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.. THE VISCOSITY OF LIQUID METALS 

Thomas vJ. Chapman 
Iriorganic Materials Research Division 

Lawrence Radiation Laboratory 
and 

Department .. of Chemical Engineering 
.University of California, Berkeley 

ABSTRACT. 

An approximate form is suggested for the,perturbation 

of the radial distribution function of a monatomic liquid 

by a nonuniform flow field. Substitution of this form 

into the microscopic expression for the pressure tensor 

yields an equation for liquid viscosity in terms of the 

equilibrium distribution function and the interatomic 

potential energy function. _This equation establishes 

the basis for a corresponding states correlation of the 

.viscosity of liquid metals based. on atomic parameters. 

The viscosity data. for twenty-one molten metals are. 

made to fall on a single curve by the adjustment of one 
I 

microscopic parameter. It is found that this empirically-
' 

determined parameter apparently ha·s the proper fundamental 

significance. Therefore it is possible to estimate it 

independently and to use the general correlation for 

estimating the·viscosity of a metal for which data are 

not available. It is also suggested that the atomic para

meters determined he.re might be used to correlate other 

properties of the liquid metals. 



INTRODUCTION 

In recent years a great deal of effort has'--been 
\ 

devoted to the measurement of the viscosity of molten 

metals. One reason for this is.that the behavior of 

the viscosity of simple liquids is a vital key to under-

standing the nature of the liquid state. On the ·prac

tical side these data are of interest because of the 
•, 

increasing application of liquid metal coolants in 

nuclear reactor.s. Also, the viscosities of many higher 

melting metals are required for design purposes in the 

metallurgical industries. For example, in the steel 

industry the recent.development of continuous casting 
I 

processes requires an accurate knowledge of the viscosity 

of the molten metal. It is obvious that the need for 

2 

·such data for less common metals and particularly for 

molten alloys will increase. Therefore, because of the 

experimental difficulties of measuring properties at such 

high temperatures, it would be desirable to have a reliable 

correlati~n from which the viscosity of a particular sub-
. ·~· 

stance could be estimated. It is the purpose of this 

report to show. how the existing theory of liquid struc

ture can be treated to develop a useful correlation of· 

the viscosities of liquid metals. 

When seeking a meaningful correlation of a physical 

property such as viscosity, one desires to base his 

analysis upon a sound theory rather than to rely entirely 
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on empiricism or artificial models. In this way one hopes 

to obtain relationships a:r:1d derived parameters which have 

real physical significance. With such cl correlation. one 

has confidence in extrapolating existing data over a range 

of conditions or in predicting values for substances 

vJhere no experimental data are available. For example, 

the equations of statistical mechanics and kinetic 

theory have been applied very .successfully to correlate 

the thermodynamic and transport properties of gases [1]. 

The . liquid state however does not lend itself. so readily:· 

to theoretical analysis. In general mOst theories of 

liquids have been based on models .which generate para

meters lacking fundamental significance and which impose 

§:.. priori ass~~nptions on the structure, interactions~· 
, ' . . \ 

or mechanisms of transport in the,fluid. The theory of 

liquids based on the pair:- distribution function as developed 

by Kirkwood [2] and by Born and Green [3] escapes this 
. . . ' ' .· . . . . 

criticism because of the generality of its formulation. 

In fact, all the thermodynamic and transport ~properties· 

of a fluid can be expressed with general validity in 

terms of the intermolecular. potential ene·rgy function · 

and the appropriate distribution·functions. The chief 

s·tumbling block in applying this theory lies in obtaining 
I 

a valid representation of the pair distribution function. 

The distribution functions which are of importance 

in the liquid must be determined from a system of coupled; 

nonlinear integral equations which have not been solved 

' !•' 

.! 
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'I 
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;I 

I; 
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very acGurately for even the equilibrium case, not to 

mention the nonuniform situations i'lhich must be con-

sidered to treat irreversible phenomena. Since it appears 

that much more work is required before·satisfactory 

results are to be obtained from the actual solution of 

these equations, a suggestion is made here for an approxi-:

mate form of the solution for the pair distribution 

function under conditions. of a nonuniform flow field. 

Substitution of this as.sumed form into the microscopi.c 

expression for the pressure tensor of a simple ·liquid 

leads to an equation for the coefficient of viscosity .. 
. \_._j 

L' 

Even though.this· equation still involves two unknown 

functions, the radial distribution function and the po-

tentia1 energy function, it can be made dimensionless 

to establish the basis for a corresponding states corre

lation of liquid viscosity based on molecular parameters. 

Such a correlation wi·ll be shown· to be valid for the 

liquid metals. 

Theory 

According to the Born and Green theory [3], the 

pressure tensor P in a monatomic fluid can be expressed as 

where m-is the mass of an atom, 5_is the microscopic 

particle velocity vector~ u is macroscopic fluid velocity, 

and f(5_) is the velocity. distribution function.· In the 

(· 

.~· 
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second term n is the particle number density, cp(r) is 

the pair interatomic potential energy function, r is 

the microscopic relative position vector, and g(r) is 

the pair distribution function. The fi~st term in this 

expression corresponds to the kinetic contribution to 

the flux of momentum, that is, the momentum which is 

transported by the actual movement of molecules through the 

fluid. It is this term which is considered i;n the 

kinetic theory gases as presented_by Chapman and Cowling 

[1]. 

In a nonuniform liquid, however, most of the momentum 

is transported by intermolecular forces, and this con

tribution to the pressure tensor is given by the second 

term :1:n equation (1). This integral in effect adds up 

the interactions between all pairs of atoms. The quan

. tity~:lg~r..) is the time-average number of pairs with a 

separation r. 

At equilibrium the·pair distribution function g(~) · 

·is symmetrical and: .is known as the radial di"stribution 

· function g0 (r). This quantity can be measured experi

mentally by X-ray or neutron diffraction techniques [·4] .· .. 

Shown in Figure 1 are experimental curves representing 

the radial distribution~ function g0 of liquid argon at 

various temperatures which· were me?-sUred by Eisenstein .. and 

Gingrich [5]. The curves have been vertically displaced 

to show the effect of temperature more_clearly. In each 

{, 
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case g0 (r) approaches unity at large separations which· 

means that the long-range structure is ·random. The 

distance coordinate has been normalized by a length 5, 

the· distance to the first peak whi.ch is also approxi- · 

mately the position of the minimUm of the pair potential 

energy function ¢. 

A significant characteristic of the radial distri-

bution function is the. effect of temperatur·e as demon-

strated by Figure 1. It .is seen that increasing tempera-· 

ture causes the function g0 totend toward unity at all 

positions along the curve. This rre ans that the in-

creased thermal motion of the particles tends to destroy 

the order in the liquid even at small separations. 

Under conditions of thermal and mechanical equili

brium when .the pair distribution function g is equal to 
\, _ _) -'-}~ 

the symmetrical function g0
, the shear stresses in the 

pressure tensor vanish,. andequation (1) reduces to 

the equation of state [6) 

r" 

(2) 

where p is the thermodynamic pressure. 

When the fluid is not in equilibrium, the macro

scopic pressure tensor include.s certain off-diagonal 

elements as well as the pressure defined by equation (2), 

and it can be written as [7] 

( 3) 
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where ~ is .the unit tensor and T is the stress tensor. 

Substitution of equations (1) and (2) into equation (3) 

leads to a microscopic expression fo·r the pressure ten-

sor 

T = T 
= =K. 

2 . 
~ r r r r d cp ( r) g ·' ( r ) dV 
2 .JJJ - dr -

(4) 

where '!' is the kinetic contribution to T and the second 
=K. )~ 

term represents the contribution of intermolecular forces. 

Since the thermodynamic pressure p includes the equili~ 

brium form of the pair .distribution function,. the function 

111hich appears in equation ( 4), g' ( r), is the difference 

between g(r) and g0 (r). That is, ;'che function g' (r) ... ·:i. 
is the deviation of g(r) from its equilibrium.value due 

to nonuniformity in the.liquid~ The magnitude of the 

intermolecular force portion of the shear stresses de-

pends directly on th~ ektent of this deviation. 

According to the· Navier-Stokes stress argument for 

an incompressible Newtonian fluid [8] the coefficient 

of shear viscosity n is defined as the constant of pro-
" portionali ty bet\'.feen the stress tensor and the deformation · 

of the velocity .[Vu +. (Vu)t], wher·e (V~) t is the trans-. 
pose of the gradient of the velocity Vu, 

Comparing this macroscopic definition of viscosity 

with the microscopic expression for the stress "tensor, 

equation (4), and neglecting;rK since it is.very small 

in a liquid, one obtains .a formal expression for the 

(5) 



8 

viscosity of a monatomic liquid 

(6) 

This form is essentially equivalent to the expres

~ion given by Born and Green [9], except for the omission 

of the kinetic term. This approximation can be justi-

. fied by calculating the kinetic contribution to viscosity· 

from liquid self-diffus.ion data. For example,. the 

self-diffusion co~fficient of a liquid metal is on the 

order of 10-5 cm2 jsec. According to Kirkwood [10] the 

kinetic portion Of ViSCOSity nK is related to the self

diffusion coefficient D by 

n - n m D 
K - 2 • 

For mercury at 300°K, n:= 1.55 cp and nK ~ 0.02 cp. 

Thus it is seen that nK is on the order of only a few 
' .l' 

percent of the total viscosity. 

(7) 

In order to proceed to the calculation of viscosity 
' ' 

fromequation (6),. it is necessary to obtain the pair 

·-distribution function under nonequilibrium conditions 

and in particular to relate it to the velocity gradient 

in the fluid. This.problem seems to be far from a rigorous 

'solution since it is ':not .·.yet possible to calculate the 

distribution function of a liquid in equilibrium very 

accurately. However, it is possible to derive a simple 

approximation to the exact function by taking recourse 

to physical arguments about the effect of a flow field 

on the liquid structure.· 

, .. 
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In general the exact solution for the pair distri-

bution function must be determined from a complicated 

integra-differential equation [11] which is difficult 

to solve even in the simplest case [118.]. In order to 

obtain an approximate form for the pair distribution 

function we consider the equilibrium solution to be known 

and assume that the general solution,to the complete 

equation can then be expressed as a perturbation series 

expansion abou.t the equilibrium value, that is, 

.· 0 . . 2 
g ( £) = g ( r) + F 

1 
( r ) s + F 2 ( r) s + . . (8) 

The function g(~) is written as a power series in some 

perburbation parameter s which characterizes the distur

bance of the liquid structure. py the. flow field. ' 11 s 11 

should be small and .vanish at equilibrium to assure con

vergence. The coefficients Fi(r) are assumed to be 

independent of the distur:bance and functions of r only. 

Then s must .be a function of the polar angles e and ¢. 
' ·This separation of variables- seems reasonable since the 

disturbance must depend on the velocity gradi~nt, and in 

the region where interatomic forces are.appreciable the 

velocity gradient is very nearly linear .. Therefore s 

should not depend on the magnitude of the position 

vector E. but only on·its direction. 

According to conservation of·mass, the average 

value of g(r) is unity as is the average value of g0 (r) .. · 

Therefore the integral of each higher term in equation (8) 
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over r must vanish. This condi ·cion will be satisfied 

if F. (r) is proportional to [1- g0 (r)]. 
~ 

assumed that 

Thus it is 

The ~actors. Ai are constants of integration which would 

have to be evaluated frbm the actual solution of the 

coinple te equation for g (!:) . 'vle shall not concern our-. 

selves with their actual values at this time. 

An appropriate form of the perturbation parameter 

s is asslimed to be the ratio of two velocities: the 

ratio of a characteristic disturbing velocity u 5 to a 

characteristic restoring velocity u* 

q -'""' -

The velocity which. acts to restore the equilibpium 

liquid structure is assumed to be the average ·thermal 

·speed of the a toms 

u-Y.· = .J 3kTjm . 

( 9) . 

(10) 

(11) 

"u5 
11 is chosen to· be the average veloci"·ty of the 

··atoms· in the first peak of the radial .distribution. 

function relative to that of the central atom. Figure 2 

shows the significance of u 5 for the.simple case of a 

linear ~elocity profile. 

In this situation the deform~tion of the velocity 

cbntains only two· nonzero elements, each of which is the 
dux 

velocity gradient dy 

,. 
\ .. 
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0 

0 . (12) 

0 0 

The macroscopic picture of this flovJ' field is sho"Vm on 

the left in the figure- .. The velocity u is dravVJ.'l rela.., . X .. 

tive to that of the plane y=O. On the right the same 

situation is sho"Vm microscopically. Since we are con-

sidering a time-averaged picture u5 is zero for the atoms 

in the y=O plane. However, all other atoms on the 

spherical surface r=5 are on the average moving relative 

to the central atom because of the imposed ux field. 

If one imagines an atom on r=5 to move a"v·vay from its equili

brium position with velocity u5 , one sees that there V-J"ill 

be a density-deficiency in that region for a short period 

·of time, thu~ diminishing the value of g. However, be-

cause of the random motion of the atoms~ as one atom is 

forced to move away from an energetically favorable 

region another will shortly replace it with the relaxation

time depending on the the~mal motion characterized by 

u-1<·.. Thus the rat.io assumed in equation. (11) can be con-

sidered to be the function l'l'hich characterizes the steady 

state disturbance .of the short-range order in the liquid 

by the- macroscopic velocity field. For .this simple 

.geometry u 5 can be ·expressed as 

. · ( du ) 
u 5 = 5 sin¢ dx _ . . y (13) 
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i'..rhere ¢ is. the angle measured from .the plane· y=O. 

Since $ turns out to be on the order of lo-12 

one i'J"Ould expect terms higher than linear in s in equa-

tion (8) to be negligible under ordinary circumstances. 

If such is the case~ the function g(£) can theh be. 

. approximated by 

·This approximate form seems physically reasonable. 

Since the correction to g0 (r) is prbportional to 

(14) 

[ 1 - g0 (r)] ~· an increase· in s causes g (r) to tend tol'mrd 

·unity. That is~ as the disturbance becomes greater~ the 

structure of the liquid becomes more· random, an effect. 

similar to that of increasing temperature. 

Substitution of the assumed.form of the perturbation 

into equation (G). yields an explicit express·ion for· 

liquid viscosity which involves the pair potential rune..:. 

tion and the radial distribution function 

Thus these assumptions have reduced the problem of 

liquid viscosity t'o. the same level of complexity. as 

(15) 

the problem of the thermodynamic properties .. The direct 

calculation of the properties of a liquid now requires 
. . . . . 0 

accurate representations of the furiction ¢(r) and g (r) 

which are not.yet available. Nevertheless a useful 

conclusion can be drawn from equation (15). 

'i: 

-:,, 
1•: 

• !·, 

' . 
.' 
~" 

.I 

. I 
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It is assumed that the potential function ~(r) 

depends on two parameters, an energy parame;,ter "E 

and a distance parameter 5. Then equation (15)'can be 

inade dimensionless to define a reduced viscosity 

* . * v*) n = F (T , 

where ... 
n 52 N ·• .. 

-l(-. 

[(MRT) 1/z J n = , : _,.i(. 
.•' I, 

* [kTjE] T = , 
•* [ljn53 ] v = , and 

(16) 

(11) 

(18) 

(19) 

and where M is. the.molecular weight and N
0 

is Avagadro's 

number. For a_class of substances whichobey the same 

potential energy function g0 (r) should be a universal 

. * * t function of· T ,. V , and X=r j5. Therefore, he reduced 

* ' . * * viscosity n should be a universal function of T and V • 

Furthermore, in the liquid region where the density is 

nearly constant, o~e would not expect g0 (r) to· depend 
* . . . 

very greatly on V • ·Thus according to equation (15),_ a 

good approximation ought to be that n*(v*) 2 is a. universal 
-)(- . 

function .of T only_, 

I . 

and c1 is·a constant: 

APPLICATION OF THE THEORY,TO. LIQU!D METALS 

In order to apply the results of the preceding 

(20) 

(21) 

· analysis .:.to develop a useful correlation of the viscosities 

., 

··~ .. 
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of liquid metals, it is necessary to have values for the 

atomic parameters E and 5. Unfortunately there is 

little evidence to indicate the form of ¢(r) for metals 

not to mention the actual values of- the parameters. 

Determination from thermodynamic data. such as heat.of sub-

limation is complicated by the effects of the free-

electron metallic binding in the condensed phase. Never

theless, to establish a corresponding state plot of the 

function il-l<- (V:*) 2 versus T-x- it is necessary only to 

assume that these subs·tances all obey the same function 

¢(r) and then to choose some basis for relative values 

of E and 5. 

Ling [1?] has determined effective Lennard-Janes 

parameters for liquid sodium and potassium from their 

experimental X-ray scattering curves. These parameters 

. for. the two metals have beeri used to plot 

. *( *)2 -)(-data in Figure_3 as 'fl V -versus ljT. 

their viscosity 

The ranges of 

temperature represented here are 350-650°K for potassium 
. .., 

and_ 400-1000° K for sodium. The viscosity range is .0. 605 

_to 0.165 cp for sodium_, 0.514 to 0.010 cp for potassium, 
* . . . . . 

and the reduced volumes at aT of 0.25 are 0.80 forK 

and 0.75 for Na. It is seen that the data-plotted in 

this l'fay fall on a single line as predicted by the theory 

* and that neglecting the implicit dependence on V is 

apparently a good approximation. 

The vis~osi~ies of many other liquid metals have been 

measured over a \'Vide range of· temperatures. The available 

,. 

I ,. 

--.· .. ~ 
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data are shown in Figure 4. It is seen that the tempera

ture range is nearly 2000°K and that the viscosities range 

over nearly two orders of magnitude. 

Since the parameter 5 is supposed to be the dis-

tance to the minimum of the pair potential energy func-

tion, it should be possible to estimate its value from 

crystallographic data. Therefore we have chosen the .. 
vaiue of 5 to be the interatomic distance in the close-

. packed crystal at 0°K. These values are known for 

nearly all metals [13]. With th~s estimate for 5, 

r(*(v-x-)2! for. all the d.ata in Figure ·4 can be calculated. 

Then from the general· rt" (v* )2 versus 1/T-x- curve which is 

e~tablished by the data for Na.and Kit is possible to 

evaluate e for the rest of the metals. That is 1 we ad

just e to fit the· data to th'e 'empirical curve in Figure 

3: This has been done, and the resulting correlation is 

shown in Figure. 5. The values of the parameters are 

given in Table 1. 

In Figure 5 are pl6tted th~ data for. th~twenty-

one different metals, from lithium and mercury to iron 

and plutonium, with a range of densities from 1.8 to 18 

gmjcm3 and. atomic 'i'Teights from 6. 9 to 242. It is seen 

that this method of plotting the data accounts very 1tvell 
I 

for t~e dependence of liquid viscosity on the physical 

variables. ~he viscosities of liquid metals do indeed 

obey a corresponding states. law. 
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· However., in spite of the· fact that the data can be 

reduced to a·single curve, one might vJOnder whether this 

plot has fundamental significance because the parameter 

E has·been determined empirically. If the theory pre-

sented here is valid, then the values of E obtained" 

should in fact .. be the energy characteristic of the atomic 

interaction and should be related to other physical 
I 

properties. Normally one finds that E for a class of 

substances correlates \'lith the critical temperatures, but 

unfoi..,tunately these are not known for most of the metals. 

HovJever, various theories of melting such as. that of 

Lennard-Janes and Devonshire [14] indicate that the 

melting point shorild be proportional to,E: Such a rela~ 

tiqnship has been observed for other classes of sub-

stances [15]. 

In Figure 6 the· values of E determined here are 

plotted versus the melting point, and it is ~een that a 

very satisfactory correlation exists. On this basis, 

it is concll.?-d~d that € does in fact have the"proper physi.;. 

cal significance. Thus it should be possible to estimate. 

E for other metals from their melting points if!. order. 

to predict viscosity from Figure 5. An illustration of the 

· use of these corre.la tions is given in the Appendix. 

DISCUSSION. 

It has· been seen that some rather crude assumptions 

about the behavior of the microscopic liquid .structure 

under nonuniform conditions have made it possible to 

f· 
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develop a formal·and rigorous, though incomplete, theory 

of liquids into a corresponding states correlation of 

viscosity for engineering use. Since it may not be 

clear at this point why much simpler dimensional analy-

sis was not use~ to accomplish the sam~ purpose, some 

of the advantages of this approach will be noted. 

First, besides defining a reduced viscosity, equa

tion (15) makes it possible to account for most.of the 

density dependence of viscosity explicitly. This makes 

the correlation simpler. 

Furthermore the analysis has led to a tractable ex-

pression for liquid vis~osity whi~h takes into accou~t 

the fundamental feat:u.res of liquid structure and molecular 

behavior which appear to be responsible for the macro

scopic phenomena. Although it remains t6 be seen how well 

this equation does represent the exact viscosity function, 

it should be noted that the substitutiori of .approximate 

forms of g0 (r) and.¢(r) leads to a function which agrees 

qualitatively with the empirical curve shown~in Figure 5. 

Thus there is evidence that equation (15) provides a good 

·approximation to the·correct viscosity function. On this 

'basis it is suggested that similar consideration of the 

effect of a flow fieid on the· structure of a liquid 
. .· 

mixture could lead to an appropria.tely modified form of 

equation (15) which might indicate a method for inter-

polating or estimating viscosities of molten alloys. 

In any case it.is felt that the general theory based 

" on the pair distribution function.provides the most 
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meaningful approach to the problem of liquid properties 

now available and that consideration of·its implications 

leads to a better understanding of the nature of irre

versible processes in liquids. 

Another important consequence of this development 

in addition to th,e c·orrelation of-viscosity, is that it 

has led to. values of the effective atomic interaction 

energy parameters for a large number of metals. It is 

suggeste:d that 'corresponding states correlations of other 

properties of the metals might be establishedon the 

basis_ of these parameters. For example, th~ parameters 

determined here have been used successfully oy the author 

to correlate the_configurational heat capacities of 

several liquid metals· [16] and thus to-explain ·.:the: ·behavior 
' . . . , . 

--or liquid heat capacity with tempe_rature. 

SUMMARY 

In o:r;-der to develop a useful correlation o-f the 

Viscosities of liquid metals, the formal expression for 

liquid.viscosity derived ·by Born and Green has been 

considered.- Assumptions-about the.primary effects of 

a velocity gradient on the equilibriUm liquid structure 

have led· to an approximate form for the pair· distribution 

function under nonuniform conditions. Substi-tution of · ; 
I 
\ 

this expression into·the· Born and. Green equation yielded': 

an equation for the viscosity in terms of the radial 

distribution function and the interatomic potential 
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energy function. Although these functions have not yet 

been determined accurately, it was possible to use this 

equation t_o establish the basis for a corresponding 
\; '_) . 

states correlation of the viscosities of liquid metals . 

The viscosity data of tvJenty-one metals were sho~rm 

to fall on a single curve vJhen plotted in .the manner 

indicated by the theory. Since the.correlation involved 

two atomic. interaction parameters., i.t vJas necessary .to 

show. that the values which fit the. data 1-Jere consistent 

with the physical significance ascribed to them. .The 

·distance parameter was estimated independently from 

. crystallographic data., and the energy parameter was 

determined empirically from the generalized viscosity 

curve based on sodium and potassium .. It was found that 

the empirical energy parameter c9rrelated well with 

melting point as the true energy parameter would be ex-

p~cted to do. 

Thus it was· concluded that the parameters had the 

proper significance and that the.theory offered a valid 

·approximation to the true behavior of the liquid struc-

ture. Therefore the established correlation can be 

used with confidence for estimating the visc6sities of 

other liquid metals. It was suggested bhat an extension 

of this theory might make it possible to predict the 

viscosities of mol ten alloys. · Also the parameters. 

determined here might be use.d to correlate other proper-

ties of the metals. 
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Table 1. Goldschmidt atomic diameters and 
energy parameters of the metals. 

Metal B(A) [13] Ejk (oK) 

Na 3.84 1970 [12 J 
K 4.76 1760 [ 12'] 

Li 3.14 2350 

Ivfg 3.20 4300 
Al. 2.86 4250 

Ca 4. 02 5250 

Fe 2.52 10900 

Co 2. 32 ·.9550 

Ni .2.50 '9750 

Cu 2.56 6600 

Zn . 2. 74 ,4700 

Rb 5.04 1600 

Ag 2.88 6400 

Cd 3.04 . 3300 

In 3.14 2500 

Sn .3.16 2650 ., 
Cs 5.40 1550 

Au 2.88 6750 

Hg 3.10 1250. 

Pb . 3 .. 50 2800 

Pu 3.1 5550 
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APPENDIX 

At the time that the 'correlation presented in 

this paper was developed no data were:available for the 

viscosity of liquid thallium. Very recently, however, 

Cahill and Gros::e have reported values for the viscosity 

of thallium over a wide range of temperatures, [ 17] . In 

order to demonstrate the procedure for using th~ corre

lation as well as to check the accuracy. of its prediction · 

in. this case -v.,re shall compar·e the estimated viscosity 

vJ'i th the experiment'al values. 

For thaliium the atomic weight M is 204.4, the 
0 

atomic diameter 5 is 3.40 A [13], and the melting point· 

is· 576 °K. .The relations·hip between the parameter E and 

melting point represented by the.line in Figure 6 can 

be expressed as· 

(22). 

Therefore.the energy parameter.for thallium is estimated 

With this quantity knm·m the reduced •. 
temperature ·corresponding· to any absolute temperature 

can be 'calculated from equation (18) .. For example, at 

T = 644°K, T-x- = 0.214 and 1/T-* = 4.66. From Figure 5 

it can be determined that the.reduced viscosity function 

T1~1.- (v-x- )2 corr~sponding to this reduced temperature is .. "3. 05 ~ 

At T = 644°K, the density. of thallium is 11.18 gmjcm3 ·. 

From equation ( 19) and the value of 5· the reduced 

volume is calculated to be 0.78. -)(
Therefore 1l = 5.00. 

• -lj 
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From equation (17) the viscosity at this temperature is 

easily calculated to be 2.36 cp. This value is to be 

c.ompared v.,ri th the experimental value ·2 .11 cp; the error · 

amounts to about 12%. Although this error is greater 

tnan the estimated experimental error of 0.05 cp .to 

· 0.1 cp, it is seen that the correlation predicts ~ value 

vvhich is quite acceptable for engineering purposes. 

The viscosity of thallium has been estimated from 

the correlation over the experimental temperature range, 

and the predicted curve is compared i'i'i th the experimental· 

points in Figure 7. It is seen that although the pre

dicted values are consistently on the order of 10% high, 
' ' 

the predicted temperature dependence is quite satisfac

tory~ These results are encouraging because most of 

the remaining metali whose viscosities have not been 

measured melt at.temperatures.wellabove 1000 or 1500°K. 

At these high temperatures experimental difficulties 

become considerable, and experimental 'errors of 10% and 

much more are to be expected. Thus it is felt that as 

experimental conditions become more severe, the pre-

dictive ability of this correlation becomes increasingly 

valuable. 

• .• J ~-· 
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=Constant coefficient in function Fi(r). 

=Constant coefficient in function G(T*). 

= Self-diffusion coefficient, cm2 jsec. . 

= Universal function. 

=Coefficients in perturbation series. 
) 

= Velocity distribution function . 

= Universal function~ 

=Pair distribtition function.· 
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=Equilibrium pair distribution-function, radial 
distribution function. 

= Deviation of pair distribution function from 
equilibrium. 

= Unit tensor. 

- Boltzmann constant. 

- Molecular weight. 

= Mass of atom. 

= Avagadro 1 s number. 

=·Particle number density. 

~,Pressure tensor. " ·. 

= Thermodynamic pressure: 

= Gas constant. 

= Radial position vector.· 

r - Radial component of position vector. 

s = Perturbation parameter~ 

= Temperature, °K. _ _..r 

u = Macroscopic ~elocity vector. 



27 

u5 = Average macroscopic speed at r=5. 

U.* = Average thermal speed of atoms. 

v.:r.- = Reduced volwlle. 

X = Reduced radial distance. 

Greek letters 

5 = Distance parameter characteristic of pa~~ potential 
energy function and radial distribution~factor. · 

·· E = Energy parameter characteristic of pair potential 
energy function. 

n =Viscosity, centipoise. 

n* = Reduced viscosity. 

e,~ =Angles representing r in spherical coordinates. 

K = Subscript indicating kinetic term.· 

1 = Microscopic velocity vector~ 

7 = Stress tensor. 

~(r) = Pair potential energy function. 
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FIGURE CAPTIONS 

Figure 1. The experimental radial distribution 
futiction for liquid argon at various tem-
peratures. [5] . 

Figure 2. Schematic diagram for a linear velocity 
gradient in .a monatomic liquid shovm on the 
macroscopic and microscopic .scales. 11 U5 11 is ·the 
average velocity of an atom on the sphere r=5 
relative to that of the central atom. 

Figure 3. The reduced viscosities of sodium and 
potassium as functions of reduced temperature. 
The reduced quantities have been calculated on 
the basis of the atomic parameters determined 
by Ling . ·~ [ 12 ] 

Figure 4.. The viscositie~ of liquid metals and 
their dependence on temperature. 

Figure 5. The reduced viscosities of liquid metals 
ahd their d~pendence on r~duced temperature. 

Figure 6. The correlation of the energy parameter .E 
· with melting point for the liquid metals. 

Figure 7. Predicted visposity of liquid thallium 
compared with the experimental data of Cahill· 
and Grosse .. [11] 
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mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee· 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






