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_THE VISCOSITY OF LIQUID METALS .
: Thomas W. Chapman
Inorganic Materials Research DlVlSlon
Lawrence Radiation Laboratory -
and '

-*‘:Departmentﬁof Chemical Engineering
.Universitonf California, Berkeley

| ABSTRACT_
Ao approximate form is suggested for'the perturbation
of the radial distribution function of a monatomic 1iquid
by a nonuniform flow field. Substitution of this form

into the microscopic expression for the pressure tensor

yields an equation for liquld viscosity in terms of the

equilibrium distribution functlon and the lnteratomilc
potential energy function. This equation establishes’

the basis for a corresponding states correlation of the

eviscosity of liquid metals based.on_atomic parameters.

The viscoslty data for twenty—one molten metals are

made to fall on a single curve by the adjuScment of one

_ microscopic ‘parameter. It is found that this empirically—

-determined parameterrapparently has the proper fundamental

significance. Therefore it 1s possible to estimate ito

independently and to use the general correlation for

' estimating the ‘viscosity of a metal for which data are

not available. It is also.suggested that the.atomiC'para¥

meters determined here might be used %o correiate other

- propertles of the liquid metals.



INTRODUCTION

In recent years a great deal of éffort hagfbeen
- devoted to the meésurement éf the viscosity of molten
metals. One reaéon for this is:that-the behévior of
Athe‘viscosity-of simple ligquids is a vital key to uﬁder—
- étanding_the naturé of the liguld state. On the'prac;
tical slde these data afg of interest because of the
‘increasihg application-of‘liquid metal coolants in
nuclear reactors; Alsb, tﬁé viscosiﬁies of many higher
- melting metals are required for design purposes in the
-metallurgicai industries; Fér ekample, in the steel
iﬁdusﬁry.the recent .development of continuous casting
processes requires an accurate knoWledge.of the visdosityv '
of ﬁhe molten metal; it ié obvious thaﬁ the need for |
‘such data for less common metals and particularlyffor
_'moiten alloys will ihcfease. :Therefore,‘because ofhthe
experiménﬁal difficulties of measuring properties at such
high temperatureg,~it_Would be'desifable'té have a reliable
correlation from whigh thelvisqosity of a pé}ticular sub--
'sfahceicouid‘be estimated. It is thevpurpose of this
. report to show‘hpw the existing theory of liquid struc-
ture can be treaﬁed to develop a useful correiatiénvof':
the vlscosities of iiquid metalé.

;' When seekihg a meaningfui correlation Qf a physical
'_property éuchﬁas viscbsity, dne_desires toubase:his

" analysis upon a sound theory rather than to rely entirely



on emplriclism or artificial models. - In this .way one hopes

to obtain relationships and derived parameters which have .

real physical significance. With such & correlation .one

has confidence in extrapolating existing data over a range

of conditions or in predicting values for substances
where no experimental data are avallable. 'For example,

the equations of statistical mechanics and kinetic

- theory have been applied Very(successfully to correlate

the thermodynamic and transport properties of gases Ll]f
The . liquid state however does not lend itself so- readily
to theoretical analysis. In general most theories of
liquids have been based on models .which generate”para—
meters lacking fundamental significance and’which impose
a priorl assumptions on the structure, Anteractions,-

\
or mechanisms of transport in the. fluid The theory of

liquilds based on the pair distribution function as developed

by Kirkwood [2]‘and~§y Born and Green [3] esoapes’this

" ecriticism because of the generality of its formulation.

vIn fact, all the thermodynamic and transport properties

of a. fluid can be expressed with general valldity in
terms of the intermolecular. potentlal energy function:'

and the appropriate distribution functlons. The chief

stumbling block in applying this theory lies in obtaining

a Valid representation of the pair distribution function.

The distributlon functions which are of importance
in the liquid must be determined from a system of coupled,

nonlinear integral equations which have not been solved



very acourately for even the equilibrium case, not to
mention the nonuniform eituations which must be con-
sidered to treat irreversible phenomena. Since it appears

that much more work is required before :satisfactory

~results are to be obtained'from the actual solution of

these equations;,a suggestion 1s made hefe for an approxif '

mate form of the solution for the pair distribution
function underfconditions.of avnonuniform flow field.
Substitution of this'assumed form into the microécopiof

expreesion for the pressureAtensor of a simple'iiquid

.~ leads to an equation for the coefficient of Viscosity

Even though this equation still involves two unknown
functions, the radial distribution funCuion and the po- :
tential energy function, it can be made dimens1onlesst

to establish the basis for a corresponding_states»corre~5A

~lation of liquid ViSCOSity_based on moleoular parameters.

Such a correlation will be shown to be valid for'the

ligquid metals;

. , Theory S
According to the'Born‘and Green theory [3], the

pressure‘tensor'P.in.é monatomic fluid can be expressed as

fffﬁ- (&) .'N<.€;> & - ——fffr ve(r) &(z) @

lIrd

where m - is the mass of an atom, £ is the microscopiC'

'particle velocity vector, u is macroscopic fluid veIOCity,

and f(&) is the velocity distribution function In the

(1)
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second term n 1is the partiole number density;_¢(r)_is
the pailr interaﬁomio potential energy function, r is
the microscopic relative position vector, and g(r) is
the pair distribution function. The first term in this
expression corresponds to the kinetic contribution to |
the flux of momentum, that ié,Athe momentum whioh‘is
transported by the‘éctual novement of molecules through'the
~ fluid. It'is'this ﬁerm'which 1s considered in the
kinetic theory gaées.as presented.by Chapman andeCowling.
[1]. | | |

In a nonuniform ligquid, however, most of the momentum
‘lS transported by 1ntermolecular forces, and this con-
.trlbuclon to the pressure tensor.ls glven by the second
term.4n equation (1). This integral in effect adds up ..
the interactions between all pairs of atoms. The quan-
:titygiéggl is the time-average number of pairs'with a
separation r. ' . |

At equllibrlum the pair dlstrlbution function g(r r)’
“is symmetrlcal and:.ls known as the radial drstrlbutlon
:function g (r). This quantity can be measured experi-
mentally by X- ray or neutron diffraction technlques [4].”'
Shown 1n Figure 1 are-experlmental curves representing
the radial d;;tfibutiori“ function g° of liquid argon at
Various t.empevra;tures" which- were}m'elasured' -.by;f.Evi'senstein.:and »
‘4Gingrich‘[5].' Tne curves have been vertically displaced‘“

to show the effect of temperature more clearly. In each
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case go(r) approaches unity at large separations which
means that the long-range structure 1s random. The
distance coordlnate has been normallzed by a length &,

the distance to the flrst peak which is also approxi- - L

mately the position of the minimim of the pair potential

energy functlon ¢

A signlflcant charaCterlstic of the radial dlstri-
bution functlon is the effect of temperature as demon—_
strated by<Figure 1. It.is seen that~increasing tempera-'
ture causes the functlon go to-tend’touard unity at all
.positions along the -curve. This means that the in-
creased thermal motlon of the particles tends to destroy
the order in the liquld even at small separatlons

Under condltions of thermal and mechanlcal equlli-
brium when the pair drstributlon functlon g 1is equal to
the symmetricai function g B the shear stresses in the»
pressure tensor Vanish and equation (1} reduces to
the equation of state [6] | |

" p = nkT - ar nf > __j__)_dcdbrr g(r) dr  (2)

-3

where p ls the thermodynamic pressure

When the fluid 1s not in equllibrium, the macro-
scopic pressure tensor 1ncludes certain off-dlagonal

elements as welll as the pressurepdefined by equation (2),

‘and 1t can be written as [7]

P=pIl+z = - - (3)



where I 1s .the unit tensor and I is the stress tensor.
Substitution of equations (1)'and'(2) into equation (3)

leads to a microscopic expression for the pressure ten-

;=';K-%3fff. Wl ‘>d\? (0

where Tﬁ is the kinetic contribution to T and'the second

sor

term represents the contribution of 1ntermolecular forces.
Since the thermodynamlo pressure p Includes the equlli—'
brium famnof the palr“dlspributlon funColon,.the function
which éppears in”equation'(4j; g'(r), 1s the difference
between g(r) and go(r)..'That is, the fonction g’(ﬁ)fgf'
is the'deyietion of.g(g) from ifs equilibriumovalue dﬁe
to nonuniformiﬁy in the.liquid,v The magniﬁudeuof the
interholecular force-portion of the ehear stresses de-
epends directly on the extent of this oev1atlon

‘According to the Navier- Stokes stress argument for
an Incompressible Newtonlan fluid (8] the coefficieént
o of.shear viscoslity N is‘defined as the constant of proé
portionality between fhe strese tensor andot%e deformation
of the velocity [Vu +. (Vu)*]}‘ﬁhere (Vﬁ)¢ is the trans-

: pose of the gradlent of the velocity Vu,

= -1 [Vu + (vu)™) | | (5)

lle-l

Comparing this macrosoopic deflnition of v130051ty
witn the mlCrOSCOplC expression for the stress bensor,-
equation (4), and neglecting‘;gK since it is“very small

in a liquid, one obtains -a formal expression for the



viscosity of a monatomic liquid

an+<Vu =———fffrv¢ ) g'(2) av. (&)
This_form_is essentially equivalent to the expres-
sion given by Born'and Green [9], éxcept'for the bmission'.
of the kinetic term. This approximation can be justi-
fied by calculating the kinetit ctntribution to.viscosityf .
frpm-liqu;d self—diffusion data. Fbr éxample, thé | |
self-diffusion coefficient of a liguid metal is on the

> em /sec Aécbrding to Kirkwood [10] the

order of 10
k;netlc portion of v150051ty ﬂ is related to the self-

diffusion coefflcient D by
ne=%%0 . ()

ﬁor merpury'at,300°K, N.'= 1.55 ¢p ahd’ﬂk,s.o.oz cp;

Thus itlis seen that ﬂK ié on_the‘brderjéf 0nly'aifew

percent of the total visqésity. | 4 .

Iﬁ ofder to proceed- to the caléﬁlation‘of viscosity
 from equation (8), it is necéssafy”tq obtain the péir -
distribution functioﬁ under nonequilibriﬁm.étnditioné
and'in'pafticular tb relate it té the velocity gradiént
in the fluid. Thié.problem éeems to be far>ffom a rigéfbus
"solution since it'iSHnOtuyet'possible to'calculate the
distribution fun@tibn of é liguid in equilibrium Very
aécurately. ‘However, it isvpossible to derive a simﬁle “

‘ approkimation.to the exéct function by taking recourse
to phy51cal argumeﬁts about “the elfect of a ;low field

on the llquid structure



In general the exact solutioh’for the pair distri-
bution function mustibe determined from a complicated
iﬁtegro-differential.eqﬁation [11] which 1s difficult'
to solve even in the Simplest case [lla] In order to
obtain an approximaue form for Lhe pair dist“ibution
function we consider the equilibrium solution to be knowh
and_assume that-the generel solution to the compiete-
equation can thenvbe expressed as a pertﬁrbation series
expension‘about the equilibrium value, that is,

jg@_) = 6%(x) + Fy(x)s + Fp(r)s + R (@)

. The function g(r) is ertuen as a power series in some

v'perburbation parameter s which characterizes the distur—

1mn

bbance_of the liquid structure.by the.ilow_field. 5"
should be small and vanish at equilibrium to aesure'con—'
Vergenee. The. coefficients Fi(r) are assumed to be
ihdependent of the distuﬁbance and-functiens ef r only;
Then s mast be a fﬁnctioﬁ of the polar angles 0 and 6.
_}Tnis separation of variables seems reasonable since the
disturbance must depend on the veloCity graéient -and in
the region wnere in teratomic iorces are: appreCiable ‘the
VelOClty gradient lS very nearly linear .Therefore s
should not depend on the magnitude of the position
vector E_but only on-its direction. e
Accofding toeconserVation.of'maSS, the average o
“vaiue of g(r) is unity as is the average value of ‘g (.).E

Therefore the intevral of each nigher term in equatiOﬁ (8)
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over r must vanish. This dondlclon will be satisfied
if Fi(r) 1s proportional to [1 - g°(r)]. Thus it is
assumed that | | | '
| B(r) = A [1-g%()). o (9)
Thelfaotorszi are,cqnstants of integratioﬁ'which would'
have to be evaluated from the éctual.sQlution of the
complete equation for_g(g)t We shall not concérn our-
selves with their éctual values at this time.

‘ An apprbpriate form of the perturbation pafameter'
S is assumed %o be.tﬁe ratio. of twé velocitieé: the

ratio of 2 characterlstlc dlSuurblng velocity Ug to a

o characte istic restorlng ve1001uy u*

s=V . o (20)

Thenvelocitvahich.acts to restore the equilibfium
liquid_strucéhre is assumed to be the éverage'thermal
~ speed of‘the atoms. | . - .
| ﬁ*:d?ﬁ}?n’. - (1)
"ua" is chosen to-be the average veiécfty of the: -
;atoms in the fLrSu peak of the radlal dlstrlbutlon

;uncoion relatlve to that of the central atom Flgure 2
shows the 81gnlllcance o; u6 for the»s1mple case of a
linear ve1001ty proflle | -

| In thls 81tuatlon the deformatlon of the ve1001ty

- contains only twor nonzero elements, each of which is the ‘

du
velocity gradlenu T3
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X
: . duX ' o
o va s ()T =\ O o] . (12)
o o of

The macroécopic pidture of this flow fileld ié shoﬁn on-

the left IiIn the figure.. The velocity'uX is drawn rela-
tive to that of the plane y=0. On the right the same
sit@ation,is-shown ﬁicroscopiéally. Since we are con-
~sidéring a time-averéged picture ua‘iS'zero for the atoms
in the y=0 plane. ﬂbwever, all other atoms on the |
spherical surface r=6 are onsthe average moVing rélative
‘to @hé central atom bedaﬁse of theAimposed U, field.v

I one imagines an atom on r=06 to move away from ité eguili-
brium positio:i_ with velocity ug, one sees thab there will
be a denéiﬁyAdeficiency iﬁ.that region'fqr‘a shbrﬁ peridd
“of time, thus diminishing the‘valﬁe of g: .However; be-
cauvuse of the raﬁdom motion of the atoms,ias one atQm is
forced to move away ffom an energetically favbrébie

"region another will shértly replace it with the relaxation .
time dependingvon the thermal motion characﬁerized'by |
W', Thus the ratio assumed in eduatiénl(il) can be ooﬁ-'v
sidered to be the‘function ﬁhich chafacteriies the steady’
state disturbance of the short-range order in the Iiquid

by the-macroécopic velocity field. For:this-simple'

. geometry Ug can be -expressed as.

: o 'duX _ - '
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Wherev¢ isethe engle measured from the plane‘yéo.

Since s turns out'to be on the order of 10-12
one would expect terms.higher.than linear in s in eque—
tion (8) to be negllglble under ordinary 01rcumstances
If4such is the case,vthe funCulon g(g)vcan hen be .

_approximated.by

e(z‘_) = g°(r) + A "[',l - ed(r')l'é . _‘ (14)

'Thls approx1mate lorm seems phy51cally reasonable.

.81nce the correctlon to g (r) is proport¢onal to

{1 - g%(r)], an increase in s ‘causes g(r) to tenq uoward
A~unity. That is, as_the.disturbance becomes.greater, the-e
structure of the liquid becomes more’ random, an effect}-
similar to that of inereeeing tempe;ature.’ -

| ‘Substitution efbthe aesuhed}form;ef the perturbation
 into equation (6).yielde'an'explicit expression fof'
1lqu1d v1scos1ty Wthh involves the - palr potential func—'

" tion and the radlal dlstrlbutiOﬁ functlon

1 ® dr

u

neay T[T @) (1 - )] ar . (15)
o , L

Thus these assumptions have reduced thejproblem ef
vliquid viscosity tb the same level of complexity as

the proolem of ‘the thermodynamic propertles The direct

. calculaulon of the oropertles of a llquld now requlres

‘ accurate representatlons of the function ¢(r) and g°(r )
'whlch are not yet avaﬁlable Nevertheless a useful

-conclus1on can be drawn from equaulon (15),v

e

-

R - R
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It is assumed that the potential function ¢(r)
: depends on two parameters, an energy parameter €
‘and a distance parameter &. Then equation (15) "can be

made dimensionless to define a reduced vigcosity

N =F (1%, V) o (16)
' where . o S - n
S N T |
e [WJ’ R A
T = [kT/e] , | S (18)
and 4' v o= [1m8°] , R a9

| and where M is. the .molecular weight and N is Avagadro's
number. For a class of substances which obey the same
potential energy functlon 2 (r) should be a universal
function of T*, V*, and x=r /6. Therefore, the reduced
_viscosity ﬂ should be a universal function of T and V .
Furthermore, in the liquid region where the density 1s
nearly constant, one would not expect g (r)(to-depend v

~ very greatly on V*.:”Thns according to eqﬁation (15); a
good approximation ought to be that n (V )2 is a universal

function of T only,

B o ‘ T\* (V*)Z _ G (T*) ' : ' .‘ | (20_) : .
- where kG'(T*) = ;%x/jﬁlﬂéigﬁé%lil] fl-- go(x;&%)]mdx 4_(21)
o : © VYo _ L - O

- and C1 is'aieonstant:

APPLICATION OF THE THEORY'TO LIQUID METALS
In order to apply tmaresults of the preceding

fanalysis to develop a useful correlation of the viscosities‘

..| i
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of liquid metais, 1t 1s necessary to have values for the
atomic.parameters € and 6. Unfortunately there is
little evidence to indicate the form of ¢(r) for metals
not to mention the actual values of the parameters. |
Determination from Tthermodynamic data such as heat,of sub-
limation is complicated by the effects of the free-
electron metallic binding in the condensed phase. Never-
theless, to establish a corresponding state plot of the
f‘unction,n*(V*‘)2 versus T it is necessary only to
assume that these substances all obey the same function
'.¢(r) and then to choose some basis for relative values
of € and 5. |
| . Iing [12] has determined effective Lennard Jones
| parameters for liquid sodium and potassium from their
'experimental Xfray scatteringecurves; These parameters
for. the two metals hare been used tohplot'their’viscosityf
data in Figure 3 as'ﬂ*(v*)a versus 1/T*. The ranges of
temperature represented here are 350;650°K ﬁor potassiuml“
and. 400-lOOO&K for sodium. The viscosity range is 0. 605.
‘to 0.165 cp for sodium, O. 511L to O. 010 cp for potas51um ,h
”andvthe reduced volumes at a T of 0. 25 are 0.80 for K o
and 0.75 for Na. Itvis seen that the data plotted in '
~this way fall on a singie 1ine as predicted by the theory ’
~and that neﬂlectlng the 1mpllclt dependence on. V 1s_
aoparently a good approximatlon
The viscosities of many other liquid metals have been

measured over a wide range of emperatures. The avallable '
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data are shown in Figure 4. It is seen that the tempera-

ture range is nearly 2000°K and that the viscosities range

over nearly two orders of magnitude.

Since the parameter © is.supposed to be the dis-
tance to the minimum'of the pair'potential energy func-
tlon, it shoula be p055101e fo estimate its value from‘
crysUallographlc daua. Therefore we have chosen the

value of 6,to be the interatomic distance in the close-

ﬁpacked,crystai at 0°K. These values are known for

nearly all metals [13]. With this estimate for 6,

2 for. all the deta<in Figﬁre'4'can be ealculated}

%)2

Then from the general N (V versus l/T* curve which is

established by the data for Na and K 1t is possible to

evaluate € for the rest of the metals. That is, we ad—
Just € to fit the data to the emplrlcal curve in Flgure
3{ This has been done, and the resultlng correlation 1is

shown_in_Figure_S_' The Values of the parameters are

" given in Table 1.

In Figure 5 are olotted the data for thestwenty-
one dlfferent metals, from llthlum and mercury to 1ron
and plutonlum, w1th a range of den51pies from 1.8 te 18
gm/cm3 and.etomic ﬁeights-from 6.9 to 242..vIt is seen
that this method of plotting the déta,accounts very weil
for the depeﬁdence of«liduid viscosity on the phyéicai

variables. The viscosities of liquid metals do indeed'.

- obey a corresponding states law.
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}Houevef, ihvspite of the-fact thet the data can be
reduced td'aAslngle»curve, one might wonder whether this
plot has'fuhdamental significance because the parameter
€ has- been determlned empirically. lf the theory pre-

sented here is valid, then the values of € obtalued

‘should in fact .be the energy characteristic of the atomic

interaction and should be related to other physical.

' properties.' Normally one finds that € for a class of
o substanoes correl es'with the critiéal temperatures, but
-unlortunately these are not known for most of the metals._

- However, Varlous tneorles of meltlng such as. that of

Lennard-Jones and Devohshire [14] indicate. that the

,melting point‘should be proportional to,e. Such a rela-
_ tionship has been observed for other classes of sub-

stances [15].

In Figure 6 the‘values.of € determined here are

- plotted versus. the melting p01nt and it is seen that a

very satlsfaCtory correlatlon exists. On this basis,

vlu is concluded thet € does in fact have the*proper physi-

cal significence Thus it should e pos'sible’ to"estimate. ,_

€ for other metals from thelr meltlng p01uts in order

'to predict VlSCOSlty from Figure 5. . An 1llustratlon of the

.. use of these corrélations 1s given in the Appendix.

DISCUSSION"

It has been seen that some rafther crude assumotlons

.about the behav1or of the mlcroscoplc llquld structure

'-under nonuniform condltlons have made it possible to
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develop a formal and rigorous, though incomplete,ttheoryl
of liquids into a corresponding states correlation of
viscosity for englneering use. Since it may‘not be
clear at this point why'much\simpler dimensional analy-
sis was'not'used to aocompiish the same purpose,'some
of the advantages of‘this.approach'willibe noted.
First,vbesides defining a reduced‘viscosity, equa-
tion (lS)_makesvit posaible to acoount for most .of the
- density dependence of viscosity explioitly. This makeé'
the,oorrelation simpler.
vFurthermore the analyais has led to a tractable ex-‘
'pression for liquid viscosity whion takes into account
the fundamental features of liquid structure and molecular
behavior which appear to be responSible for the macro—'
scopic phenomena Although 1t remains to be seen how well
A this equation does represent the exact Viscosity function,
‘At should be noted that the substitution'of.approximate
forms of g°(r) and ¢(r) leads to a function which agreesu
qualitatively with the empirical ourVe'shown"in Figure 5.
" Thus there is evidence that equation (15) provides a good.
.approximation to- the correct viscosity‘function. On thia
"basis it is'suggested:that similar consideration‘of the
effect of a flow field on the- structure of a 1iquid
mixture could lead to an appropriately modified form of
-eouation (15) which might indicate & method for inter—.
- oolating or estimating viSCOSities of molten alloys.l

In any case it.is felt that the general theory based

on the pairrdistribution function,provides the most
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. meaningful approach to the problem of liquid prOperties o
now availlable and'that consideration of 1ts implications
- leads to a better understanding of the nature of irre-
versible processes in liqulds.

Another 1mportant consequence of this development
in addition to the correlation of viscoslty, is that it
~has led to.values’of the effectlive atomic interaction
energy parameters for.a large number-of;metals; It 1s
suggested that‘corresponding states correlations of other
'properties of the metals might be established on the

- basis of these parameters . For example, the parameters

‘determined here have been used successfully by the author .

'tO'correlate the_configurational heat capacities of

several liquid metals [16] and thus to explain the.: behavior

-of liquid heat capaclty with temperature. .

| smmARY"

In order to deVelop a useful correlation of the - |
viscositiesiof liquid'metals, the formal expression for
-_liquid.viscosity derived by Born and Green has been
considered.-_Assumptions-about the.primary effects of .
.:a‘velocityagradient onvthe equilibriUm'liquid structure:
_haweled to an approximate form for the palr distribution

function under nonuniform conditions. Substitution of ‘l

'
\

' this expression into the Born and. Green equation yielded .
- an equation for the viscoslity in terms of the radial

 distribution function and the interatomic potential
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énergy function. Although.these functioné have not yet
‘been determined accurately,'it was possible to use this
equation ©o estaﬁliéh the basis for a correspondihg |
states correlation of'the viscositieé'of liquid metals.
The viscosity data of twehty—one me;als were shqwh"
to fall on a single curve when plotted in the mannef
‘ihdicated by the theory. " Since the correlation involved
two atomic,interaCtion.parameters, it}wds necessary_to. l
show. that the values which fit the data were consistent
with the'physical slgnificance ascfibéd to them. ‘The
-distance paraméter was estimated independehtly from
,crystallographié'data;'aﬁd the energy paramétef was
_determined empirically from the generalized viécosiﬁy
‘ cﬁrVe,based on sodium.and potassium. It wés found that -
;fhe‘empirical energy parameter correlated well with -
.meltihg'poiht aé the true enefgy parameter would be ex-
~pected To do. | | j
Thus it was qoncluded.that the parameﬁérs‘had the
' proper significanqe‘and that the theory offéred a valid
‘approximatibn to the tfuenbehaVior of the liQuid struc-
ture. Theréfore the estaBlished correlation'can_be
‘used with confidence for éstimatihg the. viscosities of
other liguid métalsf It was suggestéd,%hat_an extension
of fhis theory might'maké it possible'to predict-the |
viscositiesnof'molten alioys.f Aiso the parameteré
- determined here might be used.ﬁc-correlate'othefvproper- _

ties of the metals. .
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Table 1. Goldschmidt atomic diameters and
: enérgy par’ameter's of _the metals.

Metal =~ ®(R) [13] e/k (°K)
Na . 3.84 1970 [12]
K - 4.76 - 1760 [12])
Ii 5,14 2350,
Mg 5.20 . 4300

AL 2.86 4250

Ca Ca.02 5250
. Fe 2.52 . 110900
Co 2.32 9550

N1 2.50 . . 9750

Cu 2.56 : 6600

Zn . 2.74 4700

Rb S 5.04 . 1800

Ag 2.88 . 6400

cd  3.04 3300

In 3.14 12500

Sn 3.16 2650
Cs 5.40 1550
Au . 2.88 . - 8750
Hg 3.10 1250

Ph. - ' 3.50 © 2800 -
Pu 3.1 A 5550
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APPENDIX

At The time that the‘eorrelation-presented'ih
tﬁis paper was develeped no data weretavailable for the
viscosity of liquid thallium. Very recently, however,
Cahill and Grossehave reported values for the viscbsity'
~of thallium over a wide range of temperaturesi[l7]. In
" order to demonstrate the procedure for using the cdrree '
lation as well as to check the accuraey_of its predictieh'
inAthie case we.shail eompare the estimated viscesity
with the experlmenual values. | *

For thallium the atomic weight M is 204.4, the
atomic dlameter 5 is 3.40 A [lB], and’ the meltlng point -
is.576'°K 'The relationship betweenethe pafémeter'e and
melting p01nt represented by the line in Flgure 6 can |
. be expressed as
g=5.20T . (22)
Therefore the energy paremeterxfor thallium is estiﬁated
to be (3000 k)°K. With this .quanﬁify known the reduced
'temperature-cerrespending‘to ény absolﬁte temperature
can be,calculated from equetioﬁA(ié). .For example, at
T = 644°K, T" = 0.214 and 1/T" = 4.66. l;F'rom Figure 5
‘1t can be determlned that the. reduoea'viscosity'functioh'
ﬂ%(V*)Z corresponalng to this reduced temperature 13‘% 05
At‘T 644°K, the density of thalllum is ll 18 gm/cm
From equatlon (19) and the value of & the reduced .

- volume is calculated to be 0.78. Therefore<ﬂ* = 5.00.
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From equation (17) the viscosity at this temperature is
easily calculated to be 2.36 cp. This value is to be
“compared With the expefimental value 2.11 cp; the'erfor'

V'amounts to about 12%.  Although this error is greater

- than the estimated experimental error of 0.05 cp .to

“0.1l-cp, 1t is seen that the corrélaﬁion predicts a value
which ié.quité acceptable for engineering purposes.

The viscosi?& of fhailium has been estimated from
the oorrelatiohlover the experimental temperature range,
and the predicted_curve'is compared with the_experimehtal'
poihts in Figure 7. It is seen thaf‘althoﬁgh the pre-

. dicted values afe,cénsistently'on the §rder'6f 10% high,
vthé predicted temperature depéndence 1s quite satisfac-
tory. These results are encouraging because most of

the remaining metals whose viscosities have not been
measured melt at temperatures well above 1OQO or 1500°K..
At these high‘temperétureé ekperimental difficulfies
become considérable,énd experimental ‘errors of ld% and-

- much more are to be éxpected. ‘Thus it is félt that as
experimental‘cdnditions become more severe, the pre-
“dictive ability of‘thiscorrelatién‘beéomes'inoreaéingly

/

valuable...
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B

. 'g-

=. Pressure tensor.

‘NOMENCLATURE

Constant coefficient in function Fi(r).

{

Constant coefficient in function G(T*).

Self-diffusion coefficient, cmZ/Sec.

= Universal function.
Coefficients in perturbation series.

Velocity distribution function.

Universal function. -

‘Pair distribution.function.’

26

Equilibrium pair diétribution'function,'radial

distribution function.

Deviation of pair distribution function from.

~equilibrium.

~Unit tensor.

Boltzmann constant.

= Molecular welght.
- Mass of atom.
Avagadro's number.

‘Particle number density.

- Thermodynamic pressure.

Gas constant.

.Radial position vedtor.'

Radial component of position vector. .
Perturbation parameter. — |

Temperature, °K.

Macroscopic velocity vector.

.
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ua' = Average macroscopic speed at r=0.
u* = Average thermél Speed of atoms.
.V = Reduced volume.

X = Reduced radial distance.

Greek lettefs

0. = Distance parameter characteristic of pagf potential
' energy function and radial distribution factor.

€ = Energy parameter characteristic of pair potential
' energy function. : ' ' :

'ﬂ .= Viscosity, centipoise.

n* = Reduced viscosity.
G;ﬁ = Angles representing r in sphericéircobrdinates.
X = Subscript iﬁdicating kihetic termi-v
“‘g,  = Microscopic velocity vector. ﬁ
I = Stress tensor.
,¢(r)_= Palr potential energy funéti6n.



FIGURE CAPTIONS - . o S

Figure 1. The experimental radial distribution
function for liquid -argon at various tem—
peratures. (5] .

- Figure 2. Schematic diagram for a linear velocity
gradient in a monatomic liquid shown on the
macroscopic and microscopic.scales. "ug" is the
average velocity of an atom on the sphere r=05
relative to that of the cent ral atomn.

"Figure 3. The reduced viscosities of sodium and _
~potassium as functions of reduced. temperature. .
The reduced quantities have been calculated on
the basgilis of the atomic parameters determined
by Ling. [12] :

Figure. 4. The viscosities of liquid metals and.
their dependence on tewperature.

Figure 5. The reduced viscosities of llquld metals
ahd their dependence on reduced temperature . -

Figure 6. - The correlation of the energy parameter ¢
with melting point for the llquld metals. - '

Figure 7. Predicted viscosity of liquid thallium
compared with the experlmental data of Cahlll
and Grosse. [17]
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