability of sintering data in the 

literature, and on its consequent well-known material properties, even though often such 

values are not assessed.  

Equation (3.84) results to be a useful tool in this sense, most interestingly for the 

individuation of a first estimation of the strain-rate sensitivity parameter. By comparing 

equation (3.84) with experimental data obtained by means of procedures which fall into the 

field of applicability of the present study, one can thus infer the mechanism underlying the 

densification process, case by case, by simply looking at the value of the strain-rate sensitivity 

parameter that provides the best fit.  

The proposed iterative procedure is a useful and practical substitution of 

homogeneization techniques for the study of average mechanical properties of non-uniform 

materials.  

Expressions (3.81) and (3.83) can be used instead of (3.76) and (3.63) for bulk 

modulus and sintering stress of materials with significant amounts of initial small-size intra-

agglomerate porosity. Such an alteration is usually not necessary for the large inter-

agglomerate pores, since the sample’s volume fractions that they occupy is typically less than 

10%, thus allowing assuming them to be isolated from each other.  
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3.1.5 Shear modulus of homogeneous and hierarchical porous structures with nonlinear  

         viscous constitutive behavior 

 

The shear modulus of a material expresses its resistance to any change of shape 

attempt. As for the bulk modulus case, when the material presents internal voids, the shear 

modulus will become dependent on porosity, together with the intrinsic properties of the 

material constituting the skeleton.  

A treatment of the shear modulus analysis with a procedure that follows similar steps 

to what employed for sintering stress and bulk modulus, namely the individuation of a suitable 

simple domain and the application of opportune loading conditions, does not apply as 

smoothly to the present case. The reason for this is individuated in the definition of the 

equivalent strain rate 𝑊, here repeated for convenience of exposition. 

For the analysis of a non-agglomerated domain (monoporous) we need to utilize the 

expression involving only the small size porosity  

𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑟 = √
𝜓𝑒̇2 + 𝜑𝛾̇2

1 − 𝜃𝑆
                                                  (3.11) 

For a medium containing hierarchical porous structures, we have to consider the 

overall porosity and the corresponding invariants, in this form 

𝑊𝑏𝑖𝑝𝑜𝑟 = √
𝛹𝐸̇2 +𝛷𝛤̇2

1 − 𝜃
                                                   (3.85) 

In both cases, a “macroscopic” point of view has to be adopted. This means that the 

equivalent strain rate would be calculated for the entire domain, inclusive of the central void, 

which in the first case represents the small size porosity, while in the second case is the 

schematic of the large size one.  
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The advantage of this type of problem formulation in the sintering stress and bulk 

modulus contexts lied into the loading conditions that we imposed. By choosing an hydrostatic 

compression of a sphere, we were automatically eliminating the change of shape term (𝛾̇ or 

𝛤̇), and consequently decoupling the bulk modulus derivation from the shear modulus one.  

This is not possible here, and this limitation does not only render the problem more 

complex to solve. It also raises another issue due to the “macroscopic” viewpoint that we need 

to adopt when using a single-pore domain to reproduce the behavior of a medium endowed 

with an abundance of these pores and treat it as a continuum. The issue we refer to is the 

macroscopic expression of the second strain rate invariant. For the first strain rate invariant, 

we have the indissolubility equation (or conservation of mass) – (3.33) and (3.64) – that offers 

the possibility of immediately obtaining an expression that does not only apply to the dense 

material, but includes the pores too. An analogous resource is not available for the second 

invariant. This can be made clearer by considering the now well-known domain utilized for 

the determination of the properties of a monoporous material: a fully dense spherical layer 

surrounding a concentric hole (Figure 3.9). For this same domain, two perspectives have been 

adopted. We have solved the boundary value problem relative to the bulk material only 

(following Finnie and Ashby),
148, 152

 focusing in particular on the radial velocity and the radial 

and tangential strain rates. The shell is in itself incompressible, which implies that the strain 

rate tensor trace for the sole shell is equal to zero. At the same time, the second strain rate 

invariant is of immediate individuation by plugging the calculated strain rates in its definition. 

On the other hand, we have also looked at the hollow sphere as a whole. In this latter situation, 

the first strain rate invariant is not zero anymore, since it is defined by the indissolubility 

equation as a function of the porosity, with this porosity being the internal void. A global 

definition of the second strain rate invariant consists in noting that in these hydrostatic loading 

conditions it is equal to zero. One needs to understand that mixing the two perspectives would 
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mean basing our derivations on contradictory premises and obviously leads to erroneous 

results.  

Some possible alternative options can be proposed. One needs first of all to change the 

study domain. A good alternative is identified in a hollow cylinder, even if such choice 

implies that we are shifting our attention from closed porosity to open porosity. This 

distinction goes back to the initial developments in the science of sintering, and refers to the 

voids interconnections within a powder specimen. As mentioned before, by open porosity we 

indicate the interconnected network of voids typical of green compacts and of the sample 

during the first stages of sintering. By closed porosity we mean the isolated pores, with no 

outlet on the external surface, that are inside the specimen during the final stages of 

densification, typically after 92% relative density has been reached. In the entirety of this 

work, the SPS optimization efficiency is based on this latter type of porosity (we will also see 

in Chapter 4 how we will focus our attention on the holding time step of the SPS route even 

when analyzing spatial temperature distributions). This is because in the stages in which open 

porosity is predominant, the main phenomenon associated with the sintering process is a 

material rearrangement that leads to the formation of necks and consequently to a global 

strengthening of the specimen. The shrinkage, on the other hand, occurs during the final 

stages, which is when closed porosity is the major component of the voids fraction in the 

sample.  

However, even hypothesizing that using an open porosity schematic is an acceptable 

approximation for the individuation of the normalized shear modulus, the hollow cylinder 

domain presents further issues. In order to explain these additional aspects, let us consider the 

simpler fully dense cylindrical shell with an internal concentric cavity, instead of a biporous 

medium. We have pointed out how an optimal choice of the loading schematics plays a crucial 

role in the following derivations. For a fully dense cylindrical shell, as in the bulk spherical 
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layer case, the first step of the analysis consists in solving the associated boundary value 

problem in order to get velocities and strain rates. The solution of a power-law creep problem 

is not immediate for any system. The ones that can be obtained analytically are generally 

present in the literature, for instance in the same Finnie’s publication that we cited for the 

sphere.
148

 For a hollow cylinder, solutions have been reported for a radially loaded thin shell, 

not applicable here, or for a thick shell that is infinitely long in the axial direction 

(alternatively, a hollow cylinder constrained in the axial direction, since the advantageous 

condition here is the absence of axial strain), still radially loaded. This second one is not 

suitable to our study either, because in the case of infinitely long cylinder we are essentially 

simulating an absence of shape change again. Even with the axial constraint option, which 

leads to an aspect ratio change, once we have eliminated the central hole by means of radial 

compression, no further change of shape is allowed anymore, while in the general case a fully 

dense material can still be deformed as long as such deformation does not require a volume 

change. We have therefore implemented a specific case which fails to be generalized to more 

complex or realistic cases. The proof of that is found in the fact that such a solution provides a 

𝜑 that tends to infinity when 𝜃𝑆 goes towards zero (as in the bulk modulus case), while one of 

the limit conditions that the shear modulus has to satisfy is being equal to one for a fully dense 

material:  

𝜑(𝜃𝑆 = 0) = 1                                                            (3.86) 

𝛷(𝜃 = 0) = 1                                                             (3.87) 

The limit condition for porosity tending to 100% is, and in the bulk modulus case, 𝜑  

and 𝛷 approaching zero. We would therefore need to solve the power-law creep problem for a 

non-axially fixed thick and fully dense hollow cylinder, either loaded with a radial or a 

uniaxial pressure, but this case is not of immediate analytical solution and needs to be 

addressed numerically. Employing a numerical strain rates solution for the subsequent 
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derivation of our shear modulus fails to satisfy the analytical basis of this part of our study 

(with the only, smaller, exception of the final steps of the porosities kinetics calculations in 

3.1.2), and such option is therefore discarded.  

Possible alternatives that are still based on the resolution of an opportunely tuned 

creep boundary value problem can be suggested. An option is averaging the second strain rate 

invariant (𝛾̇ or 𝛤̇) over the entire volume of the domain, including the central hole, and then 

opportunely multiplying by the volume fraction they refer to, (1 − 𝜃𝑆) or (1 − 𝜃), 

respectively. Another option can be assuming a pure change of shape, without any shrinkage, 

deformation, in which both the shell and the internal void change their aspect ratio without 

causing any change in volume. Both these ideas can be the starting point of future work. 

We will temporarily put them on a side for the sake of individuating the normalized 

shear modulus by using a strategy that requires less elaborated calculations. We will perform a 

hybrid experimental and analytical derivation. 

It consists in the association of the continuum theory of sintering equations with a 

wide experimental campaign. Such campaign led to the proposal of an expression for the ratio 

of the yield stresses of a porous and a dense material, which has proven to be applicable to any 

powder material system constituted by spherical particles behaving visco-plastically.  

The experimental results on which this approach relies are reported by Geindreau et 

al.
159,160

 They collected a large amount of data from previous works and added them to their 

own (relative to a lead powder), in order to obtain relationships that were generic enough to be 

applied to any spherical powder system. Their work is also aiming at proposing a constitutive 

model for the sintering of powders with the assistance of an external pressure. They, 

specifically, focus on the hot forming of metal powders, since at the time field-assisted 

sintering techniques were not fully developed yet. Even though our study wants to be 

applicable to both metals and ceramics and focuses on the more innovative spark plasma 
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sintering technologies, the premises of Geindreau’s analysis render their outcomes suitable in 

the present context too. The section we are interested in for the individuation of the shear 

modulus is the one in which they analyze all the collected data on the uniaxial hot pressing of 

a variety of materials, and interpolate them with a suitable expression that gives the ratio 

between the flow stress of a porous material and its porous counterpart. The selection of a 

uniaxial compression as loading schematics is in line with what explained above in terms of 

opportunity of domain and boundary conditions settings when investigating on the shear 

modulus. Their domain was nonlinear viscous and monoporous. 

The experimental fitting of this ratio leads to an expression which is only function of 

relative density. We here propose a first order approximation of the formula present in their 

publication, after having assessed that the change ingenerated by this simplification is 

negligible. We also substitute relative density with porosity, in order to be consistent with the 

notations used in the rest of our derivations. We call the ratio 𝑠(𝜃), defined as 

𝑠(𝜃) =
𝜎𝑧𝑓(𝜃)

𝜎𝑧𝑓(𝜃 = 0)
= 1 − [1 +

3

4
(1 − 𝜃)]√𝜃                                (3.88) 

where 𝜎𝑧𝑓(𝜃)is the flow stress of specimen with porosity 𝜃 and 𝜎𝑧𝑓(𝜃 = 0) is the flow stress 

of a fully dense specimen at the same strain rate. Figure 3.15, borrowed from Geindreau’s 

publication, shows the plot of 𝑠 as a function of relative density. Equation (5) in the figure 

corresponds to our (3.88). 

We now show where the role of 𝑠 comes into play for the shear modulus derivation.  

The first step consists in taking the constitutive equations of the continuum theory of 

sintering and rewriting them to express strain rates as functions of stresses. We obtain 

𝜀𝑖̇𝑗 = 𝐴𝑛𝜎(𝑊)
𝑛−1
2 (

1

𝜑
𝜎′𝑖𝑗 +

1

𝜓
𝜎𝑘𝑘𝛿𝑖𝑗)                                    (3.89) 
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with 𝜎′𝑖𝑗 being the deviatoric part of the stress tensor (Pa). Notice that we have used 𝐴𝑛 and 𝑛 

because of clarity of notations. Recall that they can both be immediately connected to their 

“𝑚” counterparts as 𝐴𝑛 = 𝐴𝑚
−𝑛 and 𝑛 = 1/𝑚.  

 

 

Figure 3.15 – Plot of the function s as a function of relative density with the corresponding 

experimental data. (Geindreau and Bouvard, Eur. J. Mech.,1998) 

 

The equivalent stress, instead of as a function of 𝑊, can also be written as 

𝜎(𝑊) =
√

𝑝2

𝜓⁄ + 𝜏
2
𝜑⁄

1 − 𝜃
                                                  (3.90) 

where 𝑝 and 𝜏 are the first and second stress tensor invariants (Pa), respectively, and 𝜃 here 

means a generic porosity, which we will take care of specifying (small size, large size or 

global) later.  

In uniaxial compression we find that the equivalent stress becomes 

𝜎(𝑊) = 𝜎𝑧
√
1
𝜓⁄ + 1 𝜑⁄

1 − 𝜃
                                                 (3.91) 
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and the axial strain rate component is given by 

𝜀𝑧̇ = 𝐴𝑛 (𝜎𝑧
√
1
𝜓⁄ + 1 𝜑⁄

1 − 𝜃
)

𝑛

√(1 𝜓⁄ + 1 𝜑⁄ ) (1 − 𝜃)                        (3.92) 

It is here that the function 𝑠(𝜃) is needed. Considering that the applied load 𝜎𝑧 is the 

flow stress of our porous specimen, and recalling the definition of 𝑠(𝜃), the axial strain rate 

can be expressed in the following form 

𝜀𝑧̇ = 𝐴𝑛 (
𝜎𝑧
𝑠
)
𝑛

                                                          (3.93) 

By equating (3.87) and (3.88), we ultimately obtain 

1

𝜓
+
1

𝜑
= [𝑠−2𝑛(1 − 𝜃)𝑛−1]

1
𝑛+1                                             (3.94) 

which, in terms of the strain-rate sensitivity m, becomes 

1

𝜓
+
1

𝜑
= [

(1 − 𝜃)1−𝑚

𝑠2
]

1
1+𝑚

                                                (3.95) 

We now restore the distinction between homogeneous and agglomerated porous 

structures. We also introduce apposite subscripts for the two moduli, remarking that the 

following outcomes are partially dependent on experimental results. 

For a monoporous (homogeneous) domain, recalling that when considering only one 

size of porosity we are associating it with the small size type, we have 

1

𝜓
+

1

𝜑𝑒𝑥𝑝
= [

(1 − 𝜃𝑆)
1−𝑚

𝑠2
]

1
1+𝑚

                                           (3.96) 

from which we derive the normalized shear modulus for a monoporous nonlinear viscous 

specimen as 

𝜑𝑒𝑥𝑝 =
1

{[
(1 − 𝜃𝑆)

1−𝑚

𝑠2
]

1
1+𝑚

−
1
𝜓}

                                         (3.97) 
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which becomes 

𝜑𝑒𝑥𝑝 = (1 − 𝜃𝑆)
1−𝑚
1+𝑚 {[1 −

√𝜃𝑆
4
(7 − 3𝜃𝑆)]

−2
𝑚+1

−
9

4
(
𝑚𝜃𝑆

𝑚

1 − 𝜃𝑆
𝑚)

2
𝑚+1

}      (3.98) 

 

The graphs in Figure 3.16 compare the semi-experimentally developed formulation of 

𝜑 with the ones proposed by Skorokhod,
113

 Sofronis and McMeeking,
155

 and Geindreau and 

Bouvard.
160

 The latter used our same source of experimental data but with a different model 

for the creep of a porous medium. All the three formulations are given in the following Table 

3.4. 

 

Table 3.4 – Expressions of normalized shear modulus of a monoporous material compared in 

Figure 3.16 

 

 Present Work Skorokhod 

𝜑 (1 − 𝜃𝑆)
1−𝑚
1+𝑚 {[1 −

√𝜃𝑆
4
(7 − 3𝜃𝑆)]

−2
𝑚+1

−
9

4
(
𝑚𝜃𝑆

𝑚

1 − 𝜃𝑆
𝑚)

2
𝑚+1

} (1 − 𝜃𝑆)
2 

 Sofronis and McMeeking Geindreau and Bouvard 

𝜑 [
1 − 𝜃𝑆
1 + 𝜃𝑆

]

2
1+𝑚

 [1 + 21.5 (
𝜃𝑆

0.43 − 𝜃𝑆
)
1.25

]

−1
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Figure 3.16 – Normalized shear modulus expressions for monoporous materials and  

different values of the strain-rate sensitivity parameter. 
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An important verification concerns the limits mentioned above that this function needs 

to respect when porosity disappears or tends to 100%. For a dense material we have that the 

shear modulus equals zero, while it asymptotically goes to zero when the voids volume 

fraction increases towards a value of 1, because of the same reasons explained in the context 

of the bulk modulus investigation.  

It is interesting to notice that here, having used experimental results for the derivation, 

our shear modulus reaches zero before porosity approaches 100%. This trend also appears in 

the same Geindreau’s study, for both bulk and shear moduli (see Figure 3.12). 

Analogously to the monoporous case, for the biporous (hierarchical) one, having the 

material the same rheology, we obtain 

𝛷𝑒𝑥𝑝 =
1

{[
(1 − 𝜃)1−𝑚

𝑠2
]

1
1+𝑚

−
1
𝛹}

                                          (3.99) 

which can also be expressed as a function of porosities only, but we will keep this more 

compact formulation for now, so that it is immediate to see that when the large size porosity 

tends to zero 𝛷𝑒𝑥𝑝 reduces to 𝜑𝑒𝑥𝑝. 

The derivation of the necessary parameters is now complete. Future work will consist 

in analyzing more in depth the macroscopic expressions, in which for now the dependence on 

the monoporous parameters has been left explicit in order to verify that the two versions 

coincide when large size porosity vanishes. The numerical study in the following section will 

indeed be based on the macroscopic expressions of bulk modulus, shear modulus and sintering 

stress.  A purely analytical derivation of the shear modulus can also be attempted, according to 

the guidelines suggested at the beginning of this section.  
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3.2 Optimization of the material structure based on strain-rate sensitivity 

 

3.2.1 Strain-rate sensitivity and temperature 

 

With the completion of the kinetics and mechanical properties analysis, we have 

concluded the definition of the analytical modeling framework for the study of a nonlinear 

viscous material presenting a hierarchical porous structure. We can now proceed to the 

optimization stage.  

The proposed optimization strategy relies on the connection between powder 

material’s rheology and temperature. Since all the derived expressions depend on strain-rate 

sensitivity, we can aim at equating (or regulating) the shrinkage rates of small and large pores 

by selecting the optimal degree of nonlinearity (strain-rate sensitivity value). The degree of 

nonlinearity is, in turn, controlled by temperature, and thus an aware choice of SPS thermal 

routine can lead to improved control of the material structure evolution during processing. 

 It has been anticipated in the introductory comments that the strain-rate sensitivity is 

an as fundamental as unexplored parameter for the study of powder processing at elevated 

temperatures. We have also underlined how its value provides an indication of the order of 

nonlinearity characterizing the constitutive behavior of a material, and therefore of the creep 

mechanism that the material is undergoing during the hot deformation. The physical meaning 

of the interconnection between strain-rate sensitivity and thermal conditions lies in the 

mechanisms underlying plastic deformation at high temperatures. Creep consists in 

temperature-enhanced permanent material deformation, which, as any plastic strain formation, 

proceeds through dislocations generation and motion. At high temperatures, diffusion 

phenomena are present and start interacting with such dislocation movement. Therefore, 

depending on the temperature level, such interactions will be of different entity and level, and 
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thus influence mesoscopic and macroscopic deformation i a variety of fashions. A few 

guidelines have been empirically drawn:
231, 232

 

 For 𝑚 = 1 (𝑛 = 1) we have Nabarro-Herring creep, a transport of matter by 

diffusion through the grain lattice, which sometimes specializes into the Coble 

creep, characterized by diffusion through the grain boundaries; 

 For 𝑚 = 0.5 (𝑛 = 2) we have grain-boundary sliding (GBS)-based creep; 

 For 𝑚 = 0.3 (𝑛 = 3) we have dislocation glide-controlled creep;  

 For 𝑚 = 0.2 − 0.25 (𝑛 = 4 − 5) we have dislocation climb-controlled creep;  

 For 𝑚 < 0.1 (𝑛 > 10) we have the creep characterizing dispersion-

strengthened alloys. 

The characteristic of strain-rate sensitivity that interests us the most is its dependence 

on temperature. Such correlation can be found combining analytical considerations with 

experimental data. The literature lacks a comprehensive analysis of how creep phenomena are 

altered when applying different temperatures, but there is the exception of the work of Shuji 

Taira et al.,
233–236

 who investigated on the effects of varying temperatures and loads on the 

high-temperature deformation of steels. Since their considerations are based on the assumption 

that the equation of state for creep holds, their results can be generalized to other material 

systems, provided sufficient experimental data. Their studies are particularly valuable as they 

show how information on creep under varying temperature conditions can be inferred from 

constant temperature data for the same material, and also how the secondary creep stage 

(steady-state) is related to the primary one (transient). These features allow the derivation of 

outcomes on non-constant temperature creep directly from data that are abundant in the 

literature. Such considerations depend on the applicability of the mechanical equation of state. 

Since in our case the creep equation of state is precisely the relation that we use to describe the 
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rheology of the powder materials undergoing consolidation, we can consider Taira’s results 

suitable for our derivations.  

It is also worth mentioning that the experimental analyses under varying temperatures 

were conducted with very high heating rates, a condition which turns out to be particularly 

suitable for the application to the spark plasma sintering case. Such fast temperature changes 

even turned out to be responsible for enhanced creep deformation rates, which could at least 

partially explain the efficiency of SPS in consolidating powder materials.  

Our analytical procedure for the derivation of 𝑚(𝑇) consists in equating two empirical 

expressions for the strain rate during the creep steady state (secondary stage), the one 

proposed by Taira
233

 and the one proposed by Ashby.
217

 

Taira shows that the steady-state creep deformation rate can be written as 

𝜀̇ = (
𝐴𝑛̅𝑛̅

𝐶2
)

1
𝐶1
𝑒𝑥𝑝 (−

𝐾̅

𝐶1𝑇
)                                                 (3.100) 

where 𝐴0 (1/s) and 𝐾̅ (K) are constants that depend on the applied stress, 𝑛̅ is the 

exponent of time in the strain-time relation (𝜀̇ ∝ 𝑡𝑛̅), 𝐶1 and 𝐶2 are material constants (𝐶1 ≅

0.5 and 𝐶2 = 1~6). 

We equate expression (3.100) to the equation of secondary creep as proposed by 

Ashby,
217

 resulting in 

(
𝐴𝑛̅𝑛̅

𝐶2
)

1
𝐶1
𝑒𝑥𝑝 (−

𝐾̅

𝐶1𝑇
)  = 10−6𝑒𝑥𝑝 [−

𝑄𝑃𝐿𝐶
𝑅𝑇𝑚

(
𝑇𝑚
𝑇
− 2)] (

𝜎

𝜎𝑟𝑒𝑓
)

𝑛

             (3.101) 

with 𝑄𝑃𝐿𝐶 being the activation energy for creep (J/mol), 𝑇𝑚 the material’s melting point (K), 

and 𝜎𝑟𝑒𝑓 (Pa) the stress at which a strain rate of 10
-6

 1/s is reached when a temperature equal 

to half the melting point is applied. Note that Ashby’s expression is given in a form such that 

experimental data on the pre-exponential coefficient, 𝐴𝑛 – particularly complicated to obtain – 

are not needed (see paragraph 3.1.1 and expressions (3.2) and (3.29)).  
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We call 𝑎 = (
𝐴0𝑛̅

𝐶2
)

1

𝐶1, 𝑏 =
𝐾

𝐶1
, 𝑐 = 10−6 and 𝑑 =

𝑄𝑃𝐿𝐶

𝑅
, and we rearrange such that 

𝑎

𝑐
𝑒𝑥𝑝 (

𝑑 − 𝑏

𝑇
−
2𝑑

𝑇𝑚
) = (

𝜎

𝜎𝑟𝑒𝑓
)

𝑛

                                        (3.102) 

which, defining 𝑓 =
2𝑑

𝑇𝑚
, can be written as 

𝑙𝑛 (
𝑎

𝑐
) − 𝑓 +

𝑑 − 𝑏

𝑇
= 𝑛 ∙ 𝑙𝑛 (

𝜎

𝜎𝑟𝑒𝑓
)                                      (3.103) 

Rearranging, we obtain 

𝑛 =
𝑔𝑇 + ℎ

𝑇
                                                                (3.104) 

where we have called 𝑔 =
𝑙𝑛(𝑎/𝑐)−𝑓

𝑙𝑛(𝜎/𝜎𝑟𝑒𝑓)
 and ℎ =

𝑑−𝑏

𝑙𝑛(𝜎/𝜎𝑟𝑒𝑓)
. 

Since 𝑛 = 1/𝑚, the strain-rate sensitivity dependence on temperature is then found as 

𝑚 =
𝑇

𝑔𝑇 + ℎ
                                                            (3.105) 

for which the parameters 𝑔 and ℎ depend on the studied materials’ properties and, formally, 

on the applied stress, and can be calculated from data on conventional creep curves. In the 

classic theory of creep, the strain-rate sensitivity should not depend on the applied stress. We 

will show how this still holds, in practice, for expression (3.105). 

The data that need to be plugged into (3.105) can be taken from the broad available 

literature on high-temperature deformation of a variety of materials. More specifically, the 

data for the right-hand side of expression (3.101) – 𝑄𝑃𝐿𝐶, 𝑇𝑚 and 𝜎𝑟𝑒𝑓 – are given in Ashby’s 

HIP Readings 6.0,
217

 while the values of 𝑎 and 𝑏 are easily derived from the interpolation of 

experimental creep results.  

For most materials, creep data are abundant and extremely scattered, because of the 

wide variety of testing conditions, in terms of loading schematics, surrounding atmosphere, 

addition of dopants and grain size. We therefore select the necessary experimental data from 
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sources that operated under testing conditions as close as possible to our SPS cases, namely 

the application of compressive loads, vacuum or inert atmosphere, and suitable material 

compositions. The choice of focusing on compressive loads is also due to our interest in 

ceramic materials, which are complicated to test in tension or bending, and for which the most 

consistent and repeatable results on the secondary creep stage are attained under compression 

conditions.  

We can now plot how strain-rate sensitivity changes with temperature, specifically in 

a range that is reasonable for SPS thermal routines. We provide here some examples for three 

different materials, namely copper, alumina and silicon nitride. Copper and alumina are the 

typical materials – insulating and conductive, respectively – that one selects for the initial 

assessment of sintering theories and models, because of the large amount of data available in 

the literature. Silicon nitride was the object of a comprehensive FEM study of spark plasma 

sintering that will be described in detail in the following chapter. The temperature intervals 

considered on the x-axis are calculated to be 0.5𝑇𝑚 − 0.9𝑇𝑚, since typical sintering 

temperatures oscillate around 70% of the processed material’s melting point.  

Even though the information that one can individuate in the literature to validate the 

obtained results for 𝑚(𝑇) are often unclear and sometimes contradictory, some guidelines can 

still be individuated. The influence of temperature on 𝑚 is often taken as negligible, because 

of the narrow range of temperatures on which each creep study tends to focus (intervals 

around 50-100°C). Nevertheless, if one compares all the values of strain-rate sensitivity for 

the same material as presented in certain review articles, some noticeable changes appear.
146, 

147
 A closer look at the plots of strain rate vs. stress that are typically employed for the 

determination of the stress exponent generally shows slight differences in slope of the curves 

when different temperature levels are considered. Ashby and Frost themselves stated that the 

constant values of 𝑛 provided in their deformation maps
165

 are approximations, and that a 
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good rule of thumb is considering that the stress exponent becomes 𝑛 + 2 at temperatures 

lower than half the material’s melting point. We, thus, expect to obtain plots in which 

𝑚 (1/𝑛) increases with temperature, and spanning a range of values smaller than the entire 

admissible interval (0 < 𝑚 < 1). This also follows the experimental evidence according to 

which the Nabarro-Herring type creep (𝑚 = 1) occurs at very high temperatures.
237

 Another 

immediate check of the reliability of our plots is assessing if our obtained 𝑚 values are 

comparable with what available in the literature for certain thermal levels.  

Figure 3.17 shows the copper case.
238–240

 The trend is what expected and the values 

are consistent with the data of Ashby,
217

 according to which 𝑛 = 4.8, and therefore 𝑚 = 0.21. 

This value is indicative of dislocation-climb controlled deformation, and indeed dislocation 

activity is known to play a significant role in the consolidation of ductile powders. Other 

publications on the creep deformation of copper at low and high temperatures (400-600 K and 

800-1100 K, respectively) further confirm that 𝑚 increases when raising the applied 

temperature.
165, 237

 The Taira parameters for copper are 𝐴0 = 6 × 10
5 1/s and 𝐾 = 22859 K, 

assuming 𝑛̅ = 0.5, an average value for every material. 

Figure 3.18 presents the alumina case. This is a material for which the experimental 

data are extremely scattered,
147, 241, 242

 but with some additional analysis consistency can be 

reinstated.  

Ceramics in general present a dependence of the creep exponent on the tested 

material’s grain size. This phenomenon is particularly evident for certain material systems, 

such as alumina and silicon nitride themselves,
241,242

 but in any case it is important to 

distinguish between polycrystalline and monocrystalline materials. Single crystals tend to 

show a lower value of strain-rate sensitivity. The value of 𝑚 presented in the HIP Readings 

(0.33)
217

 is, when inserted in a broader context,
147

 the one typical of single crystals, while 

polycrystalline materials show higher values, approaching 1 at higher temperatures.  
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Because of our interest in powder consolidation, we obviously focused on 

experimental data relative to polycrystalline materials, with a grain size of a few microns, to 

find 𝑎 and 𝑏.
147

 From these, we obtained 𝐴0 = 12 × 10
5 1/s and 𝐾 = 35875 K, with the same 

assumption of 𝑛̅ = 0.5. All other data were taken from the available literature,
217

 with the only 

exception of the creep activation energy (𝑄𝑃𝐿𝐶), for which we had to introduce a correction 

due to the effect of the magnesia (MgO) doping added for grain size retention.
147

 Again, the 

expected trend of 𝑚 augmenting with temperature is confirmed, and the range of values 

spanned in the considered temperature interval includes the one proposed in the relevant 

paper, 𝑚 = 0.83. The dominating deformation phenomenon is therefore Nabarro-Herring 

diffusional creep, with minor contributions of grain boundary sliding.  

Figure 3.19 shows the result obtained for silicon nitride. As in most ceramics, the 

value of the stress exponent 𝑛 oscillates between 1 and 3.
147

 For the compressive creep case 

study from which the values of 𝑎 and 𝑏 were inferred (given 𝐴0 = 6 × 10
8 1/s, 𝐾 = 44192 K 

and 𝑛̅ = 0.5), relative to a micron-sized powder, 𝑛 resulted to be ~2.3, corresponding to 

𝑚 ≅ 0.43.
243,244

 Such values approach grain boundary sliding phenomena, but the case of 

silicon nitride is particularly complex because of the many phases involved when deforming at 

elevated temperatures, including the presence of a glassy phase at the grain boundaries.
244–247
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Figure 3.17 – Strain-rate sensitivity evolution with temperature for copper. 

 

 

 

Figure 3.18 – Strain-rate sensitivity evolution with temperature for alumina. 
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Figure 3.19 – Strain-rate sensitivity evolution with temperature for silicon nitride. 

 

We employed data for silicon nitride also to evaluate the effect of the applied stress on 

these types of curves, as represented in Figure 3.20. A wide range of values were available for 

the case of yttria-doped silicon nitride. Because of the different composition, slight 

discrepancies with respect to the previous plot can be observed. The first interpolation of 

experimental data, in part (a) of Figure 3.20, actually shows a noticeable change between the 

different applied stress levels. This happens because we are keeping the activation energy for 

power-law creep (𝑄𝑃𝐿𝐶) constant, while it has been shown that its value increases with the 

imposed pressures.
248

 In traditional creep studies, as 𝑛 is estimated from strain rate/stress 

curves plotted at constant temperature, 𝑄𝑃𝐿𝐶 is derived from strain rate/temperature graphics, 

with each curve relative to a specific stress level. Taking into account such rise in activation 

energy when shifting from 100 to 150 and 200 MPa, a much better agreement is found, as 

depicted in part (b) of the same figure. The minor discrepancies that are still present are 

ascribable to experimental error in the measurement of the data used for our regression 

procedure.   
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Figure 3.20 – Strain-rate sensitivity dependence on temperature and stress for silicon nitride 

without (left) and with (right) activation energy correction. 

 

From these examples it will be noticed that the pre-existing experimental results that 

need to be selected as input for (3.105), and thus the derivation of the 𝑚(𝑇) plots, need to be 

carefully selected to be as adherent as possible to the material of interest, in terms of 

composition, grain/particle size and surrounding atmosphere. The vast variety of creep data 

available in the literature could, nevertheless, be easily summarized with the numerical 

regression and machine learning algorithms available today. In such a way, trends and 

correlations, together with the weight of each influencing parameter, could be more clearly 

individuated. This step can be the object of further work, which would fall in the context of 

the Materials Project (https://materialsproject.org/).  

 

3.2.2 Optimization strategies 

 

The optimization of the SPS efficiency based on strain-rate sensitivity coincides with 

individuating the most suitable dwelling thermal conditions to eliminate agglomeration in situ. 

Now that we have the tools necessary to assess how 𝑚 depends on temperature, we can 

correlate such information with the remaining of our optimization procedure.  We employ, 
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therefore, the expressions provided throughout Section 3.1, namely the formulations of the 

material properties characterizing a hierarchical porous structure in function of 𝑚 itself.  

We report here a summary of the outcomes of the derivations in Section 3.1. Certain 

substitutions have been operated in order to simplify the obtained formulas. Note that the 

sintering kinetics are expressed with respect to the specific time of sintering, and that the 

sintering stress and bulk modulus for monoporous materials are given for the non-dilute case 

(more general and adherent to experimental spark plasma sintering studies).
218

 

 

Table 3.5 – Summary of sintering kinetics, sintering stress and bulk and shear moduli 

expressions for monoporous and biporous materials. 
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porosity 

evolution rate 

𝑑𝜃𝐿
𝑑𝑡𝑠

= −3𝑘𝜃𝐿
1 − 𝜃𝐿
1 − 𝜃𝑆

𝜓

𝜑
[
(1 +

𝑃𝐿𝑆
𝑃𝑒𝑥𝑡

)

(1 +
𝑃𝐿0𝑆
𝑃𝑒𝑥𝑡

)

(
1 − 𝜃𝑆
𝜓

)

𝑚+1
2 (𝜃𝑆 − 1)

𝑚−1

(2𝑘𝜃𝐿 − 1)
(6𝑘2𝜃𝐿

2𝜓

𝜑
+ 1)

1−𝑚
2
 ]

1
𝑚

 

Small-size 

pores radius 
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Table 3.5 – Summary of sintering kinetics, sintering stress and bulk and shear moduli 

expressions for monoporous and biporous materials (cont.). 

 

Sintering 

stress 

monoporous 

materials 
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Because of how we conducted our derivations, two optimization procedures are 

possible. 

The first one is the semi-analytical solution of the kinetics equations (3.36) and (3.41) 

that we anticipated above. In order to complete the analysis from this perspective, we needed 

to derive sintering stress, bulk and shear modulus for the small size porosity and for a 

nonlinear viscous rheology. Now that we have done so, we have achieved our initial aim of 

obtaining 

𝜃̇𝑆 = 𝑓(𝜃𝑆, 𝜃𝐿,𝑚) 

𝜃̇𝐿 = 𝑔(𝜃𝑆, 𝜃𝐿 ,𝑚) 

as reported in Table 3.5. 

This is where numerical methods come into play. The resolution of a set of two 

coupled ordinary differential equations, which can be operated with the Runge-Kutta methods, 

is what renders the investigation, purely analytical until now, semi-analytical. We can also 

include the pores radii shrinkage rates in our computations, and therefore employ the same 

numerical methods to solve a set of four coupled differential equations. Note that the radii 

shrinkage rates are functions of the same parameters listed above, namely porosities and 

strain-rate sensitivity. Material properties, such as creep parameters and surface tension, and 

externally applied load are embedded in the normalized sintering time. The apparent 

dependence on surface tension that seems to be still present in the equations in Table 3.5, 

through the factor 𝑘, is actually canceled out if we recall the definition of 𝑘 and substitute the 

sintering stresses definitions: 

𝑘 =
𝑃𝐿0𝐿

𝑃𝐿0𝐿 + 3𝑃𝐿𝑆
=

3𝛼
𝑎

3𝛼
𝑎 +

9𝛼(1 − 𝜃𝑆)
2

(𝑚+1)

𝑟𝑠𝑝

=
𝑟𝑠𝑝

𝑟𝑠𝑝 + 3𝑎(1 − 𝜃𝑆)
2

(𝑚+1)

               (3.31) 
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Any SPS (or more general sintering) routine can be reconstructed, provided we plug 

into the formulas experimental data on material properties and powder compact morphology. 

Specifically, the inputs needed for the coupled ODE’s solution are the initial values of 

porosities (𝜃𝐿,0 and 𝜃𝑆,0) and pores radii (𝑎0 and 𝑟𝑠𝑝,0).   

Some additional information is needed to estimate the normalized SPS time. As 

expressed by (3.42), we need the same applied load, surface tension and pore size, but also the 

creep constant 𝐴𝑚. The work of Ashby
217

 provides a useful way of calculating it, in 

accordance with what shown in Equation (3.101). Because of the difficulties in experimentally 

determining its value, he proposed to manipulate the creep equation in such way that  

𝐴𝑛 =
10−6

(𝜎𝑟𝑒𝑓)
𝑛 exp [−

𝑄𝑃𝐿𝐶
𝑅𝑇𝑚

(
𝑇𝑚
𝑇
− 2)]                                   (3.106) 

with the involved parameters already defined in Section 3.2.1. Note that the data required are 

all easily retrievable with conventional creep tests and are tabulated for a variety of materials 

in the HIP Readings.
217

 

Recalling that 𝐴𝑚 = (𝐴𝑛)
−𝑚, and considering the typical duration of spark plasma 

sintering processes to be of the order of a few minutes and up to one hour, we can calculate a 

reasonable range of normalized SPS time for each material of interest. It results to be between 

10 and 100 for most materials.   

We can thus study the evolution with time of 𝜃𝑆 and 𝜃𝐿, together with the radii of 

small and large pores, 𝑟𝑠𝑝 and 𝑎, and identify the values of 𝑚 such that the large size porosity 

can be removed before the shrinkage of the small size ones (or, if in certain cases this is not an 

achievable objective, the fastest shrinkage of large pores with respect to the small ones). Such 

an analysis can be simply conducted in MATLAB®, or with similar software.  

A first example of the results that can be obtained is given in Figures 3.21 and 3.22. 

The specific sintering time was estimated for the spark plasma sintering of alumina, with 
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holding step of 15 minutes at 1850 K and with an applied pressure of 60 MPa. The initial 

values of small and large size porosity were chosen to be 30% and 10%, respectively, and the 

small and large pores initial radii were 100 nm and 1 μm. It appears evident how a wide size 

gap between small and large pores (two orders of magnitude) leads to an almost negligible 

shrinkage of the inter-agglomerates voids. Both the porosity and radius shrinkage curves are 

almost flat for the large voids, while for the small pores we can observe very fast shrinkage, 

due to their small sizes. This leads to the undesired non-uniform final structures, with residual 

large voids and grain growth within the agglomerates. It can also be observed that an increase 

in the strain-rate sensitivity value renders the material more sinterable. Indeed, when 𝑚 

approaches zero, the porosity and radius curves show a sharp decrease at the very beginning of 

the process, followed by a slow densification, which seems to reach an asymptote, even if for 

porosity values greater than zero. The sudden initial shrinkage is expected when a plastic 

behavior is considered (𝑚 = 0). 

These same considerations apply if we consider a narrower gap in initial pore sizes, 

such as what depicted in Figures 3.23 and 3.24. Here small pores have an initial radius of 1 

μm, while the large voids are just five times larger. In such a case we choose to use a linear 

scale instead of a logarithmic one for the radius axis in Figure 3.24. This choice makes it more 

evident that, as expected, large pores shrink faster than the small ones. Unfortunately, the 

decrease in densification rate still hampers the de-agglomeration process, so that the two 

curves, small and large size porosity, do not catch up completely even in this case. 

Nevertheless, the fast initial shrinkage plays an important role in the reduction of both volume 

fraction and size of large pores. Since small-size porosity reaches values close to 0% in all 

cases with 𝑚 ≥ 0.3, the amounts of overall residual porosity should not exceed 5%, an 

acceptable values in many practical situations. These curves become useful not only to select 

the most suitable strain-rate sensitivity value (and thus holding temperature), but also for the 
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determination of a dwelling step duration that is sufficient to produce densification without 

significant grain growth. This translates in not continuing the process for more than a few 

minutes after the small-size porosity has disappeared. Ideally, we would like the two porosity 

curves to intersect each other as late as possible, meaning that the large pores have time to 

shrink and reach the small ones size, while small pores are still present.  

Figure 3.25 shows densification curves for the same agglomerated alumina, zoomed in 

at the beginning of the SPS holding. Also in this case the initial porosities are 30% for the 

intra-agglomerates voids and 10% for the inter-agglomerates ones. We can observe that a 

decrease in the value of strain-rate sensitivity leads to the desired delay in the intersection, but, 

as stated above, it also slows down densification. A compromise solution needs to be found 

case by case.  

Figure 3.26 shows the effects of changing the initial content of small and large size 

pores, while keeping the overall amount of voids constant. We can observe a shift in the 

curves, which remain parallel to each other. In the small-size porosity case the initial 

shrinkage is so fast that the three curves are almost overlapped. 

Figure 3.27 presents the evolution of the ratio between small and large pores radii as a 

function of normalized time and for different values of strain-rate sensitivity. The large pores 

are 100, 10 and 5 times the size of the small ones in the top, center and bottom plots, 

respectively. It is interesting to notice how, when reducing the size gap, the radii ratio tends to 

increase at the beginning of the SPS holding time, especially when approaching a perfectly 

plastic rheology. Such an effect is the direct consequence of the material’s quasi-plastic 

constitutive behavior. In this regime, the application of a pressure leads to a more intense 

shrinkage of the large pores with respect to the small ones, and thus to a sudden increase in the 

ratio between small and large pores sizes.  In all cases the applied pressure was 100 MPa. This 
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leads to longer specific times of sintering with respect to Figures 3.21-3.24, while for Figures 

3.25 and 3.26 just the first instants of an SPS process assisted by higher loads are shown.  

 

 

Figure 3.21 – Small and large size porosities evolution for initial small pores radius = 100 nm 

and initial large pores radius = 10 μm. 
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Figure 3.22 – Small and large size pores radii evolution for initial small pores radius = 100 

nm and initial large pores radius = 10 μm. 
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Figure 3.23 – Small and large size porosities evolution for initial small pores radius = 1 μm 

and initial large pores radius = 5 μm. 
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Figure 3.24 – Small and large size porosities evolution for initial small pores radius = 1 μm 

and initial large pores radius = 5 μm. 
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Figure 3.25 – Impact of strain-rate sensitivity on the intersection between large and small-size 

porosity densification curves. 

 

 

 
 

Figure 3.26 – Densification curves for various initial porosities values. 
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Figure 3.27 – Pores radii ratio evolution for different m values. 
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At this stage it is also appropriate to compare the proposed kinetics model with 

experiments. From the solution of the kinetics equations, is it immediate to derive the 

evolution of the overall porosity. This type of data is used for a comparison with the 

experimental work by J.-S. Lee and coauthors that inspired this investigation.
94

 They proposed 

to exploit controlled agglomeration phenomena for the net-shaping of iron nanopowders. They 

showed how an optimized control on the size of agglomerates leads to a beneficial pore size 

redistribution which prevents the undesired densification gradients typical of biporous 

materials. While in the presence of large agglomerates, after a fast initial shrinkage, relative 

density reached an asymptotic value between 90 and 94% (corresponding to the large inter-

agglomerate pores left in the specimen and at this stage very hard to remove), in the case of 

smaller agglomerates densification was less rapid but kept progressing steadily.  

Figure 3.28 shows some of their results, compared with the predictions of our model. 

Note that the experiments were conducted with conventional free pressure-less sintering, and 

thus the processing times are longer than the ones typical of SPS. Processing by conventional 

sintering or spark plasma sintering changes significantly the value of the creep pre-exponential 

factor 𝐴𝑚, and therefore the proposed model becomes extremely versatile. The fast initial 

shrinkage even for conventional pressure-less sintering is due to the small size of the powder, 

which leads to very high values of sintering stress. The values of small and large pores radii 

were taken from the data of J.-S. Lee et al., who reported 10 nm small pores and large pores of 

500 nm for large agglomerates and 30 nm for controlled small agglomerates. The amounts of 

initial small and large size porosities were estimated accordingly. The model curves were 

obtained for 𝑚 = 0.2, a reasonable value for iron, and available at the considered processing 

temperature (648°C).  

The agreement between model and experiments is fairly good. The main point of 

interest - the faster initial shrinkage of the large agglomerates case, followed by a stagnation, 
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in contrast with the more steady and continuous increase in relative density of the small 

agglomerates case - is captured by the model, even if it predicts higher density values than 

what obtained experimentally. The mismatch between experimental and modeling curves can 

be explained by the uncertainty in a variety of input data, such as the exact proportions of 

initial small and large size porosities, and the creep properties of this specific powder, which 

included a percentage of nickel. Indeed, J.-S. Lee and coauthors reported an estimation of 

apparent activation energy for the mass transfer mechanisms leading to densification, 

proposing that its value changes from 80 kJ/mol to 280 kJ/mol with increasing density, while 

in our calculations we kept the constant literature value of 280 kJ/mol. This can explain why 

the model curves proceed at a slower rate than the experimental ones in the initial stages. 

More accurate input data for the model can be the object of future work.  

 

 

Figure 3.28 – Comparison between the proposed kinetics model and experiments. 
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Following the considerations above, we can summarize the shrinkage kinetics-based 

optimization strategy with the scheme given in Figure 3.29. Tools have been developed to 

produce plots of the evolution of pores amounts and sizes during SPS for varying values of 

strain-rate sensitivity, and also plots of the dependence of strain-rate sensitivity on 

temperature. Post-processing of these data leads to the formulation of strategies to obtain the 

desired porous material structures during the spark plasma sintering process itself.  

Given certain easily retrievable material data, graphs of the type shown in Figures 

3.21-3.24 can be created. The initial global porosity can be readily obtained with traditional 

experimental methods, and a good estimation of the large pores volume fraction can be based 

on the size of the agglomerates in the loose powder. The small-size porosity can subsequently 

be calculated from the relation between the three. The powder and agglomerates sizes can be 

estimated at the electronic microscope, and the former is typically provided by the 

manufacturer too. The required creep data are present in the literature for most materials, and 

the applied pressure is selected by the SPS operator. The kinetics curves can be plotted with 

respect to the physical time or with respect the specific SPS time. In the former case, as 

explained above, the influence of applied pressure and material properties are of more 

immediate visualization, while the latter possibility is useful to isolate the effects of different 

powder sizes and draw more general conclusions.  

From the kinetics curves the most suitable value of strain-rate sensitivity can be 

selected. In order to verify if such value is available for the material of interest, and, if so, 

what temperature it corresponds to, the 𝑚(𝑇) plots come into play. The same creep data used 

as initial input are needed, together with some information on creep strain rates retrievable 

from experimental creep curves generally present in the literature. If such information is not 

available, creep tests are needed.  
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The optimized SPS holding temperature can thus be selected by means of this simple, 

two-step procedure.  

 

 

 

Figure 3.29 – Optimization strategy based on shrinkage kinetics. 
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The derived expressions are not only useful for practical applications, but also 

constitute a valuable extension of the continuum theory of sintering, which has been lacking a 

comprehensive inclusion of nonlinear viscous rheology and agglomeration phenomena. A 

broader continuum theory of powder materials consolidation has therefore been built, from 

which the well-known equations for monoporous linear viscous materials can be immediately 

derived as special cases.  

The developed model also sheds some light on the intrinsic limitations of 

agglomerated powders when it comes to attempting in situ de-agglomeration during SPS. It 

has emerged that large inter-agglomerate pores cannot be completely eliminated, even with the 

most suitable thermal regime, if the size gap between small and large pores is too wide (2 

orders of magnitude or more). Even for smaller size gaps, the densification of nano-sized 

pores is too fast for the inter-agglomerates ones to catch up before undesired grain growth 

phenomena start taking place. The issue is likely to be the significant difference in surface 

sintering stress acting on areas with such different curvature values. In situ de-agglomeration 

strategies thus need to be accompanied by pre-sintering treatments, such as ball milling or the 

addition of suitable dopants, in order to reduce the initial large pores size, enhance the surface 

tension effects and hamper grain growth inside fully dense agglomerates.  

In order to get the desired homogeneization, we can attempt to increase the applied 

pressure or to reduce the size-gap between large and small pores. The following plots address 

such attempts. They are produced with respect to the physical time instead of the specific 

sintering time, to have a more immediate visualization of the applied load’s effects. We also 

consider a larger powder size (10 μm order of magnitude), to enhance the effect of pressure 

with respect to the sintering stresses. With such a larger powder size it is also reasonable to 

assume that agglomeration phenomena are less severe and thus justify considering a narrower 

gap size between small and large voids.  
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The linear viscous case (𝑚 = 1) is the one that shows the highest level of 

deformability of the porous material. If we keep the large pores size as five times the small 

pores one (small pores size is 10 μm and the large pores one is 50 μm), and we increase the 

pressure all the way up to 500 MPa, we can obtain shrinkage of both large and small pores in a 

very short SPS time (less than a minute of holding time, see Figure 3.30). The large pores, as 

expected, still require a longer time to reach full shrinkage, but in this case this additional time 

is so short that we can safely assume that grain growth phenomena would be very limited.  

 

 
 

Figure 3.30 – Shrinkage kinetics for the linear viscous case  

with 500 MPa applied pressure. 
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If we consider the same pores sizes and increase the applied pressure to 1 GPa, in the 

𝑚 = 0.5 case, we find that large pores can still shrink in a reasonable time for SPS processing, 

but with a much larger delay with respect to the linear viscous case (Figure 3.31). The small 

pores, on the other hand, are still densifying very quickly. This leads to a more detrimental 

situation with respect to the 𝑚 = 1 case scenario, due to the time available for the 

microstructure to be affected by significant intra-agglomerate grain growth.  

 

 
 

Figure 3.31 – Shrinkage kinetics for the 𝑚 = 0.5 case  

with 500 MPa applied pressure. 

 



123 

 

We now shift our attention to the almost perfectly-plastic case (𝑚 = 0.1), which is 

where we expect to have the highest initial quasi-instantaneous shrinkage, and thus the highest 

probability of equating the size of small and large pores in very brief timespans. Recall that 

this corresponds to significantly lower processing temperatures, rendering such a case almost a 

cold (or warm) pressing process. 

For the same loading conditions of 1 GPa, it turns out that a narrow size gap between 

the large and small pores radii (≈ 1 μm) cannot be eliminated, unless we employ extremely 

long SPS times. Densification happens during the first instants of the process, and then 

proceeds at a very slow pace, as presented in Figure 3.32.  

 

Figure 3.32 – Shrinkage kinetics for the 𝑚 = 0.1 case  

with 1 GPa applied pressure. 
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Since the shrinkage curves, after this initial compaction, evolve with a slope that is 

close to zero, we can consider the residual porosity to be practically non-removable (even if it 

has values lower than 5% for both small and large size voids).  

The size gap between the two radii curves result to be unavoidable even if we apply 

pressures up to 3 GPa. We are, nevertheless, able to attain an overlapping of the two curves if 

we reduce the initial size gaps to large pores being 2.5 times the size of the small ones, even 

with the same 1 GPa applied load, as Figure 3.33 shows. Note that, even though the two radii 

curves coincide after the initial sudden shrinkage, the pores size (and thus the porosities) does 

not reach zero. In order to achieve full shrinkage, even higher loads need to be applied. 

 

Figure 3.33 – Shrinkage kinetics for the 𝑚 = 0.1 case with 1 GPa applied pressure  

and a narrow pores size gap. 
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We have therefore shown that homogeneization of agglomerated powder materials 

can be obtained if high pressures are applied to porous materials with a relatively narrow size-

range. For nanopowders, which are particularly prone to form large agglomerates, this will 

correspond, in most cases, to pre-SPS de-agglomeration treatments. Such conclusions confirm 

what obtained experimentally by Anselmi-Tamburini, Garay and Munir in the context of 

nanopowders consolidation.
92

  

An important point to take into account is that the proposed model does not take grain 

growth into account. Some of the derived conclusions could, thus, change quite significantly 

when grain growth mechanisms are included in the treatment, since there are well-known 

interactions between them and pore migration and shrinkage. The present approximation is, 

nevertheless, perfectly acceptable for levels of relative density up to 92%. For lower amounts 

of density, pores are still interconnected in an open porosity network, and thus have a pinning 

effect that hampers grain growth. 

 The possibility of utilizing non-constant holding temperatures and the role of heating 

rates should also be explored before turning to such treatments.  

Nevertheless, together with providing a thorough theoretical analysis of nanopowders 

(and micropowders) processing by spark plasma sintering, the proposed model can also find 

interesting applications when it comes to tailoring hierarchical material structures. There is 

currently a growing interest in the production of biporous materials with specific 

characteristics, for example for new generation batteries and fuel cells components. Polymeric 

pore formers are often used to create hierarchical structures with controlled features. The large 

and small pores kinetics equations can therefore play an important role in the selection of 

optimal processing routines (in terms of temperature, pressure and loading schematics) to 

obtain the desired meso-scale structures. In this context, the macroscopic properties (see same 

Table 3.5) also become a particularly valuable tool. 
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This brings us to the second possible optimization strategy, which relies on the 

derived macroscopic properties expressions: 𝑃𝐿, 𝛹 and 𝛷. The baseline of this strategy 

consists in the replacement of the biporous study domain (hollow sphere made of porous 

material) with a homogeneous equivalent. The mechanical properties of such a homogeneous 

equivalent already take into account the fact that both large and small pores are present, 

together with the nonlinear viscous rheology of the material.  

Figures 3.34, 3.35 and 3.36 show their dependencies on the two types of porosities 

typical of hierarchical porous structures, for a specific value of strain-rate sensitivity (0.5). 

Again, the expected trends as pores volume fractions increase or decrease are found.  

 

 

 

Figure 3.34 – Macroscopic bulk modulus in function of small and large size porosities. 
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Figure 3.35 – Macroscopic shear modulus in function of small and large size porosities. 

 

 

 

Figure 3.36 – Macroscopic sintering stress in function of small and large size porosities. 
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To the best of our knowledge, these expressions are the first ones that take into 

account both biporous material structure and nonlinear viscous rheology. We have already 

compared the monoporous nonlinear viscous formulations with the main models from the 

literature (Figures 3.10, 3.12, 3.13, 3.16). Formulations for biporous materials, even for the 

linear viscous case, are instead scarcely available. There is the exception of the work of Shtern 

and Kuzmov,
104

 who adopted an approach similar to the one presented in Section 3.1 

(mechanics-based) to derive shrinkage kinetics and material properties of agglomerated 

powders presenting a linear viscous constitutive behavior. The following Figure 3.37 presents 

the comparison between their model and our expression, evaluated for three different values of 

strain-rate sensitivity. Their outcome and ours for the case 𝑚 = 1 do not overlap, but the latter 

is still the closest to their expression among the various values of strain-rate sensitivity. The 

lower the value of 𝑚 considered, the further we move from the Kuzmov-Shtern result. The 

present model predicts higher values of normalized bulk modulus and lower values of 

normalized shear modulus. 

Recall that, for the large size porosity influence, we considered the diluted case. 

Kuzmov and Shtern did the same. Therefore, for all the cases shown in the figures, both bulk 

and shear moduli are overestimations when we consider large size porosities greater than 10-

15%. 

This second strategy, enabled by such macroscopic expressions, enriches our analysis 

with the possibility of evaluating an entire specimen, for which we assume isotropic 

distributions of small and large pores.  The porous hollow sphere that we have been using as 

study-domain for our derivations can now be replaced with an equivalent homogeneous 

medium, with properties dependent on both small and large pores. 
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Figure 3.37 – Comparison between the present and Kuzmov-Shtern models  

for biporous materials. 
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The macroscopic formulations can be used for both analytical considerations and 

FEM simulations. In the former case, boundary-value problem for biporous materials can now 

be easily solved by considering the studied material to be homogeneous and isotropic. In the 

latter case, the derived macroscopic properties enable the implementation of a multiscale 

framework. Simulations that reconstruct simultaneously the evolution of the entire specimen 

and of the single pores can be implemented. The details are given in the following paragraph, 

with a case study applied to solid oxide fuel cells components.  

 

3.2.3 Multiscale FEM simulations of pore shape evolution during sinter-forging of  

         hierarchical composites 

 

We have anticipated in the previous paragraph that the results of the presented 

analytical derivations can not only be used for de-agglomeration and uniformization of 

powder materials during spark plasma sintering, but also for the tailored optimization of 

hierarchically porous media.  

Biporous or multiporous ceramics have raised growing attention in the last years, 

because of their numerous applications in advanced materials for energy and biomedical 

applications, such as solid oxide fuel cells, all-solid-state batteries, gas absorbers, thermal 

insulation, artificial tissues and bio-implants, to name a few.  

Sintering is still one of the main techniques employed for the production of tailored 

porous ceramics, even though at the current state of the art it is not possible to monitor the 

evolution of the meso-scale structure that characterizes and controls the performance 

hierarchical materials. Specifically, for the synthesis of cathodes for solid oxide fuel cells 

(SOFC), polymeric pore-formers are often introduced in the green specimen. These pore-

formers are subsequently burnt out during the firing process, leaving large voids of the desired 
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size. Such a technique has been applied by Bordia et al. to the production of SOFC cathodes 

starting from LSM-YSZ powders (mixing of 40 vol% La0.8Sr0.2MnO3 and 60 vol% Y2O3-

stabilized ZrO2).
90, 91

 In each sample they have both small-size pores between the powder 

particles (which they call “intrinsic” porosity) and large pores left by the pore-formers above 

400 °C (addressed as “extrinsic”). Note that the employed powder size is of the order of 

micrometers, and thus agglomeration phenomena play a minor role in this case, also thanks to 

suitable pre-sintering treatments and the polymeric spheres’ presence.  

During free pressure-less sintering, the biporous specimens behave as expected, with 

both large and small pores progressively assuming a spherical shape and starting to shrink. 

When, on the other hand, sinter-forging is performed, a peculiar phenomenon can be observed. 

Sinter-forging consists in sintering with an applied uniaxial load, while leaving the lateral 

surface of the specimen free to move radially. What Bordia and coauthors observed after their 

experiments was that the pores assumed different preferred orientations depending on their 

size: the large extrinsic pores tended to be flattened perpendicularly to the applied load, while 

the small intrinsic ones aligned along the uniaxial load direction. This can be explained with 

the concurring phenomena responsible for densification. Diffusion-driven mass transfer, 

particularly relevant at the grain boundaries, will be the prevalent one for small pores. Such a 

type of transfer is enhanced in the planes perpendicular to the applied load, and thus the small 

pores will be filled by material in the radial direction more than in the axial one, leading to a 

shape preferentially elongated in the axial direction.
249

 Large pores, instead, are much bigger 

than the powder particles themselves, and thus can be easily filled up by visco-plastic shifting 

of entire particles inside the voids themselves, which leads to final shapes that are horizontally 

oriented.   

By means of experimental procedures, it is only possible to access information on the 

initial and final shape and volume fraction of the two porosities, while it would be useful to be 



132 

 

able to follow the entirety of the process at the pores scale in order to develop strategies for 

the production of tailored hierarchical ceramics. Multi-scale finite-element modeling then 

becomes a useful tool to monitor the evolution of these kinds of porous structures during 

sintering. The important role of modeling for a better understanding of the mechanisms lying 

behind densification anisotropy during sintering has indeed been underlined in a variety of 

cases, for both metals and ceramics.
249–251

  

We employed the commercial software COMSOL Multiphysics
TM

 to implement FEM 

simulations of the densification of biporous materials. This FEM framework enables us to 

simultaneously follow the evolution of the processed material at the local pores’ level and at 

the entire specimen’s scale. Specifically, we were interested in reconstructing the shape and 

size evolution of large pores, while monitoring the consolidation of the specimens. We 

simulated both sintering and sinter-forging experiments, analogous to the ones reported in the 

corresponding experimental works.
89–91

 

Our numerical framework involved two scales: macroscale, relative to the whole 

specimen, and mesoscale, referring to a unit cell representative of the biporous material. The 

latter was selected in accordance with the previous analytical derivations, with the only 

difference of selecting a cylinder with a spherical void instead of a hollow sphere. This choice 

was based on the work of the same Bordia and coauthors, who in parallel conducted modeling 

of their hierarchical ceramics with non-numerical approaches.  

Figure 3.38 shows a schematic representation of the multi-scale study domains. The 

specimen had initial dimensions analogous to the experimental case (12 mm height and 12.75 

mm diameter). The cylindrical unit cell presented a central spherical cavity, representative of a 

large extrinsic pore. The diameter of this void was 7.5 μm, corresponding to the dimensions of 

the polymeric (PMMA) pore formers employed during experiments. The diameter and height 

of the unit cell were equivalent, with dimensions imposed by the value of large pores volume 
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fraction. For the present study, the extrinsic porosity was selected to be 30% of the entire 

specimen’s volume, because of the wide availability of experimental data,
90, 91

 and because 

such a value resulted to be the highest amount of large pores allowing to neglect the 

interactions among them (and thus the determination of macroscopic mechanical properties 

from the unit cell's behavior).
90

 In reference to the same Figure 3.38, the value of the cell edge 

(2L) resulted thus to be 9.79 μm.   

The large porosity evolution was therefore studied from a kinetics viewpoint 

(displacements and velocities of the large void boundary). The small intrinsic pores were, 

instead, addressed again by means of the continuum theory of sintering.
113

 This implies that 

small pores were assumed to be homogeneously and isotropically distributed in the medium 

surrounding the large pore in the unit cell. The continuum theory of sintering was also utilized 

at the macroscopic scale, with the specimen presenting a uniform isotropic distribution of 

pores, both extrinsic and intrinsic. The mechanical properties of the specimen are individuated 

at the mesoscale and thus take into consideration the effects of the co-presence of small and 

large pores. The total porosity is expressed based on the small and large size porosities as in 

(3.7), here reported: 

𝜃 = 𝜃𝐿 + (1 − 𝜃𝐿)𝜃𝑆                                                       (3.7) 

The initial total porosity was chosen, in accordance to experimental values, to be 50%. 

Initial small-size porosity was therefore equal to 28.57%.  

The bottom part of Figure 3.38 shows the two domains as implemented in COMSOL. 

Thanks to the problem symmetries, it was sufficient to implement 1/4 of each domain (2-D 

axysymmetric), at both the macroscale and the mesoscale. We selected a "free triangular" 

mesh, with "normal" size for the specimen and "fine" size for the unit cell, in accordance with 

the software denominations.  
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Figure 3.38 – Multiscale FEM domains definition. 

 

The coupling of the two scales was done by imposing equivalence of the viscous 

dissipation rate.
214

 More details are given in Figure 3.39. At both scales we solved a 

mechanics problem for materials presenting linear viscous constitutive behavior. The 

constitutive equation for linear viscous materials is written as 

𝜎𝑖𝑗 = 2𝜂0(𝜑𝜀𝑖̇𝑗
′ + 𝜓𝑒̇𝛿𝑖𝑗) + 𝑃𝐿𝛿𝑖𝑗                                         (3.107) 

in which, as described in Section 3.1, 𝜎𝑖𝑗 denotes the stresses, 𝜀𝑖̇𝑗 the strain rates, 𝑒̇ the strain 

rate tensor trace, 𝜀̇′𝑖𝑗 the deviatoric strain rates, 𝜓 the normalized bulk modulus (function of 

porosity), 𝜑 the normalized shear modulus (function of porosity), 𝑃𝐿 the sintering stress and 

𝜂0 the viscosity of the solid phase. This type of constitutive equation is adopted at both the 
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mesoscale and the macroscale, for the effects of small size porosity and global porosity, 

respectively.  

A linear viscous rheology of the powder material is a reasonable assumption in the 

present case because of the low pressures applied (0-5 MPa) and the utilization of micrometer-

sized powders. The viscosity of the solid phase, 𝜂0, was selected to be equal to 𝐸/3, where 𝐸 

is the elastic modulus. This assumption follows the linear viscous analogy with solutions of 

elasticity problems.
95, 252

 In our study, the powder material was composed by 40 vol% of LSM 

and 60 vol% of YSZ. The overall Young's modulus was therefore calculated as  

𝐸 = 0.4 𝐸𝐿𝑆𝑀 + 0.6 𝐸𝑌𝑆𝑍                                                  (3.108) 

with 𝐸𝐿𝑆𝑀 and 𝐸𝑌𝑆𝑍 depending on both temperature and porosity. The porosity dependence 

was expressed as
113, 140

 

𝐸 = 𝐸0(1 − 1.9𝜃)                                                   (3.109) 

while the temperature influence was based on data taken from the literature, since the 

mechanical properties of materials traditionally used for the production of fuel cells have been 

thoroughly studied.
253

 

The boundary conditions imposed on the macroscopic specimen reflect the sinter-

forging procedure: a uniaxial load applied on the top surface, the consequent friction between 

powder-specimen and punches, and free lateral surface. As for the unit cell, we imposed the 

axial velocity of the top boundary and the radial velocity of the lateral surfaces. These values 

were calculated by averaging the respective values in the volume of the specimen at each 

time-step of the computation. On the boundary of the large pore, the action of the surface 

tension tending to close the pore was imposed by applying a boundary load proportional to the 

material’s surface tension and to the local curvature of the void (with a proportionality factor 

equal to 3, characteristic of spherical pores).  

 



136 

 

 

 

Figure 3.39 – FEM boundary value problem definition. 

 

Among the several routines that had previously been implemented experimentally, we 

chose to simulate a sintering regime consisting of a 10 K/min heating ramp, followed by a 90 

min holding at 1523 K. Specifically, to shorten the computation time, we started the 

simulations from a temperature of 1373 K, as no densification was observed before this value 

during experiments.
90

 We studied the 0, 3 and 5 MPa-applied pressure cases. In accordance 

with the experimental routes, these external loads were applied when 1473 K was reached.
91

  

Figure 3.40 shows the kinds of results that we aimed at obtaining with our FEM 

framework. The mesoscale relative to the unit cell allowed us to monitor the evolution of the 

large pores size and shape throughout the entire sintering process. The small size porosity was 

instead studied in terms of volume fraction, such that we could obtain its spatial distribution at 
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every time-step. The densification of the macroscale specimen could be followed 

simultaneously.  

Figure 3.41 shows the porosity distributions and deformations of specimen and unit 

cell at the end of the isothermal holding stage. A uniform distribution of both total porosity at 

the macroscale and small size porosity at the mesoscale is obtained for the free sintering case, 

together with the large pores retaining their initial spherical shape while decreasing in size, as 

expected. Inhomogeneities appear when an external pressure is applied, accompanied by a 

barreling of the specimen due to the friction contribution, and a progressive flattening of the 

large pores. The deformations shown are based on the displacements calculated by the 

software and are presented with a scale factor equal to 1. 

 

 

 

Figure 3.40 – Correlations between FEM-implemented unit cell and experimental results. 
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Figure 3.41 – FEM-derived deformation and porosity distributions of specimen and unit cell 

at the end of the isothermal holding. 

 

 

Figure 3.42 shows the evolution of overall porosity, large pore size (average diameter) 

and aspect ratio (major axis/minor axis, approximating the void as an ellipse) with respect to 

time for the different applied pressures. As predicted, increasing external loads lead to faster 

densification and increasing elongation of the large pores. Note how the curves suddenly start 

diverging when the load is applied. 3-D representations of both specimen and unit cell for 

different time instants and applied pressures are also depicted at sample times.  
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Figure 3.43 compares numerical and experimental results, the latter taken from the 

work of Shang et al.
90, 91

 A good agreement is found, with the largest mismatch showing in the 

aspect ratio context. The discrepancies with experiments might be due to the uncertain values 

of surface tension of the composite powder material and of initial size of small pores, 

estimated to be 1 μm, which in turn influences the sintering stress of the powder compact.  

 

 

 

Figure 3.42 – FEM-derived evolutions of global porosity, large pores’ size and aspect ratio 

for the 0, 3 and 5 MPa-applied pressure cases. 
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Figure 3.43 – Comparison between experimental and FEM results. 
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Our multiscale FEM framework for the simulation of sintering and sinter-forging thus 

allows us to monitor the evolution of size and shape of large pores, small size-porosity 

distribution and overall specimen shrinkage, with a good degree of accuracy. Further work is 

needed in order to implement the application of higher loads and larger amounts of voids 

without encountering numerical problems, and to include grain growth and locally-enhanced 

grain boundary diffusion phenomena. These types of simulations can also be applied to 

nonlinear viscous cases, even though with some additional difficulties for the numerical 

software, due to the nonlinearity of the process itself. Once such obstacles are overcome, de-

agglomeration and tailored hierarchical structures can be directly optimized in the FEM 

context, which allows the direct monitoring of a variety of extra details with respect to the 

approach based on densification kinetics. 

Some guidelines for the usage of these distinct (but interconnected) strategies can be 

drawn. The solution of the kinetics equations (evolution of porosity and pores’ radii with time) 

can be obtained much more rapidly than the FEM-based outcomes. If one wants to choose the 

optimal SPS routine in order to obtain de-agglomeration or a certain ratio of small and large 

pores, with well-determined average sizes, the use of densification equations is recommended, 

especially thanks to built-in differential equations solvers available in MatLab® or analogous 

software (here MatLab®’s  ode45 was utilized). Macroscopic properties can both provide 

immediate solutions to boundary value problems and serve as input for multiscale finite-

element simulations. The former can be utilized for overall predictions of the SPS processing 

of specimens containing agglomerates, while the latter can give detailed information on 

distributions of porosity, stresses and strains, together with pores shape and size evolution, at 

every time-step.  

A schematic summary of the above-mentioned options is given in the following 

figure, which is a zoomed-in detail of the research objectives tree (Chapter 2). 
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Figure 3.44 – Schematics of the material structure optimization strategies. 
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Now that we have completed the material structure’s optimization based on spark 

plasma sintering thermal regimes, we need to ensure that such optimized temperatures are 

experienced by the entirety of the specimen. Samples subjected to sintering, and especially to 

SPS, are, nevertheless, typically exposed to significant temperature gradients, due to how the 

heat is provided. In the case of ceramics, the heat is provided via conduction by the 

surrounding electrically conductive tooling, leading to temperatures decreasing with the 

distance from the area in contact with the tooling itself. Even in the case of conductive 

powders, in which heat is directly produced via Joule effect inside the powder specimen, the 

electric current distribution is usually non-uniform, and temperatures follow accordingly. 

The thermal gradients issue is the object of the next chapter. We have anticipated in 

the introduction that the uniformity of the final result in spark plasma sintering is strongly 

dependent on the tooling setup in which the specimen is located. A complete optimization of 

the SPS efficiency has to take this factor into account. Chapter 4 is dedicated to the role of the 

tooling geometry in the temperature uniformization during SPS. The FEM analyses that will 

be performed here will, therefore, be further expanded in the following chapter, by simulating 

the whole tooling-specimen assembly and therefore finalizing the optimization study. 

 

Parts of Chapter 3 have been published in the International Journal of Refractory 

Metals and Hard Materials (D. Giuntini, X. Wei, A.L. Maximenko, L. Wei, A.M. Ilyina, and 

E.A. Olevsky, “Initial Stage of Free Pressureless Spark-Plasma Sintering of Vanadium 

Carbide: Determination of Surface Diffusion Parameters,” Int. J. Refract. Met. Hard Mater., 

41, 2013). Other parts of Chapter 3 are in press in the Journal of the American Ceramic 

Society (D. Giuntini and E.A. Olevsky, “Sintering Stress for Materials with Nonlinear Viscous 

Rheology,” Rapid Comm. J. Am. Ceram. Soc., accepted for publication) and prepared for 

publication in Acta Materialia (D. Giuntini and E.A. Olevsky, “Sintering Kinetics of 
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Agglomerated Powders with Nonlinear Viscous Rheology,” Acta Mater., prepared for 

publication). The dissertation author is the primary author of these publications. The results in 

the last paragraph of the same Chapter 3 are part of a work prepared for publication in Acta 

Materialia (H. Shang, D. Giuntini, E.A. Olevsky, and R.K. Bordia, “Pore Shape Evolution 

during Sinter-Forging of LSM-YSZ Composites”, Acta Mater., prepared for publication). 
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Chapter 4 

Optimization of Spark Plasma Sintering  

Based on Improved Tooling Setup 

 

4.1 The role of the spark plasma sintering tooling design 

 

We have pointed out before that the optimization of spark plasma sintering efficiency 

can be conducted on a variety of levels. The complexity of this field-assisted sintering 

technology arises from the combination of several physical mechanisms, ranging from electric 

currents, to heat transfer, solid mechanics and densification kinetics. A main difference with 

respect to traditional sintering techniques consists in the fact that in SPS the powder compact 

needs to be placed in a quite elaborated tooling setup, typically made of graphite, even though 

other materials with appropriate values of electrical and thermal conductivities can also be 

considered. In conventional sintering, instead, the green specimen (as the pre-compacted 

powder sample, ready to be sintered, is usually denominated) is directly located in the apposite 

location inside the sintering furnace. It is currently well agreed that the presence of such 

tooling has drastic effects on the densification process itself. SPS tooling setups are available 

in a variety of schematics, dimensions and materials, but we will provide here a general 

description in order for the reader to be able to grasp a first basic idea of its components, 

function and morphology, while more specific details will be given in the following sections. 

Figure 4.1 will serve as graphical reference.  
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Figure 4.1 – Spark plasma sintering tooling setup. 

 

The powder compact is located into a cylindrical cavity formed by a die and two 

punches. The die is a hollow cylinder that radially confines the specimen, while the two 

punches constrain it axially by being inserted into the hole of the die. Since a voltage has to be 

applied for the current to flow along the axial direction and allow the sintering process to 

happen, a transition between the narrow punches extremities and the wide steel electrodes is 

usually added. This transition is generally called spacer, and provides a smooth gradient in the 

cross-section area from the punches, which have the same cross-section area as the sample, to 

the electrodes, that are much larger, in order to accommodate a variety of tooling sizes. A 

graphite felt is often wrapped around the die in order to provide thermal insulation and 

increase the SPS efficiency. Between the powder and the adjacent tooling components a 

graphite foil is located to prevent adhesion due to the high temperatures reached during 

sintering. Once the specimen-tooling setup has been assembled, it is inserted in the spark 
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plasma sintering machine chamber, vacuum conditions are applied, and the sintering route can 

be started.  

Even from this brief description it is evident that the complexity introduced by the 

presence of such assembly cannot be neglected. One can look at this important role of the 

tooling as a valuable SPS optimization resource, instead of an uncontrollable limitation of our 

control over the process. This is the aim of the second part of our study. In the previous 

chapter we have focused on the specimen only, by looking at the material structure from both 

a meso-scale and a macro-scale viewpoint. Now we shift to an even larger scale and we 

involve process the entire SPS setup in our efficiency optimization. Notice that the main 

optimization parameter is still temperature. While previously we have started to study the 

most suitable thermal regimes, namely the route that one needs to impose on the SPS machine 

in order to gain the best outcomes, here we will make sure that such regime is followed within 

the entire specimen, and not only locally. Spatial temperature gradients, indeed, can be 

extremely intense during spark plasma sintering, and therefore cause inhomogeneous thermal 

conditions, and render vain our efforts of the previous chapter.  

The presetting of a temperature regime on the SPS machine’s control panel, typically 

a heating ramp ranging from 100 to even 1000 °C/min, followed by a holding time step at the 

optimal densification temperature for the material under consideration, does not guarantee that 

the entire specimen is experiencing those same conditions. The adherence to the imposed 

temperature profile is certain for one specific point only, the location on which the thermal 

probe is located. The probes utilized are thermocouples or pyrometers; therefore the 

measurement happens by direct contact or optically. In any of these cases, it is difficult to 

reach the specimen itself. Most often, the measurement location is in its proximities, or, even 

if it is possible to reach the specimen, at the current state of technology we cannot go further 

than the surface. Thus, while the PID controller embedded in the spark plasma sintering 
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device operates by keeping the temperature at this specific location coincident with the 

settings, we do not have any information about what is happening in the surroundings. It is 

well known that the bigger the size of the setup,
184, 185

 the larger the gradients, but very little 

quantitative data are available to support this statement. This difficulty is due to the 

configuration and the operative modalities of the SPS machine, since the specimen and tooling 

are put in an inaccessible closed chamber under vacuum conditions. 

The relevance of this study has, therefore, multiple aspects. It naturally arose from the 

previous part of the work, and specifically from the demand of homogenizing the conditions 

experienced by the SPS samples in order for our thermal route optimization results to be 

applicable in the real world. But it also provides an important insight of the conditions 

experienced by a specimen during the entirety of any field-assisted sintering process, by being 

able, thanks to finite-element simulations, to reconstruct data that are experimentally 

unavailable. It is also connected to the solution of actual issues of significant thermal gradients 

hampering SPS outcomes during experimental procedures operated at various institutions. In 

addition, it is important to underline that temperature gradients cause localized overheating at 

certain specific locations in the SPS setup, therefore they do not limit to damage the quality of 

the densified products, they endanger the tooling too.  

For all the listed reasons, a combined numerical and experimental investigation has 

been conducted, with the aim of optimizing the SPS efficiency by creating an innovative, 

improved, tooling design. Such design has the purpose of rendering the temperature within the 

powder specimen, and possibly the entire setup, homogeneous and adherent to the optimal 

value for each processed material system. 

The present chapter will address these issues for both the radial and the axial 

direction. Setups that are different for dimensions and morphology will be analyzed, and 

distinct powder specimen materials will also be considered, depending on the availability of 
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the experimental data or on the specific real world problem to be solved. Particular attention 

will be devoted to ceramics, being these insulating materials, and therefore more prone to the 

intensification of thermal non-uniformities. Another reason to prefer electrical insulators over 

conductors for a temperature-based optimization study of SPS is found in the fact that with 

insulators we are certain to be capable of isolating the thermal phenomena, while, being an 

electric current at the basis of SPS techniques, conductors still raise many interrogatives in 

terms of the internal consolidation mechanisms. For a ceramic powder, instead, it is 

reasonable to assume that all the thermal input is a direct consequence of Joule heating, since 

the current cannot flow through the compact, but inside the graphite tooling only. It is worth 

mentioning explicitly that our definition of conductive and insulating is relative to the 

electrical conductivity of the tooling constitutive material. Nevertheless, the outcomes that we 

will derive will be valid for metal powder systems too, provided some necessary, slight, 

modifications, which will be explicitly pointed out throughout the chapter.  

 

 

4.2 Optimization of the radial temperature distributions by improved punch  

      design 

 

4.2.1 The radial thermal gradients issue 

 

Because of the typical aspect ratio of a spark plasma sintering sample, characterized 

by a diameter larger than the height, the radial thermal gradients are the most significant. We 

will conduct this analysis for an insulating material, and ultimately explain how the 

conclusions we reach can be immediately adapted to a conductive sample.
174, 175
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When the powder inside the die-punches assembly has higher electrical resistivity 

with respect to the tooling material, the path that the current can follow has certain restrictions 

put in place by the specimen itself. Let us look at Figure 4.1 again and imagine the electric 

current flow once the voltage has been applied. The bottom electrode is grounded, so we will 

have a flow from the top to the bottom of the tooling setup. Knowing that the specimen is not 

accessible to the current, once its path approaches the lower end of the upper punch, a sharp 

deviation of the flow will happen, in order for it to avoid the insulating component. This 

deviation leads to a strong current concentration inside the die wall, in correspondence of the 

specimen axial position. The thinner the die wall, the more significant such concentration will 

be. Because of the Joule effect, this zone of the die will undergo a strong heat generation. 

Thus, the lateral surface of the specimen, separated by the die wall only by means of thin 

graphite foil, will be overheated, while its center will be relatively “cold”. It is now easy to 

imagine that only a small portion of the specimen will be subjected to the optimal temperature 

of the preset route, while the remaining areas will be exposed to lower or higher thermal 

conditions, depending on their position with respect to the recording probe focus point.  These 

thermal disparities will reflect in inhomogeneities of both density and microstructure of the 

final product. The areas in the proximity of the edge will densify faster, while the central ones 

might show non-negligible amounts of residual porosity once the process is complete. 

Alternatively, even if almost full density is reached everywhere in the sample, thanks to a 

sufficiently long dwelling time at the highest temperatures grain growth phenomena will be 

present in the lateral zones, creating important non-uniformities in the mechanical properties 

of the sintered material. Other possible consequences are the generation of residual stresses 

and localized phase transformations, together with the combination of many of these 

phenomena.  
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When interested in assessing the presence and entity of the radial thermal gradients 

experimentally, a possibility lies in the employment of a double measurement probe setup. 

Ceramics usually require higher sintering temperatures with respect of metals, even if 

switching from conventional sintering to SPS can help in lowering them. Still, the typical 

sintering temperature corresponds to 70% of the melting point, which for ceramics if generally 

very elevated. The type of probe used for measuring the temperature in a spark plasma 

sintering setup depends on the levels of temperature reached during the process. As a rule of 

thumb, in many devices thermocouples are utilized for regimes that are maintained below 

1000°C, and beyond this point pyrometers take over (thermocouples resistant to higher 

temperatures are nevertheless available on the market).  

We applied our study to a silicon nitride powder, with which green specimens 6 cm in 

diameter were produced and spark plasma sintered in a machine endowed with two 

pyrometers.
174, 175

 The choice of silicon nitride arose from a collaboration with the Dresden 

Fraunhofer Institute for Ceramic Technologies and Systems IKTS, and also pushed by the 

growing interest in such material from a variety of fields, from biomaterials to aerospace 

applications. SPS offer unique possibilities for the consolidation of this material, which is 

otherwise extremely hard to process.
254–257

  

Note the dimensions of the specimen: a diameter of 6 cm exceeds the typical 

laboratories size, which range between 1 and 2 cm. This explains why the radial thermal 

gradients issues had become so significant. The initial height of the specimens was around 1 

cm, allowing us to focus on the radial direction only.  

The powder was processed in a FCT HPD25 device (FCT, Germany), developed for 

the production of medium size samples like the ones considered here. The tooling setup was 

composed by the parts listed in Table 4.1 and made of R7710 graphite (SGL Carbon SE, 

Germany), whose properties are listed in Table 4.2. Together with the components mentioned 
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in Table 4.1, graphite foil (Sigraflex, SGL Carbon SE, Germany) and a graphite felt 

(Sigratherm GFA10, SGL Carbon SE, Germany) were present. The former was inserted in a 

double layer, each 0.25 mm thick, at the contact interfaces between specimen, die and punchs, 

to ensure the stability of the electro-thermal and mechanical contacts, to prevent adhesion 

among the parts and minimize the reactions of the powder compact with the graphite of the 

tooling.  

The impact of this graphite foil layer is not negligible and will therefore be taken into 

account in the FEM framework too. The importance of its role is explained by the 

characterizing strong anisotropy, induced by the flake-like structure of the raw material 

employed for the calendaring of the thin foil. The paper’s in-plane electrical conductivity is 

two orders of magnitude higher than the through-plane one, and its properties are dependent 

on the applied pressure. The graphite felt is a foam-like, 10 mm thick and 80 mm long, layer 

of soft material wrapped all around the external surface of the die in order to minimize the 

heat loss by radiation. Figure 4.2 presents a schematic representation of the assembled tooling 

setup, comprehensive of specimen.  

Even if not properly part of the tooling, the figure includes also an indication of the 

two pyrometers’ focus points, since it is thanks to this double-probe setup that we were able to 

experimentally determine the presence of radial thermal gradients. As shown, Pyrometer A is 

axially mounted and focuses on the bottom of the 30 mm deep hole in the top punch, while 

Pyrometer B is radially adjusted and monitors the temperature at a point on the die wall whose 

axial position corresponds to the central radial cross-section of the specimen.  

For this purpose, in the thermal insulation felt a 7 mm through hole had been realized. 

Hence, Pyrometer A provides an indication of the temperatures experienced by the center of 

the specimen, while Pyrometer B gives an estimation of the overheating of the edge. The 
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leading Pyrometer was A, where by leading we mean that it was the one connected to the 

machine’s PID for the control of the temperature regime.  

This implies that the preset thermal profile was respected in the proximities of the 

center of the specimen, but at a location that did not even belong to it, a point of the top punch 

5 mm away from the upper sample’s surface. Such a discrepancy evidences again the 

important role of numerical simulations for the retrieval of data that are experimentally 

unavailable. 

 

Table 4.1 – Tooling setup components for the radial gradients study. 

Component (number) Dimensions 

Punches (2) 

Height: 35 mm 

Diameter: 62 mm 

Hole diameter: 10 mm 

Hole Depth: 30 mm 

Die (1) 

Height: 48 mm 

Thickness: 10 mm 

Conical spacers (2) 

Height: 45 mm 

Diameter 1: 80 mm 

Diameter 2: 62 mm 

Through hole diameter: 10 mm 
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Table 4.2 – R7710 graphite properties. 

Theoretical density, 𝜌𝑡ℎ 1900   [
𝑘𝑔

𝑚3
] 

Electrical conductivity, 𝜎𝑒𝑙 
1

2775 − 2.86𝑇 + 0.0027𝑇2 − 1.04 × 10−6𝑇3
     [

𝜇𝑆

𝑐𝑚
] 

Heat capacity, 𝐶𝑝 1023 + 0.6285𝑇     [
𝐽

𝑘𝑔 ∙ °𝐶
] 

Thermal conductivity, 𝑘𝑇 

104.7643 − 0.1359𝑇 + 1.4921 × 10−4𝑇2 

−8.3859 × 10−8𝑇3 + 1.7368 × 10−11𝑇4      [
𝑊

𝑚 ∙ °𝐶
] 

Emissivity, 𝜈𝑟𝑎𝑑 0.8 

Compression strength, 𝑆𝑐𝑜𝑚𝑝 250   [𝑀𝑃𝑎] 

Bending strength, 𝑆𝑓𝑙𝑒𝑥 80   [𝑀𝑃𝑎] 

 

 

Figure 4.2 – SPS tooling presenting the radial thermal gradients issue. The various 

components and the two pyrometers positions are marked. 
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The powder material utilized was a silicon nitride-based composite of 96 wt% alpha-

Si3N4 (Silzot HQ, AlzChem AG, Germany), with 2 wt% of Al2O3 (AKP50, Sumitomo Coal 

Mining Ltd., Japan) and Y2O3 (Grade C, Treibacher, Austria), ground in isopropanol 

(planetary ball mill, 3 hours, 300 rpm, Achat furniture). As in the case of the R7710 graphite, 

the material properties were experimentally assessed and interpolated to find the 

corresponding expressions as functions of temperature, with the only exception of the power-

law creep parameters, taken from Ashby’s HIP Readings 6.0.
217

 We consider here constant 

values for the main creep parameters, as tabulated in the literature, to temporarily isolate the 

addressing of the tooling optimization problem from the material structure one. We will 

ultimately connect the results in order to implement a combined material structure and tooling 

geometry optimization, but before doing so we need to make sure that both parts of the study 

are reliable and robust.  

The material properties of silicon nitride are reported in Table 4.3. The addition of 

oxides enhances the consolidation of silicon nitride by a dissolution-diffusion-precipitation 

mechanism, leading to a transformation from low-temperature alpha to high-temperature beta 

phase. Such phase transformation is regulated by the time and intensity of the exposure to high 

temperatures, and can be therefore utilized to estimate the local temperature distribution 

within the composite during consolidation.
201

 This, together with the topology of density and 

grain size distributions, were used as complementary sources of qualitative information about 

the temperature distribution within the specimen. The combination of microstructural 

observations and analysis with the two pyrometers data, well correlating with each other, 

provided a reliable set of data confirming the significance of radial temperature gradients 

during the SPS of ceramics.    

For each experiment 50 grams of silicon nitride composite powder were utilized, 

loosely poured into the cavity of the SPS tooling. The optimal SPS route for this material 
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system consisted in a heating ramp of 100 °C/min from 400 up to 1750 °C, followed by an 

isothermal dwell time (holding time step) of 5 min at 1750 °C. A uniaxial pressure was also 

applied, with an initial value of 8 MPa, then increased to 50 MPa between 900 to 1000 °C and 

kept constant until the end of holding time. The sample was finally freely cooled down to 

room temperature and cleaned by sand blasting in order to remove the adhering graphite foil. 

From the SPS experimental procedure a variety of data can be obtained on the 

evolution of the densification process. We will first give a brief description of the axial 

displacements data, and then move to the central issue of this section, the thermal disparities 

along the radial direction. 

 

Table 4.3 – Silicon nitride properties. 

Theoretical density, 𝜌𝑡ℎ 3178    [
𝑘𝑔

𝑚3] 

Electrical conductivity, 

𝜎𝑒𝑙 

1

1.2647 × 1020 exp(−0.0117𝑇)
    [

𝜇𝑆

𝑐𝑚
] 

Heat capacity, 𝐶𝑝  

Thermal conductivity, 𝑘𝑇 32 − 0.0136𝑇    [
𝑊

𝑚 ∙ °𝐶
] 

Strain-rate sensitivity, 𝑚 0.33 

Activation energy, 𝑄𝑃𝐿𝐶 636    [
𝑘𝐽

𝑚𝑜𝑙
] 

Surface tension, 𝛼 0.5    [
𝐽

𝑚2] 

Porosity size, 𝑟0 1.5    [𝜇𝑚] 
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Every spark plasma sintering device automatically collects data about axial 

displacements of the top punch, temperature, electric power, voltage and current. The latter 

three ones will be indispensable for the reliable reconstruction of the problem in the modeling 

context. From the displacement readings, instead, the shrinkage of the silicon nitride sample 

under the applied uniaxial force could be derived. Several distinct stages can be identified, 

each one explainable by a specific underlying physical phenomenon. From 400 to 900 °C the 

specimen height increased, because of a thermal expansion not accompanied by any relevant 

densification phenomena, which translated into a slight negative increase of the axial 

displacement value (defined as positive in the shrinkage direction). We have had a chance to 

point out earlier that the initial stages of sintering see mainly a rearrangement of the matter by 

surface diffusion, which tends to make the pores spherical and favors the formation of necks 

among the particles, but is accompanied by little or no shrinkage. Between 900 and 1000 °C 

the applied pressure was increased from 8 to 50 MPa, leading to a mechanically-induced 

densification, indicated by a displacement’s positive increase of approximately 2 mm, which 

then stayed constant until a 1300 °C temperature was reached. At 1300 °C volume shrinkage 

started occurring, subsequently stabilized during the holding time-step, and not complete until 

the sample had reached room temperature.  

The most fundamental set of data for the purpose of this study is the one pictured in 

Figure 4.3. The plot summarizes the preset temperature profile (Pyrometer A) and a parameter 

that we will call temperature disparity, ΔT, which is calculated by subtracting T(A) from T(B), 

since the latter revealed to be notably higher.  

The values of ΔT are significant. Because of its definition, a positive ΔT is therefore a 

signal of that strong localized overheating of the sample’s outer surface that we had 

anticipated in the previous paragraphs. A negative value would imply that the radial 

temperature pattern is reversed, and thus that this same outer surface is experiencing lower 
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temperatures with respect to the specimen’s center, a phenomenon typically occurring when 

considering conductive powders.  

 

Figure 4.3 – Temperature regime and temperature disparity among the two pyrometers in the 

conventional SPS setup. 

 

This important result will be later combined and confirmed with a series of 

microstructural evidences, based on various experimental techniques. The need for a method 

to lower these non-uniformities was consequently felt, and a promising approach was 

identified in an optimization of the tooling geometry. 

 

4.2.2 FEM reconstruction of the spark plasma sintering tooling setup 

 

The problem of reconstructing a complete spark-plasma sintering problem with the 

finite element methods is complex. We have anticipated at the beginning of this chapter that 

field-assisted sintering techniques simultaneously involve a variety of physical phenomena: 
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electric currents, heat transfer, solid mechanics and densification kinetics. A fundamental 

initial requirement is, thus, the availability of a FEM software that allows the combination of a 

number of “physics” (as they are called in the software interface itself) within a single model. 

A suitable solution was found in COMSOL Multiphysics®, whose distinguishing capability of 

coupling several physics at the same time is making it gain growing attention in the SPS 

modeling area.  

While in Chapter 3 the optimization process was based on the temperature versus time 

profile and therefore considering the specimen’s meso-scale evolution was sufficient, here we 

are aiming at improving the temperature spatial distribution, which is strictly dependent on the 

tooling containing the specimen. This imposes to model the entire SPS tooling setup by FEM. 

Every component – punches, die, spacers and specimen – was reconstructed in its geometric 

details in SolidWorks® and consequently imported in the COMSOL® environment. As for 

the graphite foil and thermal insulation, we chose not to complicate the model further by 

inserting other components, and simulated their effects with the appropriate boundary and 

contact conditions, which we will explicitly state later. Thus, in the FEM software we created 

a three-dimensional, time dependent, fully coupled model of the SPS system. The choice of a 

three dimensional simulation, instead of exploiting the axial symmetry of the setup and 

therefore reducing the computational costs, lied in the fact that we were planning to simulate 

also alternative geometries of the tooling, which would not have been necessarily 

axisymmetric. The time dependency allows us to simulate a typical SPS regime, inclusive of 

heating ramp and isothermal holding time step. By fully coupled we indicate the simultaneous 

combination of the various physics involved, that are interconnected by means of the 

opportune software options and the addition of the necessary dependences of the materials’ 

properties.  The FEM simulation of spark-plasma sintering procedures therefore requires the 

implementation of an electrical module, describing the current flowing through the SPS setup, 
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together with a thermal one, responsible for the consequent heat transfer by Joule heating 

phenomena, a mechanical section, allowing the application of external loads, the description 

of the interactions between components and the introduction of the powder compact 

constitutive behavior, and finally a mathematical section, reconstructing the densification 

kinetics. The required equations are presented here. 

For the DC current distribution we use 

𝑱 = 𝜎𝑒𝑙(−∇𝑉)                                                              (4.1) 

where 𝑱 (A/m
2
) is the current density, 𝜎𝑒𝑙 (S/m) the electrical conductivity and 𝑉 (V) the 

voltage. 

The consequent heat transfer by joule heating is given by the Fourier equation with 

the appropriate source term, as follows 

𝜌𝑒𝑓𝑓𝐶𝑝
𝑑𝑇

𝑑𝑡
= ∇ ∙ (𝑘𝑇∇𝑇) + ∇ ∙ 𝑱                                                (4.2) 

in which 𝐶𝑝 is the heat capacity (J/kg/°C), T (°C) the temperature, 𝑘𝑇 (W/m/°C) the thermal 

conductivity, and the density 𝜌𝑒𝑓𝑓  (kg/m
3
) is expressed as a function of the theoretical density 

of the bulk material 𝜌𝑡ℎ (kg/m
3
) and the porosity 𝜃, in the following form 

𝜌𝑒𝑓𝑓 = 𝜌𝑡ℎ𝜌 = 𝜌𝑡ℎ(1 − 𝜃)                                                    (4.3) 

Notice again that we conducted this study for a specimen in which we assumed 

absence of hierarchical porous structures. We wanted to decouple the two sides of the 

temperature-based SPS optimization study, by not considering the tooling when analyzing the 

material structure and not embedding agglomeration when working on the tooling design. 

Once the two aspects have been assessed, we will finally combine them. As for now, we will 

only be dealing with a homogeneous size of porosity, which we will simply address as 𝜃. 
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The last equation to be added is the sintering constitutive equation. Since we are 

operating SPS of a crystalline material with the aid of an external pressure, we will apply it to 

a power-law creep rheology of the skeleton. We repeat here the equation of interest:  

𝜎𝑖𝑗 = 𝐴𝑚𝑊
𝑚−1 [𝜑𝜀𝑖̇𝑗 + (𝜓 −

𝜑

3
) 𝑒̇𝛿𝑖𝑗] + 𝑃𝐿𝛿𝑖𝑗                               (3.13) 

The various terms have been defined elsewhere. In line with the simplification choices 

made for porosity and the power-law creep parameters, we also chose to lighten the model by 

expressing the sintering stress and the normalized bulk and shear moduli in their classic 

formulation, due to Skorokhod,
111, 113

 which poses them as independent from the strain-rate 

sensitivity m, therefore preventing the possibility of computational problems. At this stage of 

the tooling geometry optimization study, an extremely accurate reproduction of the kinetics 

and mechanics of the sample is not required, since we are focusing our attention on the 

electro-thermal phenomena within the whole SPS setup. This is why such initial 

approximation is justified.  

Accuracy is nevertheless strictly required in imposing initial, boundary and contact 

conditions. This series of parameters will guarantee the adherence to the experimental 

procedures, and their definition is a crucial step in the modeling validation process. We list 

them here according to the physics to which they refer.  

Let us start with the electrical currents module. The initial voltage was set to zero. The 

lower surface of the bottom spacer was grounded, while the current input (extracted from the 

SPS machine readings during the experimental process) was applied to the top surface of the 

upper spacer. All the outer tooling surfaces were electrically isolated. Finally, the electrical 

contact resistance was imbedded at the interfaces between the tooling components as a 

function of temperature and pressure, in the following manner
258

 

𝒏 ∙ 𝑱 =
∆𝑉

𝑟𝑒𝑙,𝑐
                                                                (4.4) 
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𝑟𝑒𝑙,𝑐
ℎ = (4.15 − 0.21 ln 𝑇) (

19

𝑃𝑒𝑥𝑡
)        [𝑚𝛺 · 𝑐𝑚2]                               (4.5) 

𝑟𝑒𝑙,𝑐
𝑣 = (−0.006 ∙ 𝑇 + 19) ∙ (−0.008 ∙ 𝑃𝑒𝑥𝑡 + 1.14) [𝑚𝛺 ∙ 𝑐𝑚

2]                    (4.6) 

where 𝒏 is the outward unit vector normal to the interface surface, ∆𝑉 the voltage drop across 

the interface (V), 𝑟𝑒𝑙,𝑐 the interface contact resistance (mΩ·cm
2
),  𝑃𝑒𝑥𝑡 the externally applied 

pressure (MPa).  

The first equation tells the software that in correspondence of a certain, preselected, 

surface an electrical resistance is present, in the form given by the second equation or the third 

equation. The denomination 𝑟𝑒𝑙,𝑐
ℎ  refers to the horizontal contacts and 𝑟𝑒𝑙,𝑐

𝑣  to the vertical ones. 

By horizontal contact surfaces we denote the ones that lie perpendicularly to the current flow, 

while the vertical interfaces are the ones parallel to it. In the first category we include the 

punch-specimen and punch-spacer interfaces, while in the second case we are considering the 

die-punch and the die-specimen contacts.  

These two last equations are the result of a broad experimental study, which we will 

here briefly summarize.
258

  

The presence of a thermal and electrical contact resistance at the interfaces between 

the many components of a spark-plasma sintering tooling has been theorized by many studies, 

by seldom addressed quantitatively.
47, 196, 259

 A few exceptions concerned the formulation of an 

expression that was giving the electrical contact resistance as a function of temperature,
186

 but 

no such studies included pressure too.  

Contact resistance is due the microscopic imperfections characterizing every real 

world surface. Impurities, roughness, inclusions, wear are among the causes of the imperfect 

planarity of a theoretically flat surface. When two of such surfaces are put in contact, they will 

be touching each other in correspondence of the tips of these roughness peaks, and not on the 

entirety of the contact area. Being this the reason why a contact resistance exists, it is 
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immediate to infer that both temperature and pressure are parameters to be taken into account, 

since they directly affect the morphology of the surface roughness. After having shown that 

the thermal contact resistance plays only a negligible role during SPS processes, we focused 

our attention on the electrical one.  

We opted for a wide series of experiments performed in the absence of powder, so 

that our results could be applied to the SPS of every material. Apposite design of the tooling 

components were tailored and produced for the individuation of a single type and layer of 

resistance at a time. Specifically, to obtain the horizontal resistance we run experiments with a 

conventional setup first, and then we substituted the two punches with a single one, with the 

exact same dimensions of the previous two assembled together. For the vertical one we 

utilized this single punch with a regular die first, and later a special dummy die, namely a 

whole piece reproducing the shape and dimensions of the die-punch assembly. Figure 4.4 

shows both experimental configurations for the two parameters investigated. In such way, we 

have isolated the effect of a single horizontal contact resistance layer in the former case, and 

of a single vertical one in the latter. 

Since the spark plasma sintering machine automatically provides the readings of the 

voltage and current at each second of the conducted experiment, by applying the Ohm’s law 

the corresponding electrical resistance could be calculated. By subtracting the one-punch 

values from the two-punches ones in the horizontal study, and the dummy-die from punch-die 

values in the vertical one, the resistance associated with the aforementioned single layers was 

obtained. Experiments were run multiple times for each level of applied temperature (between 

600 and 1600 K) and pressure (20, 30, 40 or 50 MPa, since for higher values the effect of 

pressure was not varying anymore).  
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Figure 4.4 – Schematics of the setups utilized to study SPS contact resistance.  

(a) Horizontal resistance layers, (b) Vertical resistance layer. 

 

 The outcomes were opportunely averaged and normalized with respect to the contact 

area, in order to be generalizable. Finally, by numerical regression, equations (4.5) and (4.6) 

were developed. By looking at the dependencies on temperature and pressure, the physical 

phenomena underlying these changes in the contact resistance could be identified. The 

nonlinear decrease of the horizontal resistance with increasing temperature and pressure 

corresponds to the creeping of the graphite, combined with the progressive crashing of the 

surface roughness peaks and the consequent improvements in the interface quality. The linear 

decrease of vertical contact resistance, still with augmenting temperature and pressure, can be 
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explained by considering Poisson deformation and thermal expansion of the tooling 

components, both linear phenomena with the applied load and the thermal increase, 

respectively. 

It is important to notice that this electrical contact resistance study was conducted in 

our laboratory at San Diego State University, while the silicon nitride experiments that 

provide the data for this work were run at the Dresden institution. The two facilities employ 

different types of graphite. This does not imply that the contact resistance results cease to be 

valid. The physical phenomena causing such relationships between electrical resistance, 

temperature and pressure are analogous, no matter what type of graphite is being used, and 

such are the dependencies expressed by equations (4.5) and (4.6). The only distinction will 

appear in the coefficients multiplying the temperature and pressure functions, which are 

indeed slightly different in the two situations. The formulations reported above are the ones 

referring to the graphite R7710, the constituent of the tooling setup that we are aiming at 

optimizing. 

Now we consider the boundary and contact conditions associated with the heat 

transfer module. The initial temperature was set to be 25 °C. The same constant temperature 

of 25 °C was imposed at the bottom surface of the lower spacer and at the top surface of the 

upper one, corresponding to the cooling effect of the circulating water in the SPS machine. 

The outer surface of the die was thermally insulated, as the presence of the graphite felt 

imposes. Ideal thermal contacts between layers were implemented, since the role of thermal 

contact resistance was proven to be negligible.
258

 The external surfaces were endowed with a 

heat radiation boundary condition, according to the Stefan-Boltzmann formulation, with a 

value of 0.8 for graphite emissivity. Remember that SPS is operated in vacuum.  

Such equation is preexisting in the FEM software and is expressed as 

𝒏 ∙ (𝑘𝑇∇𝑇) = 𝜈𝑟𝑎𝑑𝜖(𝑇𝑎𝑚𝑏
4 − 𝑇𝑤𝑎𝑙𝑙

4)                                          (4.6) 
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where 𝜈𝑟𝑎𝑑 is the graphite thermal emissivity (1), ϵ the Stefan-Boltzmann constant, 5.6704·10
-

8
 W/m

2
/K

4
, 𝑇𝑎𝑚𝑏 is the room temperature (25 °C) and 𝑇𝑤𝑎𝑙𝑙 the temperature of the radiating 

surfaces (°C), in this case all the outer surfaces of the tooling except for the die wall and the 

top and bottom surfaces.  

Lastly, we consider the conditions that concern mechanics and densification kinetics. 

The entire setup was obviously initially in static equilibrium, and an initial porosity of 30% 

was introduced. The bottom surface of the lower spacer was fixed, while the top surface of the 

upper spacer was subjected to an externally applied pressure equal to the load utilized in the 

experiments. The contact between the different tooling components was ensured.   

Once inserted in the model variables section the set of material properties reported in 

Table 4.2 and Table 4.3, and having defined the thermal route as a function of time in the 

software’s time-dependent settings, the FEM implementation of the spark plasma sintering of 

silicon nitride was complete. At this point, a validation of the model is of fundamental 

importance to allow the prosecution of the study. In the absence of a substantial validation 

step, the application of this same framework to alternative tooling geometries would not be 

justified.  

Because of the focus of this study on temperature distributions, the thermal variable 

will be at the center of our attention. This is made possible by the availability of two sets of 

experimental data for temperature, one from Pyrometer A and one from Pyrometer B, which is 

an unusual and convenient circumstance when checking on the adherence of the numerical 

reconstruction to the actual experiments. Thus, the model validation consisted in providing the 

software with the experimental current profile as input, and subsequently assessing that the 

temperatures observed at the two pyrometers locations coincided between experiments and 

modeling. Other possible approaches rely on a PID controller to guarantee the adherence to 



167 

 

experiments.
208

 It is worth spending a few words here on why we preferred not to proceed in 

that direction.  

An introduction must be given on the possible operational modes of a SPS device. 

Two options are available: temperature control mode or current control mode. In the first case, 

the most commonly employed, the desired temperature regime is set on the machine’s control 

panel, and the same machine’s PID controller will take care of guaranteeing the this profile is 

respected, at least at the location in which temperature is measured. In the latter situation, the 

user imposes a current profile directly on the control panel, and the temperature follows 

depending on all the other conditions involved. Since, in the SPS modeling by finite elements 

context, the usual practice is to attempt a reproduction of a certain thermal route, certain 

authors decide to build a numerical PID controller in their simulations and let it take care of 

following the thermal profile that they have chosen. It is a legitimate procedure, but we have 

reasons to believe that not imbedding this PID in the FEM environment helps ensuring that 

every parameter in the simulations is following what previously performed experimentally.  

Our choice of not adding a PID controller was motivated as follows. First, in order to 

guarantee that the simulations reproduce the machine’s processes, we have to guarantee that 

the experimental and numerical PID’s are analogous. Therefore we need to have information 

on the details of the PID functioning in the SPS machine. Since such data were not available 

for the machine that we employed, we would have been forced to implement a generic PID 

equation relating current and temperature, and the adherence to experiments would not have 

been guaranteed. Therefore, a numerical reconstruction of SPS procedures that includes a PID 

controller needs its own validation. Namely one needs to ensure that the current profiles 

obtained experimentally and numerically coincide. On the contrary, one often can find 

examples of PID-inclusive model validations based on analogous thermal profiles for 

simulations and experiments. But this is rather obvious if the PID equation is properly defined. 
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The temperature profile will be the preset one, but the same cannot be assumed for the current 

profile, which is why this is the parameter that needs to be checked in this case. A non-verified 

PID controller could even compensate for other errors, such as inexact material and contact 

properties, by adopting a different current profile with respect to the experiments, which 

nevertheless leads to the same temperatures, thanks to the mismatch between real and 

simulated material and interface features. In addition to this, it is important to remember that a 

numerical simulation will unfailingly introduce an error in the process reconstruction. The PID 

controller simulation will introduce an error, as well as the SPS process simulation itself. This 

implies that, when operating numerical simulations of SPS with a PID controller, we are 

introducing two errors in our model. Thus, instead of inserting such two errors, and moreover 

having to assess the coherence of the numerical PID-produced current profile with the 

experimental data, we chose to employ directly the experimental current data as input. An 

objection that could be arisen consists in noticing that our simulations were reproducing a SPS 

machine operating in current-control mode, while the experiments were conducted in 

temperature-control mode. We believe, nevertheless, that the reliability of a modeling 

framework lies in guaranteeing the best possible matching with experiments as far as the 

conditions experienced by the SPS tooling and powder are concerned. The operational mode 

of the machine ceases to be relevant once such matching has been reached (unless one wants 

to simulate the entire SPS device, which is not the case here). By using the experimental 

current profile as an input, together with a whole set of experimental data for material and 

contact properties, we are ensuring the maximum possible adherence to reality. Once two 

separate sets of temperature data (profiles of pyrometers A and B) are found to be coincident 

between experiments and simulations, we can be confident that our modeling framework is 

reliable. Figure 4.5 shows the temperature profiles at point A and B for the experiments and 

the simulations. Very good adherence is evident for the holding time step, while a more 
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inexact matching characterizes the heating ramp. We will, nevertheless, consider this outcome 

to be satisfactory for our purposes, since the holding time is more relevant in the present work. 

It is during this isothermal dwelling that most of the densification process occurs and it is 

therefore at this stage that thermal gradients play a more important role. Such confidence was 

further confirmed by the second set of experiments, posterior to the initial model validation 

operated with the conventional punch geometry, and by additional experiments conducted in 

the broadening of this study, as we will report in the following sections.  

 

 

Figure 4.5 – Fitting between experimental and numerical temperature profiles  

of pyrometers A and B. 

 

At this point, the FEM model is complete and validated, therefore ready to be run, 

once the study domain has been opportunely meshed. Several meshing attempts have been 

performed in order to stabilize the simulations’ outcomes. A free tetrahedral mesh was finally 

selected, with a number of “normal”- or “fine”-sized elements ranging between 12,000 and 
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25,000, automatically generated by the software.  Such definitions of the mesh sizes are 

reported as denominated in the software itself, which uses a qualitative indication of the mesh 

refinement grade that spans from “extra-coarse” to “extra-fine”. 

 

4.2.3 FEM and experimental implementation of the novel punch design 

 

Now that we have built a reliable finite element modeling framework for our analysis, 

we proceed to the core of the study: the optimization of the tooling in order to minimize the 

radial thermal gradients within a ceramic SPS specimen.  

First of all we need to focus our attention on a specific component, to which the 

redesign attempts can be applied with the maximum efficiency. The choice immediately falls 

on the punch. The punch is the component that ensures the axial confinement of the specimen, 

by being put in two copies, one above and one below the powder compact. It therefore shares 

the cross-section area of the sample, and it is also the piece through which the current flows 

when it is sharply deviated because of the presence of an insulating obstacle. The idea that we 

decide to implement consists in drilling holes in this same punch, so that the flow of current, 

and its consequent Joule heating effects, will be altered. Notice that this type of modification 

is allowed by the graphite’s compressive strength, as simulations will confirm. The holes’ 

drilling is designed according to specific patterns, represented in Figure 4.6. 

Two main families of novel punch geometries are identified, one endowed with an 

annular array of circular holes, the other with a variable number of concentric ring-shaped 

holes, both represented in the same Figure 4.6. From this point on, we will refer to this first 

modified configuration as “Holes”, to the second as “Rings”, while the conventional one will 

be addressed as “Full”.  
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Figure 4.6 – Alternative punch designs: Holes (left) and Rings (right). 

 

For both the Holes and Rings cases, several combinations of the main geometrical 

parameters are investigated. Several variations are created, by changing the values of the 

dimensions marked as D and H in the figure. H is the height of the holes, while D is their 

diameter in the Holes configuration, and the series of concentric rings’ diameters in the Rings 

case. In this first stage of the geometrical optimization study, we choose to minimize the 

number of variables coming into play by keeping the characteristic dimensions of the holes 

and the distance among them constant in each attempted configuration. Once we have got the 

first results and gained an insight in how to regulate radial temperature distributions by 

altering the punch’s morphology, we will investigate on more refined and detailed designs. 

Thus, we started the simulations campaign on the altered geometries by selecting a 

pair of values for D and H for every setup. The following values were applied, in all their 

possible combinations, for a total of 24 case-studies.  
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Holes: 

D: 8, 10, 12, 14 mm 

H: 10, 20, 30 mm 

Rings: 

 1 Ring 

  D: 24 – 45 mm 

  H: 10, 20, 30 mm 

 2 Rings 

  D: 20 – 30 – 40 – 50 mm, 18 – 32 – 38 – 52 mm 

  H: 10, 20, 30 mm 

 3 Rings 

  D: 18 – 25 – 32 – 39 – 46 – 53 mm 

  H: 10, 20, 30 mm 

 

Figure 4.6 refers to a generic Holes case and a 2 Rings one. In the latter one, notice 

that the smallest hole is the one which was present in the Full configuration to, because it is 

the one necessary for Pyrometer A to measure the temperature in the proximity of the 

specimen’s center. Therefore such hole will always have D = 10 mm. The same holds for the 

central hole of the Holes configuration. 

For each simulation, the sintering route followed exactly what has been applied in the 

experimental framework. The new outer surfaces resulting from the presence of the holes in 

the punch were endowed with the same surface radiation boundary condition introduced in the 

thermal module for the external surfaces of the whole tooling setup. 

As a first step, we run a simulation for each of the two categories, namely one Holes 

and one Rings example. Specifically, we considered the Holes case with D = 12 mm and H = 
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20 mm, and the 2 Rings geometry with D = 20 – 30 – 40 – 50 mm and H = 20 mm. Both 

models showed promising results. In contrast to the 120 °C of average temperature disparity 

(ΔT) during the holding for the Full punch case, we were here obtaining average values of 70 

°C for the Holes and even 15 °C for the Rings, still during the dwelling time step.  

 

 
 

Figure 4.7 – Photographs of the experimentally-implemented Holes (left)  

and Rings (right) setups. 

 

We therefore decided to implement these two configurations experimentally, in order 

to further confirm the successfulness of our optimization strategy before widening the 

numerical part of the study. A picture of the two novel punches is shown in Figure 4.7, Holes 

on the left and Rings of the right.  

The conventional Full punch was replaced by these two optimized geometries and a 

spark plasma sintering experimental procedure analogous to the one conducted for the 

conventional setup was conducted. The FEM results were confirmed, as Figure 4.8 shows. 

Here, similarly to Figure 4.3, the ΔT evolution with time for the three cases experimentally 

implemented is plotted together with the temperature profile corresponding to the imposed 

sintering regime.  
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Figure 4.8 – Temperature disparity among the two pyrometers for the conventional Full 

configuration and the experimentally-implemented Holes and Rings ones. 

 

From this second set of experiments one can see that during the heating ramp ΔT 

slowly increases with time, nevertheless staying into a relatively low range of 25-35 °C 

(corresponding to T(A)=600 and 900 °C, respectively), but that it suddenly raises when the 

applied pressure reaches its maximum value of 50 MPa. This is a particular tricky aspect to be 

reproduced in the FEM model. The most interesting time step, though, is the isothermal 

dwelling, at the beginning of which the peak of 200 °C temperature disparity for the 

conventional Full case is successfully lowered down to 64 °C in the Holes configuration and 

32 °C for the Rings one. This beneficial tendency appears stabilized with time, since after 2 

minutes of holding a ΔT of 115, 51 and 13 °C is seen in the Full, Holes and Rings setup, 

respectively. Such values are in good agreement with the simulations outcomes, and even 

lower in the Holes case, meaning that the FEM had underestimated the effectiveness of this 

redesign in lowering the disparity between T(A) and T(B). We would like to underline here 
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that it is not only ΔT to be coincident among simulations and experiments, but the two 

separate temperature profiles at A and B themselves. 

It is worth noticing that the punch geometry results do not have any impact on the 

monitored densification of the sample, whereas the electrical power shows some slight 

differences among the Full, Holes and Rings configurations experimentally analyzed, as 

expectable when changing the cross-sectional area through which the current can flow. Table 

4.4 compares the cross-section surface values, absolute and relative, for the three considered 

setups, together with the corresponding final density of the specimen. The relative surface area 

Arel is normalized with respect to the conventional full-punch case. 

The samples’ density values reported in Table 4.4 were obtained through the 

Archimedes’ method. The specimens were then cut to analyze the alpha silicon nitride content 

by means of XRD (CuKα) measurements (Figure 4.9), and determine the local density 

distribution (Figure 4.10). We had anticipated that experimental techniques offer further 

possibilities of analyzing the topology and intensity of the radial thermal gradients. Since 

higher temperatures enhance densification, grain growth and transformation from alpha to beta 

phase, at least in the present material system, by observing the trends of these three parameters 

along the radial direction we can gain additional information to support our thesis.  

 

Table 4.4 – Cross-section areas and final densities of the experimentally-implemented 

alternative punch configurations. 

 

Configuration A (cm²) Arel (%) Density, 𝝆𝒆𝒇𝒇 (g/cm³) 

Full 29,11 100,00 3,06 

Holes 20,07 68,92 2,91 

Rings 18,12 62,23 2,89 
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The alpha content quantitative analysis was performed with Autoquan (GE Inspection 

Technologies, USA) and according to the Rietveld’s method. For all the three experimentally 

studied configurations the alpha content, acting as an indicator for the lower temperatures 

locations history (the lower the alpha amount, the longer the exposure to local overheating 

was), is in the range of 40% at specimen center, which is consistent with the temperature data 

retrieved from the controlling Pyrometer A, located very close to this position. With 

increasing distance from the sample central area, the values of alpha Si3N4 content show a 

decrease in every configuration, but the most significant reduction is shown in the Full case, 

evidencing the strong impact of temperature gradients on the final outcome’s microstructure 

and local properties, while the Holes and Rings cases succeeded in lowering these disparities. 

This tendency is confirmed by the local density measurements results reported in the plot of 

Figure 4.10. 

Together with the XRD technique, the local microstructure evolution was analyzed by 

Field Emission Scanning Electron Microscopy (FESEM) with a Zeiss Ultra 55, for all the 

three configurations. FESEM specimens were obtained from the sample’s edge and central 

area. They were subsequently grinded and observed with an energy and angle selective 

backscattered electrons detector (ESB), which guarantees a good representation of silicon 

nitride thanks to the selective contrast between the main silicon nitride material and oxide 

additive phase. The relative images are shown in Figure 4.11. 

At a first glance, one notices a non-negligible amount of residual porosity in every 

specimen. Recall that the quantity of additives was appositely augmented beyond the 

recommended values in order to hamper consolidation and obtain some extra data on thermal 

gradients. This also explains why the changes of porosity along the radial direction are less 

sharp that the ones of alpha phase, as Figure 4.10 shows.  
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Figure 4.9 – Percentage of alpha-phase content along the radial direction in the silicon nitride 

specimen for the three experimentally implemented configurations. 

 

 

Figure 4.10 – Density along the radial direction in the silicon nitride specimen for the three 

experimentally implemented configurations. 
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Figure 4.11 – SEM images of the microstructure at the center and at the edge of the 

specimens obtained with the three experimentally-implemented configurations. 
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Beside this aspect, for all the three configurations the sample central area shows larger 

grains, belonging to alpha phase, whereas the smaller elongated or hexagonal-shaped grains 

were the results of the dissolution-diffusion-precipitation mechanism leading to beta phase 

formation. The latter are located at oxide-phase rich areas (bright contrast region). The XRD 

analysis revealed that the amount of beta Si3N4 phase located at the sample center was not 

being altered when changing configuration.  

In the Full configuration case, a 100% amount of beta phase was detected in the 

proximities of the edge, namely the area in which the highest local temperatures were located. 

Only for this configuration the micrographs reveal that a significant grain growth took place, 

by means of an Ostwald ripening process, while for the Holes and Rings configuration no 

significant difference in grain size was detected when moving along the radial direction. These 

microstructural characterization results are coherent with XRD measurement. 

Therefore, from all the characterization techniques performed, the expected trends are 

confirmed. Overheating happens at the sample’s edge, and it is particularly relevant in the Full 

punch configuration, being made evident by lower porosity values, larger grain sizes and 

higher amounts of the beta phase typical of elevated temperatures. All these effects are 

mitigated when repeating the analogous experiments with the newly designed punches. 

The obtained combination of effects, namely an improvement in temperature and 

properties distributions accompanied by negligible modifications of the power output and final 

overall density when utilizing the modified punches, stimulated the planned broadening of our 

study. Room appeared to be left for further geometry optimization, aimed at both finding an 

ideal technological solution to the thermal gradients issue, and answering a series of 

interrogatives arisen in view of the phenomena described in this section - such as how current 

density and temperature non-uniformities are correlated, what material characteristics have a 
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stronger impact on heat transfer, how temperature distributes inside the whole cross-section of 

the specimen, what are the mechanical strength limitations to the punch geometry alterations. 

Thus, we proceeded at running the FEM simulations associated with all the other 

values of the geometrical parameters D and H listed before. This broader part of the study 

allowed a refining of the geometry optimization process and a deeper understanding of the 

phenomena underlying the distribution of temperatures in the SPS tooling setup, together with 

an assessment of the impact of each of the parameters playing a role in the uniformization of 

temperatures, focusing in particular on the radial direction.  

We analyzed the impact of these other new geometries by first of all looking at the 

temperature disparity among the two pyrometers during the isothermal holding time step. The 

results are reported in Figure 4.12 and Figure 4.13.  

The denominations for the Holes case are based on the holes diameter D, while the 

Rings case allows a qualitative classification, based on the number of concentric ring-shaped 

holes. In the 2 Rings case, two combinations of the D parameter values were attempted, 

therefore they are distinguished by addressing one as “2 Small Rings” (D: 20-30-40-50 mm) 

and the other one as “2 Large Rings” (D: 18-32-38-52 mm). Note that this second punch 

design is the one, in the Rings category, in which most of the material is removed, even more 

than in the 3 Rings case.  

The graphs are given following an order of decreasing cross-section area (larger 

amount of removed material) for both Holes and Rings, but in the latter case the first two 

configurations, 1 Ring and 2 Small Rings, present an equal value, meaning that the current 

density flowing through the interface is the same in the two cases, which therefore differ only 

for the current distribution inside the punches.  
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Figure 4.12 – Temperature disparity for the FEM-implemented Holes configurations. 

 

By observing these plots, and in particular this last pointed out aspect, one can 

immediately infer how a more homogeneous current distribution has a significant beneficial 

effect on the lowering of the temperature disparities, while current density doesn’t seem to 

play an important role. The first statement is a consequence of the comparison between the 

two upper plots in the Rings configuration: as mentioned above, 1 Ring and 2 Small Rings 

present the same cross-section area, but ΔT results to be higher in the former case. The impact 

of current density deserves a more careful analysis, which will be enounced later. Another 

immediate observation can be drawn with regards to the effect of a change in the holes’ depth, 

since in all cases an increase in H leads to a decrease in the temperature gradients.  
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Figure 4.13 – Temperature disparity for the FEM-implemented Rings configurations. 

 

A peak at the beginning of the holding time step appears in each plot. It is due to the 

current profile, given as an input and presenting the same kind of spike in correspondence to 

the end of the heating ramp. Such phenomenon is therefore unavoidable, since the reliability 

and repeatability of our computations required the same experimental electrical current input 

in every FEM simulation, and also because it was proven, both experimentally and 

numerically, how this trend was responsible for the preset temperature stabilization during the 

holding time step. A decreasing of this effect is, however, attainable by lowering the holes 

depth dimensions: in all the situations considered, an increase in H corresponds to an increase 

in the initial peak. 
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Figure 4.14 offers a summarized version of the previous graphs, which renders the 

optimization strategy individuation easier to identify. A specific time instant was chosen, t = 

1200 s, corresponding to mid-holding, in order to compare the most significant temperature 

measurement for every implemented geometry. Here the most successful approach clearly 

appears to be the Rings, with its temperature disparity levels reaching values of 10 °C, or even 

negative ones.  

This last aspect suggests interesting hints for a further improvement of the punch 

geometry, eventually able to annihilate ΔT completely. On the other hand, the Holes setup 

doesn’t provide any decrease in ΔT higher than 40 °C with respect to the full-punch case. The 

impact of current density, current distribution and holes depth described above is thereby 

confirmed.  

From this same figure, we infer how an additional slight change in the drilled holes 

configuration, in particular of their height, which is the parameter that appears to have the 

most immediate effect on temperature gradients within the SPS setup, could lead to even 

better results. By making a direct comparison between the three most promising designs (see 

Figure 4.15), namely 2 Small Rings with H = 30 mm, 2 Large Rings with H = 20 mm and 3 

Rings with H = 30 mm, circled in the upper part of the same figure, one can select the 

configuration which is more prone to a final refinement of the geometry optimization.  

Aiming at decreasing both the initial temperature peak and the current distribution 

inhomogeneities, the most suitable setup results to be the 3 Rings one, as the lower part of the 

same Figure 4.15 (ΔT vs. holding time) reveals. 
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Figure 4.14 – Temperature disparities at mid-holding for the Holes (top)  

and Rings (bottom) configurations.  

 

 



185 

 

 

 

 

Figure 4.15 – Selection of the Rings configurations to be further investigated. 
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We therefore selected this 3 Rings case, represented by the green curve in Figure 4.15, 

and finalized the optimization process. The final stage of the punch redesign consisted in a 

trial-and-error procedure for calibrating both the H value and the current input. This last 

aspect, i.e. the manual correction of the current input, is due to the effects of a substantial 

change in the cross-section area available for the current to flow through. As stated before, up 

to this step of our study, the applied current was imposed to be equal in every case study, for 

comparison purposes. At this point, once the optimal configuration has been selected and 

requires only minor adjustments, the verification of the temperature evolution relative to 

Pyrometer A can show that such parameter doesn’t follow the profile imposed by the SPS 

machine during experimental procedures (since we have not embedded a PID controller, for 

the reasons explained above). The conclusive outcomes refinement is therefore constituted by 

slight alterations of H (order of millimeters) and current (order of Amperes), until we obtain a 

finalized 3 Rings geometry, with D = 18-25-32-46-53 mm and H = 23 mm. 

Figure 4.16 reports both the graph with T(A) and ΔT, and the complete optimized 

tooling setup, as it looks in the COMSOL® interface. The temperature profile of the leading 

pyrometer is brought back to the desired value of 1750 °C, and the temperature disparity with 

respect to Pyrometer B is reduced to approximately zero.  

Recall, nevertheless, that neither point A neither B belong to the specimen, they are 

simply located in its vicinity. This is where the other valuable feature of FEM in spark plasma 

sintering analysis comes into play, namely the reconstruction of the complete temperature 

mapping, in any cross-section, or more generic location, and at any time instant of the process. 

This is valid for any other simulation parameter also, but we will focus on thermal 

distributions for now, and specifically on the radial temperature map in the central cross-

section of the specimen. Figure 4.17 shows this mapping (temperature in °C), which is also an 

effective representation of the beneficial effect of the novel punch configuration. The plots of 
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the radial temperatures at this central section are given for the original Full-punch setup and 

for the present modified 3 Rings case. The graphs refer again to t = 1200 s, mid-holding. The 

use of the same color scale for the legend shows how strong the impact of the tailored holes is.  

 

 
 

Figure 4.16 – FEM- derived temperature profile and temperature disparity of the optimized 3 

Rings configuration. 

 

 
 

Figure 4.17 – FEM-derived temperature distribution (°C) in the central radial cross-section 

for the Full and optimized 3 Rings configurations. 



188 

 

This final design of the punch was also experimentally implemented. Figure 4.18 

shows the complete SPS tooling setup as it loots once the novel punch has been inserted. 

Figure 4.19 represents two punches geometries, the conventional one on the left, and the 

optimized 3 Rings one on the right. The central hole for the measurement of temperature by 

pyrometer A is identical, as all the other geometrical parameters, with the only addition of the 

three concentric ring-shaped holes. These holes obviously need to be in contact with the 

spacer and not with the specimen (even with the interposition of graphite paper), in order not 

to alter the compaction conditions, especially when an external pressure is applied. Notice, 

thus, that the presence of these rings holes imposes a specific path for the electrical current to 

follow, which excludes the drilled zones. This translates in a current flow that is obliged to 

avoid certain areas of the punch adjacent to its edge (external ring-holes) through which it 

would normally tend to pass, and supposedly be deviated towards the graphite “channels”, as 

we can define the bulk material between the holes, that are closer to the axis of symmetry. A 

shift towards the setup’s center of the Joule heating effects is obtained, and therefore the edge 

overheating is mitigated, by distributing the high temperatures more homogeneously. This 

positive outcome is obtained even though the holes in the punch are not through cavities, both 

to preserve the component’s integrity and to leave the contact surface with the sample plain 

and smooth. Nevertheless, imposing to the current such a preferred path at least for the 23 mm 

of the holes’ depth still allows a more powerful Joule effect around the center of the specimen, 

since we are keeping the electrical flow in the vicinity of the axis for a longer distance 

(counted from top to bottom) than in the conventional case. Such principle of current focus 

towards the setup center will be further explored in the next section, after we experimentally 

assess the effectiveness of the present geometry.  

The experiments were performed again with analogous conditions and confirmed the 

beneficial effects of the drilling of three concentric ring-shaped holes in the punches in order 
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to mitigate the radial thermal gradients throughout the cross-section of the specimen. The 

same process was conducted three times, in order to ensure the reliability of the results 

obtained. In this specific phase, certain requirements in the SPS machine’s utilization imposed 

the interruption of the process earlier than in the previous cases, a few minutes after the 

beginning of the isothermal dwelling time. The previously run campaign ensured that ΔT, 

T(B)-T(A), maintains a constant value during the isothermal phase (see Figure 4.8), therefore 

allowing for an extrapolation of the data for the entire duration of the holding time.  

 

 
Figure 4.18 – SPS setup with the optimized 3 Rings punch. 
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Figure 4.19 – Comparison between the Full and optimized 3 Rings punches. 

 

 

Figure 4.20 shows the extrapolated results for two of the three experiments run with 

the optimized punch configuration (three rings), compared to the data relative to a 

conventional Full configuration. It is worth mentioning that the third run results, not explicitly 

extrapolated in the graph, if shown, would have been located in between the other two curves. 

The successful application of the three-rings setup is evident in the ΔT values ranging between 

-5°C and -11°C, compared to the ΔT=115°C relative to the conventional full-punch case, 

which in modulus are even lower than the values obtained experimentally for the Holes and 

the 2 Rings configurations. Such results prove what inferred from the finite-element 

simulations. 

It is interesting to point out in this second set of experiments too that the novel 

optimized setup does not present any significant difference in terms of the densification 

behavior with respect to the conventional full punch case, as shown in Figure 4.21. The plot 

provides densification data during the heating ramp, by means of displacement (in absolute 

value) of the top punch along the axis of the setup, for the full punch case and the three runs 

with the optimized tooling, which all appear to have coincident trends. 
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Figure 4.20 – Experimental verification of the temperature disparity with the optimized 3 

Rings configuration. 

 

 

 
 

Figure 4.21 – Axial displacement during experimental procedures with the Full and optimized 

3 Rings configurations. 
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On the other hand, while the behavior of the conventional and optimized setups 

coincides as far as the SPS route is concerned, the same again does not hold for the power 

input required to reach the pre-set temperature regime. The optimized 3 Rings punch is 

endowed with a smaller cross-section area, namely 17.53 cm
2
, which corresponds to an Arel 

value around 60% of the 29.40 cm
2
 of the conventional full-punch case. Consequently, current 

density is automatically increased thanks to the new geometry, and a lower electrical power is 

sufficient to attain the scheduled 1750 °C at the leading pyrometer A. Referring to the 

dwelling time-step, in which the machine readings can be considered stabilized, the input is 

reduced from 26 kW (4.7 kA) to 21 kW (4.1 kA), an appreciation factor when considering 

more extensive productions of components via SPS technologies. Such input power reduction 

effect implies that the optimized punch configuration, characterized by a set of thin concentric 

rings with dimensions that can be tailored through numerical modeling, represents a well-

balanced combination of current density increase and redistribution along a pattern capable of 

diminishing temperature differences in the resized cross-section itself. 

We have now collected a sufficient amount of experimental and numerical data to 

discuss the identification and impact of the phenomena influencing temperature non-

uniformities within a spark plasma sintering tooling setup. From the obtained results several 

conclusions can be drawn. The main factors affecting the temperature gradients resulted to be 

heat capacity, surface radiation, current distribution and current density. 

The heat capacity of a certain component can be qualitatively defined as its “thermal 

mass”, the heating storage capability of such domain, whose diminution revealed to be an 

efficient method to mitigate the thermal inhomogeneities within the entire tooling.  

Surface radiation has proven to act efficiently when temperature peaks manifest 

during SPS procedures, since an increase in the area of the outer surfaces of the tooling 

corresponds to a more extensive amount of material exposed to an environment kept at room 
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temperature. This is quantitatively explained by looking at the Stefan-Boltzmann equation 

(4.6) relating irradiated heat and temperature disparity between thermal source and 

destination, in which temperatures appear at the fourth power. By drilling holes inside the 

punch, we have automatically increased the amount of the tooling setup’s external surfaces 

radiating, and therefore releasing, heat. It is interesting to notice how, even though these holes 

act as closed cells not in immediate connection with the environment kept at room 

temperature, they are sufficient to mitigate localized overheating, probably thanks to the 

emissivity properties of graphite. This conclusion has been assessed by running some 

simulations with and without the corresponding boundary condition. The temperatures 

obtained showed variable differences, typically of the order of magnitude of tens of degrees 

centigrade. Higher temperatures were reached in the case of absence of surface radiation, with 

consequent changes in the disparities among the two pyrometers. We nevertheless consider 

such effect not to have an influence as significant as the other factors here listed, because of 

the abovementioned closed nature of the holes created. A quantification of this result can be 

the object of further investigation.   

Current distribution, as introduced before, influences thermal gradients by lowering 

the non-uniformities when directed in such a way to result in more spatially homogeneous 

temperature distributions. Here we strictly refer to the Rings configuration, which, indeed, is 

also the one that showed the most promising results and a series of possibilities of fine tuning 

and further optimization. Spatial homogeneity of the current distribution translates in the 

choice of a pattern of ring-shaped holes consisting of a higher number of thin holes (in the 

radial direction), instead of a single large one that drastically separates the current flow into 

two branches running far from each other, one close to the center and one to the edge of the 

component.  
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Current density deserves a more careful analysis. In the plots reported in Figure 4.12, 

Figure 4.13 and Figure 4.14, at a first glance, a change in the current flow density, 

consequence of an alteration of the cross-section area, seems not to have a significant effect on 

temperature disparities. Nevertheless, from the considerations listed above, one can notice 

how a modification of the punch radial cross-section area leads to several simultaneous 

effects. A reduction of this area, indeed, which is an immediate consequence of the drilling of 

holes, corresponds to an increase in the overall outer boundary surface area and, more 

importantly, to a decrease in thermal mass, both beneficial for a lowering of thermal gradients. 

At the same time, we have a detrimental effect of increased current density, to which localized 

Joule heating phenomena are proportional. This enhancement of the Joule effects would tend 

to lead to local peaks of temperatures, but the augmented surface radiation and the diminished 

heat capacity hamper the verification of such thermal gradients. Therefore it would be 

incorrect to address radial cross-section area modifications, or, alternatively, current density 

changes, as ineffective or negligible, since we are instead having a combination of three 

different effects that end up compensating each other.  

Consequently, a comprehensive punch geometry optimization procedure can be 

operated on different levels, individually or simultaneously implemented. A holes height 

increase has two advantageous consequences, namely an augment in boundary surface and a 

diminution of extra thermal mass, without presenting the downside of excessive current 

density localization. A more homogeneous current flow throughout the punch can be created 

by providing for the selected material’s removal in the form of an increased number of thinner 

concentric ring-shaped holes. The cross-section area parameter will, on the other side, need to 

be carefully tuned in order to obtain desirable outcomes. Notice how all the redesign 

procedures have been based on the Rings configuration, thanks to both its versatility and its 

distinguishing ability to achieve consistently improved results with respect to the Holes setup, 



195 

 

by removing equivalent quantities of graphite. The Holes configuration, indeed, does not 

allow a precise control of the current flow path, as instead the Rings case does. In the former, 

we are simply removing some extra quantity on unneeded mass, while focusing the current 

towards the center in an imprecise way. In the latter situation, we are sure of where the current 

is going as long as the holes are present in the cross-section, and we are postponing the 

current’s sharp deviation from the center to the die wall until a zone that is much closer to the 

specimen itself than it was in the Full and in the Holes cases.  

At this point it is also important to point out that our results have been experimentally 

validated based on temperatures recorded by the two pyrometers, while a prosecution of the 

study is needed in order to obtain a completely satisfactory correspondence for the porosity 

distribution. In the experimental procedures section we explained that oxides had been added 

to the powder specifically to hamper densification and therefore individuate more clearly the 

radial thermal gradients patterns. The effect of these additives is complex and could not be 

reproduced in our simulations. Nevertheless, we chose to incorporate porosity and the relative 

densification equation in the simulations, since we believe that this guarantees a better 

adherence to reality than considering a bulk compact. Interestingly, experiments revealed that 

the evidence of thermal gradients lied significantly more in the alpha/beta phases and grain 

size distributions (Figures 4.9 and 4.11) than in the density distribution (Figure 4.10). 

At this point, the successful novel punch design application has been assessed both 

numerically and experimentally. Principles and qualitative guidelines have been individuated 

in these last discussion paragraphs. We pointed out earlier that in the just concluded stage of 

geometry optimization we were minimizing the amount of variables by keeping the two 

dimensional parameters D and H (diameter and height of the various holes) constant in each 

setup. At the same time, we have shown how effective the idea of focusing the current flow 

along the axis is when trying to heat up the sample’s center and reduce the edge overheating. 
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Delaying as much as possible the current passage exclusively inside the die’s wall is a 

convenient method, and thus one can tailor the Rings geometry accordingly.  

Having identified the phenomena playing a role in the temperature redistribution, and 

gained a more complete knowledge on how to control them, room is left for a more refined 

optimization process. We therefore remove the limitation of keeping D and H constant in the 

setups, and explore the possibilities of linear change of the holes dimensions along the radial 

direction.  

The following section will describe this and more strategies for improving the 

effectiveness of the punch design alterations. A second option will be found in the selective 

coating of the punch’s surface with suitable insulating materials. Both the optimization routes 

described in 4.1.1.4 are purely numerical, since at this stage of the study we can consider the 

reliability of our FEM framework as broadly confirmed.  

 

4.2.4 FEM analysis of further developments for the novel punch design 

 

We will start by treating the further geometrical optimization first, and only later we 

will mention the alternative option of not drilling any holes and replicating their effects by 

coating opportune areas of the punch’s surface.  

For coherence with the rest of the optimization study, the same silicon nitride powder 

was considered as starting material. When dealing with an insulating powder compact, we 

have shown how, since the current flows through the die instead of through the specimen 

itself, the former tends to reach higher temperatures, while the sample experiences a radial 

thermal gradient, with temperatures decreasing from the edge towards the center of the 

powder compact. In order to mitigate this effect, one can design precise strategies aimed at 

focusing the electric current towards the center of the specimen.  
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A more refined method to implement this solution consists in tailoring the geometry 

of the punches along the radial direction, in such a way that the amount of graphite-mass 

constituting the tooling component goes decreasing with the distance from the axis of 

symmetry. 

Two possibilities arise: a progressive increase in the ring-shaped holes thickness along 

the radial direction, with constant distance among them, or a gradual decrease in the distance 

among the holes, while keeping their radial thickness constant. The punch cross-section 

dimensions (62 mm diameter) do not allow a wide variety of changes in the geometrical 

parameters, even though an investigation on the two above-mentioned options already 

provides a set of interesting data. The geometries of the two cases are given in Figure 4.22.  

 

 

Figure 4.22 – Geometrical parameters along the radial direction for the Constant Thickness 

and the Constant Distance configurations. 
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In both cases the holes’ depth was set to be 20 mm, the intermediate value of our 

previous simulations campaign, which resulted to be the best compromise solution between 

lowering the gradients and preventing the temperatures peak at the end of the heating ramp.  

The two options were designed in such a way that the overall cross-section area was 

kept constant, in order to render the results independent of this geometrical parameter, whose 

effects resulted to be difficult to regulate.  The two punch configurations investigated here will 

be denominated Constant Thickness and Constant Distance. 

In order to maintain coherence with the antecedent part of the work and the 

experimental results discussed in the previous section, we keep ΔT = T(B) - T(A) as leading 

parameter for the optimization procedure. Figure 4.23 provides the plot for the ΔT profile of 

the two configurations during the holding time-step. 

The tailored radial gradient of the geometrical parameters results to be an efficient 

solution in order to eliminate the heat concentration in the die. The temperature disparity 

among the two pyrometers switches from the 115°C of the conventional setup to -30°C and  

-10°C, for the Constant Thickness and Constant Distance configurations, respectively, a 

significant improvement in both cases. The Constant Distance case, in particular, produces the 

best outcomes.  

Linearly increasing the holes’ thickness along the radial direction, thus, results in a 

beneficial effect of electric current density redistribution tending to uniformize the 

temperatures. Notice, though, that the attained values of ΔT, in absolute value, are comparable 

to the ones that we were obtaining when keeping D and H radially constant, especially in 

certain 2 and 3 Rings applications.  

It might seem, then, that such technological effort in linearly changing their values 

within the same setup is an unnecessary complication. But one has to take into account that 

what we are trying to obtain here is a series of general guidelines for the optimization of the 
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SPS tooling geometry in order to remove the undesired thermal gradients, which, it is 

important to recall, are raised when increasing the size of the specimen that we are sintering. 

The verification that this linear change of the parameters has beneficial effects in mitigating 

the disparities is therefore another important result that can be applied to any other case of 

SPS of large size samples, and will probably gain growing attention when higher values of 

powder compact diameters are considered.  

 

 
 

Figure 4.23 – Temperature disparity for the Constant Thickness  

and Constant Distance configurations. 

 

Another possible objection to the optimization procedure described in this section 

could lie in the high grade of precision required to practically implement the geometries 

described above, since the dimensions selected impose very narrow tolerance ranges.  But 

again, the focus of the present study consists in developing a better understanding of the 

phenomena underlying temperature inhomogeneities in SPS tooling, specifically of the role 
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played by the electric current flowing through the setup during the process. Manufacturing 

feasibility is temporarily sacrificed to the intent of individuating some general principles, 

which would subsequently draw guidelines for the design of optimal punch configurations on 

even larger scales, in which more room is allowed for the delineation of solutions both 

appropriately tuned and technologically inexpensive. 

With this we can consider our “holes-drilling” optimization strategy satisfactory, and 

consider a different possibility of tooling improvement. We have mentioned earlier that the 

production of such tailored cavities in the punches was tolerable from the component’s 

strength viewpoint, as both experiments and simulations confirmed. The loads for which this 

outcome was obtained, though, were only the ones that had been initially chosen for this 

specific sintering route and for silicon nitride, namely ranging between 8 and 50 MPa. One 

can thus wonder if there are temperature uniformization strategies that would guarantee the 

integrity and absence of deformation of the punch even when higher loads are applied.  

An interesting option was individuated in the tailored selective coating of the top 

surface of the punches with an insulating material. By top surface we denote the one in contact 

with the spacer and not with the specimen, since we conventionally refer to the top punch in 

the tooling assembly. Obviously, as in the previous cases, both punches need to be identical 

and symmetrically mounted with respect to the central cross-section, in order to guarantee the 

homogeneity of the results. This procedure, provided the coating itself can resist to the applied 

pressures, does not require any mechanical weakening of the punches, since there is no 

graphite removal involved.  

Such conclusions were reached during the progress of the work and not ahead of it. 

This motivates the investigation procedure that is about to be exposed, in which the usage of 

the coating is first applied to the Rings cases instead of a bulk full punch. Being the outcomes 

of the coated Rings configurations particularly striking, we choose to report them in detail too, 
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together with a complete exposition of how the study evolved based on the simulations results 

reached at every step.  

The material to be utilized for the coating has to be endowed with a series of thermal, 

electrical and mechanical specific properties. It has to be insulating with respect to the tooling 

constitutive graphite, both electrically and thermally, be able to form a continuous resistant 

coating layer, do not react with the adjacent material and preserve all these characteristics until 

the elevated temperatures typical of spark plasma sintering. A promising solution was found in 

hexagonal boron nitride (hBN). 

Boron nitride owns a graphite-type, hexagonal structure of 2-dimensional strong 

covalent bonding of boron and nitride atoms (sp² hybridization) but shows weak bonding in 

between two planes. High electrical resistivity even at elevated temperature combined with 

good thermal conductivity (~30W/mK) as well as low density (2,27g/cm³), a low coefficient 

of thermal expansion and good thermal shock resistance, are among the reasons for which this 

material is extensively used for high temperature applications. Its characteristics of good 

machinability and low values of compressive and bending strength, due to its lamellar 

structure, render it comparable to graphite. Hexagonal boron nitride is available as coating, 

which is the form utilized in the present study.
260, 261

 

As a natural continuation of the previous outcomes, we thought of applying the hBN 

coating to the all Rings cases (1 Ring, 2 Small Rings, 2 Large Rings, 3 Rings) with H = 20 

mm, in order to see how the thermal disparities obtained in those cases were altered if we 

isolated the most external ring, still with the purpose of focusing the electric current towards 

the center of the setup. The coated punches implemented in the simulations are shown in 

Figure 4.24, where the hBN layer is highlighted in red. Be reminded that setups (a) and (b) of 

this same figure, 1 Ring and 2 Small Rings, share the value of overall cross-section area, only 
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differently distributed. Thus they have the same current density, but the flow is organized 

along a distinct path. 

The thickness of the coating layer was 100μm. It is important to mention the fact that 

boron nitride can also be deposited in thicker layers. When we reach the order of magnitude of 

some millimeters, in order to avoid the presence of a little step, namely a ring longer than the 

others in the axial direction, it is possible to remove the necessary amount of graphite with 

some machinery and then replace it with the desired thickness of hBN. In our case, with a the 

maximum applied pressure of 50 MPa, this would be a pointless technological complication, 

but it is an important consideration for cases in which higher loads need to be applied, which 

could crash the thin layer and render vain its own presence.  

 

 
 

Figure 4.24 – FEM-implemented Rings configurations with boron nitride coating deposited 

on the external ring. 
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In our SPS route context, the effects of the deposition of a thin layer on such external 

ring have been analyzed for a variety of cases, changing the number and dimensions of rings. 

The same modeling approach was utilized, namely a set of FEM simulations with the 

same coupling of electric currents, Joule heating, sintering mechanics and densification 

mechanisms. Initial, contact and boundary conditions are coincident with what described in 

the geometry optimization section, with the only addition of a contact boundary condition 

aimed at reproducing the effect of the hBN coating. The boron nitride properties needed to 

describe the behavior of such coating were derived through numerical regression from 

experimental data
262, 263

 and are reported in Table 4.5. 

 

Table 4.5 – Hexagonal boron nitride properties. 

Theoretical density, 𝜌𝑡ℎ 2280   [
𝑘𝑔

𝑚3
] 

Electrical resistivity, 𝑟𝑒𝑙 

1.53 × 1015 − 7.29 × 1012 𝑇 + 1.42

× 1010 𝑇2 − 1.42 × 107 𝑇3

+ 7.69 × 103 𝑇4 − 2.15 𝑇5

+ 2.43

× 10−4 𝑇6    [𝛺 ∙ 𝑐𝑚] 

Heat capacity, 𝐶𝑝 

−362.41 + 4.21 𝑇 − 0.01 𝑇2 + 1.69

× 10−6 𝑇3 − 3.25

× 10−10 𝑇4 + 1.89

× 10−14 𝑇5     [
𝐽

𝑘𝑔 ∙ 𝐾
] 

Thermal conductivity, 𝑘𝑇 80    [
𝑊

𝑚 ∙ 𝐾
] 

Emissivity, 𝜈𝑟𝑎𝑑 0.85 
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Figure 4.25 depicts the evolution of the temperature difference ΔT during the holding 

time for the four cases investigated. The results show a surprisingly strong effectiveness of the 

hBN coating in redistributing temperatures in the radial direction. The aim of increasing the 

Joule heating effects at the center of the sample while lowering the peaks at the outer edge is 

reached and widely overcome, since ΔT is now negative, but very high in modulus. The 

absolute value of ΔT augments as the coated area is increased, reaching a peak of -400°C for 

the 1 Ring case. Even though the 1 Ring and 2 Small rings cases share the same cross-section 

area value, the latter presents a lower disparity, confirming that allowing the current to flow 

through two thinner rings instead of through a larger central one plays an important thermal 

homogenization role. The 2 Large Rings case has a lower cross-section surface area and this is 

why the disparity between point A and point B is so relevant, together with the previous 

considerations on the consequences of the uneven distribution of the current flow.  

In general, significantly negative ΔT translates in an overheating of the specimen's 

center, which is obviously an undesired effect. Values of the order of magnitude of several 

hundred degrees imply that the outer area of the powder compact does not even undergo 

sintering phenomena.  

The abrupt shifting of the radial thermal non-uniformities from highly positive values 

for the conventional Full punch configuration to highly negative ones in the present cases 

provides some indications for the design of an intermediate solution. 

It appears clear how by covering the entire extension of the external ring, whichever 

the selected number of rings is, creates a current-insulated area which ends up being too wide, 

since one has to take into account that the adjacent area, moving inward in the radial direction, 

constitutes one of drilled holes and is therefore itself insulated too. Such phenomenon 

provides an even stronger evidence of what discovered in the antecedent part of the study, i.e. 

the beneficial effects of a more homogeneous current distribution throughout the entire 
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punch's volume, preferable to a sharp channeling of the current flow along paths separated by 

a larger distance. 

 

 
 

Figure 4.25 – FEM-derived temperature disparity for the  

BN-coated Rings configurations. 

 

An improved approach was then associated with the idea of only partially covering the 

outer ring with the hBN layer. The first attempted simulation, applied to the 3 Rings case (as 

the one presenting the least extreme results) by coating half of the external ring, presented 

only a slight gradient mitigation, with a ΔT decreased, in absolute value, of around 30°C, with 

respect to the complete external ring coating of the same geometry. 

As a consequence, a more radical strategy was applied: the 1 Ring case was 

considered, this time for being the setup showing the strongest temperature disparity, with a 

reduced holes depth (10 mm), in order to lower the beneficial effects of surface radiation and 
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thermal mass reduction, while at the same time increasing the overall compression strength of 

the punch, a factor of appreciation when applying higher loads during the SPS procedure. 

Such configuration did present an improved temperature distribution, with a ΔT = -27°C, 

although still not completely satisfactory. 

From this second set of finite-element modeling-derived data the extremely high 

impact of hBN coating on the Joule heating effect distribution was confirmed. Some 

difficulties in controlling the temperature evolution and distribution by means of the 

combination of boron nitride coating and drilling of ring-shaped holes arose. This 

manipulation complexity lies in the coexistence of numerous factors playing contrasting roles. 

Geometry modifications create alterations in the extent of surface radiation, heat capacity, 

current density and distribution, while the hBN coating’s peculiar properties are temperature-

dependent, rendering the punch design process to be non-intuitive.  

Excluding for the purposes of this study the possibility of investigating on alternative 

materials to be employed for the coating, an optimal solution could be found in the isolation of 

the boron nitride influence, by applying it to the conventional full-punch tooling setup. 

The results obtained for the coated rings cases, characterized by high thermal 

gradients with an opposite trend along the radial direction even when only a thin portion of the 

external ring was covered by a layer of hBN, inspired the idea of utilizing this same boron 

nitride coating on the conventional full-punch configuration, which had shown a ΔT above 

100 °C during the holding time-step. 

The depth of the coating was kept at the previous level of 100 μm, while the extent of 

the cross-section area covered by hBN was optimized by means of a parametric study in the 

FEM framework. A suitable solution was individuated in a ring-shaped coated area starting 

from the outer edge of the punch and extending for 6 mm in the radial direction, as depicted in 

Figure 4.26.  
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A significant improvement is detected in ΔT during the isothermal dwelling time: the 

temperature disparity among the two pyrometers is reduced to 5 °C. The beneficial effects of 

this partially-coated, Full punch setup are confirmed in Figure 4.27, where a complete map of 

the radial temperature distribution (in °C) in the central cross-section of the setup is given for 

the present configuration and the conventional Full one. The plot refers again to 1200 s, mid-

holding time, and utilizes the same color scale for both cases, providing a comprehensive 

overview of the smooth transition between sample's edge and center, provided by the 

influence of the partial hBN coating. Such a novel design results to be a technologically 

feasible optimized solution for the uniformization of temperatures along the radial direction of 

a non-conductive powder specimen.   

This concludes our investigation on how to optimize the spark plasma sintering 

tooling geometry in order to annihilate the strong thermal gradients characterizing the 

procedure. Various solutions have been proposed and refined, some suggesting the tailored 

drilling of ring-shaped holes, others the application of a selective coating of boron nitride. 

 

Figure 4.26 – Optimized BN-coated Full punch configuration. 
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Figure 4.27 – FEM-derived temperature distribution (°C) in the central radial cross-section 

for the conventional and optimized BN-coated Full configurations. 

 

It is important to evidence that, even if our investigation was focused on the SPS of 

silicon nitride under specific conditions because of the availability of experimental data, the 

applications of the analysis do not limit to this context. The individuated optimization 

strategies can be qualitatively generalized to any setup size, and from silicon nitride to any 

other insulating material. Furthermore, analogous considerations hold when dealing with 

conductive powders, in whose context the principles applied here can be simply reversed, such 

that the aim would be focusing the current towards the edge of the specimen. The quantitative 

information reported for this specific case helped solving actual issues of tooling overheating 

and specimen non-uniformities, encountered in the Dresden IKTS laboratories, but the 

deriving qualitative guidelines are suitable in any other situation.  

Room for further work is also left. Once can notice that for the entirety of this section 

of the study we have used always the same optimization parameter, the disparity of 

temperatures recorded at two specific locations. This was necessary for coherence with the 

experiments first, when our numerical models were still undergoing validation, and then for 



209 

 

consistency with the initial plots. None of these locations, though, as we have pointed out 

elsewhere, belongs to the specimen itself, and in any case such parameter is rather limiting for 

a thorough redesign analysis. By looking at the two temperature maps in the radial cross-

sections (Figures 4.17 and 4.27), indeed, one can see how, even when the disparity was almost 

reduced to zero, within the specimen the temperature range variations can still reach several 

tens of degrees. A more exact simulations campaign could, instead, involve the temperatures 

of the specimen itself, now made available by a FEM framework that we have assessed as 

reliable.  

The reflection of the temperature distributions on the density of the specimens can 

also be analyzed, and this will be the object of section 4.2.  

Before proceeding to focusing our attention on densification and connecting this type 

of optimization with the results of Chapter 3, we proceed to analyze the thermal gradients in 

the axial cross-sections of the setup, and the consequent improvements to the geometry of the 

other tooling components.  

 

 

4.3 Optimization of the axial temperature distributions by improved spacers  

      design 

 

Analogously to the radial direction, axial planes present problems of thermal 

gradients. They hamper the specimen’s conditions more indirectly, since they tend to create 

the overheating peaks in areas that are further from the powder compact. Such overheating is a 

consequence of the progressive heat dissipation as the current flows from the top to the bottom 

of the setup, combined with the presence of abrupt changes in the cross-section area available 

for the current to pass through. The highest dissipation happens at the first maximum cross-
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section restriction encountered by the electrical current, namely at the interface between upper 

spacer and punch. Localized overheating at the top punch has been evidenced, during many 

spark plasma sintering experiments and with a variety of setups, by noticing that this 

component was becoming red and white hot during the procedure. In certain cases the top 

punch even sublimated.  

It is interesting to already point out that a relatively unexpected result emerges from 

this study, at least at a first glance. The component responsible for this overheating behavior 

resulted to be the spacer, which we recall being the transition component that creates the 

interface between the punch and the respective electrode. A significant improvement in the 

temperature distributions is found in switching for this tooling component from a tapered 

(conical) configuration to a stack of disks. The peculiarity of this result lies in the fact that one 

would expect the inverse trend, since this translates in both an increase of the number of 

contact resistance layers and a very abrupt cross-section area change at the interface between 

the smallest disk and the top punch. What this section of the tooling optimization study 

reveals, instead, is that the increase in free surface area radiating towards the environment and 

the opportune decrease in graphite mass constituting the spacer assembly play a more efficient 

role in the overheating peaks mitigation.  

Although the location of the overheating peaks seems not to have an influence of the 

specimen conditions, it is important to point out why the lowering of this type of gradients is 

still essential for the improvement of the SPS processes efficiency, also from the specimen's 

viewpoint.  

The previous part of the work, focused on the radial gradients within the specimen and 

the adjacent die, allowed to neglect the axial differences because of the powder compact's 

aspect ratio, which was 6:1 before starting the process and even more as shrinkage progressed. 

Sometimes samples have lower values of aspect ratio, therefore rendering the axial thermal 
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gradients within the specimen not negligible anymore. The presence of very high temperatures 

at the top punch can only worsen such issue, by making the overall temperature distribution in 

the axial direction extremely uneven.  

There is also an aspect of energy efficiency of the SPS procedure. Overheating at the 

top punch is an index of the maximum Joule heating effect happening at that location, instead 

of in correspondence of the specimen as desired.  

When attempting to lower the axial temperature disparities, therefore, we are 

simultaneously homogenizing the thermal conditions experienced by the sample, protecting 

the tooling from overheating damages, and improving the energetic efficiency of the process.  

 

4.3.1 The top punch overheating issue 

 

Also in this case the study was mainly numerical but supported by experimental 

evidence.
173

 The tooling setup presenting the issue was made of a different type of graphite, 

Isocarb 85 (Electrodes Inc., Milford, CT, USA), and slightly smaller in size with respect to the 

radial study, being the specimen diameter equal to 40 mm.  

Figure 4.28 shows the tooling setup employed in the experiments and therefore 

reconstructed in the simulations. The various components are marked. The two inserts to be 

located between specimen and punches are optional but were embedded in our study.  

Table 4.5 provides the details of the tooling components, while Table 4.6 reports the 

material properties of the graphite. Note that, together with the tapered transition, there was 

another cylindrical spacer in the assembly, to be located between the transition and the steel 

electrode of the machine. 
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Figure 4.28 - Spark Plasma Sintering (SPS) tooling manifesting the 

overheating problem. 

 

 

 

 

 



213 

 

Table 4.6 – Tooling setup components for the axial gradients study. 

Component (number) Dimensions 

Punches (2) 

Height: 40 mm 

Diameter: 40 mm 

Die (1) 

Height: 80 mm 

Thickness: 40 mm 

Conical spacers (2) 

Height: 80 mm 

Diameter 1: 40 mm 

Diameter 2: 160 mm 

Cylindrical spacers (2) 

Height: 20 mm 

Diameter: 160 mm 

  

 

Table 4.7 – Isocarb 85 graphite properties. 

Theoretical density, 𝜌𝑡ℎ 1850   [
𝑘𝑔

𝑚3
] 

Electrical conductivity, 𝜎𝑒𝑙 
3

6.083 × 10−6 + 1.4585 × 10−9𝑇
    [

𝑆

𝑚
] 

Heat capacity, 𝐶𝑝 
4(𝑇 − 280) + 709.12       𝑇 < 2000 𝐾          [

𝐽

𝑘𝑔 ∙ 𝐾
] 

8000                                      𝑇 ≥ 2000 𝐾 

Thermal conductivity, 𝑘𝑇 
−0.026(𝑇 − 250) + 60      𝑇 < 1500 𝐾         [

𝑊

𝑚 ∙ 𝐾
] 

27.5                                          𝑇 ≥ 1500 𝐾     

Emissivity, 𝜈𝑟𝑎𝑑 0.8 

Compression strength, 𝑆𝑐𝑜𝑚𝑝 250   [𝑀𝑃𝑎] 
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The treated material changes, even though still an insulator, since the overheating 

problem arose during the SPS of alumina, Al2O3, whose properties are given in Table 4.7. All 

the listed material properties, for both graphite and alumina, were derived by means of 

experimental measurements and subsequent numerical regression. The alumina properties 

include dependencies on porosity.  

The experimental procedure applied to the alumina samples consisted in subjecting an 

alumina powder specimen, with initial density ρ0 = 65%, to a temperature regime composed 

by a sequence of 3.3 minutes of 400 K/min heating rate, followed by 10 minutes of holding at 

1600 K, for a total of 810 seconds of the simulated time. The temperature measurement was 

operated by a pyrometer focused on an apposite hole on the die surface. The processing was 

conducted in temperature-control mode (not current-control), which, again, means that the 

temperature profile is imposed by setting it on the SPS machine control panel. The FEM 

reconstruction of the process was done on the same premises used for the radial gradients 

analysis.  

The initial stage of the numerical campaign consisted in the simulation of the 

conventional tapered setup, which served as calibration of the modeling framework. The 

equations to be combined in the FEM software were analogous as what explained in the 

previous section and will not be repeated. We will limit to reiterate the fact that this model of 

SPS, inclusive of the tooling setup, enables the calculation of the evolution of voltage (V), 

temperature (T), stress (σ) and porosity (θ). Analogous considerations hold for the functions 

and parameters selected for the continuum theory of sintering equations. In order to preserve 

the focus on the problem purely on the thermal aspects and to avoid computational issues, the 

Skorokhod's formulations for sintering stress, bulk modulus and shear modulus are selected.  
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Table 4.8 – Alumina properties. 

Theoretical density, 𝜌𝑡ℎ 3970   [
𝑘𝑔

𝑚3]
 

Electrical conductivity, 𝜎𝑒𝑙 
(1 − 𝜃) × 10−8

1 + 2𝜃
    [

𝑆

𝑚
] 

Heat capacity, 𝐶𝑝 (
777.025𝑇

249.40 + 𝑇
+ 0.008𝑇) (1 − 𝜃)               [

𝐽

𝑘𝑔 ∙ 𝐾
] 

Thermal conductivity, 𝑘𝑇 

6.5181 × 107 + 𝑇

−6.6963 × 105 + 8.1758 × 102𝑇
(1 − 1.5𝜃

− 0.5𝜃2)  [
𝑊

𝑚 ∙ 𝐾
]    

Activation energy, 𝑄𝑃𝐿𝐶 520   [
𝑘𝐽

𝑚𝑜𝑙
] 

Strain-rate sensitivity, 𝑚 0.33 

 

Initial and boundary conditions are also the same as in the radial study, although a 

difference is present in the contact conditions. The axial temperatures optimization was 

conducted while the electrical contact resistance study was still ongoing. This obliged us to 

follow a more generic approach, consisting in considering contact resistance as a constant. The 

value of the electric conductance associated with an interface among two components was 

retrieved from the literature
204

 and is reported in Table 4.8. Different values are chosen 

depending on the materials in contact at such interfaces and on their orientation with the 

current flow. The conductance for graphite-alumina contacts are arbitrarily chosen to be one 

order of magnitude lower than for the graphite-graphite ones. Vertical contacts present a 

higher resistivity than the horizontal ones, where vertical and horizontal are defined as before, 

with vertical meaning parallel to the axis and horizontal denoting the interfaces that are 

perpendicular to the current flux. 



216 

 

Table 4.9 – Electric contact conductances. 

  

In the conducted computations the set of contact resistances is simulated as before, 

with thin layer of arbitrary thickness between the two contact surfaces, implemented in 

COMSOL® by means of a distributed impedance in between the disks composing the 

transition. We chose to study the influence of the electric contact resistance by running all our 

simulations both in presence and in absence of this thin impedance layer. Interesting results 

arose in terms of temperatures values and distributions, as we will show in the following 

paragraphs.  

Regarding the finite-element mesh, in this context too various attempts have been 

performed in order to obtain reliable and stable numerically converging results. The free 

tetrahedral mesh with the number of elements varying for different considered cases in the 

range 16,000–22,000 generated by the software, with a size classified as “normal”, “fine”, or 

smaller, revealed to be the most effective in conducting the 3D-FE calculations. 

As an input to the model, we provided the electrical input. The information on 

electrical input and external pressure was taken from the available experimental data.
184

 By 

imposing the applied voltage in the FEM implementation, the temperature profiles obtained 

with the SPS equipment were reproduced, with minor discrepancies, negligible in the present 

Graphite-Graphite  

Contact Conductance,  [
𝐒

𝐦𝟐] 

Graphite-Specimen  

Contact Conductance,  [
𝐒

𝐦𝟐] 

Horizontal 𝜎𝑒𝑙,𝑔𝑔
ℎ = 1.25 × 105 Horizontal 𝜎𝑒𝑙,𝑔𝑠

ℎ = 1.25 × 104 

Vertical 𝜎𝑒𝑙,𝑔𝑔
𝑣 = 7.5 × 104 Vertical 𝜎𝑒𝑙,𝑔𝑠

𝑣 = 7.5 × 103 
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part of the study, and due to the usage of a still unrefined contact resistance formulation. The 

comparison between the experimental pyrometer measurement and the temperature profile 

obtained at the same location in the FEM context is provided in Figure 4.29. Notice that the 

high discrepancy individuated at the very beginning of the process is due to the fact that, in the 

SPS device utilized for this part of the study, the pyrometer starts measuring the temperature 

only after a value 400 °C is reached. This preliminary model validation step also served to 

provide a reference set of data for the optimization study. This time, as suggested at the end of 

the radial section, as a main parameter we will employ the overall temperature distribution 

within the axial planes, in contrast with single point measurements. In this case we only have 

one experimental temperature probe, which is obviously not sufficient to give an indication of 

the disparities entity.  

Figure 4.30 represents this study parameter for the conventional tapered setup, for 

both ideal and resistive contact. We find that the peak in temperatures occurs after 90 s from 

the beginning of the process, which is in agreement with the experimental results and also 

with previous works utilizing FE methods, even if conducted with a different software.
199

  

 

Figure 4.29 – Comparison between experimental and numerical temperature profiles. 
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Figure 4.30 – Axial peak temperatures distribution (K) for the conventional tapered setup, 

with ideal (a) and resistive (b) contacts. 

 

 

 

 

4.3.2 FEM-based optimization of the spark plasma sintering spacers design 

 

In order to decrease the temperatures reached during the SPS processes, the tapered 

configuration was replaced by a variable number of “steps”, namely disks with different radii 

and thicknesses. This configuration based on a simple disk-like shape of the spacers also 

lowers the cost of tooling manufacturing. Several disks’ configurations have been designed, 

by varying their dimensions and number, for a total of 17 different setups (see Figure 4.31). 

The following configurations have been modeled:  

 Transition replaced by two disks: 

 Radii: 50 mm and 25 mm. Heights: 40 mm each. 

 Radii: 60 mm and 30 mm. Heights: 40 mm each. 

 Radii: 65 mm and 35 mm. Heights: 40 mm each. 
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 Radii: 70 mm and 40 mm; 

• Heights: 40 mm and 40 mm. 

• Heights: 30 mm and 50 mm. 

 Transition replaced by three disks: 

 Radii: 65 mm, 45 mm and 25 mm; 

• Heights: 20 mm, 30 mm, and 30 mm. 

• Heights: 30 mm, 20 mm, and 30 mm. 

• Heights: 30 mm, 30 mm, and 20 mm. 

 Radii: 70 mm, 50 mm, and 30 mm; 

• Heights: 20 mm, 30 mm, and 30 mm. 

• Heights: 30 mm, 20 mm, and 30 mm. 

• Heights: 30 mm, 30 mm, and 20 mm. 

 Transition replaced by four disks: 

 Radii: 80 mm, 70 mm, 60 mm, and 50 mm; 

• Heights: 20 mm each. 

• Heights: 10 mm, 20 mm, 20 mm, and 30 mm. 

 Radii: 75 mm, 65 mm, 55 mm, and 45 mm. Heights: 20 mm each. 

 Radii: 70 mm, 60 mm, 50 mm, and 40 mm. Heights: 20 mm each. 

 Radii: 68 mm, 56 mm, 44 mm, and 32 mm. Heights: 20 mm each. 

 Radii: 66 mm, 54 mm, 42 mm, and 30 mm. Heights: 20 mm each. 

 



220 

 

The axial temperature distribution in the vertical central plane was considered for all 

the two, three and four spacer-disks configurations. For brevity, we will address them as 2 

Disks, 3 Disks and 4 Disks, respectively. This same distribution was considered for both the 

temperatures peak moment and the end of the process.  

 

 

Figure 4.31 – Conical transition replaced by 2 Disks (a), 3 Disks (b) and 4 Disks (c) 

configurations. 

 

 

The peak was always reached between 90 and 100 seconds, depending on the 

particular configuration, from the beginning of the SPS procedure, in accordance with what 

obtained for the tapered case. Such analogy was respected for its location too, namely the 

upper zone of the top punch, which, as expected, corresponded to the most narrow cross-

section area encountered by the current flow.  

Figures 4.32 and 4.33 provide the plots of the peak vertical temperature distributions 

for four of the most significant implemented geometries, namely the two 2 Disks with smaller 

and larger dimensions of the disks, and the same two cases for the 4 Disks configuration. All 
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temperatures are given in K, coherently with the unit utilized during this set of experiments. 

From these graphs the identification of the precise point of the top punch in which the peak is 

attained is made possible, a result impossible to derive in the experimental procedures.  

From all the collected data, it also emerged that for both the peak and final time 

instants, the highest value of temperatures is obtained in the 4 Disks case with the largest disks 

radii, with a 2999 K peak value and a 1992 K final one. This is particularly interesting because 

such values overcome the tapered configuration ones (2722 K and 1872 K, respectively). 

More generally, the final and peak temperatures are greater than the conventional tool ones for 

all the 4 Disks configurations with radii greater or equal to the 70, 60, 50 and 40 mm 

combination. Thus, the replacement of the tapered configuration with a stack of disks of large 

size, at least relatively to the size of the previous conical spacer, is not a successful strategy for 

minimizing the axial thermal gradients.  

Another important point made immediately by observing the plots is the asymmetrical 

distributions of the temperatures with respect to the central radial cross-section of the 

specimen. This is explained with the presence of electrical contact resistance at the various 

interfaces among tooling components.  

Once the first layers have been overcome, the energy available for dissipation is 

reduced, and therefore the peak in Joule heating at the second cross-section area restriction 

(bottom punch) is lower than the top punch one. A confirmation of these conclusions will be 

found shortly in the analysis of the ideal contacts (absence of electrical resistance) 

simulations. Recall that thermal contact resistance has been proven to have a negligible effect 

on temperatures in SPS and is therefore not included in our investigation.  
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Figure 4.32 – Peak temperature distributions (K) for two of the 2 Disks configurations.  

(a) Radii: 50 and 25 mm—Heights: 40 mm each; (b) Radii: 70 and 40 mm—Heights: 40 mm 

each. 

 

 

 

 
 

Figure 4.33 – Peak temperature distributions (K) for two of the 4 Disks configurations.  

(a) Radii: 66, 54, 42, and 30 mm—Heights: 20 mm each; (b) Radii: 75, 65, 55, and 45 mm—

Heights: 20 mm each. 
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The configuration in which the heat penetrates more in depth from the transitional 

disks towards the specimen is the 2 Disks setup, where a temperature of 1200 K is found at 20 

mm from the punch. In this same area the temperatures in the other configurations are 

approximately 1000 K for the 4 Disks configuration and 1100 K for the 3 Disks configuration. 

This is again a consequence of the number of electrical contact resistance layers introduced in 

the tooling assembly when building a transition by means of a stack of disks.  

If adherence to the tapered configuration is not a strict requirement, the 2 Disks 

geometry seems to be the optimal solution in order to increase the efficiency of the SPS 

thermal process. By efficiency we mean the localizing of the Joule heating in correspondence 

of the specimen, instead of having large dissipations in areas that are far from it, leading to 

energy wastes. 

As anticipated previously, simulations in absence of electrical contact resistances were 

also run. We denominate them as ideal contacts cases. For comparison purposes, the same 

boundary conditions applied in the resistive contact case are employed. Specifically, the 

voltage utilized to produce the above-mentioned heating regime for the resistive contact case 

is used in this context too. 

We provide the axial peak temperatures distributions for the same four cases that we 

chose as most representative in the resistive contacts context: two 2 Disks and two 4 Disks 

configurations, specifically the ones with smallest and largest sizes of the spacer disks 

(Figures 4.34 and 4.35).  

Analogous considerations to the resistive contacts cases can be drawn with respect to 

the highest temperatures attained. Again these are found in the 4 Disks configuration with the 

largest disks radii, for both the peak and final time steps of the process. The values shown in 

the simulations result to be 2917 K at the peak and 1922 K in the last instants. This is a 

remarkable outcome, since in this case too temperatures are higher than the ones reached in 
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the tapered geometry. Therefore, the increase in temperatures in setups with increasing 

number of disks is, as stated before, a consequence of the selected sizes, and not only of the 

electrical contact resistances. These layers certainly play an important role, since the 

temperatures obtained here are globally lower than the ones of the resistive contacts cases, but 

the relevance of the disks dimensions needs to be taken into account for the optimization of 

the tooling design.   

The main difference with the resistive contacts configurations consists in the perfectly 

symmetrical distribution of temperatures obtained here. This confirms the conclusions stated 

above on the role of contact resistances in the progressive Joule heating dissipation as current 

is flowing throughout the tooling. In absence of electrical resistance layers at the components 

interfaces, the exact same temperatures are reached in the upper and lower parts of the tooling, 

and the same overheating peaks are present in the top and bottom punches.  

We have also noted that ideal contacts render the overall temperatures lower than in 

the resistive context. We provide in Figure 4.36 plots of the time evolution of temperatures 

during the entire 810 s simulations. A graph is given for each of the 2, 3 and 4 Disks cases. In 

each graphs all the simulated geometries are depicted. On the left (a, c, e) we have the ideal 

contacts, on the right (b, d, f) the resistive ones. The temperatures shown are a volume average 

in the top punch. The volume average is calculated as the integral over the volume, divided by 

the volume itself.  

From these graphs the increase in temperatures when contact resistances are present is 

made clear. The time step corresponding to the peak can be inferred, and the range in between 

90 and 100 s is confirmed. For all the configurations considered, in terms of number of disks, 

a decrease in the radii values leads to a decrease in the overall temperatures. 
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Figure 4.34 – Peak temperature distributions (K) for two of the 2 Disks configurations with 

ideal contacts. (a) Radii: 50 and 25 mm—Heights: 40 mm each; (b) Radii: 70 and 40 mm—

Heights: 40 mm each. 

 

 

 
 

Figure 4.35 – Peak temperature distributions (K) for two of the 4 Disks configurations with 

ideal contacts. (a) Radii: 66, 54, 42, and 30 mm—Heights: 20 mm each; (b) Radii: 75, 65, 55, 

and 45 mm—Heights: 20 mm each. 
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Figure 4.36 - Temperature evolution in the top punch. (a) 2 Disks setup—Ideal 

contact; (b) 2 Disks setup—Resistive contact; (c) 3 Disks setup—Ideal contact; (d) 3 

Disks setup—Resistive contact; (e) 4 Disks setup—Ideal contact; (f) 4 Disks 

setup—Resistive contact. Dimensions of the setup are listed in the legend. 
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Moreover, to verify the impact that changes in electric contact resistance can have in 

the temperature distribution, a different arrangement of contact conductivities has been 

simulated in a specific case, i.e., the two disks setup (radii: 60 and 30 mm, heights 40 mm 

each). Here, only horizontal electric contact resistances were considered and the configuration 

of the graphite-specimen contact is changed to obtain a larger resistivity; these modifications 

lead to a considerable increase in the top punch temperature (2020 K, instead of 1853 K).  

Note that the 3 Disks cases, being the transition overall length equal to 80 mm, 

imposed an uneven distribution of the disks height. We chose to have two 30 mm high disks 

and one 20 mm high. All the possible combinations were investigated (see list at the beginning 

of the paragraph). Figure 4.37 reports the two opposed cases of thinner disk (20 mm height) 

adjacent to the spacer or to the top punch. 

 

 

 
 

Figure 4.37 – Peak temperature distribution—Height influence comparison for a 3 Disks 

configuration (Radii: 65, 45, and 25 mm). (a) Heights: 20, 30, and 30 mm from the top; (b) 

Heights: 30, 30, and 20 mm from the top. 
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From the temperatures obtained for the 3 Disks cases (see plots in Figure 4.36 and 

4.37), we saw that an increase of the height of the disk adjacent to the top punch, while 

decreasing accordingly the height of the top disk (the one with the largest radius), causes a 

diminution of the global temperature. A reason for this behavior can be attributed to the larger 

surface area exposed to the environment, kept at room temperature, close to the hottest zone, 

which allows for a more efficient surface radiation (see boundary conditions for the thermal 

module). 

With this result in mind, the same procedure was attempted for the two disks and four 

disks configurations. In both cases, the setups with the largest radii were chosen. These cases 

are included in the initial geometries list too. In the two disks case, ideal contact was 

simulated, while for the four disks configuration the resistive contact model was run.  

 
 

Figure 4.38 - Temperature evolution—Effect of height variation.  

(left) 2 Disks—Ideal contact—Radii 70 and 40 mm—Height 40 mm each compared with 30 and 

50 mm; (right) 4 Disks—Resistive contact—Radii 80, 70, 60, and 50 mm—Height 20 mm each 

compared with 10, 20, 20, and 30 mm. 

 

As represented in Figure 4.38, again, an increase in the bottom disk height, at the 

expenses of the top disk one, leads to a decrease in temperatures, even if not substantial. The 

effect of this geometrical modification appears to be more significant in the ideal contact case 

than in the resistive contact one. This is therefore a modification that does not have a 
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significant influence in real world SPS experiments, but still provides further information on 

the physical phenomena underlying the development of axial thermal gradients, and 

specifically the role played by surface radiation. 

Some remarkable data are obtained from the comparison of the temperatures of the 

“hot point” of the top punch with the temperatures attained in the specimen, for which a 

volume average is computed. The key point in the presently applied approach for the analysis 

of the overheating problem is based exactly on these derived data, distinct from previous 

works,
196

 in which the calculated temperature difference was, instead, the one between the 

specimen and the external surface of the die, that is at the point where SPS temperatures are 

usually measured. 

Figure 4.39 compares these two temperatures for the 2 and 4 Disks cases. The plots 

are given with the different radii combinations along the x-axis and the peak and specimen 

temperatures difference along the y-axis. In both cases all the disks had the same height. The 

maximum temperature difference corresponds to the peak of the transient temperature and is 

inferred from the maximum temperature distribution plots. In all the cases, the temperature of 

the punch for the resistive contact case is higher than the temperature of the punch for the 

ideal contact.  

An opposite situation is seen at the specimen, where a slightly higher temperature is 

obtained in the ideal contact case, since the Joule heating finds less obstacles on its way to the 

powder sample. Although the presence of the resistive contact reduces the efficiency of the 

system, the temperature difference obtained in the specimen between the ideal contact case 

and the resistive case is relatively small.  
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Figure 4.39 - Comparison of maximum (transient) temperature difference between top punch 

and specimen. (top) 2 Disks configurations. Radii: (1) 50 and 25 mm; (2) 60 and 30 mm; (3) 

65 and 35 mm; (4) 70 and 40 mm; (bottom) 4 Disks configurations—Radii: (1) 66, 54, 42, and 

30 mm, (2) 68, 56, 44, and 32 mm, (3) 70, 60, 50 and 40 mm, (4) 75, 65, 55, and 45 mm; (5) 

80, 70, 60, and 50 mm. 
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The case where the difference is the largest (4 Disks configuration), which seems to 

suggest a less efficient system, is precisely the one that is able to heat the specimen more 

(~1600 K). Therefore, this confirms that the energy losses on the setups depend more on the 

configuration of the disks than on the actual characteristics of the contacts, at least for the 

combination of material and electrical contact resistance properties used in the simulations.  

In a similar way, the final temperature difference between the top punch and the 

specimen for the four configurations, with ideal as well as resistive contacts, was investigated. 

Again, higher differences were obtained for the electric resistive contact case. In this 

stationary configuration, the differences in temperature vary with the radius of disks in an 

inversely proportional fashion and stay almost constant with height variations. 

Once all the previous outcomes have been examined, it is evident that, in order to 

choose the most advisable setup, separate considerations can be made for every configuration 

investigated, categorized in terms of the number of disks. 

One of the best choices is certainly the 2 Disks configuration, since here the contact 

resistance is minimized to only one extra “resistive layer” with respect to the tapered setup. 

The lower the radii and the higher the bottom disk, the better results we get in terms of 

temperatures. For instance, radii of 50 and 25 mm can be chosen, or, if these values are too 

small, since the bottom disk is almost as large as the punches, 60 and 30 mm, preferably with 

heights of 30 and 50 mm, respectively. In this case a peak temperature decrease of 500 K can 

be attained. 

If the main interest is, instead, in having a configuration as similar as possible to the 

original conical (tapered) one, the 4 Disks setup can be chosen. Again, the lower the radii and 

the higher the bottom disks, the better results are attained. Concerning our simulations, the 

best combination appears to be the one with radii 66, 54, 42, and 30 mm with heights equal to 

10, 20, 20, and 30 mm, respectively. Lower values of the radii can be attempted to get even 
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better results. It should be noted that in this case the most significant decreases in peak 

temperatures that can be obtained are in a range of 150–250 K. 

A compromise solution between the minimum contact resistance and the tapered 

configuration is the 3 Disks setup. The same considerations concerning radii and heights need 

to be applied. From our data, the configuration with radii 65, 45, and 25 mm, and respective 

heights of 20, 30, and 30 mm, appears to be a good option. The diameter of the top disk could 

be further decreased. The temperatures can be lowered by about 350 K. 

It is important to notice that the efficiency of all the suggested configurations needs to 

be verified in terms of the specimen densification. The lowest peak temperatures correspond 

to lower temperatures inside the specimen, especially when the contact resistance is imbedded. 

Simulations and experiments need to be conducted in order to be sure that the specimen's 

porosity decreases significantly in reasonable time intervals.  

Differently from the radial temperatures optimization study, here the conclusions 

drawn are of even more immediate generalization. The axial gradients have revealed to be a 

consequence of the localized dissipation of heat at the tooling cross-section area restrictions 

and in correspondence of contact interfaces among the various components. This is a 

phenomenon common to both insulating and conductive materials. It is therefore reasonable to 

assume that, even if an insulating powder specimen will constitute a more substantial obstacle 

to the current flow, the highest temperatures will still be reached at the top punch, being this 

the narrowest point on the electrical current path. Since the experiments and simulations 

conducted here concerned alumina, an insulator, and the die wall in correspondence of the 

punch was less overheated than the top punch, we can infer that the same would hold for a 

conductor, in which current can cross the specimen too. We have, nevertheless, already 

considered what happens when increasing the radial dimension of the specimen, and 

developed suitable tooling optimization strategies. By combining the punch redesign, and the 
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consequent radial thermal gradients mitigation, with the spacer-transition redesign, and its 

lowered overheating at the top punch itself, we obtain a comprehensive tooling optimization, 

capable to address any thermal non-uniformity issue.  

The combination of efforts in Section 4.1 guarantees a globally more uniform 

temperature distribution in any plane of the whole spark plasma sintering setup, for every size 

and material involved. We have obtained that the setup, and in particular the specimen, 

experiences fairly homogeneous temperatures, adherent to what imposed by the sintering 

route. The sintering regime, on its side, is the object of the optimization in the previous 

chapter of this study, based on the homogeneity of the material structure (elimination of 

agglomerates). In order for this improved sintering route to be efficiently applied, we needed 

to ensure uniform temperatures throughout the whole sample; otherwise our efforts in 

removing the undesired hierarchical porous structures would have been vain. This is what the 

present chapter has taken care of.  The various aspects of a temperature-based optimization of 

spark plasma sintering efficiency can thus be considered complete.  

 

Parts of Chapter 4 have been published in Materials (D. Giuntini, E.A. Olevsky, C. 

Garcia-Cardona, A.L. Maximenko, M.S. Yurlova, C.D. Haines, D.G. Martin, and D. Kapoor, 

“Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling 

Design,” Materials, 6, 2013), in the Journal of the Ceramic Society of Japan (D. Giuntini, J. 

Raethel, M. Herrmann, A. Michaelis, C.D. Haines, and E.A. Olevsky, “Spark Plasma 

Sintering Novel Tooling Design: Temperature Uniformization during Consolidation of Silicon 

Nitride Powder,” J. Ceram. Soc. Jpn., 124, 2016), and in the Journal of the American Ceramic 

Society (D. Giuntini, J. Raethel, M. Herrmann, A. Michaelis, and E.A. Olevsky, 

“Advancement of Tooling for Spark Plasma Sintering,” J. Am. Ceram. Soc., 98, 2015). The 

dissertation author is the primary author of these publications. A part of the same Chapter 4 
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refers to work published in the Journal of the American Ceramic Society, of which the 

dissertation author was among the primary contributors (X. Wei, D. Giuntini, A.L. 

Maximenko, C.D. Haines, and E.A. Olevsky, “Experimental Investigation of Electric Contact 

Resistance in Spark Plasma Sintering Tooling Setup,” J. Am. Ceram. Soc., 98, 2015). 
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Chapter 5 

Conclusions 

 

5.1 Summary 

 

We have conducted an optimization efficiency study for spark plasma sintering 

technologies with temperature as the main parameter. We have pointed out the fundamental 

role played by temperature for the quality of the final densified product, in terms of uniformity 

of density and microstructure.  

We have individuated two main aspects that need to be optimized in order to reach 

such uniformity: material structure and tooling geometry.  

In the introductory chapter we have analyzed the variety of meanings that the 

denomination “material structure” can assume for a porous material that undergoes sintering, 

but we have clarified that the most influential ones during densification are the so-called 

hierarchical porous structures. They consist in the presence of various sizes of pores, and they 

are the result of the presence of agglomeration phenomena. Because of the significance of 

such phenomena in nanopowders, which are gaining increasing attention in the SPS field 

because of their excellent sinterability and functional versatility, we have proposed to proceed 

to in situ de-agglomeration during the consolidation process.  

We have developed a semi-analytical modeling framework in which the biporous 

material properties (sintering stress, bulk modulus and shear modulus) and densification 

kinetics are given as a function of strain-rate sensitivity. We have also proposed global 

formulations of these same material properties that take into account the effect of the presence 
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of two porosity sizes, together with strain-rate sensitivity. We have, therefore, built a semi-

analytical framework with a high potential for numerical (FEM) calculations, in which the 

material structure optimization can be conducted.  

This optimization is based on the dependence of strain-rate sensitivity on temperature. 

The densification kinetics equations and the material properties formulations serve as tools for 

the individuation of optimal SPS thermal regimes, such that large pores are eliminated before 

the shrinkage of small pores is complete, or such that tailored hierarchical porous structures 

for different applications are produced. Additional factors affecting shrinkage kinetics have 

been examined and the important role played by the initial material structure has been 

evidenced. We have considered both conductive and insulating materials, combined our 

analytical expressions with finite-element calculations, and compared the obtained models 

with others proposed in the literature and experimental results.  

We have derived a simple formulation for the dependence of strain-rate sensitivity on 

temperature by combining well-assessed empirical models for the steady state of power-law 

creep. The data needed as input to individuate this correlation are widely available in the 

literature, and thus the strain-rate sensitivity-based material structure optimization strategy is 

easily applicable to most material systems. 

The derived biporous material properties have also paved the way for the 

implementation of a multi-scale FEM framework, in which the evolution of both single pores 

and whole specimen can be simultaneously monitored during processing.  

We have subsequently evidenced that this temperature regime optimization would be 

vain if the specimen experienced severe thermal gradients. This is a well-known issue of spark 

plasma sintering and becomes progressively more intense as the size of the specimen 

increases. The tooling geometry plays an important role in the temperature distributions in the 

specimen and in the entirety of the tooling setup.  
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We have therefore addressed the thermal gradients issue by considering both the axial 

and the radial directions. We have conducted a broad combined experimental and numerical 

campaign in order to individuate the underlying phenomena and design opportune solutions.  

Finite element methods have allowed access to information otherwise unattainable, 

and experiments have confirmed that such a numerical framework is a reliable tool for the 

investigation on the conditions experienced by the SPS sample and tooling during the process.  

Novel design strategies of some of the tooling’s components have been proposed. 

Switching from a conical transition to a stack of disks for the spacers has significantly lowered 

the axial gradients, while drilling a number of tailored holes in the punches has led to the 

homogenization of the temperatures in the radial direction. These two geometry optimization 

procedures have led to the solution of actual tooling overheating and specimen non-uniformity 

problems, while providing a deeper understanding of the dynamics of spark plasma sintering. 

The new punch design is also the object of a patent application.  

After completing the optimization of both thermal regime and temperature 

distributions, the two frameworks can be integrated. We have therefore derived guidelines for 

a thorough uniformization of the SPS results, in terms of material structure (density and 

microscopic features) and tooling conditions, leading to greatly improved control of any spark 

plasma sintering routine. 

The conclusions described above can thus be summarized in the following points: 

 Expressions for densification kinetics, sintering stress, bulk and shear moduli 

of monoporous and biporous nonlinear viscous materials have been derived; 

 An expression for the correlation between strain-rate sensitivity and 

temperature has been inferred from well-assessed empirical models; 

 Strategies to improve spark plasma sintering efficiency based on such tools 

have been proposed; 
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 The conditions for in situ de-agglomeration have been found in a combination 

of pre-processing agglomerate size reduction and selection of optimal thermal 

route and externally applied pressure; 

 The derived macroscopic mechanical properties of  biporous materials can be 

utilized for the controlled design of tailored hierarchical porous structures; 

 A multi-scale FEM framework for the virtual reconstruction of hierarchically 

porous materials has been implemented, enabling the simultaneous 

monitoring of the evolution of porosity and large pores’ shape and size; 

 A multi-physics FEM framework, comprehensive of specimen and tooling, 

has been implemented for the virtual reconstruction of the entire SPS process; 

 Improved tooling geometries have been designed, able to mitigate the radial 

and axial temperature gradients within the SPS setup. 

Both temperature regime and temperature distributions have been optimized for any 

spark plasma sintering routine. 

We report here a flowchart (Figure 5.1) that summarizes the accomplished research 

objectives and the respective interconnections.  
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Figure 5.1 – Conclusions summary. 
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5.2 Scientific and engineering novelty  

 

Significant innovations are proposed at different levels.  

The development of an analytical (or semi-analytical) modeling framework for 

hierarchical porous structures with nonlinear material behavior, to the best of our knowledge, 

had never been attempted before. The derivation of all the powder compact’s properties in 

function of the strain-rate sensitivity is also an innovative feature, since until now such 

dependence had only been proposed for monoporous domains and did not include the sintering 

stress. The embedding of the effects of both porosities in the formulation of the macroscopic 

counterparts of these parameters also provides a new tool for the numerical (FEM) modeling 

of a specimen that contains agglomeration but can be treated as homogeneous, with all the 

consequent computational advantages. 

While the correlation between strain-rate sensitivity with temperature is well agreed 

on by a variety of authors, literature data on this aspect are rare and fragmentary, and the idea 

of utilizing such connection in order to optimize SPS holding temperatures – such that in situ 

de-agglomeration is attained – is suggested here for the first time. The explicit formulation of 

𝑚(𝑇) is also a first-of-a-kind, and immediately applicable to any material. 

The outcomes of the proposed model have shed light on the limitations and 

applicability of in-situ de-agglomeration during SPS, and at the same time have turned out to 

be a valuable tool to design tailored hierarchical material structures.  

The first multi-scale finite-element simulations of the synthesis of cathodes for solid 

oxide fuel cells have been developed. The macro-scale specimen densification was connected 

to the large pores shape and size evolution and small size porosity distribution at each time-

step. 
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The utilization of a FEM software for the simulation of SPS procedures is also taken 

to a more advanced stage by not simply reconstructing experimental procedures, but also 

individuating and analyzing the main physical phenomena acting within the tooling setup and 

responsible for temperature spatial distributions. This new insight in the dynamics of thermal 

effects in SPS leads to the development of novel tooling designs. The most significant tooling 

optimization advancement consists in a new punch geometry able to mitigate radial thermal 

gradients, which is currently the object of a patent application.  
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