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Abstract. This paper showcases the use of PDE-based graph methods for
modern machine learning applications. We consider a case study of body-worn

video classification because of the large volume of data and the lack of training

data due to sensitivity of the information. Many modern artificial intelligence
methods are turning to deep learning which typically requires a lot of training

data to be effective. They can also suffer from issues of trust because the heavy

use of training data can inadvertently provide information about details of the
training images and could compromise privacy. Our alternate approach is a

physics-based machine learning that uses classical ideas like optical flow for

video analysis paired with linear mixture models such as non-negative matrix
factorization along with PDE-based graph classification methods that parallel

geometric equations from PDE such as motion by mean curvature. The up-
shot is a methodology that can work well on video with modest amounts of

training data and that can also be used to compress the information about
the video scene so that no personal information is contained in the compressed
data, making it possible to provide a larger group of people access to these

compressed data without compromising privacy. The compressed data retains

information about the wearer of the camera while discarding information about
people, objects, and places in the scene.
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1. Introduction. There is a long tradition of using nonlinear PDEs in image pro-
cessing starting with the Total Variation minimization for image denoising [38] and
energy minimization methods for image segmentation, e.g. [8]. More recently, ideas
from these energy minimization methods have been used for graphical models for
classifying high dimensional data. Here we discuss a particular application of those
ideas to the problem of ego-activity recognition in body-worn video. This particular
application takes advantage of both PDE-based image processing of the video using
classical optical flow techniques and discrete graph clustering of the video frames
according to their ego-activity.

With the development of body-worn camera technology, it is now possible and
convenient to record continuously for a long period of time, enabling video capture of
entire days. Classifying ego-activities in body-worn video footage is well-studied in
the context of sports videos [21] and life-log videos [41, 35, 37, 13]. Most ego-activity
recognition methods require a substantial amount of training footage; supervision is
either used to determine the importance of extracted low-level features in a bottom-
up system (e.g. [36]) or used to learn features in a deep-learning approach (e.g. [37]).
We consider a semi-supervised approach, in which we utilize a much smaller amount
of labeled training data than a typical supervised method.

The proposed semi-supervised approach is based on similarity graphs. It first
quantifies the similarities between pairs of data points, i.e. short pieces of video,
according to handcrafted, motion-based features adapted from [39]. Then, it spreads
the label information from a small set of manually labeled fidelity points to unla-
beled data. This process is inspired by three interrelated dynamical processes on
graphs: the Allen-Cahn equation, the Merriman-Bence-Osher scheme, and mean
curvature flow [4]. These processes have been shown to be descending flows for the
Total Variation semi-norm, which is the objective function of graph cuts [45]. We
propose the use of handcrafted features instead of deep-learning features so that we
can ensure that the features do not compromise personally identifiable information
in the scene. We employ features based exclusively on motion cues without object
detection and tracking. With the aid of the Nyström extension, the graph-based
semi-supervised classification method is scalable to handle the enormous size of
body-worn video data sets. We benchmark the proposed method on two publicly
available data sets involving routine activities and demonstrate its comparable per-
formance to supervised methods that use significantly more training data. We also
illustrate the performance of the method on a set of body worn camera videos from
the Los Angeles Police Department, demonstrating the method’s effectiveness over
a prior method applied to some of that data. This is an academic study and the
method is not intended for field use by law enforcement. However it does provide
an alternative approach to deep learning methods that rely heavily training data.
The method also focuses exclusively on the actions of the wearer of the camera,
and would be more useful for for sorting information related police activity and
accountability rather than on crime. The paper is organized as follows. In section 2
we survey related work on analyzing egocentric vision and activity recognition. In
section 3, we introduce our feature extraction and semi-supervised learning method.
We report our experimental setup and results in section 4. Finally, the conclusions
and future work follow in section 5.

2. Related work. Research in summarizing and segmenting egocentric videos
recorded by body-worn cameras dates back to the early 2000s [2]. Since then,
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this has been an active research area due to the advancements in computer vision
and machine learning [9]; here we review work most relevant to our own.

The task of activity recognition in body-worn video can be categorized into three
lines of research: (1) one relies on object-hand interactions and video content (i.e.
what objects and people are in the video), (2) one uses the motion of the camera,
and (3) one uses a combination of the previous two. Typically, neither object-
hand interactions nor the motion of the camera is directly available as metadata
in egocentric vision data sets, so all three lines of research start with inferring
respective pieces of information from raw video footage.

Works following the first approach rely on object detection and tracking to clas-
sify the camera-wearer’s activities, for instance, [12, 13, 35, 24, 42]. Popular bench-
mark data sets used to validate methods focusing on hand-object interactions are
the GTEA and GTEA Gaze+ data sets, provided by [13], and ADL-short in [41]
and ADL-long in [35]. The GTEA and GTEA Gaze+ data sets are recorded by
Tobii eye-tracking glasses when wearers are cooking in a natural setting, so these
two data sets contain eye-gaze direction information not typically available in other
body-worn video data sets. Both ADL data sets are recorded with a chest-mounted
camera when the wearers are performing various daily tasks indoors. The afore-
mentioned data sets are different from our police body-worn video data set, which
was recorded outdoors and usually did not capture police officers’ hand movement,
so we do not pursue this thread of research.

The second line of research is to recognize activities based on motion analysis.
A wide variety of motion features have been proposed in the literature. [21] uses
a histogram-based motion feature to classify sports activities in videos recorded
by head-mounted GoPro cameras. [39] proposes a motion descriptor that inspired
our feature selection method. [30] uses inferred camera movement signals and their
dominant frequencies. Many ways of incorporating temporal information in motion
analysis are proposed; for instance, [40] proposes to apply multiple temporal pooling
operators to any per-frame motion descriptor. Deep convolutional neural networks
are also used to extract motion features; for instance, [1] learns a motion represen-
tation by using 2D convolution neural network on stacked spectrograms and a Long
Short-Term Memory (LSTM) network. With multiple available features extracted,
[34] proposes a multiple kernel learning method to combine local and global motion
features. A benchmark data set for this line of research is the HUJI EgoSeg data
set provided by [36], which is recorded when the wearer is performing a variety of
activities in both indoor and outdoor settings. As in the HUJI EgoSeg data set,
we observe that many activities of interest in our police body-worn video data set
induce distinctive camera movement patterns, and so we focus on a motion-based
approach. The proposed approach differs from the aforementioned methods in that
it is semi-supervised; we demonstrate in section 4.3 that it achieves comparable per-
formance to the supervised methods on the HUJI EgoSeg data set using a fraction
of training data.

For the third line of research, methods that utilize both appearance (i.e. object
recognition and tracking) and motion cues are often combined with deep learning.
Both [37] and [27] use a two-stream deep convolution neural network, one stream for
images and another stream for optical flow fields, to discover long-term activities
in body-worn video. Both [6] and [46] use an auto-encoder network to extract
motion and appearance features in an unsupervised fashion. We note that features
extracted from appearance cues using a convolutional neural network may be used
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Figure 1. A summary of the proposed method. First, we compute
a dense optical flow field for each pair of consecutive frames. We
then divide each optical flow field into sx×sy spatial regions, where
each region consists of dx× dy pixels, and divide the video into st
temporal segments, where each segment consists of dt frames. For
each dx×dy×dt cuboid, we count the number of flow vectors with
direction lying within in each octant, yielding a sx × sy histogram
for each segment of video. We reshape and concatenate each his-
togram into a single feature vector of dimension sx×sy×8 describ-
ing the motion that occurs within the video segment. The dimen-
sion of the feature vectors is reduced with NMF and we smooth
them with a moving-window average operator. Finally, we classify
the smoothed features with a semi-supervised MBO scheme.

to reconstruct the original frame, which can potentially be used to recover personally
identifiable information, so we do not pursue this line of approach.

In [30], the authors also study ego-activity recognition in police body-worn video.
We improve upon their work by choosing a more sophisticated feature than theirs
to handle the increased diversity of activities in our much larger data set. We
demonstrate the improved performance of the proposed method in section 4. To
the best of our knowledge, no other experiment results on real-world police body-
worn video have been reported in the literature.

3. Method. We start with extracting features based on motion cues from the
video. The extracted motion features are potentially high-dimensional, so they are
compressed to a lower-dimensional representation to alleviate computational bur-
den. Finally, we classify the video footage with the low-dimensional representation
using a PDE-based semi-supervised learning method that only requires 10% train-
ing data from each class of activity. The flowchart fig. 1 summarizes the proposed
system, which we detail below.

3.1. Motion descriptor. Our motion descriptor is similar to the one presented in
[39] except for the final dimension reduction step: [39] uses the principle component
analysis (PCA) whereas we choose the non-negative matrix factorization (NMF)
because the features are inherently non-negative. Before we compute any feature,
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we resize all video frames to have a resolution of 576 × 1024 and hence an aspect
ratio of 16 : 9, allowing us to choose a uniform set of video parameters across all
data sets.

3.1.1. Dense optical flow fields. Dense optical flow fields [18, 25, 3, 10], which de-
scribe relative motion between objects in the scene and the camera, form the basis
of our motion analysis. Optical flow fields are fields of two-dimensional vectors
(u, v) defined on the two-dimensional domain of images. In the discrete setting, an
optical flow field associates each pixel in an image with an optical flow vector which
consists of a horizontal and vertical component. An optical flow field is calculated
from a pair of consecutive frames under the assumption that pixels displaced accord-
ing to the optical flow field should preserve their intensities after the displacement.
Formally, let x(t), y(t) be the pixel location of a particular pixel that is displaced
according to the optical flow field,

d

dt

[
x
y

]
=

[
u (x(t), y(t))
v (x(t), y(t))

]
.

Then the intensity constancy assumption can be formulated by

d

dt
I (x(t), y(t), t) = 0, (1)

which yields the following identity [18],

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0.

The well-known Horn-Schunk method then seeks the optical flow field (u, v) by
minimizing ∫∫ (

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t

)2

+ λ
(
‖∇u‖22 + ‖∇v‖22

)
dx dy, (2)

where ‖ · ‖2 denote the 2-norm of a vector. Note that the first term of eq. (2)
encourages the flow fields to satisfy the intensity constancy assumption eq. (1)
while the second term regularizes this ill-posed problem by promoting smooth vector
fields. In their original paper, the authors of [18] solve the Euler-Lagrange equation
of eq. (2) to determine the optical flow fields; myriads of optical flow methods have
been proposed in the past three decades and we refer readers to the survey paper
[14] for this subject.

Assuming that the objects recorded in a pair of frames are static, the optical flow
field encodes the movement of the camera and hence the movement of the camera-
wearer. Although this assumption does not necessarily hold perfectly for real-world
body-worn video footage, static background objects often cover the majority of
frames, and thus we can use optical flow fields to estimate the movement of the
camera-wearer. Even when this assumption is not true, we have found that optical
flow fields induced by the movement of objects instead of the camera-wearer are
still helpful in certain situations. For instance, they characterize driving a car by
the static interior of the vehicle and the movement in the windshield region. This
is also observed in the experiments conducted by [37]; the authors find distinctive
patterns of optical flow fields in the windshield region that correspond well to the
camera-wearer driving a car.
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3.1.2. Histograms on dense optical flow fields. Using optical flow fields is common
in classifying ego-activities. Different motion features are effectively different ways
of aggregating them. For instance, authors of [21, 39, 40] bin optical flow vectors
to construct features in the form of concatenated histograms, [37, 46, 6] aggregate
them via convolution kernels, and [30, 36] infer camera movement using unaggre-
gated optical flow fields as input. In our case, we compute the motion descriptors,
proposed in [39], as histograms of extracted dense optical flow vectors. We bin the
vectors according to their locations in the frames and orientations, and then count
the number of vectors in each bin. Note that we lose magnitude information in
this process because the bins only correspond with locations and orientations. The
features proposed in [21] retain magnitude information by further grouping opti-
cal flow vectors according to their magnitudes, but in our experiments we observe
comparable performance using the simplified features.

To compute the motion descriptors from the optical flow fields, we consider a
video as a 3D volume with frames (optical flow fields) stacked along the time axis.
We spatially divide each frame into sx by sy rectangular regions of fixed width dx
and height dy pixels; the choice of dx and dy determines the spatial resolution of the
final features. We have found that choosing dx and dy that are divisible by the total
number of pixels in length and height, respectively — yielding sx = 16 and sy = 9
— gives good performance on all data sets tested. We also divide the video into st
video segments, each with a fixed time duration ∆T , that is, dt frames. We choose
∆T depending on the time scale of the ego-activities that we wish to classify. For
instance, we choose ∆T = 0.2 second for videos containing a mix of long term and
short term ego-activities, whereas we choose ∆T = 4 seconds if we wish to classify
relatively long-term activities. The choice of ∆T also determines the computation
cost of the subsequent analysis. A finer time resolution, i.e. a smaller ∆T , yields
more video segments for a given video and hence results in more computations.

Consider the optical flow vectors in each dx × dy × dt volume. We place each
of them into one of the pre-defined eight histogram bins based on its orientation.
Formally, a vector with a directional angle θ is placed in bin

⌊
θ/π4

⌋
. Repeating the

above steps for every dx×dy×dt volumes in each video segment of duration ∆T , we
obtain a feature vector with a dimension of sx × sy × 8 for each segment, which we
reshape into a single column vector. By repeating the above procedures for every
video segments of length ∆T and stacking obtained feature vectors, we obtain a
data matrix X with the number of columns equal to the number of segments in the
video. A detailed description of this procedure is presented in algorithm 3 in the
appendix.

3.1.3. Non-negative matrix factorization. The concatenated histograms for each
video segment can have 9·16·8 = 1152 entries, resulting in a 1152×st matrix, which
can potentially be expensive to compute with. To alleviate this problem, we employ
dimension reduction techniques. In [39], the authors use the principal component
analysis (PCA) to perform dimension reduction. However, we use non-negative ma-
trix factorization (NMF) [23] because the concatenated histograms are inherently
non-negative. NMF is widely used in the context of topic modeling, where users
want to learn topics, a collection of words that often co-occur in textual documents,
each of which is represented by a histogram of words. In our case, each video seg-
ment is represented by a histogram of “motion words”; each motion word is the
movement of a specific orientation in a specific region of the frame. Analogously, a
topic — a collection of motion words — describes a global movement pattern. We
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then model the concatenated histogram of motion words of each video segment as
a non-negative linear combination of the topics.

NMF factorizes a non-negative m× n matrix X (in our case, m = sx · sy · 8 and

n = st) into the product of two low rank non-negativem×k̂ and k̂×nmatrices V and

H. The number k̂ is chosen by the users according to their computation resources

and tuned based on the resulting performance. We have found that k̂ = 50 works
well for all considered data sets. Formally, this is achieved by solving the following
constrained minimization problem,

min
V,H
‖X − V H‖2F , subject to V ≥ 0, H ≥ 0, (3)

where ‖ · ‖F denotes the Frobenius norm. Each column in V represents a basis vec-
tor (a topic), and each entry in H represents the non-negative linear combination
coefficients. Each column in the matrix H is the feature vector for a single video seg-
ment, which will be passed into our classification algorithm after a post-processing
step (detailed in section 3.1.4).

We also note that we do not necessarily need to perform NMF every time we
obtain a new video. We may choose to fix V which we obtain by applying NMF
to the initial data set. Then we only need to compute the combination coefficients
Hnew for the new videos Xnew by solving a non-negative least squares problem

Hnew = arg min
H
‖Xnew − V H‖2F , (4)

which can be solved very efficiently using methods such as ones proposed in [22].
The dimension reduction step also helps to secure personally identifiable infor-

mation. Since we do not make use of V in the classification algorithm, there is no
need to save it. Without the basis, it is impossible to reconstruct the data matrix
X and let alone the content of the videos.

3.1.4. Post-processing. We assume a certain degree of temporal regularity of the
extracted features: the duration of activities is typically much longer than transi-
tions between them, and so transitions are relatively rare. We note that none of
our feature extraction procedure takes advantage of this temporal regularity. Each
optical flow field is computed from only two adjacent frames, motion descriptors
are aggregated within non-overlapping video segments, and NMF treats columns in
the data matrix X (motion descriptors of video segments) independently. Methods
exploiting temporal regularity have been proposed before. In [40], for instance, the
authors apply multiple temporal pooling operators to the extracted per-frame mo-
tion and visual features and use the outputs as additional features. We choose a
simpler approach, in which we apply a single moving-window average operator on
each row of H and then pass these averaged features to the classification method.
We determine the window size of the moving-window average operator experimen-
tally for each data set. Choosing a large window size may eliminate distinct features
of short-term activities, so the choice depends on the types of activities in the data
set as well as the chosen value of ∆T .

3.2. Classification method. Recently, PDE-inspired graph-based semi-supervised
and unsupervised learning methods have been successfully applied to image pro-
cessing [32] and classification of high-dimensional data such as hyperspectral images
[33, 19, 48, 29] and body-worn videos [30]. In this section, we outline one of these
methods based on minimizing the graph Total Variation, which has been studied in
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[4, 16, 31]. We consider each data point (i.e. video segment) as a node in a weighted
graph. The edge weight between a pair of nodes i and j is given by the similarity

wij = exp

(
−‖Hi −Hj‖22

τij

)
, (5)

where ‖ · ‖2 denotes the 2-norm of a vector and τij ’s are scaling constants. Here Hi

is the ith column of matrix H obtained from NMF. The scaling constants can either
be the same chosen τ for all pairs of i and j, or chosen locally for each individual
pair [47]. We choose the local scaling constants τij = τiτj where τi is the distance
between i and its Kth nearest neighbor.

We aim to partition n nodes into c classes (i.e. ego-activities) such that

1. similar nodes between which edge weights are large (i.e. wij ’s are close to 1
should be in the same class, and

2. fidelity nodes (i.e. manually labeled nodes) should be classified according to
their labels.

To achieve 1), we optimize the graph Total Variation (TV) defined as follows. Let
u be an {0, 1}c-valued assignment function on the set of nodes, that is u`(i) = 1
meaning we assign the ith data point to class `. We can then define the graph Total
Variation

|u|TV =
1

2

n∑
i,j=1

wij‖u(i)− u(j)‖1, (6)

which is referred to as anisotropic Total Variation by [17]. We observe that (6)
admits a trivial minimizer that is constant across all nodes. To avoid this problem
and to incorporate the training data, we introduce a least-squares data fidelity term

F (u) =
1

2

n∑
i=1

M(i)‖u(i)− f(i)‖22 , (7)

where M(i) = 1 if node i is chosen as fidelity and 0 otherwise, and f(i) ∈ {0, 1}c
encodes the known label of node i. We weight the fidelity term by a positive
parameter η to balance the graph TV term and the fidelity term in the objective
function,

1

2
|u|TV + ηF (u). (8)

Instead of minimizing (8) directly, which is discrete and combinatorial, we solve
the Ginzburg-Landau relaxation [4] for u(i) ∈ Rc. Namely, we replace the graph
Total Variation |u|TV with

GLε(u) =
1

4

n∑
i,j=1

wij‖u(i)− u(j)‖22 +
1

ε

n∑
i=1

P (u(i)) , (9)

where ε is a small positive constant, and P is a multi-well potential with minima
at the corners of the unit simplex, for instance

P (u(i)) =

c∏
`=1

1

4
‖u(i)− e`‖21, (10)
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where e` is the unit vector in Rc in the `th direction. The authors of [44] prove the
following Γ-convergence

GLε(u)
Γ−→

{
|u|TV if u is binary

+∞ otherwise
(11)

as ε → 0 in the case of c = 2. The Γ-convergence ensures that the minimizers of
GLε(u) approach the minimizers of |u|TV and hence justifies the Ginzburg-Landau
relaxation of the Total Variation. After the Ginzburg-Landau relaxation, we arrive
at the objective function

GLε(u) + ηF (u), (12)

which we minimize with respect to u.
To formulate (12) in terms of matrices, we first identify u and f by a n × c

matrix where ui` = u`(i) and fi` = f`(i). We let W be the matrix of wij ’s, and D
be an n× n diagonal matrix with the ith entry di being the strength of node i, i.e.
di =

∑n
j=1 wij , and then define the graph Laplacian

L = D −W. (13)

We also let M be an n×n diagonal matrix of which the ith entry is M(i) indicating
whether node i is chosen as fidelity. If we define L and M this way, we can write
(12) in the matrix form

1

2
trace

(
uTLu

)
+

1

ε

n∑
i=1

P (ui) +
η

2
‖M(u− f)‖22. (14)

In graph clustering, unsupervised learning, and community detection literature,
the graph Laplacian is often normalized to guarantee convergence to a continuum
differential operator with a large number of data points (see, for instance, [4]). One
popular version of normalized graph Laplacian is the symmetric Laplacian

Ls = I −D− 1
2WD− 1

2 .

If we substitute L for Ls, the first quadratic term of (14) becomes

trace
(
uTLsu

)
=

1

2

n∑
i,j=1

wij

∥∥∥∥∥u(i)√
di
− u(j)√

dj

∥∥∥∥∥
2

2

.

The methods described in the remainder of this paper carry over regardless of
which graph Laplacian is used, and the notation L is a placeholder for any choice
of graph Laplacian. In our experiments, we choose to use the symmetric graph
Laplacian Ls because it permits the use of efficient and simple computation routines
to approximate its eigenvalues and eigenvectors.

3.2.1. Optimization scheme. Minimizing (14) using the standard gradient descent
method yields

∂u

∂t
= −Lu− 1

ε
∇P̂ (u)− ηM(u− f), (15)

where P̂ (u) =
∑n
i=1 P (ui). The steady-state solution of (15) is a stationary point

of (14). This is known as the graph Allen-Cahn equation. In the continuum, the
The Allen-Cahn equation converges to the mean curvature flow and an analogous
convergence for the graph case has been established in [26]. We follow [28] to use
a variant of the Merriman-Bence-Osher (MBO) scheme to approximate and solve
(15). We note that, in the continuum, the MBO scheme is known to approximate
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the mean curvature flow, just as the Allen-Cahn equation. An explicit connection
between the graph Allen-Cahn equation and the MBO scheme has been explored in
the recent artical [7]. In short, we first randomly initialize u0, which we use as the
initial condition for (15). We then alternate between the following two steps:

1. Diffusion: for given uk, we obtain uk+ 1
2 by solving a force-driven heat equation

∂u

∂t
= −Lu− ηM(u− f), (16)

for tk ≤ t ≤ tk + 1
2∆t, where ∆t is a parameter.

2. Threshold : we threshold uk+ 1
2 to obtain uk+1, i.e.

uk+1(i) = e` , where ` = arg max
ˆ̀
u
k+ 1

2

iˆ̀
. (17)

For a small ε, this approximates solving

∂u

∂t
= −1

ε
∇P̂ (u) (18)

for tk + 1
2∆t ≤ t ≤ tk+1 = tk + ∆t.

Choosing ∆t is delicate. If it is too small, uk+1 = uk after thresholding, whereas
if it is too large, u converges to the steady-state solution of (16),

(L+ ηM)−1Mf,

in one diffusion step, independent of the initial condition uk. Either way, extreme ∆t
results in a “freezing” scheme. In [45], the authors give guidance on how to choose
∆t in the case of unnormalized graph Laplacian, c = 2 (i.e. binary classification),
and η = 0. Currently, there is no analogous result for a symmetric graph Laplacian,
multi-class classification, and nonzero η. We have found, however, that ∆t = 0.1
gives nontrivial dynamics (i.e. convergent and not “freezing”) on all data sets used
in testing.

3.2.2. Numerical methods. We follow [4, 16] to employ a semi-implicit ordinary dif-
ferential equation solver to solve (16), and use a pseudo-spectral method coupled
with the Nyström extension to make the ordinary differential equation solver effi-
cient. We note that the graph Laplacian matrix L is large, with n2 entries where n
is the number of data points; it is also not inherently sparse, which makes approxi-
mation techniques such as the Nyström extension necessary.

For the ordinary differential equation solver, we take Nstep time steps to reach

uk+ 1
2 from uk, where Nstep is a parameter to choose. Formally, we let uk,s, s =

0, 1, · · · , Nsteps denote the numerical solutions of (16) at intermediate time tk+sδt,
where δt = ∆t/2Nstep. We solve

uk,s+1 − uk,s

δt
= −Luk,s+1 − ηM(uk,s − f) (19)

for uk,s+1. We use Nstep = 10 to ensure convergence of the ordinary differential
equation solver when η < 500 and ∆t = 0.1.

We use a pseudo-spectral method to solve Equation (19). We project the solution
u onto an orthonormal eigenbasis of the graph Laplacian L, or an eigen-subbasis
that consists of Neig eigenvectors corresponding to the smallest Neig eigenvalues.
We detail how we compute the spectrum of L with the Nyström extension in sec-
tion 3.3. Choosing a modest Neig � n will greatly improve the efficiency of the



PDES ON GRAPHS FOR SEMI-SUPERVISED LEARNING 4361

algorithm because solving (19) only requires O(nNeig) operations if the eigenvec-
tors and eigenvalues of L are provided. Suppose Φ is an n×Neig eigenvector matrix,
of which the jth column φj is the eigenvector of L corresponding to the jth smallest
eigenvalue λj , and Λ is the diagonal matrix containing all Neig smallest eigenvalues
λj ’s. We let a denote the coordinates we obtain by projecting columns of u onto
the eigen-subspace spanned by columns of Φ, i.e. a = ΦTu. Solving (19) in the
eigen-subspace is simply

ak,s+1 = (I + δtΛ)−1ak,s − δt · ηΦTM(uk,s − f) ,

uk,s+1 = Φak,s+1 .

Algorithm 1 Graph MBO scheme [4]

1: Input: Φ,Λ,M, f, η, and initial guess u0.
2: Output: u.
3: Initialize u0,0 = u0, a0,0 = ΦTu0.
4: for k = 1, 2, · · · , MaxIter or uk has converged do
5: a. Diffusion:
6: for s = 0, 1, · · · , Nstep − 1 do
7: ak,s+1 = (I + δtΛ)−1ak,s − δt · ηΦTM(uk,s − f).
8: uk,s+1 = Φak,s+1.
9: end for

10: b. Threshold uk+1/2 := uk,Nstep :
11: for i = 1, 2, · · · , n do

12: uk+1,0(i) = e`, where ` = arg maxˆ̀u
k,Nstep

iˆ̀

13: end for
14: end for

3.3. Nyström extension. We employ the Nyström extension [15], which approxi-
mates the eigenvectors and eigenvalues of L with O

(
nN3

eig

)
computation complexity

and O(nNeig) memory requirement. In practice, we choose Neig with respect to the
physical memory available to us and we also ensure that it is sufficiently large so
that the first Neig eigenvectors encapsulate enough geometric information of the
similarity graph. With Neig � n, the computation complexity and memory scales
linearly with respect to the number of data points. The idea of the Nyström exten-
sion is to uniformly randomly sample a smaller set of data points A ⊂ {1, 2, · · · , n}
with |A| = Nsample � n, perform spectral decomposition on an Nsample ×Nsample
system calculated from the set of data points A, and then interpolate the result to
obtain an approximation to the spectral decomposition of the entirety of L. Let
B be the complement of A, i.e. A ∪ B = {1, 2, · · · , n} and A ∩ B = ∅. Let WAA

denote the weights associated with nodes in set A, and similarly, let WAB = WT
BA

denote weights between nodes in set A and B. If we reorder the nodes so that
A = {1, 2, · · · , Nsample} and B = {Nsample + 1, Nsample + 2, · · · , n}, we can rewrite

W =

[
WAA WAB

WBA WBB

]
. (20)

It can be shown [15] that the matrix WBB can be approximated by WBB ≈
WBAW

−1
AAWAB in the context of approximating the spectral decomposition. The
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Nyström extension uses this property to approximate the spectrum ofW , and hence-
forth L. We summarize the Nyström extension algorithm to approximate the spec-
trum of symmetric graph Laplacian in Algorithm 2. An analogous algorithm for
unnormalized graph Laplacian can be found in [4]. In Algorithm 2, 1 denotes a
vector of one’s that is used to compute the strength of each nodes, i.e. the sum
of weights, and let X./Y denote component-wise division between two matrices

X and Y of the same size. We let
√
X denote the non-negative square root of

each component of any non-negative matrix X, and if X is positive definite with
the spectral decomposition X = QΓQT , we let X1/2 = QΓ1/2QT and similarly
X−1/2 = QΓ−1/2QT .

Algorithm 2 Nyström Extension for symmetric graph Laplacian[4][15]

1: Input: {Hi}ni=1 and {τij}nij=1.

2: Output: Φ, {λj}
Neig

j=1 .

3: Randomly sample A ⊂ {1, 2, · · · , n} with |A| = Nsample ≥ Neig and B such
that A ∪B = {1, 2, · · · , n}.

4: Compute WAA and WAB using (5).
5: Compute the strength of nodes in A, dA = WAA1.
6: Approximate the strength of nodes in B, dB = WBA1 +WBAW

−1
AAWAB1.

7: Normalize WAA = WAA./
√
dAdTA.

8: Normalize WAB = WAB ./
√
dAdTB .

9: Perform spectral decomposition on WAA+W
−1/2
AA WABW

T
ABW

−1/2
AA to obtain the

Neig largest eigenvalues {ξi}
Neig

i=1 and the corresponding eigenvectors {ψi}
Neig

i=1 .
We let Ψ denote the matrix of the eigenvectors and Ξ be a diagonal matrix with
ξi’s on the diagonal.

10: Output λi = 1− ξi, and Φ =

[
W

1/2
AA

WBAW
−1/2
AA

]
ΨΞ−1/2.

4. Experiments. We apply our method on two publicly available data sets, the
QUAD data set [21], and the HUJI EgoSeg data set [36], and compare our results
to those reported in [21, 40, 43, 37, 36]. We also apply both our method and the
one proposed in [30]1 on a police body-worn video data set provided by the LAPD.
Our experimental procedures and parameters are summarized in TABLE 1. The
measures of success we use are precision

True Positive

True Positive + False Positive

and recall
True Positive

True Positive + False Negative
within each class, mean precision and recall directly averaged over all classes, and
the overall accuracy, i.e. the percentage of correctly classified data points.

The feature extraction is done on an offline machine to ensure the security of the
LAPD video. Subsequent analysis, including the Nyström extension and the graph
MBO scheme, is performed on a 2.3GHz machine with Intel Core i7 and 4 GB of

1with the implementation kindly provided by the authors of [30]
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Table 1. Experimental Setup

Motion feature NMF Spectrum of the Graph Laplacian MBO
∆T
(sec)

FPS
Number of
segments

Window size
(segment)

k̂ Neig τij Nsample
Batch size
(segment)

η ∆t Nstep

QUAD 1/60 60 14,399 - 50 500 τ = 1 1000 - 300 0.1 10
LAPD 1/5 30 274,443 5 50 2000 K = 100 2000 30000 400 0.1 10
LAPD [30] 1/5 30 274,443 - - 2000 K = 100 2000 30000 400 0.1 10
HUJI 4 15 36,421 20 50 400 K = 40 400 - 300 0.1 10

memory. Both experiments on the QUAD data set and the HUJI EgoSeg data set
can be finished within a minute after extracting features; each batch of the LAPD
body-worn video data set (see section 4.2 for details) takes around two minutes.

4.1. QUAD data set. The authors of [21] choreographed and made public the
QUAD data set, which is about four minutes long and filmed at 60 frames per
second. The footage was recorded with a head-mounted Go-Pro Camera while the
camera-wearer was undergoing nine ego-activities (reported in TABLE 2), such as
walking, jumping, and climbing up stairs2. The authors of [21] and [30] tested their
ego-activity classification methods on this data set; we follow the same experimental
protocol as [30]. Each video “segment” is chosen to be an individual frame and we
uniformly sample 10% segments within each category as fidelity in agreement with
the protocol employed in [30]. Such choice of one frame per segment yields 14,399
segments.

In TABLE 2, we report precision within each category and the mean precision,
directly averaged over nine classes; the authors of [21] have also reported the mean
precision and the authors of [30] provided detailed precision per class. Both our
method and the method in [30] use 10% of the video, sampled uniformly, as fidelity.
The method in [21] is unsupervised and the reported mean precision is calculated
after matching the discovered ego-activity categories to the ground-truth categories
in a way that the best match gives the highest harmonic mean of the precision and
recall (i.e. the best F-measure). Our result is overall an improvement upon [30] in
terms of precision.

The QUAD data set only consists of a short choreographed video, in which activ-
ities of interest have a relatively balanced proportion, and the challenges we observe
in the field data sets are absent. However, the experiment on the choreographed
data set validates the baseline ability of our method in recognizing ego-activities in
body-worn videos. We further test our method and showcase the applicability of
our method to data sets consist of multiple videos of different lengths that are not
choreographed and recorded in a variety conditions.

4.2. LAPD BWV data set. The LAPD body-worn video data set consists of
100 videos with a total length of 15.25 hours recorded at 30 frames per second.
The video footage is recorded by cameras mounted on police officers’ chests when
they are performing a variety of law enforcement activities. The data set consists of
videos recorded both inside vehicles and outdoors and under a variety of illumination
conditions. We manually annotated each frame of all 100 videos with one of 14
class labels. Although we train on and classify video footage in all 14 categories,
we exclude five insignificant classes, such as “exiting car” and “obscured camera”,
from performance evaluations of the ego-activity recognition algorithms. We report

2The reported categories of ego-activities are the same ones used in [30] and are different from
[21].
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Table 2. Class proportion and precision of the QUAD data set

Precision
Class Proportion [21] [30] Ours
Jump 14.54% - 92.51% 99.07%
Stand 13.74% - 87.90% 87.11%
Walk 12.75% - 84.52% 98.37%
Step 12.65% - 93.98% 98.54%
Turn Left 11.25% - 89.43% 96.96%
Turn Right 10.16% - 92.80% 96.21%
Run 9.00% - 92.38% 96.17%
Look Up 8.85% - 80.36% 90.02%
Look Down 7.06% - 84.59% 89.00%
Mean 11.11% 95% 88.74% 94.49%

activity proportions of the selected classes in TABLE 3 and, for completeness, all
14 classes in TABLE 5 of the Appendix.

We apply the method in [30] with the provided implementation on the LAPD
body-worn video data set. [30] computes a feature vector per frame instead of per
short video segment, which consists of 6 frames (0.2 seconds). The average of the
frame-wise features over a segment is used as the feature vector of the segment. By
doing so, the numbers of video segments to classify in both methods are the same.
We apply a moving window average operator with a window size of one second (five
segments) to our features. The features of [30] inherently incorporate temporal
information, so we use the aggregated segment-wise features as they are without
further smoothing.

We divide the 274,443 segments into 9 disjoint batches, each of which consists
of approximately 30,000 segments. As each segment has a duration of 0.2 seconds,
each batch therefore consists of 100-minutes of footage spanning multiple videos.
We perform the classification on each batch independently and concatenate the
classification results. We note that both our method and the method proposed in
[30] make use of the Nyström extension and the MBO scheme described in section 3.3
and section 3.2 respectively, so they share the same set of parameters. We choose
Nsample = 2000 and Neig = 2000 to be the same for both methods for each batch
so that they share the same computation cost and both give good performance
relatively to other choices of parameters. We have tuned parameters η ranging
from 0.01 to 1000 and found that η = 400 and τ selected automatically according
to [47] with K = 100 work well for both methods.

With regards to sampling fidelity points, we use the same protocol as the one used
in [30] where we uniformly sample 10% segments within each class. Consequently,
we have many more samples of common activities than rare activities.

In TABLE 3, we report the precision and recall within each class and their
respective means averaged over the selected nine classes. We refer readers to TABLE
5 in the Appendix for a full table of all 14 classes as well as the overall accuracy,
which is the proportion of video segments that are correctly classified. We also
present a sample of the color-coded classification results in fig. 2 and the confusion
matrices in fig. 3.

Our method outperforms [30] in most of the categories in terms of precision and
is a major improvement according to recall. We theorize that the features proposed
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Table 3. Class proportion, precision, and recall of the selected
nine classes in the LAPD body-worn video data set

Precision Recall
Class Proportion [30] Ours [30] Ours
Stand still 62.57% 73.10% 89.44% 85.42% 95.24%
In stationary car 16.84% 41.83% 93.69% 43.18% 89.73%
Walk 9.04% 38.36% 70.53% 19.54% 59.41%
In moving car 5.76% 70.71% 91.03% 25.08% 84.40%
At car window 0.64% 17.23% 71.45% 10.94% 45.28%
At car trunk 0.58% 73.78% 71.79% 11.09% 51.78%
Run 0.33% 96.15% 75.94% 11.03% 53.35%
Bike 0.33% 85.71% 86.49% 14.37% 75.44%
Motorcycle 0.08% 100% 92.49% 10.76% 71.75%
Mean 10.68% 66.32% 82.54% 25.71% 69.60%

Figure 2. Classification results on a contiguous sample of 4000
segments (approximately 13 minutes) from the LAPD body-worn
video data set. The results are obtained by running both methods
with the parameters described in section 4.2.

in [30] are too simple to distinguish among the increased variety of ego-activities in
the larger LAPD body-worn video data set. The features they propose do not make
use of the locality of motion within each frame, which we consider crucial in order
to differentiate, for instance, driving a car and walking forward. Both activities
feature forward motion, but the motion is localized within the windshield region
only in the former case. We also note that frequency is a significant component of
the features proposed in [30]; however, we do not observe much periodic motion in
many ego-activities.

4.3. HUJI EgoSeg data set. We also evaluate the performance of our method
on the HUJI EgoSeg data set [36] [37]. This data set contains 65 hours of egocentric
videos including 44 videos shot using a head-mounted GoPro Hero3+, the Disney
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Figure 3. Confusion matrices for the LAPD Body-worn video
data set. The background intensity in cell (k, `) corresponds to
the number of data points in class k that are classified as class `
by the algorithm.

data set [11] and other YouTube videos3. The data set contains 7 ego-action cat-
egories: Walking, Driving, Riding Bus, Biking, Standing, Sitting, and Static. We
normalize the frame rate of each video to 15 frames per second to match with the
normalized frame rate in [37]. We divide each video sequence into segments of 4
seconds (∆T = 4 seconds, 60 frames), which also matches the length of each video
segment in [37]. The activities present in the HUJI EgoSeg data set are all rel-
atively long-term activities compared to the LAPD Body-worn video data set, so
using longer video segments reduces the number of data points without the risk of
missing short-term activities. With such choice of ∆T , we have 36,421 segments.
For the Nyström extension and the MBO scheme, we have found that the com-
bination of Nsample = 400, Neig = 400, η = 300, and K = 40 gives satisfactory
results.

We follow the same experimental protocol of [36, 37] to divide the entire data set
into a training set and a testing set. We randomly pick video sequences until we have
1300 segments (approximately 90 minutes of video) per class as the training set, and
we uniformly sample 10% of the training set as fidelity points, which is about 10%
of the training data used in [37]4. In this experiment, we use recall to evaluate the
performance since it is the common measure of success in [36, 40, 43, 37]. TABLE 4
details the classification results on the testing set. The classification performance of
methods other than ours are reported in [37]. We also report the confusion matrix
in fig. 4 and a color-coded sample of the classification result in fig. 5.

We observe that the recalls of Sitting, Standing, and Riding Bus are typically
lower than other activities across all five methods, so we believe that these activi-
ties are inherently difficult to recognize with motion-based features. According to
TABLE 4, our method outperforms — using recall as a measure of success — other
methods that use handcrafted motion and/or appearance features with or without

3The HUJI EgoSeg data set can be downloaded at http://www.vision.huji.ac.il/egoseg/

videos/dataset.html.
4The authors of [37] do not explicitly mention the fidelity percentage; we estimate the percent-

age according to their released code at http://www.vision.huji.ac.il/egoseg/.

http://www.vision.huji.ac.il/egoseg/videos/data set.html
http://www.vision.huji.ac.il/egoseg/videos/data set.html
http://www.vision.huji.ac.il/egoseg/
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Figure 4. Confusion matrix for the HUJI EgoSeg data set. The
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data points in class k that are classified as class ` by the algorithm.

Figure 5. Classification results on a contiguous sample of 4000
segments (approximately 4 hours) from the testing set of HUJI
EgoSeg data set. The recall of the same experiment is reported in
TABLE 4.

deep convolution neural networks, with the exception of [37]. We emphasize that
our method uses a fraction of the training data of the supervised methods and still
achieves comparable results. When we use the entire training set as fidelity, the
mean recall only sees a slight increase.

5. Conclusion and future work. In this paper, we study ego-activity recogni-
tion in first-person video with an emphasis on the application to real-world police
body-worn video. We propose a system for classifying ego-activities in body-worn
video footage using handcrafted features and a graph-based semi-supervised learn-
ing method. These features based on motion cues do not identify people or objects in
the scene and hence secure any personally identifiable information within the video.
Our experiments also illustrate that the features are able to differentiate a variety
of ego-activities and yield better classification results than an earlier work [30]. The
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Table 4. Class proportion and recall of the HUJI EgoSeg data set

Recall
Class Proportion [36] [40] [43] [37] Ours
Walking 34% 83% 91% 79% 89% 91%
Sitting 25% 62% 70% 62% 84% 71%
Standing 21% 47% 44% 62% 79% 47%
Biking 8% 86% 34% 36% 91% 88%
Driving 5% 74% 82% 92% 100% 95%
Static 4% 97% 61% 100% 98% 96%
Riding Bus 4% 43% 37% 58% 82% 84%
Mean 14% 70% 60% 70% 89% 82%
Training ∼60% ∼60% ∼60% ∼60% 6%

semi-supervised classification method addresses the challenge of insufficient training
data; it achieves comparable performance to supervised methods on two publicly
available benchmark data sets using only a fraction of training data. Despite using
a smaller fraction of training data, our classification results are comparable to or
better than those in prior works, which include both classical and deep-learning
methodologies. The proposed system also demonstrates promising results on field
data from body-worn cameras used by the Los Angeles Police Department.

We note that the MBO-based classification method can be used with any fea-
ture design, not only the global motion descriptor as presented here. The general
graphical setting of the classification method even allows features that cannot be
represented by a vector in the Euclidean space so long there exists a way to measure
similarity between the features of two data points. Also, the Nyström extension is
still applicable with new features or similarity measures to efficiently approximate
the spectrum of the graph Laplacian.

Recent developments in unsupervised convolution neural networks [6, 46] might
be used to improve and extend the current feature selection method, although cau-
tion must be taken to prevent the recovery of personal identifiable information from
the learned features. Better incorporation of temporal information is another way
to move forward. We observe that the police body-worn video data set contains
a mix of long-term and short-term activities, making it difficult to select a single
time scale to design the features around. In the present experiment, we chose the
length of each segment to be 0.2 seconds in order to capture short-term activities,
but this was redundant for recognizing long-term activities. We chose ∆T to be
four seconds for the HUJI EgoSeg data set, which significantly reduced the com-
putation cost without sacrificing accuracy, but this was only possible because all
activities in the HUJI EgoSeg data set have long durations. Designing features that
efficiently handle a mix of long-term and short-term activities is another challenge
to be addressed.

Future work will also be directed towards improving the proposed classification
method. For instance, [20] recently proposed to incorporate the knowledge of the
proportions of classes as an extra input in the semi-supervised classification method
described in section 3.2. Considering the heterogeneity in the class distribution
that we observe in the police body-worn video data set (see table 3), we expect
to see an improvement in the classification performance with the class proportion
information.
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Despite our best effort to develop an accurate system for the classification of
police body-worn videos, the variability of the data leads to imperfect classifica-
tion. Our classification method is naturally paired with uncertainty quantification
(UQ) [5]. Besides giving a video segment an ego-activity label, we may use this tech-
nology to estimate a measure of uncertainty, which identifies hard-to-classify video
segments that require further investigation. Moreover, the measure of uncertainty
can suggest footage for police analysts to label to train classification algorithms
making an efficient use of human labeling effort. We expect that further develop-
ment of the feature selection, classification, and uncertainty quantification method-
ologies will facilitate an implementation of the proposed system to be used by law
enforcement agencies to summarize a large volume of body-worn video footage.
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Research and Education’s Research Technology Group. We thank Zhaoyi Meng,
Xiyang Luo, and Matt Jacobs for helpful discussion and sharing their code. We
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Algorithm 3 Global Motion Descriptor

1: Input: Optical flow fields matrix O ∈ Rnf×nx×ny×2

2: Output: Matrix X ∈ Rst×(sx·sy·8)

3: Initialize dt = 60, dx = dy = 64, sx = nx

dx , sy =
ny

dy ,

st = bnf

dt c, histogram count matrix C ∈ Rst×sx×sy×8

4: for i = 0 : st do
5: for j = 0 : sx do
6: for k = 0 : sy do
7: % Step 1. Partition:
8: cuboid = O[idt : (i+1)dt, jdx : (j+1)dx,

kdy : (k+1)dy, :]
9: % reshape: Rdt×dx×dy×2 7→ R(dt·dx·dy)×2

10: cuboid = reshape(cuboid)
11: % Step 2. Histogram count:
12: for l = 0, 1, · · · , (dt · dx · dy) do
13: v = cuboid[l, :]
14: θ = phase(v)
15: bin = bθ/π4 c
16: C[i, j, k, bin]++
17: end for
18: end for
19: end for
20: end for
21: % reshape: Rst×sx×sy×8 7→ R(sx·sy·8)×st

22: X = reshape(C)
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Appendix. We report the classification results of the entire 14 ego-activity cat-
egories in the LAPD body-worn video data set in TABLE 5 as well as the full
confusion matrices in fig. 6.
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Figure 6. Confusion matrices for the LAPD police Body-worn
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