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Three Constructive Algorithms
For Network Learning

Stephen 1. Gallant

College of Computer Science
Northeastern University

ABSTRACT: Machine learning methods for connectionist models usually
operate by attaching weights to a prespecified network so that a certain
functionality ss achseved. This is the classical credit assignment problem.

This paper ezplores a constructive approach to connectionist learning
where both a network and weights must be generated. It 15 argued that this
is an easier problem to solve and is sufficient for many applications since
network topology s usually not as smportant as functionality.

Three algorithms are presented for constructing networks from training
ezamples. As cells are added and iterations are made, each method pro-
duces a network having optimal ezpected behavior (i.e. it correctly classifies
the mazimum number of training ezamples possible) with arbitrarily high
probability p < 1.

Learning speed for these algorithms is currently being snvestigated.
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I. Introduction

A common single cell connectionist
model is the linear discriminant [Fisher
1936, Duda & Hart 1973] or perceptron
[Rosenblatt 1961]. A linear discriminant
consists of a set of numerical weights W;.
An input vector V with components or
“features” < Vi,...,V, > is classified into
one of two categories (True or False) ac-
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cording to whether the weighted sum of its
components is greater than some thresh-
old Wy (see Figures 1, 2). Linear dis-
criminants and perceptrons have been ex-
tensively studied and critiqued [Minsky &
Papert 1969].

Linear discriminants are quite pop-
ular for practical applications such as
machine vision, pattern recognition, and



Gallant: Three Constructive Algorithms

Output = {:} if Z " {:} W
0 i = 0
i o .

Output of top cell is -1 since
(=1)(=3) + (0)(4) + (+1)(-2) < 2

)
O
PN
SO00D

™MD M MDD DM D
i . Linear Discrimi

classification problems. There are well
known methods for determining good, but
sub-optimal, linear discriminant weights.
Recently we have developed a new meth-
od, the Pocket Algorithm, which gives op-
timal weights with arbitrarily high proba-
bility and appears to decrease misclassifi-
cations by roughly one-fifth over standard
methods [Gallant 1985b]. The Pocket
Algorithm is also important because it
serves as the basis for the network grow-
ing algorithms to be discussed.

While an individual discriminant has

several appealing features, it can only rep-
resent a small subset of boolean functions
called separable functions (see [Gallant
1985b]). However a network of linear dis-
criminants (Figure 2) can represent any
boolean function on n boolean variables.

The problem of determining weights
for a predetermined network of cells is
much harder than for a single cell. This
is the classical credit assignment prob-
lem identified by Minsky [1961]. Recent
progress on this problem has been made
by Barto [1981, 1985], C. Anderson [1982],
Pearl [1985a, 1985b], Sutton [1984], Hin-
ton [1984a], and Rumelhart et. al. [1985].
Of these, Rumelhart’s Back Propagation
Algorithm appears most promising with
respect to speed.

II. The Constructive Approach

Rather than assuming a fixed net-
work and trying to determine appropri-
ate weights for it, one of our approaches
has been to determine both network and
weights in order to achieve the desired
functionality. There are several motiva-
tions for this constructive approach.

First, the constructive algorithms to
be studied always produce (in theory) net-
works and weights which correctly classify
a maximum number of training examples.
(If there is no pair of contradictory exam-
ples, all examples will be correctly clas-
sified.) The constructive problem seems
easier to solve than the fixed problem be-
cause the necessity of realizing a solution
in a fixed network is an additional con-
straint on the problem. Thus the require-
ment of defining a network is not an added
burden, it is an extra degree of freedom.
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Second, for most applications the to-
pology of the final network is not vitally
important. Usually it is more important
to have a network and weights implement-
ing some desired functionality than it is
to have conformity with some prespecified
structure. For our work with connection-
ist expert systems [Gallant 1985a], func-
tionality is much more important than
network topology.

Another reason to examine construc-
tive approaches is speed of learning. The
Boltzmann learning algorithm [Hinton
1984a] has largely been abandoned be-
cause of its slowness (although work with
the Boltzmann model continues to be
fruitful [Touretzky & Hinton 1985, Cot-
trell 1985]). Rumelhart’s Back Propaga-
tion Algorithm appears more promising
with respect to speed. Nevertheless the
prospect of a fast learning method less
susceptible to convergence problems gives
strong impetus for exploring constructive
network algorithms.

The above arguments motivate the
development of constructive algorithms
and comparisons with Back Propagation
where appropriate.

II1. Algorithms for Generating
Weights for a Single Discriminant

Generating weights for a single linear
discriminant so that a maximum number
of training examples are correctly clas-
sified is a classical problem reviewed in
[Gallant 1985b]. To quickly summarize
the situation:

1. Perceptron learning [Rosenblatt 1961, Minsky
& Papert 1969] works for separable problems,
but fails for nonseparable problems.
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2. Other standard methods solve similar but dif-
ferent problems. Usually they produce sub--
optimal weights for non-separable problems
and frequently gives sub-optimal weights for
separable problems as well [Duda & Hart
1973, Kaleca 1980).

3. The Pocket Algorithm [Gallant 1985¢c, 1985b]
solves separable problems in finite time and
gives weights for non-separable problems with
an expected quality that improves as the
number of iterations increases. The proba-
bility that the generated weights will be opti-
mal approaches 1 as the number of iterations
grows. Initial comparison with a standard
method (Wilks’ method) gave a rough esti-
mate of a 20% decrease in misclassifications
using the Pocket Algorithm.

The algorithms for generating single
discriminants are important in their own
right due to their heavy use in applica-
tions such as machine vision and pattern
recognition. They are also important be-
cause they are part of algorithms that
generate networks.

IV. Constructive Algorithms
For Network Learning

We shall briefly describe three con-
structive algorithms for network gener-
ation: the Tower Construction, the In-
verted Pyramid Construction, and the
Distributed Method. It should be noted
that there are a number of additional vari-
ations to these methods which may have
important effects on performance.

1. The Tower Construction

This method constructs a linear dis-
criminant network in the form of a tower
(Figure 3). Cells are added one by one
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and connected to the original inputs and
to the previous cell as in Algorithm 1.

It can be shown that with arbitrar-
ily high probability p < 1, the Tower
Construction will produce a network that
correctly classifies a maximum number
of training examples (see [Gallant1986]).
Furthermore, the output from each level
will correctly classify a greater number of
training examples than the output from
the previous level. This guarantees theo-
retical convergence to a network with op-
timal performance for the set of training

examples, as contrasted with other ap-
proaches (such as gradient descent meth-
ods) which may fail to find an optimal net-
work.

1. Construct a good (preferably optimal) set of
coefficients for a single linear discriminant,
Dy. If all (or the maximum number possible)
of the training examples are correctly classi-
fied, we are done. Otherwise freeze the coef-

ficients for Dy.

2. Construct a good (preferably optimal) set of
coeflicients for linear discriminant Dy 1 hav-
ing inputs from the training examples and
from discriminant Dy, (see Figure 3). It can
be shown that Dy can correctly classify a
greater number of training examples than Dy, .
Freeze the coefficients for Dy 41.

3. Repeat step 2 a finite number of times un-
til all (or the maximum number possible) of

training examples are correctly classified.

Algorithm 1: Tower Construction

While only preliminary tests have
been made with this algorithm, one of
them is particularly interesting.

The Parity function is a classical
non-separable function which will return
true (+1) if an odd number of its inputs
are +1. Otherwise the function returns
false (-1). For 2 inputs the Parity func-
tion is the same as exclusive-OR. It is well
known that a network of 2 cells is neces-
sary and sufficient to represent exclusive-
OR (see for example [Hinton 1984a)). We
applied the Tower Construction to the
Parity problem for n=3 with the expec-
tation that a 3 level network would be
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Output is +1 if an odd number of inputs are +1.
Output is -1 if en even number of inputs are +1.
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(rather then +1 and 0).

Example shows an output of -1 when two inputs
are +1. The output from the lower cell is also
=1 for this example.

required to represent this function. To
our surprise, the Tower Construction pro-
duced a 2 level network! The network is
given in Figure 5. From this construction
it became clear that a tower could com-
pute the Parity function on n inputs by

an
[(n+1)/2]
level tower.

2. The Inverted Pyramid Construc-
tion

The Inverted Pyramid Construction
(Figure 4) is similar to the Tower Con-
struction, except each new discriminant
sees outputs from all previous levels, not
just the immediately preceding level. One
would expect that fewer levels would be
needed and this would speed up network
generation. However learning speed may
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be adversely affected, since each level
must solve a problem in a space of higher
dimensions than is the case with the
Tower Construction. This is currently un-
der investigation.

3. The Distributed Method

The Distributed Method is a con-
structive approach which may also be
viewed as a fixed network approach. The
basic idea of the Distributed Method is
illustrated in Figure 6. A layer of many
discriminants with fixed, random coeffi-
cients is specified, after which learning
takes place for the single cell on top. If
enough cells have been added then any
function will become separable [Minsky &
Papert 1969, but families of some func-
tions may require an exponential number
of added cells for a perfect representa-
tion. On the other hand our initial test-
ing has indicated that n training exam-
ples can usually be correctly classified by
a random layer with %n to 2n added cells.
The added cells produce a distributed rep-
resentation for any input [Hinton 1984b,
Touretzky & Hinton 1985, Bloom 1970]
since the pattern of cells in the added layer
is more important than any single cell.

An important point here is that ran-
dom linear discriminants make up the
added layer rather than random boolean
functions. This is intended to promote ro-
bustness of the resulting system, since an
input V and a close training example V*
should both produce similar patterns in
the added layer. This in turn would make
it likely that the top cell would give iden-
tical outputs for V and V*. However if
random functions had been used for the
added layer, V and V* would produce to-



tally uncorrelated outputs regardless of
their similarity (unless V and V* were
identical). The price to be paid for this
attempt at robustness is that the added
layer will require more cells to achieve sep-
arability than if strictly random boolean
functions had been employed.

A major advantage of the Distributed
Method is that the same added layer can
be used equally well by different top cells
for computing totally different functions.
Once we invest in an added layer, it is
available for every future task. Such an
architecture is well suited for cells which
are independent and asynchronous and it
requires fewer coefficients to be learned
than most other models. This structure
is an old but appealing idea motivated by
neural systems and the difficulty of pass-
ing large amounts of information geneti-
cally. Since we now have at least one rea-
sonable algorithm which works with non-
separable data (the Pocket Algorithm)
and the ability to enhance functionality
by employing the Tower or Inverted Pyra-
mid Constructions above the added layer
of fixed random cells, this idea is worth
exploring again.

Space limitations preclude a more
thorough examination of the Distributed
Method here. The reader is referred to
[Gallant 1986] for additional details.

V. Discussion and Summary

We have presented three constructive
algorithms for generating connectionist
networks from training examples. The
Tower and Inverted Pyramid Construc-
tions give optimal performance, after a fi-
nite number of levels have been added and
after sufficient iterations, with arbitrarily
high probability. Each level performs bet-
ter than the previous level in terms of cor-
rect classifications.

The Distributed Method also gives op-
timal performance for a set of training ex-
amples with arbitrarily high probability,
provided there are sufficient cells in the
added layer.

All three methods are robust in the
sense that an example which is sufficiently
similar to a training example will be clas-
sified the same as that training example,
due to the general behavior of linear dis-
criminants.

The performance of these algorithms
is just beginning to be investigated. How-
ever the Tower Construction has been in-
corporated into the network generation
phase for the MACIE system for gener-
ating expert systems [Gallant 1985a] and
has demonstrated reasonable speed and
performance for several problems. More
testing and practical experience is needed
to fully evaluate these algorithms.
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Figure 6. Distributed Method
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