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SUMMARY

Power analyses are an important aspect of experimental design, because they help determine how
experiments are implemented in practice. It is common to specify a desired level of power and com-
pute the sample size necessary to obtain that power. Such calculations are well known for completely
randomized experiments, but there can be many benefits to using other experimental designs. For
example, it has recently been established that rerandomization, where subjects are randomized until
covariate balance is obtained, increases the precision of causal effect estimators. This work estab-
lishes the power of rerandomized treatment-control experiments, thereby allowing for sample size
calculators. We find the surprising result that, while power is often greater under rerandomization
than complete randomization, the opposite can occur for very small treatment effects. The reason
is that inference under rerandomization can be relatively more conservative, in the sense that it can
have a lower Type-I error at the same nominal significance level, and this additional conservativeness
adversely affects power. This surprising result is due to treatment effect heterogeneity, a quantity
often ignored in power analyses. We find that heterogeneity increases power for large effect sizes, but
decreases power for small effect sizes.

Some key words: Covariate balance; Design-based inference; Dispersive ordering; Experimental design; Treat-
ment effect heterogeneity.

1. Introduction

We consider two-arm randomized experiments, with the aim of estimating causal effects. Random-
ized experiments are frequently considered the gold standard of causal inference because even simple
estimators, such as the average difference in outcomes between groups, are unbiased if subjects are
completely randomized between the two groups (Neyman, 1923; Imbens & Rubin, 2015). However, it
is often beneficial to use covariate information when randomizing subjects. For example, estimators
are usually more precise if subjects are grouped into similar blocks and randomized within blocks
(Fisher, 1935; Imai, 2008; Miratrix et al., 2013; Pashley & Miratrix, 2021; Bai, 2022; Tabord-Meehan,
2022). More generally, one can use rerandomization (Morgan & Rubin, 2012), where subjects are
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356 Z. Branson, X. Li AND P. Ding

randomized until covariate balance is obtained. Block randomization is a special case, where sub-
jects are randomized until the blocking variable is balanced. However, it is unclear how to form blocks
when there are many, possibly continuous, covariates (Bruhn & McKenzie, 2009). Rerandomization
can naturally incorporate categorical and continuous covariates in the covariate balance criterion.

Since Morgan & Rubin (2012), many works have established the benefits of rerandomization;
this includes experiments with tiers of covariates (Morgan & Rubin, 2015), sequential experiments
(Zhou et al., 2018), factorial experiments (Branson et al., 2016; Li et al., 2020), stratified experiments
(Wang et al., 2021), experiments with clusters (Lu et al., 2023) and experiments with high-dimensional
covariates (Branson & Shao, 2021; Wang & Li, 2022; Zhang et al., 2023). A common theme is
that causal effect estimators are more precise under rerandomization than complete randomization
as long as covariates are associated with outcomes. In particular, Li et al. (2018) established that,
asymptotically, the mean-difference estimator has narrower symmetric quantile ranges under reran-
domization than under complete randomization. Thus, confidence intervals for average causal effects
are narrower under rerandomization.

Intuitively, because rerandomization increases estimation precision, we would expect it to also
increase testing power. While this has been alluded to in the literature (Morgan & Rubin, 2012), the
power of rerandomized experiments has not been established. Power analyses are an important aspect
of experimental design, because they help determine how experiments are conducted in practice.
For example, when designing an experiment, it is common to specify a desired level of power, and
then compute the sample size necessary to obtain that level of power (Maxwell et al., 2008; Chow
et al., 2017). There are many publicly available sample size calculators for completely randomized
experiments (Dupont et al., 1990; Kang, 2021).

This work establishes testing power under rerandomization, thereby allowing for sample size cal-
culators. We focus on the mean-difference estimator, such that we can leverage results from Li et al.
(2018). We establish the surprising result that, while power is often greater under rerandomization
than complete randomization, the opposite can occur when the average treatment effect is small.
The main reason is that inference under rerandomization can be more conservative when there is
treatment effect heterogeneity. More precisely, variance estimators for individual effects overestimate
the true variance by the same amount under both designs, which results in a larger proportion of
overestimation under rerandomization. Specifically, at the same nominal level, testing under reran-
domization can have a smaller actual Type-I error than that under complete randomization. This
additional conservativeness has an adverse effect on power that can outweigh the precision benefits
of rerandomization, but only for small treatment effects.

To compare power and sample size between complete randomization and rerandomization, we
establish a dispersive ordering between their respective normal and nonnormal distributions. Our
results also quantify how power and sample size are affected by treatment effect heterogeneity, which
is often ignored in power analyses. More generally, this work adds to the literature on power analyses
for complex experiments, such as two-stage randomized experiments (Jiang et al., 2022), regression
discontinuity designs (Schochet, 2009) and difference-in-differences designs (Schochet, 2022). In the
Supplementary Material, we illustrate the sample size gains practitioners would see from rerandom-
ization under various scenarios, and also show how to implement power and sample size calculations
in our R package rerandPower.

2. Notation for treatment-control experiments

Consider a treatment-control experiment with N subjects indexed by i = 1, . . . , N. Let Z =
(Z1, . . . , ZN)T denote the binary group indicator, where Zi = 1 denotes treatment and Zi = 0
denotes control, and define X = (X1, . . . , XN)T as the N × K covariate matrix. Finally, let Yi(1)

and Yi(0) denote the potential outcomes for subject i, where Yi(1) denotes the outcome subject i
yields if assigned to Zi = 1, and Yi(0) is analogously defined. Throughout, we assume that Yi(1) and
Yi(0) are fixed; observed outcomes are random only to the extent that Z is random.

Because only Yi(1) or Yi(0) is observed for each subject, none of the individual treatment effects
τi = Yi(1) − Yi(0) are fully observed. Nonetheless, average treatment effects, and other estimands,
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Miscellanea 357

can still be estimated. We assume that the goal is to well estimate the average treatment effect, defined
as τ = N−1 ∑N

i=1 τi = Ȳ(1)− Ȳ(0). There are many possible estimators for τ ; for simplicity, we focus
on the mean-difference estimator τ̂ = N−1

1

∑N
i=1 ZiYi(1) − N−1

0

∑N
i=1(1 − Zi)Yi(0), where N1 and N0

denote the numbers of treated and control subjects, respectively. We study testing power based on τ̂

under rerandomization. Power will depend on τ , the variance of potential outcomes, and the variance
of individual treatment effects, which are respectively defined as

S2
z = (N − 1)−1

N∑

i=1

{Yi(z) − Ȳ(z)}2 for z = 0, 1, S2
τ = (N − 1)−1

N∑

i=1

(τi − τ )2.

3. Power and sample size under rerandomization

3.1. Inference and power
In completely randomized experiments, a fixed number of N1 subjects is assigned to treatment

and a fixed number of N0 subjects is assigned to control, completely at random (Imbens & Rubin
2015, Ch. 4). Alternatively, the covariates X can inform the design, which will affect inference and
power. We consider the rerandomization scheme of Morgan & Rubin (2012), where subjects are com-
pletely randomized to treatment until M ! a for a prespecified threshold a, with M the Mahalanobis
distance:

M = N1N0

N
(X̄1 − X̄0)

T(S2
X )−1(X̄1 − X̄0).

Here X̄1 and X̄0 are K-length vectors of covariate means in the treatment and control groups,
respectively, and S2

X = (N − 1)−1 ∑N
i=1(Xi − X̄)(Xi − X̄)T denotes the covariance matrix of X .

Under complete randomization, the mean-difference estimator τ̂ is unbiased and asymptotically
normally distributed (Neyman, 1923; Li & Ding, 2017), i.e.,

V−1/2N1/2(τ̂ − τ ) ∼ N (0, 1) where V = p−1
1 S2

1 + p−1
0 S2

0 − S2
τ (1)

with p1 = N1/N and p0 = N0/N. Meanwhile, under rerandomization, τ̂ | M ! a follows a non-
normal asymptotic distribution that depends on covariates’ association with potential outcomes.
Although the covariates and potential outcomes are fixed, a linear projection of potential outcomes
on covariates can account for some of the potential outcomes’ variance, and thus covariates can still
have an association with the potential outcomes. To quantify this association, for z ∈ {0, 1}, we define
the quantities S2

z|X = Sz,X (S2
X )−1SX ,z, where Sz,X = ST

X ,z = (N − 1)−1 ∑N
i=1{Yi(z) − Ȳ(z)}(Xi − X̄)T,

and S2
τ |X = Sτ ,X (S2

X )−1SX ,τ where Sτ ,X = ST
X ,τ = (N − 1)−1 ∑N

i=1(τi − τ )(Xi − X̄)T. Here, S2
z|X is

the variance of the linear projection of potential outcomes on X and S2
τ |X is analogously defined for

treatment effects. The asymptotic distribution of τ̂ under rerandomization is (Li et al., 2018)

V−1/2N1/2(τ̂ − τ ) | M ! a ∼ (1 − R2)1/2ϵ0 + RLK,a, (2)

where ϵ0 and LK,a are independent, ϵ0 ∼ N (0, 1), R2 is the squared multiple correlation between X
and potential outcomes, i.e.,

R2 =
p−1

1 S2
1|X + p−1

0 S2
0|X − S2

τ |X

p−1
1 S2

1 + p−1
0 S2

0 − S2
τ

, (3)

and LK,a ∼ χK,aSβ
1/2
K with the following independent random variables:

χ 2
K,a ∼ χ 2

K | χ 2
K ! a, S ∼ −1 + 2 · Ber(1/2), βK ∼ Be{1/2, (K − 1)/2}. (4)
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358 Z. Branson, X. Li AND P. Ding

The rerandomization distribution (2) and complete randomization distribution (1) are identical only
if R2 = 0 or a = ∞. Otherwise, (2) will be a nonnormal distribution that has less variance than a
standard normal distribution (Li et al., 2018). Both distributions involve V , which depends on the
proportions p1 and p0 and variances S2

1, S2
0 and S2

τ . The proportions are fixed; meanwhile, S2
1 and

S2
0 can be consistently estimated, but S2

τ cannot without additional assumptions. In practice, we can
estimate V conservatively. Neyman (1923) proposed V̂N = p−1

1 s2
1 + p−1

0 s2
0, where s2

1 and s2
0 are sample

versions of S2
1 and S2

0. The estimator V̂N implicitly estimates treatment effect heterogeneity as Ŝ2
τ = 0

and is thus conservative, in the sense that E(V̂N − V) = S2
τ " 0. Ding et al. (2019) noted that

S2
τ " S2

τ |X , which can be consistently estimated by s2
τ |X = (s1,X − s0,X )(S2

X )−1(sX ,1 − sX ,0) (Li et al.,
2018), and thus proposed an improved variance estimator V̂DFM = V̂N − s2

τ |X . Here, s1,X = sT
X ,1 and

s0,X = sT
X ,0 are sample analogs of S1,X and S0,X , respectively. We consider both estimators and use the

generic notation V̂ . As demonstrated in Li & Ding (2017) and Ding et al. (2019), V̂ has a probability
limit Ṽ no less than the true variance V , i.e., V̂ = Ṽ + opr(1) with Ṽ " V . The probability limits of
V̂N and V̂DFM are respectively

ṼN = p−1
1 S2

1 + p−1
0 S2

0, ṼDFM = p−1
1 S2

1 + p−1
0 S2

0 − S2
τ |X .

Thus, V̂N is consistent when S2
τ = 0, and V̂DFM is consistent more broadly when the individual effects

can be linearly explained by the covariates.
The rerandomization distribution (2) suggests the (1 − α)-level confidence interval

τ̂ ± ν1−α/2(R̂2)V̂ 1/2N−1/2, (5)

where ν1−α/2(ρ
2) denotes the (1−α/2)-quantile of the distribution (1−ρ2)1/2ϵ0+ρLK,a. Representation

(4) makes it simple to approximate this quantile via Monte Carlo simulation after specifying R̂2. In
(5), R̂2 = (p−1

1 s2
1|X +p−1

0 s2
0|X −s2

τ |X )/V̂ , where s2
1|X , s2

0|X , and s2
τ |X are sample analogues of S2

1|X , S2
0|X and

S2
τ |X , as defined in Li et al. (2018). The estimator R̂2 has probability limit R̃2 = VR2/Ṽ ! R2; thus,

R̂2 is conservative to the extent that V̂ is conservative. Because ν1−α/2(R2) ! z1−α/2 for all α ∈ (0, 1),
interval (5) is narrower than the analogous interval for a completely randomized experiment if the
covariates have any linear association with the outcomes (Li et al. 2018, Theorem 2).

Interval (5) implies the following test for the null H0 : τ = 0 against the alternative HA : τ > 0:
{

reject H0 : τ = 0 if τ̂ > ν1−α(R̂2)V̂ 1/2N−1/2,
fail to reject H0 : τ = 0 otherwise.

(6)

Similar to most power analyses (Lachin, 1981; Lerman, 1996; Wittes, 2002), we focus on the one-sided
test here because it simplifies sample size calculations. For any α-level two-sided test, we can always
bound its power and sample size requirement by that of an α/2-level one-sided test. Furthermore,
throughout the paper, we assume that the significance level α of the test in (6) is below or equal to
0.5, which is the case for most if not all applications. The following theorem establishes the power of
the above test.

THEOREM 1. Under rerandomization, the power of test (6) is asymptotically

VR2

{
ν1−α(R̃2)Ṽ 1/2 − τN1/2

V 1/2

}
,

where VR2(·) denotes the survival function of (1 − R2)1/2ϵ0 + RLK,a, V denotes the variance in (1), Ṽ
denotes the probability limit of its corresponding estimator, R2 denotes the squared multiple correlation
in (3) and R̃2 = VR2/Ṽ denotes the probability limit of R̂2 in (5).
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Miscellanea 359

Theorem 1 is quite similar to classical power calculations (e.g., Lachin 1981), with two important
differences. First, power for completely randomized experiments relies on the standard normal quan-
tile z1−α and survival function ((·), whereas Theorem 1 relies on the nonnormal quantile ν1−α(R̃2)

and survival function VR2(·). Second, Theorem 1 involves the ratio Ṽ/V , which depends on the treat-
ment effect heterogeneity S2

τ . Such a term does not appear in previous power results (Lachin, 1981;
Cohen, 1992; Lerman, 1996; Wittes, 2002), which typically assume a superpopulation framework that
does not involve S2

τ . However, under a finite-population framework, S2
τ appears in the true variance

of τ̂ and thereby affects power calculations. Thus, Theorem 1 allows for less conservative variance
estimators, such as V̂DFM, and demonstrates how treatment effect heterogeneity affects testing power.

We can show that, for fixed S2
1, S2

0, τ , and R̃2, power in Theorem 1 is increasing in S2
τ as long as

τ " ν1−α(R̃2)Ṽ 1/2N−1/2; otherwise, it is decreasing in S2
τ . Thus, treatment effect heterogeneity has a

beneficial effect on power for large effect sizes, but an adverse effect for small effect sizes. As a result,
standard power calculations that assume that S2

τ = 0 may underestimate or overestimate power,
depending on the effect size. We discuss this dynamic further in the Supplementary Material.

3.2. Sample size calculations
Theorem 1 establishes the testing power of a rerandomized experiment. The following theorem

establishes the relationship between the sample size N and a prespecified degree of power γ when we
use test (6) to conduct inference for a rerandomized experiment.

THEOREM 2. Let γ " α denote a prespecified probability that we correctly reject H0 : τ = 0 using
test (6) under rerandomization. Then, the relationship between the sample size N and power γ is

N =
{

ν1−α(R̃2)Ṽ 1/2 − ν1−γ (R2)V 1/2

τ

}2

, (7)

where V denotes the variance in (1), Ṽ denotes the probability limit of its corresponding estimator, R2

denotes the squared multiple correlation in (3) and R̃2 denotes the probability limit of R̂2 in (5).

The sample size in Theorem 2 is (a) increasing in γ , (b) decreasing in τ , (c) increasing in S2
1 and

S2
0 if γ " 0.5 and (d) decreasing in S2

τ if γ " 0.5. These results also hold under complete random-
ization, which is a special case when a = ∞ or R2 = 0. The first three observations are well known,
but, to our knowledge, the fourth has remained largely unacknowledged. However, it is intuitive: if
S2

τ is larger then the variance of the mean-difference estimator is smaller. This additional precision
is propagated into the sample size necessary to achieve power γ . This demonstrates that assuming
that S2

τ = 0 is conservative, not only for confidence intervals, but also for sample size calculations.
However, there is usually no knowledge about S2

τ before the experiment; furthermore, if increased
heterogeneity also increases outcome variation, this could adversely affect sample size. Nonetheless,
after the experiment, one could test whether S2

τ > 0 (Ding et al., 2019). We discuss this further in the
Supplementary Material, where we study via simulation how sample size is affected by S2

1, S2
0 and S2

τ .
We also show how to compute the sample size in (7) with our R package rerandPower (R

Development Core Team, 2024). One must specify the parameters γ , τ , α; the proportions p1, p0; the
association R2; and S2

1, S2
0 and S2

τ , which define V , Ṽ and R̃2 = VR2/Ṽ . Our package approximates
the quantiles ν1−α(R̃2) and ν1−γ (R2) via Monte Carlo simulation using representation (4).

Remark 1. Technically, the sample size N is also on the right-hand side of (7), because N is
involved in the definitions of S2

1, S2
0 and S2

τ . This is a by-product of adopting a finite-population
framework. Nonetheless, we write N in terms of S2

1, S2
0 and S2

τ , because it is common to specify these
quantities when making sample size calculations (e.g., Lachin 1981; Wittes 2002). With a slight abuse
of notation, we can view S2

1, S2
0 and S2

τ in Theorem 2 as limits of potential outcome variances and
treatment effect heterogeneity, thereby allowing for sample size calculators under a finite-population
framework.
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4. Comparing rerandomization to complete randomization

4.1. Dispersive ordering of normal and nonnormal distributions
A natural question to ask is how power and sample size compare for rerandomization and

complete randomization. Li et al. (2018) established that two-sided confidence intervals under reran-
domization are narrower than those under complete randomization. To do this, they compared the
lengths of symmetric quantile ranges [να(R2), ν1−α(R2)] and [zα, z1−α] for α ∈ (0, 0.5]. However, such
a comparison is not sufficient for comparing power between rerandomization and complete random-
ization, which involves lengths of asymmetric quantiles ranges, and in particular, gaps between two
quantiles on the same side of the origin.

To make this comparison, we establish a dispersive ordering of normal and nonnormal distribu-
tions involved in complete randomization and rerandomization. For two random variables X and Y
with quantile functions F−1 and G−1, X is said to be less dispersed than Y if F−1(β) − F−1(α) !
G−1(β) − G−1(α) for any 0 < α < β < 1 (Shaked, 1982). The following theorem establishes that the
rerandomization distribution (2) is less dispersed than a standard normal distribution.

THEOREM 3. Let ε0 ∼ N (0, 1) and LK,a be defined in (4), such that ε0 and LK,a are independent.
Then, for any a ∈ [0, ∞], integer K " 1 and ρ ∈ [0, 1], (1 − ρ2)1/2ε0 + ρLK,a is less dispersed than ε0.

Theorem 3 generalizes Li et al. (2018, Theorem 2), which showed that the symmetric quantile
range of (1 − ρ2)1/2ε0 + ρLK,a is less than or equal to that of the standard normal distribution.
Theorem 3 further shows that the gap between the α and β quantiles of (1−ρ2)1/2ε0 +ρLK,a, such as
any nonsymmetric quantile range, is less than or equal to that of the standard normal distribution.
Theorem 3 is crucial for establishing the later theorems on power and sample size comparisons.

4.2. Power and sample size comparisons
The following theorem quantifies when power is greater under rerandomization.

THEOREM 4. If Ṽ = V then, for any τ " 0,

VR2

(
ν1−α(R̃2)Ṽ 1/2 − τN1/2

V 1/2

)
" (

(
z1−αṼ 1/2 − τN1/2

V 1/2

)
. (8)

Meanwhile, if Ṽ > V, (8) still holds when τ " ν1−α(R̃2)Ṽ 1/2N−1/2; otherwise, (8) may be violated.

From Theorem 4, if inference is not conservative, such that Ṽ = V , power is greater under reran-
domization than under complete randomization. However, when inference is conservative, such that
Ṽ > V , rerandomization may exhibit less power than complete randomization. This result is surpris-
ing: confidence intervals are always narrower under rerandomization, so we would suspect power to
always be greater. However, for power, we must consider not only confidence intervals’ precision, but
also their conservativeness. Equation (2) shows that the true asymptotic distribution of N1/2(τ̂ − τ )

under rerandomization is V 1/2{(1 − R2)1/2ϵ0 + RLk,a}; when conducting inference, this is asymptoti-
cally estimated as Ṽ 1/2{(1 − R̃2)1/2ϵ0 + R̃Lk,a}. By recognizing that ṼR̃2 = VR2, one can show that
this estimated distribution is equivalent to the convolution of the true distribution of N1/2(τ̂ − τ )

and an independent normal distribution N (0, Ṽ − V). Because the true distribution of N1/2(τ̂ − τ )

is more concentrated around zero under rerandomization than complete randomization, but dis-
tribution N (0, Ṽ − V) is the same for both designs, inference under rerandomization can be more
conservative. As a result, the test under rerandomization can have a smaller Type-I error; see the
Supplementary Material. This additional conservativeness has an adverse effect on power, but the
additional precision from rerandomization has a beneficial effect. Theorem 4 establishes that the
beneficial effect outweighs the adverse effect as long as τ is not too small. We illustrate this in the
Supplementary Material.
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Intuitively, when rerandomization increases power, it requires a smaller sample size to achieve a
certain degree of power. Let Nrr denote the sample size necessary to achieve power γ under reran-
domization, as provided by Theorem 2. Let Ncr denote the sample size necessary under complete
randomization, which is the same as Theorem 2, but with the nonnormal quantiles replaced with
normal quantiles. The following theorem establishes sufficient conditions for Nrr ! Ncr.

THEOREM 5. Let γ " α denote a desired level of power, and let Nrr and Ncr denote the sample sizes
required to achieve power γ under rerandomization and complete randomization, respectively. We have
two separate results. First, if Ṽ = V then Nrr/Ncr ! 1. Second, if γ " 0.5 then Nrr/Ncr is

(a) less than or equal to 1,
(b) increasing in the number of covariates K and the rerandomization threshold a, and
(c) decreasing in R2.

Otherwise, if Ṽ > V and γ < 0.5 then Nrr/Ncr may be greater than 1.

Theorem 5 establishes that rerandomization requires a smaller sample size to achieve the same
amount of power when either inference is not conservative or the desired power is greater than or
equal to 0.5. The condition τ " ν1−α(R̃2)Ṽ 1/2N−1/2 in Theorem 4 implies the condition γ " 0.5 in
Theorem 5, and thus these conditions are analogous. In most standard power calculations, the desired
power is greater than 0.5.

The smaller the ratio Nrr/Ncr, the larger the sample size benefits of rerandomization over com-
plete randomization. The sample size reduction depends on R2, K , a and S2

τ . In the Supplementary
Material, we conduct a simulation study to assess how Nrr/Ncr changes for different K , R2, a and S2

τ ,
thereby allowing practitioners to understand the sample size benefits of rerandomization. When there
is no treatment effect heterogeneity, the median of Nrr/Ncr is 0.75 for K ∈ [1, 100] and R2 ∈ [0, 0.9]
using a rerandomization threshold a such that pr(M ! a) = 0.001, as recommended by Li et al.
(2018). If, furthermore, R2 " 0.3 and K ! 50, the median is 0.58. Meanwhile, when there is treat-
ment effect heterogeneity, these sample size benefits are dampened, because inference is conservative.
When Sτ is half the size of S1 and S0, Nrr/Ncr is on average 2.4% greater than when there is no
heterogeneity; when Sτ is 50% greater than S1 and S0, Nrr/Ncr is on average 23.7% greater. More
details, such as how to implement power and sample size calculations with our R package rerand-
Power are discussed in the Supplementary Material.

5. Discussion and conclusion

Our results focus on rerandomized experiments with two groups. Rerandomization theory has
been extended to more than two groups (Branson et al., 2016; Li et al., 2020), and thus we posit
that similar results hold for multiarm experiments. However, multiple causal estimands arise in this
setting, making power analyses more complex. Power depends on the potential outcome variance
in each group, as well as the effect heterogeneity and rerandomization criterion for each estimand.
Thus, power analyses will be notationally complex, but can rely on the same conceptual framework
as here.

One could compare rerandomization to designs beyond complete randomization, such as block
randomization, where blocks are constructed using, e.g., matching (Greevy et al., 2004; Bai, 2022).
Power would then depend on the association between blocking variables and outcomes; however,
blocking can be less efficient than complete randomization if the blocks are poorly chosen (Pashley
& Miratrix, 2022). Rerandomization is always at least as efficient as complete randomization and can
be combined with blocking to improve block randomization (Wang et al., 2021). Comparing block
randomization and block rerandomization is analogous to our comparison.

Our results also focus on the Mahalanobis distance on covariate means, but other rerandomiza-
tion criteria could be used. For example, Morgan & Rubin (2015) proposed different Mahalanobis
distance criteria for tiers of covariates that vary in importance. Again, power analyses will be nota-
tionally complex in order to incorporate the criterion for each tier. Other examples include criteria
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modified by ridge penalties (Branson & Shao, 2021) or principal component analysis (Zhang et al.,
2023), which have been shown to increase precision in high-dimensional settings. We suspect that
testing power may increase as well.
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Appendix A provides the proof of Theorem 1, which characterizes the asymptotic power under reran-
domization.

Appendix B provides the proof of Theorem 2, which characterizes the sample size necessary to achieve
a given power under rerandomization. 15

Appendix C provides the proof of Theorem 3, which establishes the dispersive ordering of the Normal
and non-Normal distributions involved in the asymptotic approximations for complete randomization and
rerandomization.

Appendix D provides the proof of Theorem 4, which determines when asymptotic power is greater
under rerandomization than under complete randomization. 20

Appendix E provides the proof of Theorem 5, which characterizes the ratio of the rerandomization
sample size and complete randomization sample size necessary to achieve a given power.

Appendix F compares the type-I error rates of rerandomization and complete randomization under the
null hypothesis of ⌧ = 0.

Appendix G uses numerical examples to illustrate that rerandomization can be less powerful than com- 25

plete randomization.
Appendix H presents a simulation study exploring how Nrr/Ncr changes for various experimental set-

tings, thereby allowing practitioners to understand the sample size gains of rerandomization compared to
complete randomization.

Appendix I provides additional numerical examples that illustrate how treatment effect heterogeneity 30

affects power and sample size under complete randomization and rerandomization.
Appendix J provides example code to implement power and sample size calculations for completely

randomized and rerandomized experiments with our R package rerandPower.

A. PROOF OF THEOREM 1
Below we first give a rigorous statement of Theorem 1 in the main paper. We will conduct finite popu- 35

lation asymptotic analyses; see, e.g., Li & Ding (2017) for a review. Specifically, we embed the N units
into a sequence of finite populations and impose the following regularity conditions analogous to Li et al.
(2018, Condition 1) along this sequence of finite populations.

Condition S1. As N ! 1,

C� 2020 Biometrika Trust
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(i) the proportions of treated and control units, p1 and p0, have positive limits;40

(ii) the finite population variances and covariances, S2
1 , S

2
0 , S

2
⌧ , S1,X , S0,X and S2

X have finite limiting
values, the limit of S2

X is nonsingular, and the limit of V = p�1
1 S2

1 + p�1
0 S2

0 � S2
⌧ is positive.

(iii) max1iN{Yi(z)� Ȳ (z)}2/N ! 0 for z = 0, 1, and max1iN kXi � X̄k2/N ! 0.

In Condition S1, (i) is a natural requirement, and (ii) assumes stable finite population variances and
covariances along the sequence of finite populations. In addition, (ii) intuitively assumes that the covari-45

ates are not colinear, and that the variance of ⌧̂ under complete randomization is not zero. Meanwhile,
(iii) assumes that the potential outcomes and covariates are not too heavy-tailed, and it will hold with
probability 1 if the units are i.i.d. samples from some superpopulation with 2 + ⌘ moments, for any ⌘ > 0
(Li & Ding, 2017).

The theorem below is a rigorous version of Theorem 1 in the main paper. In this asymptotic power50

analysis, we consider the finite population asymptotics with Condition S1 and the local alternative where
the true average treatment effect is on the scale of N�1/2, analogous to usual power analysis.

THEOREM S1. Consider a sequence of finite populations with increasing sizes. Assume that Condition

S1 holds and the true average treatment effects satisfy ⌧ = cN�1/2
for all N and some finite constant c.

Under rerandomization, the power of the test (8) satisfies55

pr
⇣
⌧̂ > ⌫1�↵(R̂

2)V̂ 1/2N�1/2
⌘
= VR2

 
⌫1�↵(R̃2)Ṽ 1/2 � ⌧N1/2

V 1/2

!
+ o(1),

where VR2(·) denotes the survival function of (1�R2)1/2✏0 +RLK,a, V denotes the variance in (2), Ṽ
denotes the probability limit of its corresponding estimator, R2

denotes the squared multiple correlation

in (4), and R̃2 = V R2/Ṽ denotes the probability limit of R̂2
in (7).

Now we prove Theorem 1. Under the test (8), we reject the null hypothesis if ⌧̂ >60

⌫1�↵(R̂2)V̂ 1/2N�1/2. Thus, the power of the test is

pr
⇣
⌧̂ > ⌫1�↵(R̂

2)V̂ 1/2N�1/2
⌘
= pr

⇣
N1/2(⌧̂ � ⌧)� ⌫1�↵(R̂

2)V̂ 1/2 > �N1/2⌧
⌘

= pr
⇣
N1/2(⌧̂ � ⌧)� ⌫1�↵(R̂

2)V̂ 1/2 > �c
⌘
,

where the last equality holds due to the fact that ⌧ = N�1/2c. From Li et al. (2018), under rerandom-
ization,

p
N(⌧̂ � ⌧) ⇠̇ V 1/2{(1�R2)1/2"0 +RLK,a}, where ⇠̇ denotes that the two sequences of dis-65

tributions or random variables converging weakly to the same distribution. Besides, Ṽ � V = opr(1) and
R2 � R̃2 = opr(1). By Slutsky’s theorem, we have

N1/2(⌧̂ � ⌧)� ⌫1�↵(R̂
2)V̂ 1/2 ⇠̇ V 1/2{(1�R2)1/2"0 +RLK,a}� ⌫1�↵(R̃

2)Ṽ 1/2.

Consequently, we have, as N ! 1,

pr
⇣
⌧̂ > ⌫1�↵(R̂

2)V̂ 1/2N�1/2
⌘
= pr

⇣
V 1/2{(1�R2)1/2"0 +RLK,a}� ⌫1�↵(R̃

2)Ṽ 1/2 > �c
⌘
+ o(1)70

= VR2

 
⌫1�↵(R̃2)Ṽ 1/2 � c

V 1/2

!
+ o(1)

= VR2

 
⌫1�↵(R̃2)Ṽ 1/2 � ⌧N1/2

V 1/2

!
+ o(1).

Therefore, Theorem 1 holds.
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B. PROOF OF THEOREM 2
Let � denote a prespecified degree of power desired for a rerandomized experiment, where � is the 75

probability we reject the null hypothesis using the test (8). Then, by Theorem 1, we have:

� = VR2

 
⌫1�↵(R̃2)Ṽ 1/2 � ⌧N1/2

V 1/2

!
= 1� VR2

 
⌫1�↵(R̃2)Ṽ 1/2 � ⌧N1/2

V 1/2

!
,

where VR2(·) denotes the distribution function of the distribution (1�R2)1/2✏0 +RLK,a defined in (3).
Then, solving for N , we have:

⌫1�↵(R̃2)Ṽ 1/2 � ⌧N1/2

V 1/2
= ⌫1��(R

2) 80

=) ⌫1�↵(R̃
2)Ṽ 1/2 � ⌧N1/2 = ⌫1��(R

2)V 1/2

=) N =

 
⌫1�↵(R̃2)Ṽ 1/2 � ⌫1��(R2)V 1/2

⌧

!2

.

C. PROOF OF THEOREM 3
To prove Theorem 3, we need the following five lemmas.

LEMMA S1. For any integer K � 1 and threshold a 2 (0,1), the probability density function of LK,a 85

is

gK,a(x) = �(x)
FK�1(a� x2)

FK(a)
,

where �(·) is the probability density of N (0, 1) and FK(·) is the distribution function of �2
K , with F0(x) =

(x � 0) being the distribution function of a point mass at 0.

Proof of Lemma S1. Lemma S1 follows from Li et al. (2018, Proof of Proposition 2). For complete- 90

ness, we give a proof below. Let D = (D1, . . . , DK)T ⇠ N (0, IK). For any x 2 R, we have

pr(LK,a  x) = pr(D1  x | DTD  a)

=
pr(D1  x,DTD  a)

pr(DTD  a)

=
1

FK(a)

Z 1

�1
pr

0

@t  x, t2 +
KX

j=2

D2
j  a

1

A�(t)dt

=
1

FK(a)

Z x

�1
FK�1(a� t2)�(t)dt 95

⌘
Z x

�1
gK,a(t)dt,

where gK,a(t) ⌘ FK�1(a� t2)�(t)/FK(a). Therefore, gK,a(·) must be the probability density function
of LK,a, i.e., Lemma S1 holds. ⇤

LEMMA S2. For any a 2 (0,1), K � 1 and c 2 R, define

hK,a,c(x) = log gK,a(x)� log �(x+ c), (�
p
a < x <

p
a). 100

Then d2hK,a,c(x)/dx2  0 for x 2 (�
p
a,
p
a).
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Proof of Lemma S2. From Lemma S1,

hK,a,c(x) = log gK,a(x)� log �(x+ c) = log �(x) + logFK�1(a� x2)� logFK(a)� log �(x+ c)

= logFK�1(a� x2) + cx+ c2/2� logFK(a).

When K = 1, h1,a,c(x) reduces to cx+ c2/2� logF1(a), which is a linear function of x. Consequently,105

d2h1,a,c(x)/dx2 = 0 for all x 2 (�
p
a,
p
a), i.e., Lemma S2 holds for K = 1. Below we consider only

the case with K > 1.
Let fK(x) be the density of �2

K , and ḟK(x) = dfK(x)/dx be its derivative over x. We have

ḟK(x) = fK(x) ·
✓
K/2� 1

x
� 1

2

◆
= fK(x) · K � 2� x

2x
. (S.1)

Consequently, for K > 1, the second derivative of hK,a,c reduces to110

d2

dx2
hK,a,c(x) =

d2

dx2
logFK�1(a� x2)

=
d

dx

⇢
fK�1(a� x2) · (�2x)

FK�1(a� x2)

�

=
ḟK�1(a� x2) · (�2x)2 · FK�1(a� x2)� {fK�1(a� x2) · (�2x)}2

{FK�1(a� x2)}2

=
4x2 · fK�1(a� x2)

{FK�1(a� x2)}2

⇢
K � 1� 2� (a� x2)

2(a� x2)
· FK�1(a� x2)� fK�1(a� x2)

�

⌘ 4x2 · fK�1(a� x2)

{FK�1(a� x2)}2 ·�K�1(a� x2),115

where

�K(x) =
K � 2� x

2x
· FK(x)� fK(x).

Thus, to prove Lemma S2, it suffices to prove �K(x)  0 for all K > 0 and x 2 (0,1). Note that
�K(x)  �fK(x)  0 when x � K � 2. It suffices to show �K(x)  0 for all K > 2 and x 2 (0,K �
2).120

For K > 2 and x 2 (0,K � 2), define

�̃K(x) =
2x

K � 2� x
�K(x) = FK(x)� 2x

K � 2� x
fK(x).

It then suffices to show �̃K(x)  0 for all K > 2 and x 2 (0,K � 2). By some algebra and (S.1), for
K > 2 and x 2 (0,K � 2),

d
dx

�̃K(x) = fK(x)� 2(K � 2)

(K � 2� x)2
fK(x)� 2x

K � 2� x
ḟK(x) = � 2(K � 2)

(K � 2� x)2
fK(x)  0.125

We can verify that limx!0+ �̃K(x) = 0 for any K > 2. Thus, we must have �̃K(x)  0 for all K > 2
and x 2 (0,K � 2).

From the above, Lemma S2 holds. ⇤

For a real function  defined on I ⇢ R, define the number of sign changes of  in I as

S�
I ( ) = S�

I ( (x)) = supS�
I [ (x1), (x2), . . . , (xm)] (S.2)130

where S�
I (y1, y2, . . . , ym) is the number of sign changes of the sequence (y1, y2, . . . , ym) with the zero

terms being discarded, and the supremum in (S.2) is over all sets x1 < x2 < · · · < xm with xi 2 I and
m < 1. For any c 2 R and function  , define  c(x) =  (x� c).
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LEMMA S3. Let F and G be two absolutely continuous distributions having intervals as their support,

in the sense that each of F and G has a probability density function that takes positive values on an 135

interval and zero values otherwise, and let f and g be the corresponding densities. If S�
R (fc � g)  2 for

all c 2 R, with the sign sequence being �,+,� in case of equality, then F is less dispersed than G.

Proof of Lemma S3. Lemma S3 follows from Shaked (1982, Theorem 2.5). ⇤

LEMMA S4. For any a 2 [0,1] and integer K � 1, LK,a is less dispersed than "0.

Proof of Lemma S4. Lemma S4 holds obviously when a equals zero or infinity. Below we consider 140

only the case with a 2 (0,1).
Let gK,a and � be the densities of LK,a and "0. We have derived the form of gK,a in Lemma S1.

Furthermore, we define g1,a(x) to be zero when x2 = a; obviously, g1,a(x) is still the density of LK,a. Let
I = (�

p
a,
p
a) be the support of LK,a. For any c 2 R, define gK,a,c(x) = gK,a(x� c), Ic = (�

p
a+

c,
p
a+ c), and hK,a,c the same as in Lemma S2. We then have, for any x 2 Ic, 145

sign {gK,a,c(x)� �(x)} = sign {gK,a(x� c)� �(x� c+ c)} = sign {hK,a,c(x� c)} .

Therefore, S�
Ic
(gK,a,c � �) = S�

I (hK,a,c). By Lemma S2, hK,a,c is a concave function on I. This then
implies that

S�
Ic
(gK,a,c � �) = S�

I (hK,a,c) =

8
><

>:

0, with sign being + or �,

1, with sign sequence being (�,+) or (+,�),

2, with sign sequence being (�,+,�).

Note that gK,a,c(x) = 0 < �(x) for x /2 Ic. We can then verify that S�
R (gK,a,c � �) must have the fol- 150

lowing forms:

S�
R (gK,a,c � �) =

(
0, with sign being �,

2, with sign sequence being (�,+,�).

By Lemma S3, LK,a is less dispersed than "0. Therefore, Lemma S4 holds. ⇤

LEMMA S5. Assume X is less dispersed than Y . Let W be a random variable independent of X and

Y . Let f(w) be the density of W . If f(w) > 0 and d2 log f(w)/dw2  0 for all w, then X +W is less 155

dispersed than Y +W .

Proof of Lemma S5. Lemma S5 follows from Lewis & Thompson (1981, Theorem 7). ⇤

Equipped with the above lemmas, we now prove Theorem 3.

Proof of Theorem 3. Let "1 ⇠ N (0, 1) be independent of ("0, LK,a). From Lemma S4, LK,a is less
dispersed than "1, which immediately implies that ⇢LK,a is less dispersed than ⇢"1. Thus, Theorem 3 160

holds when ⇢ = 1. Below we consider only the case where 0  ⇢ < 1.
By some algebra, the second derivative of the log-density of

p
1� ⇢2"0 ⇠ N (0, 1� ⇢2) is a constant

�(1� ⇢2)�1 < 0. Thus, by Lemma S5,
p

1� ⇢2"0 + ⇢LK,a is less dispersed than
p
1� ⇢2"0 + ⇢"1 ⇠

N (0, 1) ⇠ "0.
From the above, Theorem 3 holds. ⇤ 165

D. PROOF OF THEOREM 4
Let �rr and �cr denote the left and right hand sides of (10), respectively. We first consider the case with

Ṽ = V , which implies R̃2 = R2. We can then verify that

⌫1�↵(R
2)� ⌫1��rr(R

2) = V �1/2N1/2⌧ = z1�↵ � z1��cr .
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Assuming ⌧ � 0, we have 1� ↵ � 1� �rr. From Theorem 3, ⌫1�↵(R2)� ⌫1��rr(R
2)  z1�↵ � z1��rr .170

This then implies that z1�↵ � z1��cr  z1�↵ � z1��rr . Consequently, we must have �rr � �cr, i.e., the
inequality in (10) holds.

We then consider the case where ⌧ � ⌫1�↵(R̃2)Ṽ 1/2N�1/2. We can verify that

⌫1�↵(R̃
2)Ṽ 1/2 � ⌫1��rr(R

2)V 1/2 = N1/2⌧ = z1�↵Ṽ
1/2 � z1��crV

1/2.

Assuming ⌧ � ⌫1�↵(R̃2)Ṽ 1/2N�1/2, we have �rr � 1/2. Note that the distribution (1�R2)1/2✏0 +175

RLK,a is symmetric around zero. From Li et al. (2018, Theorem 2), we can verify that �⌫1��rr(R
2) =

⌫�rr(R
2)  z�rr = �z1��rr and ⌫1�↵(R̃2)  z1�↵. These imply that

z1�↵Ṽ
1/2 � z1��crV

1/2 = ⌫1�↵(R̃
2)Ṽ 1/2 � ⌫1��rr(R

2)V 1/2  z1�↵Ṽ
1/2 � z1��rrV

1/2.

Consequently, we must have �rr � �cr, i.e., the inequality in (10) holds.
From the above, Theorem 4 holds.180

E. PROOF OF THEOREM 5
Let Ncr and Nrr denote the sample sizes necessary to achieve power � under complete randomization

and rerandomization, respectively, as provided by Theorem 2. We have:

Nrr

Ncr
=

 
⌫1�↵(R̃2)Ṽ 1/2 � ⌫1��(R2)V 1/2

z1�↵Ṽ 1/2 � z1��V 1/2

!2

. (S.1)

We first consider the case with Ṽ = V . In this case, the ratio simplifies to185

Nrr

Ncr
=

✓
⌫1�↵(R2)V 1/2 � ⌫1��(R2)V 1/2

z1�↵V 1/2 � z1��V 1/2

◆2

=

✓
⌫1�↵(R2)� ⌫1��(R2)

z1�↵ � z1��

◆2

. (S.2)

From Theorem 3, when � � ↵, we have ⌫1�↵(R2)� ⌫1��(R2)  z1�↵ � z1�� . This implies that
Nrr/Ncr  1 by (S.2).

We then consider the case with � � 0.5. From Li et al. (2018, Theorem 2), both ⌫1�↵(R2) and ⌫�(R2)
are decreasing in R2 and increasing in K and a, and they are less than or equal to z1�↵ and z� , respec-190

tively. Consequently,

⌫1�↵(R̃
2)Ṽ 1/2 � ⌫1��(R

2)V 1/2 = ⌫1�↵(R̃
2)Ṽ 1/2 + ⌫�(R

2)V 1/2

 z1�↵Ṽ
1/2 + z�V

1/2

= z1�↵Ṽ
1/2 � z1��V

1/2,

which implies that Nrr/Ncr  1 by (S.1). Moreover, ⌫1�↵(R̃2)Ṽ 1/2 � ⌫1��(R2)V 1/2 =195

⌫1�↵(R̃2)Ṽ 1/2 + ⌫�(R2)V 1/2 is decreasing in R2 and increasing in K and a. This then implies
that Nrr/Ncr is decreasing in R2 and increasing in K and a.

From the above, Theorem 5 holds.

F. TYPE-I ERROR RATES UNDER RERANDOMIZATION AND COMPLETE RANDOMIZATION

From Theorem 1, the type-I error rates of the ↵-level tests under rerandomization and complete ran-200

domization are, respectively,

↵rr = VR2

 
⌫1�↵(R̃2)Ṽ 1/2

V 1/2

!
and ↵cr = �

(
z1�↵Ṽ 1/2

V 1/2

)
.

It is challenging to compare ↵rr and ↵cr theoretically, due to the possible difference between R2 and R̃2.
Nevertheless, we conjecture that ↵rr  ↵cr, due to the same reason discussed in §4.2 of the main paper:
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We conservatively estimate the true distribution of N1/2(⌧̂ � ⌧) by the same amount under both designs, 205

and the true distribution under rerandomization is more concentrated around zero. See Appendix G for a
numerical study.

Below we consider the limiting case with a = 0, which can be a good approximation for rerandom-
ization with a small threshold as suggested in Morgan & Rubin (2012). When a = 0, VR2 simplifies to
the survival function of N (0, 1�R2), and ⌫1�↵(R̃2) simplifies to the (1� ↵)-quantile of N (0, 1� R̃2). 210

Consequently, the type-I error rate under rerandomization simplifies to

↵rr = �

(
z1�↵Ṽ 1/2(1� R̃2)1/2

V 1/2(1�R2)1/2

)
= �

(
z1�↵(Ṽ � V R2)1/2

(V � V R2)1/2

)
, (S.1)

where the last equality holds because V R2 = Ṽ R̃2. Because

Ṽ � V R2

V � V R2
� Ṽ

V
=

V R2(Ṽ � V )

V (V � V R2)
� 0,

we have ↵rr  ↵cr. Moreover, if R2 > 0 and Ṽ > V , ↵rr is strictly less than ↵cr. 215

When rerandomization has a small threshold and the treatment effect has a small size, the power of
rerandomization can be close to that in (S.1). This implies that the power under rerandomization can be
smaller than that under complete randomization.

G. TESTING POWER UNDER RERANDOMIZATION CAN BE LESS THAN UNDER COMPLETE
RANDOMIZATION 220

Theorem 4 establishes that testing power is greater under rerandomization than complete randomization
when Ṽ = V or when the treatment effect ⌧ � ⌫1�↵(R̃2)Ṽ 1/2N�1/2. Otherwise, rerandomization may
exhibit less testing power than complete randomization, because inference under rerandomization can be
more conservative than that under complete randomization, as discussed in Appendix F. This additional
conservativeness decreases power, but the additional precision from rerandomization increases power. To 225

illustrate this trade-off, we consider a simple numerical example below.
Suppose that V = 1 and R2 = 0.5. We consider two cases, which correspond to Ṽ = V and Ṽ > V ,

as in Theorem 4. In Case (i), the probability limits of our estimators are the same as the corresponding
truth, i.e., Ṽ = V and R̃2 = R2. Meanwhile, in Case (ii), inference is asymptotically conservative, in the
sense that Ṽ /V = 1.1 > 1 and R̃2 = V R2/Ṽ ⇡ 0.455. Figure S1 shows the power (as in Theorem 1) 230

of the 0.05-level one-sided test based on the mean-difference estimator under complete randomization
and rerandomization, with the scaled average treatment effect ⌧N1/2/V 1/2 ranging from 0 to 0.5. From
Fig. S1(a), when inference is not conservative, the power at ⌧ = 0 equals the nominal level 0.05 under
both designs, and rerandomization provides better power than complete randomization. From Fig. S1(b),
when we can only conduct conservative inference, the power at ⌧ = 0 is less than the nominal 0.05 under 235

both designs, and moreover, the test is more conservative under rerandomization. However, the power of
rerandomization quickly passes that of complete randomization when N1/2⌧/V 1/2 is not too small, and
the cutoff for N1/2⌧/V 1/2 is much smaller than the theoretical cutoff ⌫1�↵(R̃2)Ṽ 1/2/V 1/2 ⇡ 1.27 in
Theorem 4. In addition, in Fig. S1(c) we also consider Case (iii), which is the same as Case (ii), except
that our inference is much more conservative with Ṽ /V = 10. In this case, the power of rerandomization 240

also passes that of complete randomization when N1/2⌧/V 1/2 is not too small, and the cutoff becomes
closer to the theoretical cutoff ⌫1�↵(R̃2)Ṽ 1/2/V 1/2 ⇡ 5.07.

H. COMPARING SAMPLE SIZE FOR RERANDOMIZATION AND COMPLETE RANDOMIZATION

H.1. Setup and Parameters

Theorem 5 establishes, for any significance level ↵ and power �, the ratio between the sample size 245

needed under rerandomization to achieve power � and the sample size needed under complete random-
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Fig. S1: The power for the 0.05-level one-sided test using the mean-difference estimator under
complete randomization (solid line) and rerandomization (dashed line). The dotted horizontal
line denotes 0.05. The dotdash vertical line in (c) refers to the threshold ⌫1�↵(R̃2)Ṽ 1/2 as in
Theorem 4.

ization:

Nrr

Ncr
=

(
⌫1�↵(R̃2)Ṽ 1/2 � ⌫1��(R2)V 1/2

z1�↵Ṽ 1/2 � z1��V 1/2

)2

(S.1)

where V denotes the variance defined in (2), Ṽ denotes the probability limit of its corresponding estimator
defined in (6), ⌫↵(⇢2) denotes the ↵-quantile of the distribution (1� ⇢2)1/2✏0 + ⇢LK,a in (3), and z↵250

denotes the ↵-quantile of the standard Normal distribution. This ratio depends on the number of covariates
K, the correlation R2, and the rerandomization threshold a. In this section, we present a simulation
study to better understand how Nrr/Ncr behaves for different K, R2, and a, as well as varying levels
of treatment effect heterogeneity. The smaller the ratio, the larger the benefits of rerandomization over
complete randomization in terms of sample size.255

We consider the dimension of covariates K 2 {1, 10, 20, . . . , 100}, correlation R2 2 {0, 0.1, . . . , 0.9},
and acceptance probabilities pa 2 {0.001, 0.01, 0.1}, where pa = pr(M  a), i.e., the probability that a
given randomization fulfills the rerandomization criterion. For simplicity, we focus on significance level
↵ = 0.05 and power � = 0.8, both of which are common values in the power analysis literature. We found
that results were consistent across other values of ↵ and �. The sample size ratio Nrr/Ncr in Theorem 5260

also depends on the non-Normal quantiles ⌫1�↵(R̃2) and ⌫1��(R2), which in turn depend on K, R2, and
pa. For each K, R2, and pa, we simulate 106 draws from the non-Normal distributions (1� R̃2)1/2✏0 +
R̃LK,a and (1�R2)1/2✏0 +RLK,a, in order to approximate the quantiles ⌫1�↵(R̃2) and ⌫1��(R2),
respectively. Note that, when there is no treatment effect heterogeneity, R̃2 = R2; and when there is
treatment effect heterogeneity, R̃2 = V R2/Ṽ .265

We will first consider the case where there is no treatment effect heterogeneity, such that S2
⌧ = 0 and

thus Ṽ = V . As a result, the sample size ratio does not depend on the potential outcome variances S2
1 and

S2
0 . Then we will consider the case where there is treatment effect heterogeneity, and thus S2

1 , S2
0 , and S2

⌧

will affect the sample size ratio.

H.2. Without Treatment Effect Heterogeneity270

Figure S2 displays Nrr/Ncr for different combinations of K, R2, and pa. There are several observations
from Fig. S2, all of which validate the statements made in Theorem 5. First, the ratio is always below 1.
This confirms that there are always sample size benefits when running a rerandomized experiment, com-
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Fig. S2: The ratio Nrr/Ncr for different K, R2, and pa, when there is no treatment effect hetero-
geneity.

Table S1: ANOVA Table Based on Results in Figure S2

Factor Degrees of Freedom Sum of Squares Mean Sum of Squares F value
pa 2 0.450 0.225 1775.695
K 10 2.658 0.266 2096.851
R2 9 7.059 0.784 6188.679

pa : K 20 0.053 0.003 20.786
pa : R2 18 0.184 0.010 80.501
K : R2 90 1.084 0.012 94.987

Residuals 180 0.023 0.000

pared to a completely randomized experiment, at least when � � 0.5. Furthermore, the ratio is decreasing
in R2 and increasing in K and pa. This demonstrates that the sample size benefits of rerandomization are 275

large when a stringent criterion is used to balance a few covariates that are strongly related with experi-
mental outcomes. More generally, Fig. S2 shows that rerandomization can lead to substantial sample size
gains: For example, if pa = 0.001, the median of the ratios in Fig. S2 is 0.75, and if further R2 � 0.3 and
K  50, the median of the ratios is 0.58. This suggests that rerandomization can reduce sample size by
25% to 40%, compared to complete randomization. 280

To better understand how K, R2, and pa impact the sample size ratio Nrr/Ncr, we used the results in
Figure S2 to run an analysis of variance (ANOVA), where Nrr/Ncr was used as the outcome and K, R2, pa,
and their two-way interactions were included as factors. The resulting ANOVA table is in Table S1; all of
the p-values for these factors were less than 2 · 10�16. From the mean sum of squares and corresponding
F values, it’s clear that R2 has the largest impact on the sample size ratio, followed by K, followed by 285

pa. This echoes simulation results in Li et al. (2018), who found that once the acceptance probability pa
is made adequately small, reducing it further does not have a large impact on variance reduction under
rerandomization. In short, previous observations about how K, R2, and pa impact variance reduction
under randomization seem to carry over for how they impact sample size reduction under rerandomization.
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Because there is no treatment effect heterogeneity and thus Ṽ = V , the results in Fig. S2 hold for any290

degree of potential outcome variation S2
1 and S2

0 and any average treatment effect ⌧ , as shown by (S.1).
According to Theorem 2, the sample size needed to achieve power � is increasing in S2

1 , S
2
0 and decreasing

in ⌧ for both rerandomization and complete randomization, which is a special case of rerandomization
when a = 1 or R2 = 0. Thus, as S2

1 and S2
0 increase and as ⌧ decreases, the nominal sample size gains

from rerandomization can be arbitrarily large, at least as long as the desired power is greater than 50%.295

For example, consider conducting an experiment where we desire 80% power and S1 = S0 = 4. When
⌧ = 2, i.e. half a standard deviation, which is a medium effect according to a commonly used effect size
rule-of-thumb by Cohen (2013), the necessary sample size under complete randomization is Ncr ⇡ 99.
In this case, one may view the results in Fig. S2 as modest: If the covariates are modestly related to
the outcomes (R2 = 0.3), there are a moderate amount of covariates (K = 50), and we use a somewhat300

stringent rerandomization criterion (pa = 0.01), we would expect only an approximately 13.3% reduction
in sample size under rerandomization, or approximately 14 fewer subjects. However, when we consider
a small effect ⌧ = 0.8, or one-fifth of a standard deviation, Ncr ⇡ 619. In this scenario, a 13.3% sample
size reduction, or approximately 83 fewer subjects, may be considered quite large.

H.3. With Treatment Effect Heterogeneity305

Now we consider the case where S2
⌧ > 0, and thus power and sample size will depend on the potential

outcome variances S2
1 and S2

0 in addition to S2
⌧ . To our knowledge the literature has not discussed how

treatment effect heterogeneity affects the power of completely randomized experiments, let alone reran-
domized experiments. First we will discuss how treatment effect heterogeneity affects power and sample
size for complete randomization and rerandomization, and then we will discuss how heterogeneity affects310

the sample size ratio Ncr/Nrr.
The asymptotic power for rerandomized experiments is characterized by Theorem 1; for fixed values of

S2
1 , S2

0 , and ⌧ , the power is increasing in S2
⌧ as long as ⌧ � ⌫1�↵(R̃2)Ṽ 1/2N�1/2; otherwise, it is decreas-

ing in S2
⌧ . Because complete randomization is a special case of rerandomization, a similar result holds for

completely randomized experiments, where power is increasing in S2
⌧ as long as ⌧ � z1�↵Ṽ 1/2N�1/2.315

Thus, treatment effect heterogeneity has a beneficial effect on power for relatively large effect sizes
but an adverse effect for relatively small effect sizes. Furthermore, because ⌫1�↵(R̃2)  z1�↵ for all
↵ 2 (0, 0.5], power is increasing in S2

⌧ for a wider range of effect sizes under rerandomization than under
complete randomization. In other words, treatment effect heterogeneity is less likely to adversely affect
power under rerandomization than under complete randomization. We illustrate this point further with320

numerical examples in Section I.
However, the results in the previous paragraph only hold when the variances S2

1 and S2
0 are fixed, and

it’s difficult to imagine a scenario where an increase in S2
⌧ does not also increase S2

1 , which adversely
affects power. For example, previous works studying treatment effect heterogeneity have considered data-
generating models like Yi(1) = Yi(0) + ⌧ + �⌧Yi(0) for some heterogeneity parameter �⌧ (Ding et al.,325

2016; Branson & Dasgupta, 2020). In this case, S2
1 = (1 + �⌧ )2S2

0 and S2
⌧ = �2

⌧S
2
0 , and thus more het-

erogeneity increases both S2
1 and S2

⌧ . Because power tends to be decreasing in S2
1 and S2

⌧ for large S2
1 ,

this suggests that treatment effect heterogeneity generally has an adverse effect on power.
Meanwhile, from Theorem 2, the sample size necessary to achieve power � is decreasing in S2

⌧ as long
as � � 0.5. Thus, for a fixed ⌧ and power � � 0.5, treatment effect heterogeneity has a beneficial effect330

on sample size for both completely randomized and rerandomized experiments. Indeed, this is analogous
to the aforementioned results on power, because � � 0.5 when ⌧ � z1�↵Ṽ 1/2N�1/2 for completely ran-
domized experiments and when ⌧ � ⌫1�↵(R̃2)Ṽ 1/2N�1/2 for rerandomized experiments. However, if
increased heterogeneity results in increased potential outcome variation, this may have an adverse affect
on sample size, in the sense that increased S2

1 will in turn increase sample size, as communicated in335

Theorem 2. These results are also illustrated further in Section I.
Finally, we consider how treatment effect heterogeneity affects the sample size ratio Nrr/Ncr. As com-

municated in Theorem 5, when S⌧ > 0, the sample size ratio depends on two conservative estimators:
Ṽ , which impacts inference for complete randomization and rerandomization, and R̃2 = V R2/Ṽ , which
only impacts inference for rerandomization. As a result, the sample size under rerandomization Nrr is340
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Fig. S3: The sample size ratio Nrr/Ncr when running an experiment with p1 = p0 = 0.5 and
S1 = S0 = 4, where ↵ = 0.05, � = 0.8, and pa = 0.001. The three panels correspond to hetero-
geneity S⌧ 2 {2, 4, 6}.

doubly-impacted by the conservative estimator Ṽ , thereby diminishing the sample size benefits of reran-
domization when there is treatment effect heterogeneity. To demonstrate, let’s consider an experiment
where p1 = p0 = 0.5 and S1 = S0 = 4, the significance level is ↵ = 0.05, the desired power is � = 0.8,
and acceptance probability is pa = 0.001. Figure S3 shows the resulting Nrr/Ncr for treatment effect het-
erogeneity S⌧ 2 {2, 4, 6} for different K and R2. Many of the results from Fig. S2 still hold: Nrr/Ncr is 345

decreasing in R2, increasing in K, and always below 1, as established by Theorem 5. However, we see
that this ratio is increasing in the treatment effect heterogeneity S2

⌧ ; thus, rerandomization has less ability
to reduce sample sizes when there is large treatment effect heterogeneity. When S2

⌧ = 2, Nrr/Ncr is on
average 2.4% greater than when S2

⌧ = 0; when S2
⌧ = 4, Nrr/Ncr is on average 9.9% greater; and when

S2
⌧ = 6, Nrr/Ncr is on average 23.7% greater. However, S⌧ = 6 denotes unusually large effect hetero- 350

geneity, because it is larger than S1 and S0. Furthermore, it’s important to remember that the ratio result
in Theorem 5 holds for any ⌧ ; thus, as discussed in Section H.2, when ⌧ is small, Ncr will be large, making
even small multiplicative sample size reductions possibly worthwhile.

Furthermore, because the potential outcome variances S2
1 and S2

0 also impact power and sample size,
they may also impact the ratio Nrr/Ncr. Let us consider the same example in Fig. S3, but where we fix 355

K = 10 and vary S1, S0, S⌧ , and R2. Figure S4 shows the ratio for different values of S1, S0, S⌧ , and
R2; in Fig. S4 we restricted the color scale to [0.25, 1.0] to more easily see trends for this plot. We see
that as S1 and S0 increase, Nrr/Ncr somewhat decreases, signaling that rerandomization can lead to larger
sample size reductions when potential outcome variances are high. However, it appears that treatment
effect heterogeneity has a relatively larger adverse impact on these sample size reductions; in other words, 360

there is more variation with respect to the vertical axis in Fig. S4 than the horizontal axis. Thus, if higher
treatment effect heterogeneity in turn induces higher potential outcome variation, the adverse effects of
heterogeneity will likely outweigh the beneficial effects of higher variation, thereby limiting the amount
of sample size reductions we can expect from rerandomization.



12

R2 = 0.2

S1 = S0

S
τ

0

2

4

6

8

4 5 6 7 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R2 = 0.5

S1 = S0

S
τ

0

2

4

6

8

4 5 6 7 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R2 = 0.8

S1 = S0

S
τ

0

2

4

6

8

4 5 6 7 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. S4: The sample size ratio Nrr/Ncr when running an experiment with p1 = p0 = 0.5 and
S1 = S0 = 4, where ↵ = 0.05, � = 0.8, K = 10, and pa = 0.001. The three panels correspond
to R2 2 {0.2, 0.5, 0.8}.

I. ADDITIONAL NUMERICAL EXAMPLES: HOW TREATMENT EFFECT HETEROGENEITY AFFECTS365

POWER AND SAMPLE SIZE IN RANDOMIZED AND RERANDOMIZED EXPERIMENTS

In Section H.3, we discussed how treatment effect heterogeneity affects power and sample size for
completely randomized and rerandomized experiments according to Theorems 1 and 2. In this section, we
present numerical examples to supplement that discussion. First we will present examples for completely
randomized experiments, because, to our knowledge, the literature has not discussed how treatment effect370

heterogeneity affects power for completely randomized experiments, let alone rerandomized experiments.
Then, we will discuss how these examples apply to rerandomized experiments.

As mentioned in Section H.3, for fixed values of S2
1 , S2

0 , and ⌧ , testing power for completely random-
ized experiments is increasing in S2

⌧ as long as ⌧ � z1�↵Ṽ 1/2N�1/2, where Ṽ is the probability limit
of the estimator for V , defined in (2). As a toy example, consider a completely randomized experiment375

where the proportions of treatment and control subjects are p1 = p0 = 0.5 and there are N = 100 sub-
jects. Furthermore, say S1 = S0 = 4 and we use the ubiquitous variance estimator V̂N = p�1

1 s21 + p�1
0

and thus ṼN = p�1
1 S2

1 + p�1
0 S2

0 . Thus, power is increasing in S2
⌧ as long as ⌧ � z1�↵ · 8 · 0.1 ⇡ 1.3 for

↵ = 0.05. Figure S5a shows power for this toy example when we vary S⌧ for ⌧ = 2 and ⌧ = 0.8; we see
that power is monotonically increasing in S⌧ for the former but monotonically decreasing for the latter.380

This suggests that treatment effect heterogeneity has a beneficial effect on power for large effect sizes but
an adverse effect for small effect sizes. Thus, if we incorrectly assume S2

⌧ = 0, which is common in power
analyses, then we may underestimate power for large effect sizes but overestimate power for small effect
sizes. Note that, in Fig. S5a, S⌧ = 8 is very extreme; in this case, V = 0, and thus power is either 0 or 1,
depending on whether ⌧ � z1�↵Ṽ 1/2N�1/2.385

Alternatively, we can consider a fixed average treatment effect ⌧ and study power when we vary S2
1

and S2
0 in addition to S2

⌧ . Figures S5b and S5c show the power for the aforementioned toy example for
⌧ = 2 and ⌧ = 0.8, respectively, for different values of S1, S0 and S⌧ . When ⌧ = 2, power is monoton-
ically increasing in S⌧ , as we saw in Fig. S5a, but only for small values of S1 and S0; otherwise, it is
monotonically decreasing. Meanwhile, we see that power is always monotonically decreasing in S⌧ when390

⌧ = 0.8. Furthermore, we see in Fig. S5b and S5c that power is monotonically decreasing in S1 and S0,
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(a) Power when varying S⌧ for S1 =
S0 = 4, when ⌧ = 2 (solid line) and
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(b) Power when varying S⌧ as well as
S1 and S0 for ⌧ = 2. Power ranges
from 32.4% to 100.0%.
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(c) Power when varying S⌧ as well as
S1 and S0 for ⌧ = 0.8. Power ranges
from 0.0% to 26.0%.

Fig. S5: Power of a completely randomized experiment under several scenarios when p1 = p0 =
0.5 and N = 100.

which is already a well-known phenomenon in power analyses. Taking all of Fig. S5 together, treatment
effect heterogeneity can have an adverse effect on power if ⌧ is small or the potential outcome variances
are large. It also appears that the potential outcome variances tend to have a more consequential effect on
power than treatment effect variation. 395

Now we consider sample size. When ⌧ � z1�↵Ṽ 1/2N�1/2, power will always be greater than or equal
to 50%, as a consequence of Theorem 1. Thus, for fixed ⌧ and power � � 0.5, treatment effect hetero-
geneity actually has a beneficial effect on the required sample size to achieve power �, in the sense that
larger S2

⌧ leads to a smaller required sample size, as a consequence of Theorem 2. To demonstrate, let
us again consider our toy example where p1 = p0 = 0.5, S1 = S0 = 4, and ⌧ = 2. Figure S6a displays 400

the sample size Ncr to achieve power � = 0.8 and � = 0.4 under complete randomization for increasing
values of S⌧ . When � = 0.8, sample size is increasing in S⌧ , but it is decreasing in S⌧ when � = 0.4;
this is analogous to our previous finding that power is increasing in S⌧ only for treatment effects above
a certain magnitude. Furthermore, note that in the extreme case when S⌧ = 8, V = 0, and thus Ncr is no
longer a function of �. 405

Again we can also consider varying S2
1 and S2

0 , in addition to S2
⌧ ; the resulting sample size Ncr required

to achieve power � = 0.8 is shown in Figures S6b and S6c for ⌧ = 2 and ⌧ = 0.8, respectively. For both
of these scenarios, the sample size is decreasing in S2

⌧ , again suggesting that larger treatment effect het-
erogeneity can have a beneficial effect on the sample size Ncr if � � 0.5. However, in Fig. S6b and S6c,
we see that there is more variation in Ncr across the horizontal axis than the vertical axis. This suggests 410

that potential outcome variances have a larger effect on sample size than treatment effect heterogeneity,
validating common power analyses that focus on these quantities rather than treatment effect heterogene-
ity. In particular, if increased treatment effect heterogeneity in turn increases potential outcome variances,
then in general heterogeneity may have an adverse effect on sample size.

Finally, we can also consider how treatment effect heterogeneity affects power and sample size for 415

rerandomized experiments. According to Theorem 1, for fixed S2
1 , S2

0 , and ⌧ , power under rerandom-
ization is increasing in S2

⌧ as long as ⌧ � ⌫1�↵(R̃2)Ṽ 1/2N�1/2, where ⌫1�↵(R̃2) denotes the (1� ↵)-
quantile of the distribution

p
1� R̃2✏0 +

p
R̃2LK,a and R̃2 = V R2/Ṽ . Note that ⌫1�↵(R̃2)  z1�↵ for

all ↵ 2 (0, 0.5), with equality only if R̃2 = 0. Thus, the same conclusions made in this section for com-
pletely randomized experiments also hold for rerandomized experiments, but for smaller effect sizes. In 420

other words, under rerandomization, a smaller ⌧ is required in order for power to be increasing in S2
⌧ ; or
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(a) Ncr when varying S⌧ for S1 =
S0 = 4 and ⌧ = 2, when � = 0.8
(solid line) and � = 0.4 (dotted line).
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(b) Ncr when varying S⌧ , S1, S0 for
⌧ = 2. Ncr ranges from approxi-
mately 44 to approximately 396.
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(c) Ncr when varying S⌧ , S1, S0 for
⌧ = 0.8. Ncr ranges from approxi-
mately 271 to approximately 2473.

Fig. S6: Sample size Ncr required to achieve power � when running a completely randomized
experiment with p1 = p0 = 0.5 under different scenarios. In (b) and (c), � = 0.8.

conversely, a smaller sample size Nrr is required to achieve a certain level of power � � 0.5, as established
by Theorem 5.

J. POWER AND SAMPLE SIZE CALCULATIONS USING THE R PACKAGE RERANDPOWER

Practitioners may be interested in implementing power and sample size calculations for completely425

randomized and rerandomized experiments based on the results presented in this paper. Our R pack-
age rerandPower, available on CRAN, has four functions: power.rand(), power.rerand(),
sampleSize.rand(), and sampleSize.rerand().

The functions power.rand() and power.rerand() compute power for given sample sizes N1

and N0, potential outcome standard deviations S1 and S0, treatment effect heterogeneity standard devi-430

ation S⌧ , and average treatment effect ⌧ . The significance level ↵ can also be specified. Let’s consider
the toy example in Section I, where N1 = N0 = 50, S1 = S0 = 4, ⌧ = 2, and S⌧ = 0 or S⌧ = 4 for a
completely randomized experiment. The following lines of code implement the power calculations for
these two cases, presented in Figure S5:

> power.rand(N1 = 50, N0 = 50, s1 = 4, s0 = 4, tau = 2)435

[1] 0.8037649

> power.rand(N1 = 50, N0 = 50, s1 = 4, s0 = 4, s.tau = 4, tau = 2)

[1] 0.838286

We see that power increases when S⌧ > 0 because ⌧ � z1�↵Ṽ 1/2N�1/2, as discussed in Section I. The
calculation made in the first line of code, which by default sets S⌧ = 0, is widely available in other power440

analysis software; however, to our knowledge, other available software does not allow one to specify
S⌧ > 0, as done in the second line of code.

Similar calculations can be made for rerandomized experiments using power.rerand(), except
one also has to specify the number of covariates K, the correlation between covariates and potential
outcomes R2, and the acceptance probability pa = pr(M  a), where M is the Mahalanobis distance445

defined in (1). When designing an experiment in practice, one can control K and pa, but of course one
will not have knowledge about R2 until the experiment has been conducted. Thus, R2 should be specified
based on subject-matter knowledge, or based on best- and worst-case scenarios. For example, consider
conducting a rerandomized experiment where there are K = 10 covariates, pa = 0.01, and there is a
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moderate correlation of R2 = 0.3. Then the power under rerandomization for the same toy example above, 450

with S⌧ = 4, is:

> power.rerand(N1 = 50, N0 = 50, s1 = 4, s0 = 4, s.tau = 4, tau = 2,

K = 10, pa = 0.01, R2 = 0.3)

[1] 0.901424

We see that, compared to the complete randomization example, power is higher in this case. 455

Meanwhile, the functions sampleSize.rand() and sampleSize.rerand() compute the sam-
ple size N necessary to achieve a prespecified level of power � for given S1, S0, S⌧ , ⌧ , and sample size
proportions p1 = N1/N and p0 = N0/N . Let’s again consider the toy example from Section I, where
p1 = p0 = 0.5, S1 = S0 = 4, ⌧ = 2, and S⌧ = 0 or S⌧ = 4. The following lines of code implement sam-
ple size calculations for these two cases when power � = 0.8, presented in Figure S6: 460

> sampleSize.rand(power = 0.8, s1 = 4, s0 = 4, tau = 2)

[1] 98.92092

> sampleSize.rand(power = 0.8, s1 = 4, s0 = 4, s.tau = 4, tau = 2)

[1] 90.15267

We see that the necessary sample size decreases when there is treatment effect heterogeneity, because 465

� � 0.5. Again, the calculation made in the first line of code is also widely available in other power
analysis software, but to our knowledge, that in the second line of code is not.

We can again make similar calculations for a rerandomized experiment. Let’s again consider the case
where K = 10, pa = 0.01, and R2 = 0.3. Then, the sample size calculation for the case where S⌧ = 4 is:

> sampleSize.rerand(power = 0.8, s1 = 4, s0 = 4, s.tau = 4, tau = 2, 470

K = 10, pa = 0.01, R2 = 0.3)

[1] 72.6096

We see that, for this example, rerandomization requires a smaller sample size than complete random-
ization, which will always be the case when � � 0.5, as established by Theorem 5. For this example,
rerandomization decreases the sample size requirement by approximately 19.5%. 475

More details and examples are available in the documentation for rerandPower on CRAN.
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