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ABSTRACT OF THE DISSERTATION

Doubly Robust Imputation for Longitudinal Data with Monotone Dropouts: Applications
in Alzheimer’s Randomized Trials

by

Yuqi Qiu

Doctor of Philosophy in Biostatistics

University of California San Diego, 2021

Professor Karen S. Messer, Chair
Professor Howard H. Feldman, Co-Chair

The objective of this dissertation is to utilize statistical methods to obtain consistent

estimates from longitudinal data with monotone dropouts. This dissertation is comprised of three

main studies. In the first study, which aims to identify the heterogeneity of cognition profiles in

probable Alzheimer’s disease (AD) and determine if cognitive profiles are systematically related

to the clinical course and neuropathological features of the disease, we explored a comprehensive

data set from the National Alzheimer’s Coordinating Center (NACC) and successfully classified

AD patients into 80% ”typical” versus 20% ”atypical” profiles, across two independent cohorts

xvi



and one subset of subjects with autopsy available. We found that the atypical cognition profile

was associated with lower Braak stage at autopsy and slower cognitive decline.

Observing an increasing attrition rate after two years with apparent informative dropout in

the first study, and being motivated by the informative dropout that is common in FDA regulated

trials for AD, in the second study, we proposed a doubly robust imputation approach to adjust for

dropout-related bias in longitudinal studies. We illustrated this approach with an application in

a prodromal AD trial conducted by Alzheimer’s Disease Cooperative Study (ADCS), which is

a major center for AD clinical trials. We believe the imputation approach we presented has the

advantage of computational simplicity and transparency compared to existing approaches in the

literature, and may be suitable for use in FDA-regulated trials and a variety of other applications.

As an extension to this topic, in the third study, we investigated the doubly robust imputa-

tion method within a pattern mixture model framework, in order to deal with sensitivity analysis

for randomized trials under several missing-not-at-random scenarios. We applied the proposed

approach to two ADCS trials with different stages of disease, and compared the approach with

other well-known methods to evaluate the performance. This study supports that the doubly robust

imputation method is a competitive method for handling longitudinal data with monotone dropout,

and may be suitable for use in randomized trials to obtain valid estimates of treatment effect.
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Chapter 1

Introduction and Background

In the past decades, the International Council on Harmonization (ICH) and the Food

and Drug Administration (FDA) have released a series of regulatory reports that emphasize the

importance of applying a correct statistical analysis in randomized trials. Statistical considerations

are involved in the whole spectrum of clinical trials, including study design, protocol development,

data monitoring and reporting, as well as interim and final data analyses. An explicit statistical

analysis plan can enhance the reliability and validity of the results in clinical trials. Statistical

methods have been developed covering different scenarios in clinical trials, with the aim to obtain

an unbiased estimator of the treatment effect finally. In the last few years, the ICH and FDA held

several workshops and published guidance elucidating how to appropriately describe the estimand

as a novel approach to improve the rigor of statistical analysis in clinical trials [66]. In the context

of the guidance, the estimand is particularly referring to the treatment effect associated with a

clinical trial objective, rather than the general understanding of what is being estimated. Four

essential components are required to be explicitly demonstrated to describe the estimand, which

are (1) defining the targeted study population; (2) defining the endpoint of interest; (3) describing

the handling of any intercurrent events in details (i.e., events which occur between randomization

and final assessments); (4) summarizing the variable of interest at the population level.
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Alzheimer’s disease (AD) is a progressive disease that destroys memory and other impor-

tant mental functions, and is the most common neurodegenerative disorder and cause of dementia

(60%-80%). An estimated 5.7 million Americans of all ages are living with Alzheimer’s dementia

in 2018, and by 2050 this number is projected to rise to nearly 14 million; among people age 65

and older, 1 in every 10 have AD in 2018. Numerous studies have investigated AD regarding its

cause, diagnostics, and treatment [1, 16, 15, 14, 33, 56, 61]. Unfortunately, Alzheimer’s has no

current cure. AD clinical trials play a most crucial role in order to develop effective therapies.

There are hundreds of ongoing AD trials, but since 2003 no new Alzheimer’s drug has been

approved. According to the Alzheimer’s Association, recruiting and retaining trial participants is

now the greatest obstacle to developing the next generation of Alzheimer’s treatments. Dropout

rates are usually higher than 20% in AD trials over two years and may differ between the treatment

and placebo groups.

Such disease-related discontinuation is a common problem in AD trials and many other

randomized trials. Discontinuation from the study is a typical class of intercurrent events, and

the statistical treatment of study discontinuation is required to be clarified as one of the four

core components of estimand. Investigators have developed various approaches to deal with this

issue, including several imputation methods. In the primary analysis, missing at random (MAR)

is always assumed in current practice; hence a usual way of addressing the dropout is to fit a

statistical regression model by maximum likelihood and to assume that the model is correctly

specified, in which case it will correctly adjust for the dropouts and give consistent and efficient

estimates. However, if the outcome model is misspecified, these model-based estimates would be

biased, leading to invalid results. The mixed model for repeated measures (MMRM) and multiple

imputation are two current principal methods for estimating the outcome model while accounting

for the dropout in randomized trials. An alternative approach, modeling the probability of dropouts

and giving weights to the observed data so that it can be corrected to represent the complete data,

may be helpful; this method is named inverse probability weighting (IPW) or propensity scores
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adjustment. A different approach under semi-parametric theory would be the use of a ”doubly

robust” estimator. The fundamental idea here is to combine a missingness model (i.e., IPW) and

an outcome model (or imputation model) so that the estimator would be consistent even if one

of the models is incorrect, and with good efficiency properties if both models are correct. In the

sensitivity analysis for the primary outcome of a randomized trial, which has been emphasized by

regulatory reports in recent years, the assumption of missing not at random (MNAR) is required

to be investigated. Under the MNAR assumption, dropouts are presumed to be related to the

unobserved data. A commonly used approach constructs a link function between the distributions

of observed data and unobserved data, for example, assuming a mean shift in the unobserved

data, then fitting a pattern mixture model (PMM) to model the observed data and missing data

jointly. We introduced the PMM framework with details in Chapter 4. This PMM framework

can be incorporated with an imputation method such as multiple imputation and doubly robust

imputation.

1.1 Aims and Organization of this Dissertation

This dissertation focuses on reviewing and constructing a novel statistical method, namely

a doubly robust approach to estimating longitudinal data with monotone dropouts, with several

applications in AD clinical trials. Chapter two presents a study to investigate the heterogeneity of

cognition in probable AD and study the clinical and neuropathological features in the heterogeneity.

This study is conducted with comprehensive data from the National Alzheimer’s Coordinating

Center (NACC) database. Two independent cohorts and a subset with available pathology data

are used for external validations. The attrition rate after two years is increasing, with potentially

informative missingness, which motivates us to explore the statistical methods for imputing

missing responses in longitudinal data.

Chapter three conducts a study investigating doubly robust (DR) imputation methods in
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longitudinal data to adjust for dropout-related bias under MAR. We elucidated that most DR

estimators can be written in substitution (plug-in) form and proposed a more straightforward DR

form that is easier to interpret and obtain. Simulation studies support the theoretical properties of

the estimators and provide comparisons with alternative approaches. We also illustrate the

imputation approach using historical data from the Alzheimer’s Disease Cooperative Study

(ADCS).

Chapter four investigates how to perform sensitivity analysis in randomized trials under

MNAR, comparing a new DR imputation method, the more usual multiple imputation method,

and a sequential mean imputation method developed by Paik. We extend the three imputation

methods within the PMM framework and compared them with simulation studies. Two historical

AD randomized trials conducted by ADCS are used to demonstrate applications in both primary

analysis and sensitivity analysis.

Chapter five presents the overall discussion and future work.
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Chapter 2

Cognitive Heterogeneity in Probable

Alzheimer’s Disease: Clinical and

Neuropathological Features

2.1 Abstract

Objective of this study is to identify heterogeneity in cognitive profiles of patients with

probable Alzheimer’s disease (AD) who have mild-to-moderate dementia and satisfy inclusion

and exclusion criteria for a typical AD clinical trial, and determine if cognitive profiles are

systematically related to the clinical course and neuropathological features of the disease.

Neuropsychological test data from patients with mild-to-moderate probable AD (n=4,711)

were obtained from the National Alzheimer’s Coordinating Center (NACC). Inclusion and exclu-

sion criteria usually used in AD clinical trials were applied. Principal component analysis (PCA)

and model-based clustering were used to identify cognitive profiles in a subset of patients with

autopsy-verified AD (n=800), and validated in the overall (non-autopsy) sample and an indepen-

dent cohort with similar test data. Relationships between cognitive profile, clinical characteristics,
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and rate of decline were examined using mixed-effects models.

In the autopsy-confirmed sample, 79.6% of patients had a “typical” AD cognitive profile

(greater impairment of episodic memory than other cognitive functions), and 20.4% had an

“atypical” profile (comparable impairment across cognitive domains). Similar results were obtained

in the overall (typical: 79.8%; atypical: 20.2%) and validation (typical: 71.8%; atypical: 28.2%)

samples. Atypicality was associated with younger age, male sex, lower probability of APOE e4,

less severe global dementia, higher depression scores, lower Braak stage at autopsy, and slower

cognitive decline.

In conclusion, we can reliably identify distinct cognitive profiles among clinically-diagnosed

probable AD patients that are associated with tangle pathology and with different rates of decline.

This may have implications for clinical trials in AD, especially therapies targeting tau.

2.2 Introduction

An important source of variability that may bias the results of therapeutic trials for

Alzheimer’s dementia (AD) is heterogeneity in the presentation and course of cognitive deficits

that are expressed within its clinical syndrome. Although AD is most commonly characterized by

initial predominant impairment in learning and memory, variants of AD with primary deficits in

language (i.e., logopenic primary progressive aphasia), visuospatial abilities (i.e., posterior cortical

atrophy) or executive functions (i.e., executive variant AD) with relative sparing of memory have

been identified [10, 12, 45, 59, 60, 65, 3, 13, 36, 73]. The use of best practices for assessment

of dementia [24] and standardized clinical criteria for the diagnosis of AD dementia [34, 16, 14]

allow many of these variants to be identified, and they are usually excluded from AD clinical trials

because they are likely to progress in an atypical fashion and also have predominant deficits that

are not sensitively measured by widely-used clinical trial cognitive outcome measures. AD trial

cohorts often are further restricted to patients with mild-to-moderate dementia severity to ensure
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sufficient range to measure change over time. While these inclusion criteria provide a relatively

homogeneous sample, the relative degree of impairment in memory versus other cognitive abilities

may still vary in a systematic manner that can be identified and considered when analyzing

and interpreting AD clinical trial results. Therefore, the present study investigates cognitive

heterogeneity in mildly-to-moderately demented probable AD patients who satisfy inclusion and

exclusion criteria of a typical AD clinical trial, and whether cognitive profiles are systematically

related to the clinical course and neuropathological features of the disease.

2.3 Methods

2.3.1 Participants

Data from participants in the NIH Alzheimer’s Disease Centers program were downloaded

from the National Alzheimer’s Coordinating Center (NACC) database, as of the September 2017

data freeze. Sample 1 consisted of 4,711 participants diagnosed between 2005 and 2015 who met

NINCDS-ADRDA diagnostic criteria for probable AD [32], scored 16-24 (inclusive) on the Mini-

Mental State Exam (MMSE), and had neuropsychological test data available. Sample 2 consisted

of 692 participants enrolled after March 2015 (when NACC Uniform Data Set (UDS) version 3

was implemented and some study procedures were changed) who met NIA-AA diagnostic criteria

for probable AD dementia [34], scored 7-19 (inclusive) on the Montreal Cognitive Assessment

(MoCA), and had neuropsychological test data available. A MoCA range of 7-19 is equivalent

to an MMSE range of 16-24 [40], and both ranges are indicative of mild to moderate dementia

severity. Participants were not included in either sample if they had a clinical diagnosis of primary

progressive aphasia (PPA), posterior cortical atrophy, frontotemporal dementia, Parkinson’s

disease, corticobasal syndrome, dementia with Lewy bodies (DLB), cerebrovascular disease

(CVD), prion disease, traumatic brain injury, normal pressure hydrocephalus, or other neurological

disease contributing to the cognitive impairment. Clinical data from the UDS visit at which a
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participant was initially diagnosed with probable AD dementia were used in analyses.

2.3.2 Procedure

At each approximately annual visit, participants received a standardized dementia eval-

uation [42] that included medical and family history, physical and neurological examination,

neuropsychological testing, functional assessment with the Clinical Dementia Rating (CDR) Scale

[41] and the Functional Assessment Questionnaire (FAQ) [47], and assessment of depressive

symptomology with the Geriatric Depression Scale (GDS) [76]. A categorical decision of whether

or not depression was contributing to cognitive dysfunction was also made based on a clinician’s

judgement.

Neuropsychological Measures

The NACC neuropsychological test battery administered from 2005 to 2015 (UDS version

2) consisted of the MMSE, and measures of verbal learning and memory (Logical Memory Test

(story A only) I and II), attention and executive function (Digit Span Forward and Backward;

Trail-Making A and B; Digit Symbol Substitution), and language/semantic memory (30-item

Boston Naming Test, Animal Fluency) [75]. In March 2015, the NACC protocol (UDS version

3) replaced several tests with comparable non-proprietary measures and added three additional

tests to broaden the scope of the battery. Details of the revised battery and demonstration of its

comparability to the original are described elsewhere [40, 74].

Neuropathological Diagnosis

Neuropathological findings were available on 976 participants from Sample 1. Diagnostic

classification was made based on Braak staging of neurofibrillary tangles [5] and CERAD scoring

of neocortical neuritic plaque density [38]. “Definite AD” was defined as Braak stage III-VI

plus moderate or frequent neocortical plaques. With these criteria the UDS clinical diagnosis
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of probable AD has been shown to have approximately 71% sensitivity and specificity, and

83% positive predictive value [4]. Other pathological diagnoses such as frontotemporal lobar

degeneration (Picks, corticobasal ganglionic degeneration, progressive supranuclear palsy), DLB,

and CVD (e.g., infarct, lacune, hemorrhage, microbleed, microinfarct) were made according to

standard published criteria.

2.3.3 Statistical Methods

Data from Sample 1 were used to identify potential cognitive subtypes and to investigate

their association with clinical features, rate of decline, and pathological findings. Data from Sample

2 were used to investigate whether the subtypes identified from Sample 1 would replicate in an

independent sample with potentially different baseline characteristics and similar, but not identical,

neuropsychological test measures. Neuropsychological test scores were standardized within each

sample and all measures were coded so that a higher test score indicated better performance.

Because time-to-completion scores on the Trail-Making Test were truncated (maximum time of

150 sec for Part A and 300 sec for Part B), a rate measure was calculated by dividing the number

of correct lines drawn by testing time. Computations used R version 3.4.1

Identifying and validating AD Cognitive Subgroups

Principal Component Analysis (PCA, using the “stats:princomp” function), and model-

based clustering (using the “mclust” package [21, 20], allowing for different means and covariance

structures with number of clusters determined by Bayesian information criterion [62]) were used

to identify characteristic patterns of performance on neuropsychological test scores, within each

sample. First, PCA was used to identify the linear combinations, or factor loadings, of the original

test scores which best constructed two informative and independent components. Then, these

first 2 principal component scores for each participant were used in model-based clustering to

identify subgroups of participants with distinct patterns of test performance. Analyses initially
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were performed using Sample 1 participants with definite AD pathology, then using all of Sample

1 (with restriction to 2 clusters), and finally repeated again using Sample 2 as an independent

validation cohort.

Characterizing AD Cognitive Subgroups

Linear regression was used to explore association between cluster membership (i.e., AD

cognitive subtype) and demographic variables, clinical characteristics, global cognitive test scores,

and neuropathologic features. AD pathology (Braak stage and CERAD plaque score) was coded

as an ordinal factor.

Linear mixed effects models were used to examine the association of AD cognitive subtype

with the rate of longitudinal decline, by investigating the interaction between time slope and

subtype. Models controlled for baseline cognitive score and APOE genotype, and included a

random intercept and slope for each participant. Only the first two years of follow-up data were

used in these analyses because of apparent informative censoring after two years (i.e., more

severely impaired participants were more likely to discontinue). Similar analyses were used to

investigate the stability of the AD cognitive subtype classification over time.

Missing Data

Missing test scores in the UDS dataset are designated as missing due to 1) cognitive

problems, 2) other, non-cognitive problems, or 3) not collected at that assessment. For scores

missing due to cognitive problems, we imputed the worst possible score for the measure. For scores

missing due to non-cognitive reasons, we imputed a score using linear regression with predictors

age, education, MMSE or MoCA, CDR sum of boxes and all available neuropsychological

measures, computed in the R package “mice” [71].
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2.4 Results

2.4.1 Participant Characteristics

The pathologically verified subsample from Sample 1 did not differ from the overall

Sample 1 in age, MMSE score, CDR global rating, GDS score, or % APOE e4 genotype, but was

more educated and had worse FAQ scores (Table 2.1). Sample 2 did not differ from Sample 1 in

CDR global rating, FAQ score, GDS score, sex distribution or % APOE e4 genotype, but was

younger and more educated.

2.4.2 Principal Components Analysis of Neuropsychological Tests

The results of the principal component analyses were consistent across Sample 1 (the

‘discovery’ dataset), the autopsy-confirmed subset of Sample 1 (the ‘gold standard’ dataset), and

Sample 2 (the independent ‘validation’ dataset). Each PCA identified two independent, mean

zero, principal components that together explained 47% to 58% of variance. Factor loadings

for each principal component were similar in the three analyses, and were not sensitive to the

imputation (see Table 2.2). The first principal component (PC1) had positive factor loadings for

all neuropsychological tests, thus reflecting overall cognitive performance or dementia severity

(i.e., a positive score for PC1 indicates above the mean on cognitive performance, a negative score

indicates below the mean). The second principal component (PC2) had positive factor loadings

for neuropsychological tests of episodic memory and naming, and negative factor loadings for

non-memory tests; thus, a higher PC2 score reflects relatively better performance on memory-

related cognitive tests and relatively worse performance on non-memory-related tests. Therefore,

PC2 can be interpreted as a continuous measure that discriminates between “cognitive profiles”

within probable AD, independently of cognitive severity (i.e., PC1). This pattern of factor loadings

for PC2 was reproduced in all three samples. Results were nearly identical in each sample

after excluding the approximately 20% of participants for whom depression was considered to
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Table 2.1: Cohort characteristics: Mean (SD)

Sample 1 Sample 2 Neuropath confirmed ADa

Overall N 4,711 692 800
Participant Characteristics
Ageb 76.15 (9.45) 74.25 (9.78) 76.98 (10.04)
Sex: Female – N (%) 2680 (56.9) 380 (54.9) 386 (48.2)
Educational attainment (yrs.)b,c 14.24 (3.54) 15.42 (3.05) 15.12 (3.12)
APOE e4 Positive – N (%) 2207 (59.1) 270 (61.5) 443 (60.4)

(N = 3732) (N = 439) (N = 733)
Clinical Ratings
MMSE 20.77 (2.45) NA 20.53 (2.55)
MOCA NA 14.07 (3.49) NA
CDR Global rating 0.97 (0.45) 0.97 (0.48) 1.07 (0.50)
CDR Sum of boxes 5.58 (2.62) 5.61 (2.77) 6.23 (2.81)
Geriatric Depression Scale 2.41 (2.52) 2.35 (2.62) 2.27 (2.29)
FAQc 17.16 (7.73) 17.18 (7.45) 19.63 (7.06)
Depression – N (%) 1010 (21.4) 162 (23.4) 140 (17.5)
Neuropsychological Test Measures
Paragraph Immediate recall 3.66 (3.0) 5.66 (3.9) 3.37 (3.1)
Paragraph Delayed recall 1.44 (2.4) 2.12 (3.2) 1.32 (2.4)
Benson Figure Delayed recall NA 1.87 (2.9) NA
Benson Figure Copy NA 12.8 (4.4) NA
Confrontation Naming 19.1 (6.9) 22.9 (6.7) 19.3 (6.9)
Category Fluency 17.0 (7.2) 16.9 (7.0) 15.9 (6.8)
Letter Fluency NA 18.2 (8.5) NA
Digit Span Forward 6.84 (2.2) 6.37 (2.2) 6.80 (2.4)
Digit Span Backward 4.31 (1.9) 4.18 (2.0) 4.35 (1.9)
WAIS-R Digit Symbol 21.6 (13.4) NA 20.2 (13.4)
Trail Making A –Time to Completion 76.4 (41.7) 71.3 (39.9) 83.2 (43.3)
Trail Making A – Correct Lines 21.7 (5.2) 22.4 (5.2) 20.7 (6.5)
Trail Making B – Time to Completion 249.5 (75.3) 248.2 (78.0) 254.2 (72.8)
Trail Making B – Correct Lines 12.2 (9.9) 12.7 (10.5) 11.1 (10.0)
Abbreviations: MMSE = Mini-mental state examination; MOCA = Montreal Cognitive As-
sessment score; CDR = Clinical Dementia Rating; FAQ = Functional Activities Questionnaire;
Depression = Clinician rating of depression as contributing to cognitive impairment.
a. Sample 1 participants with Braak stage III-VI plus moderate or frequent neocortical plaques.
b. Age and education are significantly different between Sample 1 and Sample 2.
c. Education and FAQ scores are significantly different between the pathologically verified
subsample from Sample 1 and the overall Sample 1.

12



Table 2.2: Factor loadings and missing data rates for each sample

Cognitive Domain

Neuropsychological Tests
Sample 1 Sample 2 Neuropath confirmed AD
(N=4,711) (N=692) (N=800)

Cumulative variance explained 56.50% 48.30% 57.70%

UDS 2 UDS 3 PC1 PC2
Missing

PC1 PC2
Missing

PC1 PC2
Missing

rate rate rate
Memory related domains

Episodic Memory
Logical Memory Craft Story 21

0.23 0.58 0.02 0.3 0.43 0.01 0.25 0.56 0.03
Immediate recall Immediate recall

Episodic Memory
Logical Memory Craft Story 21

0.08 0.66 0.03 0.13 0.6 0.02 0.08 0.66 0.03
Delayed recall Delayed recall

Language/
Boston Naming

Multilingual
0.31 0.22 0.02 0.28 0.14 0.02 0.3 0.25 0.03

Semantic Memory Naming
Language/

Category Fluency Category Fluency 0.35 0.18 0.02 0.38 0.09 0.03 0.37 0.15 0.02
Semantic Memory

Episodic Memory -
Benson Figure

- - - 0.11 0.49 0.01 - - -
Recall

Non-memory related domains

Attention/Executive
Digit Span Number Span

0.27 -0.16 0.01 0.28 -0.2 0.01 0.26 -0.13 0.02
Forward Forward

Attention/Executive
Digit Span Number Span

0.34 -0.23 0.01 0.34 -0.27 0.02 0.33 -0.23 0.02
Backward Backward

Attention/Executive
WAIS-R Digit

- 0.44 -0.16 0.05 - - - 0.43 -0.18 0.06
Symbol

Attention/Executive
Trail Making A Trail Making A

0.42 -0.18 0.44 0.39 -0.15 0.01 0.42 -0.19 0.59
rate rate

Attention/Executive
Trail Making B Trail Making B

0.41 -0.13 0.37 0.36 -0.16 0.05 0.41 -0.17 0.47
rate rate

Language/Executive - Letter Fluency - - - 0.33 -0.12 0.01 - - -

Visuospatial -
Benson Figure

- - - 0.28 -0.13 0.01 - - -
Copy

a. Trail Making rates were derived by dividing the number of correct lines completed by the time to completion.
b. Missing rate is the proportion of missing data due to non-cognitive problems for each neuropsychological test measure in each sample. Missing rates
were less than .06 (i.e., 6%) with the exception of the Trail-Making Test, parts A and B in Sample 1 and in the autopsy confirmed subset of Sample 1
(due to correct lines completed on the Trail-Making Test not being recorded until late in the study). When PCA was performed on Sample 1 without
the Trail-Making Test, and on Sample 1 and Sample 2 without imputation, results were consistent with those presented.

have contributed to the cognitive impairment. The correlation between factor loadings for PC2

computed separately from Samples 1 and 2 (using only tests that were identical or analogous in

both samples) was .99, indicating strong reproducibility. Thus, we conclude that about 50% of

the variance in UDS neuropsychological test scores in patients with probable AD is due jointly to

overall cognitive severity and to the relative pattern of severity of memory versus non-memory

deficits. Furthermore, these two factors can be consistently measured across independent cohorts

using standardized data from similar (though different) neuropsychological tests.
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2.4.3 Identification of Subtypes of Neuropsychological Deficit Patterns

To identify subgroups with distinct neuropsychological profiles, model-based clustering

was applied to the autopsy-verified subset of Sample 1 (as the gold standard), using the derived

factor scores for cognitive severity (PC1) and cognitive profile (PC2). Two clusters of participants

were determined by the model (Fig. 2.1A): Cluster 1 (n=637; 79.6% of participants) was generally

above the sample mean on the cognitive profile factor (PC2, mean=2.0) and nearly centered at

the mean on cognitive severity (PC1, mean=0.3); Cluster 2 (n=163, 20.4% of participants) was

generally below the mean on the cognitive profile factor (mean=-0.5) and also nearly centered at

the mean on cognitive severity (mean=-0.08). Thus, the two clusters are separated by cognitive

profile, but are largely overlapping on cognitive severity. The approximately 80% of participants

in Cluster 2 were thus classified as having a “typical” AD cognitive profile, while the remaining

20% of participants (Cluster 1) and were classified as having an “atypical” AD cognitive profile.

When the same clustering procedure was applied to Sample 1 (the entire sample) and the

number of clusters was set at two (based on results from the autopsy-verified subset), similar

clusters were observed and a similar proportion of typical (n=3761; 79.8%) versus atypical (n=950;

20.2%) classification was obtained (Fig. 2.1C). An analysis without pre-determining the number

of clusters gave similar results, but further split the two main clusters into sub-clusters. When the

identical clustering procedure was applied to Sample 2, two clusters (‘typical’ and atypical’) were

again identified, with similar characteristics (Figure 2.1E; typical n=497; 71.8% of sample versus

atypical n=195; 28.2% of sample).

To further explore the consistency of the classification procedure across different cohorts,

we applied the Sample 1 classification rule to the PC scores identified from participants in Sample

2 and investigated whether the Sample-1 based rule and the Sample-2 based classification agreed

in their assignment to a typical or atypical AD cognitive profile. The agreement rate was 94.7%:

all 497 “typical” Sample 2 participants (as shown in Figure 2.1E) were also called typical using

the Sample 1-determined rule; of the 195 “atypical” Sample 2 participants, 37 were misclassified
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as typical using the Sample 1 rule. For completeness, the classification rules from Samples

1 and 2 are given below and R code to compute these assignments from the underlying raw

neuropsychological test scores is available on the Alzheimer’s Disease Cooperative Study website

(https://data-archive.adcs.ucsd.edu).

The classification rules are given in the equation 2.1

If Pr(Y = Typical|X) =
π̂1 f1(X)

π̂1 f1(X)+ π̂2 f2(X)
> 0.5 (2.1)

we classify Y as typical, otherwise we classify it as atypical

Here, X is the pair of scores (PC1,PC2) for the participant, computed from the standard-

ized neuropsychological test scores using the factor loadings given in Table 2.2, and standardized

using the data in Table 2.1; and f1(X) and f2(X) are two-dimensional normal densities with

µ1 = (−0.03− 0.50)T , µ2 = (0.08,1.29)T , Σ1 =
( 3.76 −0.25
−0.25 0.54

)
, Σ2 =

(
2.57 0.51
0.51 2.23

)
for typical AD

and atypical AD, in Sample 1. In Sample 1, π̂1 is 0.72 and π̂2 is 0.28; these are the proportions for

typical AD and atypical AD. In Sample 2, π̂1 is 0.65 and π̂2 is 0.35, and µ1 = (−0.13−0.72)T ,

µ2 = (0.24,1.32)T , Σ1 =
( 3.79 −0.62
−0.62 0.51

)
, Σ2 =

(
2.45 0.65
0.65 1.97

)
.

Mean differences on the individual neuropsychological test scores for the typical and

atypical AD subtypes are illustrated graphically in Figures 2.1(B), (D) and (F). Raw test scores

are scaled to z-scores based on normative data from approximately 3600 cognitively normal

UDS participants21,22. Atypical participants had better performance than typical participants

on episodic and semantic memory measures on average, but slightly worse performance on

measures of attention and executive function. Table 2.3 compares demographic features and

clinical and neuropsychological test scores for typical and atypical participants within each of the

three datasets.
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Figure 2.1: Results of model-based clustering and z-scores on neuropsychological test measures
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2.4.4 Demographic and Clinical Characteristics of Neuropsychological Sub-

types

Univariate linear models showed that higher scores on PC2 (i.e., a higher measure of

atypicality in cognitive profile) are significantly associated with younger age, male sex, lower

probability of APOE e4, less severe global dementia, higher GDS scores, and greater likelihood

that the clinician believes depression contributes to cognitive impairment (all p values <0.001). A

multivariate linear regression model (omitting clinician-rated depression due to collinearity with

GDS score) showed that all variables significant in the univariate models remained significantly

associated with atypicality, with similar effect sizes.

2.4.5 Neuropathological Characteristics of Neuropsychological Subtypes

Approximately 82% (800/976) of individuals diagnosed with probable AD in Sample 1

met neuropathological criteria for AD at autopsy. The 176 misdiagnosed cases included 14 with

frontotemporal lobar degeneration (FTLD), 49 with DLB, 62 with CVD, and 56 with low levels of

AD pathology that did not reach diagnostic thresholds. Cognitive profile classification of these

individuals was as follows. FTLD: 78.6% typical (11 typical, 3 atypical); DLB: 55.1% typical (27

typical, 22 atypical); CVD: 69.3% typical (43 typical, 19 atypical); low level of pathology: 78.6%

typical (44 typical, 12 atypical).

A number of the 800 individuals who met neuropathological criteria for AD had a secondary

pathological diagnosis. These included 4 with secondary FTLD, 269 with secondary DLB and 271

with secondary CVD. Cognitive profile classification of these individuals was as follows. AD and

secondary FTLD: 100% typical (4 typical, 0 atypical); AD and secondary DLB: 82.1% typical

(221 typical, 48 atypical); AD and secondary CVD: 81.9% typical (222 typical, 49 atypical).

Those with AD and no secondary pathological diagnosis included 79.9% typical (163 typical, 41

atypical).
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Overall, a lower Braak stage was associated with a higher likelihood of an atypical

cognitive profile (Fig. 2.2A): 32% (76/238) of Braak stage 0 to IV, 17.2% (43/250) of Braak

stage V, and 16.0% (77/480) of Braak stage VI were classified as atypical (Braak stage was

missing for 8 participants). Linear regression showed a strong inverse relationship between

“atypicality” score (PC2) and Braak stage treated as an ordinal predictor (p<0.001). There was

only a marginally significant negative linear relationship between atypicality score and degree

of neocortical plaque pathology (p=0.04; Fig. 2.2B). When both neuropathological measures

were included in a multivariate model, there was a highly significant negative effect of Braak

stage (p<0.001) and no significant effect of plaque pathology. Similar results were obtained when

these analyses were restricted to the 800 participants with neuropathologically-confirmed AD (Fig.

2.2c, d). Univariate linear regression models showed no significant relationship between degree

of atypicality in cognitive profile and the presence of FTLD pathology (n=18), DLB pathology

(n=318) or CVD pathology (n=333).

2.4.6 Stability of Neuropsychological Subtype classification over time

Because the UDS clinical and neuropsychological evaluations were repeated approxi-

mately annually, 2,944 of the 4,711 participants with probable AD in Sample 1 had two or more

evaluations, including the baseline evaluations which were used to determine the Table 2.2 factor

loadings and thus define the cognitive atypicality score (PC2). We used these fixed factor loadings

in Table 2.2 to calculate the degree of cognitive atypicality from test scores at each subsequent

evaluation. For participants in the “atypical” cluster at baseline, the mean cognitive atypicality

score was 2.02 at baseline, 1.33 at the second evaluation, and then only decreased by 0.34 over

the next two annual evaluations. For those in the “typical” cluster at baseline, the mean cognitive

atypicality score was -0.50 at baseline, -0.33 at the second evaluation, and then increased by only

0.11 over the next two evaluations. Thus, the cognitive “atypicality” score is relatively stable over

a four-year interval.
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Figure 2.2: Proportion of typical and atypical participants by Braak and CERAD rating
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Table 2.3: Mean (SD) demographic characteristics, clinical test scores, and neuropsychological
test scores for typical and atypical AD subtypes within each sample

Sample 1 Sample 2 Neuropath confirmed AD
Typical Atypical Typical Atypical Typical Atypical

N 3,761 950 497 195 637 163
Age 76.5 (9.1) * 74.6 (10.5) * 75.0 (9.5) * 72.4 (10.2) * 77.5 (9.5) * 74.9 (11.6) *
Sex: Female - N(%) 2191 (58.3) * 489 (51.5) * 272 (54.7) 108 (55.4) 313 (49.1) 73 (44.8)
Education 14.2 (3.5) 14.4 (3.9) 15.5 (3.0) 15.3 (3.3) 15.1 (3.1) 15.1 (3.4)
MMSE 20.6 (2.5) * 21.6 (2.2) * N/A N/A 20.3 (2.6) * 21.4 (2.3) *
MoCA N/A N/A 13.7 (3.6) * 15.1 (3.1) * N/A N/A
CDR Global rating 1.01 (0.5) * 0.82 (0.4) * 1.04 (0.5) * 0.78 (0.4) * 1.11 (0.5) * 0.91 (0.4) *
CDR Sum of boxes 5.84 (2.7) * 4.53 (2.1) * 6.10 (2.8) * 4.36 (2.2) * 6.52 (2.9) * 5.10 (2.1) *
Geriatric Depression Scale 2.29 (2.5) * 2.86 (2.8) * 2.07 (2.5) * 3.05 (2.8) * 2.18 (2.3) * 2.61 (2.4) *
Functional Activities Questionnaire 17.9 (7.6) * 14.0 (7.7) * 18.6 (7.0) * 13.2 (7.2) * 20.4 (7.0) * 16.4 (6.5) *
APOE e4 Positive – N (%) 1818 (60.7) * 389 (52.8) * 221 (68.0) * 49 (43.0) * 355 (60.8) 88 (59.1)
Depressiona – N (%) 781 (20.8) * 229 (24.1) * 112 (22.5) 50 (25.6) 111 (17.4) 29 (17.8)
Neuropsychological Test Measures

Memory related cognitive domains
Epi. Memory Para. Immed. recall 2.72 (2.2) * 7.37 (2.9) * 4.29 (3.1) * 9.13 (3.3) * 2.41 (2.1) * 7.14 (3.4) *
Epi. Memory Para. Delayed recall 0.54 (0.9) * 5.00 (3.2) * 0.59 (1.2) * 6.03 (3.3) * 0.44 (0.9) * 4.73 (3.2) *
L./ S. Memory Confrontation Naming 18.4 (7.0) * 21.8 (5.5) * 22.1 (6.9) * 25.0 (5.6) * 18.4 (7.0) * 23.0 (4.9) *
L./ S. Memory Category Fluency 16.3 (6.8) * 19.8 (8.3) * 16.0 (7.0) * 19.1 (6.6) * 15.2 (6.6) * 18.3 (6.8) *
Epi. Memory Benson Figure Recall N/A N/A 0.78 (1.5) * 4.64 (3.7) * N/A N/A

Non-memory related cognitive domains
Att./ Exec. Digit Span Backward 4.44 (1.9) * 3.82 (1.6) * 4.40 (2.1) * 3.63 (1.7) * 4.48 (1.9) * 3.81 (1.6) *
Att./ Exec. Digit Span Forward 6.93 (2.2) * 6.49 (2.1) * 6.50 (2.3) * 6.06 (1.9) * 6.84 (2.4) * 6.65 (2.4)
Att./ Exec. WAIS-R Digit Symbol 22.1 (13.7) * 19.7 (12.1) * - - 20.8 (13.5) * 18.0 (12.6) *
Att./ Exec. Trail Making A T. 74.1 (41.4) * 85.2 (41.7) * 70.7 (40.0) 73.3 (40.0) 80.3 (42.7) * 94.7 (43.9) *
Att./ Exec. Trail Making A CL. 21.8 (5.2) 21.6 (5.3) 22.3 (5.4) 22.4 (4.9) 20.8 (6.4) 20.3 (6.7)
Att./ Exec. Trail Making B T. 245.8 (77.4) * 264.0 (64.2) * 244.4 (80.8) * 257.8 (69.7) * 250.3 (75.2) * 269.5 (60.9) *
Att./ Exec. Trail Making B CL. 12.4 (10.1) * 11.3 (9.5) * 12.8 (10.6) 12.3 (10.3) 11.3 (10.0) * 10.1 (9.7)
L./ Exec. Letter Fluency - - 18.4 (8.9) 17.8 (7.5) - -
Visuospatial Benson Figure Copy - - 12.9 (4.4) 12.6 (4.4) - -
Abbreviations: Epi. = Episodic; Para. = Paragraph; Immed. = Immediate; L./S. = Language/Semantic; Att./Exec. = Attention/Executive; L./Exec. =
Language/Executive; T. = Time; CL. = Correct Lines.
a. Clinician impression that depression contributed to participant’s cognitive deficits.
*Statistically significant difference between AD subtypes within the sample (P < 0.05)
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2.4.7 Rates of Decline of Neuropsychological Subtypes over time

The rate of global cognitive/clinical decline was compared between participants with

typical or atypical cognitive profile at baseline using linear mixed effects models. Decline was

measured by MMSE, CDR sum of boxes and CDR global ratings, over two years with three annual

evaluations in Sample 1 (baseline, year 1, year 2). Predictors were time (year), AD cognitive

subtype, and time x AD cognitive subtype interaction. As expected, patients worsened significantly

over time, with estimated trends for MMSE -2.59 [-2.73, -2.44] points/year, CDR global ratings

0.32 [0.31, 0.34] points/year and CDR sum of boxes 2.03 [1.94, 2.12] points/year (Figure 2.3). The

interaction between time and AD cognitive subtype was statistically significant for MMSE (0.35

[0.03, 0.67] points/year) and CDR global ratings (-0.04 [-0.08, -0.001] points/year) indicating

that atypical patients declined more slowly than typical patients. Mean two-year decline on the

MMSE was 4.47 points for the cognitively atypical AD patients and 5.17 points for the cognitively

typical patients, a 15.7% difference in total change between subtypes. The mean two-year increase

in CDR global ratings 0.56 points for the cognitively atypical AD patients and 0.65 points for

the cognitively typical patients, a 16.1% difference. The mean two-year increase in CDR sum of

boxes was 3.75 points for the cognitively atypical AD patients and 4.07 points for the cognitively

typical patients, an 8.5% difference.

2.5 Discussion

Our objectives were to identify heterogeneity in cognitive profiles of patients with mild-to-

moderate probable AD dementia and to determine whether cognitive profiles are systematically

related to the clinical course and neuropathological features of the disease. To achieve our objec-

tives we: (1) determined an empirically-derived classification rule based on neuropsychological

test scores that revealed cognitive subgroups within a sample of mildly-to-moderately demented

patients with probable AD; (2) validated the classification rule in an independent sample of AD
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Figure 2.3: Model fitted lines comparing rate of change over two years for typical and atypical
AD
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patients, tested with a similar set of neuropsychological measures; (3) assessed the stability of

subtype classification over time and compared rates of cognitive and functional decline among

cognitive subgroups; and (4) compared neuropathological features among cognitive subgroups.

Model-based clustering of PCA factor scores produced “typical” (79.6% of the sample) and

“atypical” (20.4% of the sample) cognitive profile subgroups, in a sample with autopsy-verified

AD. The typical profile was characterized by greater deficits in episodic and semantic memory than

in attention and executive functions, whereas the atypical profile had similar levels of impairment

across all cognitive domains. From another perspective, the atypical profile could be viewed as

having milder than expected memory impairment given the severity of deficits in attention and

executive functions. Similar results were obtained in the discovery (typical: 79.8%; atypical:

20.2%) and independent validation (typical: 71.8%; atypical: 28.2%) samples. Furthermore, the

exclusion of participants for whom depression may have contributed to cognitive impairment did

not alter this pattern of results. The reproducibility of these subtypes was evidenced by strong

correlation in factor loadings between samples as well as the similarity of the identified cognitive

profiles, and is notable given minor differences in the specific neuropsychological tests that were

administered across the original and validation samples.

The two-cluster solution we observed is consistent with previous results [60]. Although

the prevalence of the atypical cognitive subtype was lower (20-28%) in the present study than in

some previous reports (e.g., 29%-52%; Scheltens et al., 2017), this difference could be related to

our exclusion of clinically diagnosed variant phenotypes of AD (e.g., logopenic PPA, posterior

cortical atrophy) that would usually not be included in an AD clinical trial. These phenotypic AD

variants were not excluded in other studies [10, 12, 45, 59, 60, 65] which may explain why they

identified a “preserved” memory subtype that we did not observe.

A strength of our study is the neuropathological validation of the clinical diagnosis of

probable AD in a large subset of patients. Approximately 82% of those diagnosed with probable

AD met neuropathological criteria for AD, and 68% of those had a secondary pathological
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diagnosis in addition to AD (e.g., DLB, CVD). The distribution of atypical cognitive profiles in

patients with autopsy-verified AD was similar in those with (typical: 81.6%; atypical: 18.4%)

and without (typical: 79.9%; atypical: 20.1%) secondary pathology. There was a slightly higher

percentage of atypical cognitive profiles in those who had been clinically misdiagnosed (i.e.,

those with non-AD pathology only; typical: 70.5%; atypical: 29.5%) compared to the overall

sample, but this difference was not significant. These findings suggest that the atypical cognitive

profile we observed in a subset of patients is not due to presence of non-AD pathology, but more

likely is driven by variability in the severity and distribution of AD pathology. Furthermore, our

results suggest that identification of an atypical cognitive profile will not be particularly helpful

in differentiating between those with or without AD pathology, supporting the need to measure

amyloid and tau biomarkers in selecting participants for clinical trials.

Consistent with the notion that variability in AD pathology drives the typical-atypical

distinction, we found that the typical cognitive profile was associated with higher Braak stages

than the atypical cognitive profile. There was a strong inverse relationship between Braak stage

and atypicality score that was not modified significantly by level of neocortical plaque pathology.

There was no significant independent relationship between level of plaque pathology (i.e., amyloid

burden) and atypicality score. These results suggest that the typical-atypical distinction is largely

determined by tangle pathology. The milder than expected memory impairment (given the severity

of deficits in executive functions and attention) of the atypical group suggests that they have less

pathology in the entorhinal cortex, hippocampus, and surrounding temporal lobe neocortex than

do those in the typical subgroup. This is consistent with their lower average Braak stage (which

reflects both severity and distribution of tangle pathology) and lower likelihood of having an

APOE e4 genotype compared to the typical subgroup. Other researchers have also reported more

extensive tangle pathology and a higher prevalence of APOE e4 in AD patients with substantial

relative memory impairment [10]. The typical-atypical classification does not simply reflect stage

of disease, however, since subgroup classification remained stable across longitudinal assessments
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(i.e., patients with an atypical profile did not develop a typical profile over time). Our ability to

address the effect of comorbid pathologies on degree of atypicality was limited by the lack of

systematic characterization of the severity of comorbid neuropathology in the NACC database.

Comparison of rates of cognitive and functional decline among cognitive subgroups showed

that the atypical cognitive profile was associated with slower decline on the MMSE (typical: 2.59

points/yr.; atypical: 2.17 points/yr.) and the CDR (global rating, typical: .32/yr.; atypical: .27/yr.;

sum of boxes, typical: 2.03 points/yr.; atypical: 1.87 points/yr.). Over 2 years, there was an

approximately 16% difference in rate of decline on both the MMSE and the CDR global rating,

and an approximately 9% difference on the CDR sum of boxes score. These differences in rate of

decline are noteworthy, given the typical therapeutic effect sizes reported in AD trials, suggesting

that cognitive heterogeneity may be a source of variability that should be considered in trial design

and interpretation. For example, a trial that included 80% typical and 20% atypical patients (the

composition of our sample) would need approximately 10% more participants (678 versus 616)

than a trial that included only typical patients to achieve 90% power to observe a 25% difference

between treatment and control groups in two-year rate of decline on the MMSE. However, if the

composition of the group were 50% typical and 50% atypical, a distribution that has been observed

in several cohorts [60], approximately 30% more participants (794 versus 616 for 90% power)

would be needed. Thus, cognitive heterogeneity could have a considerable effect on statistical

power, depending upon the prevalence of atypicality.

The decision rule we developed with model-based clustering methods can be used to

classify patients with probable AD into typical and atypical subtypes in other samples tested

with the same or similar neuropsychological tests. When we used the rule developed in the

original sample to classify patients in the autopsy-confirmed subsample or the independent sample

there were low misclassification rates (5% and 1%), and high sensitivity (both 100%) and good

specificity (81% and 94%) in relation to classification using their own models. Thus, cognitive

subtype can be determined easily in the future by applying our proposed decision rule.
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Our study has several limitations. First, data regarding timing and reasons for dropout

were limited, restricting the opportunity for modeling of early drop outs who might have had

more aggressive decline within the 4-year study timeline. However, the rate of drop-out in the

typical and atypical subgroups was similar. Second, the neuropathological diagnosis of AD was

based on a relatively low threshold of Braak stage III or higher with a CERAD neuritic plaque

rating of moderate or frequent. Our overall pattern of results did not change, however, when we

use more stringent neuropathological diagnostic criteria (Braak stage V or higher with a CERAD

neuritic plaque rating of frequent, data not shown). Finally, the UDS neuropsychological test

battery is brief and limited in scope, which may have precluded our ability to detect additional

cognitive subtypes; however, similar 2-cluster solutions have been reported in four different

AD cohorts using four different neuropsychological test batteries [60], suggesting that this is a

robust finding. Nevertheless, more detailed neuropsychological assessment may reveal additional

cognitive subtypes, particularly in early dementia.

Despite these limitations, our results show that we can reliably identify distinct cogni-

tive profiles among clinically-diagnosed probable AD patients. These cognitive profiles are

differentially associated with tangle pathology and have different rates of decline; hence cogni-

tive heterogeneity in probable AD may have implications for clinical trials, especially therapies

targeting tau.

2.6 Study Funding

The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are

contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846

(PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey,

MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin,

PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD),
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P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30

AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30

AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI

Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank

LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller,

MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD),

P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD),

P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300

(PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas

Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John

Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD).

2.7 Afterthoughts before next Chapter

This chapter demonstrated several essential findings and conclusions, which may contribute

to AD clinical studies and neuroscience more broadly. In addition, for the first time, this study

introduced me to the world of randomized trials and has motivated me to think about developing

statistical methods to solve problems in randomized trials. As described in section 2.3.3, only

two years of the available four years of follow-up data were used for longitudinal analysis in

this study due to apparent informative censoring after two years. Discontinuation is always

a significant problem in randomized trials. In the UDS data set, the reasons for dropout are

mainly because of physical or cognitive problems. However, it is more complicated in a real

trial. Participants may terminate and withdraw from the study due to many reasons such as

adverse events, caregiver issues, guess of the blinded arms, and other factors. Regulatory guidance

emphasizes the importance of carefully handling missing data and describing the intercurrent

events, which we will discuss in Chapter 4. What can we contribute to this problem from a
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statistical aspect?

In the subsequent chapters, we will introduce some classic and commonly used methods

for dealing with dropouts in randomized trials with examples in both primary and sensitivity

analysis. Then we propose a novel approach called ”Doubly Robust” imputation, which can obtain

consistent estimators by specifying a missingness model and an imputation model. This method

can fix the bias when the imputation model is misspecified by using a correct missingness model.

This chapter, in full, has been published and may be found as ”Qiu, Yuqi; Jacobs, Diane M.;

Messer, Karen S.; Salmon, David P.; Feldman, Howard H. Cognitive Heterogeneity in Probable

Alzheimer’s Disease: Clinical and Neuropathological Features, Neurology, 93 (8), e778-e790,

2019”. The dissertation author was the primary author on this paper.

28



Chapter 3

Doubly Robust Imputation in Longitudinal

Studies, with an Application to an

Alzheimer’s Clinical Trial

3.1 Abstract

Motivated by the informative dropout that is common in FDA-regulated trials for Alzheimer’s

disease, we propose a doubly-robust imputation approach to adjusting for dropout-related bias in

longitudinal studies. The approach uses standard software for estimating equations and is appro-

priate for the estimand of interest in clinical trials. We show that most doubly robust estimators

can be written in imputation form, an approach that may be easier to understand and apply. We

present two particular imputation estimators which are closely related to existing doubly robust

estimators for longitudinal data. We illustrate the imputation approach using historical data from

the Alzheimer’s Disease Cooperative Study (ADCS), a major center for clinical trials. Similar

ADCS data is commonly used by us and others to support the design of current clinical trials,

increasing the relevance of the illustration. Simulation studies support the theoretical properties of
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the estimators and provide comparisons with alternative doubly-robust approaches. The imputation

approach we present has the advantage of computational simplicity and transparency compared to

existing approaches in the literature and may be suitable for use in FDA regulated trials as well as

a variety of other applications.

3.2 Introduction and background

Outcome-related and treatment-related dropouts are common in randomized trials for

Alzheimer’s disease and other dementias. In planning such studies, it is common to assume

dropout rates of 25% or more, with higher dropout expected among patients who progress

faster and on active treatment. The primary outcome measures in Alzheimer’s clinical trials are

typically within-subject change from baseline on several relatively demanding neurocognitive

tests; subjects are assessed in the clinic at regular intervals over a period of a year or more. In

such FDA-regulated trials, the primary analysis would typically compare model-based estimates

of the difference between treatment arms at the final time point, following FDA guidance and

practices which support using a restricted set of models, with limited adjustment by covariates. In

particular, a mixed model with repeated measures (MMRM) would often be used, parameterized

with categorical time. The covariance matrix would be fully parameterized or a simple working

covariance matrix with a sandwich estimate of variance in a generalized estimating equations

(GEE) approach. Together, these trial characteristics make it likely that substantial dropout will

occur. The dropout may not satisfy the missing-at-random (MAR) assumptions needed to obtain

consistent estimates from the primary analysis.

In this setting, interest lies in obtaining a robust and consistent estimate of a parameter

defined as the solution to an estimating equation U , such as the mean difference between arms at a

specified time point, or a model coefficient such as the treatment-by-time interaction. Importantly

the parameter of interest is the solution of U applied to the ”full” data, by which we mean data
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with no dropout. However, the primary intent-to-treat analysis from the trial would apply U to

the observed data, which would indeed provide unbiased estimates of the parameter if the data

are missing completely at random (MCAR). Because of the complex patterns of dropout and the

limited modeling assumptions incorporated into U , the MCAR assumption is unlikely to hold,

and this approach will generally provide biased estimates. If the observed data are MAR, then

maximum likelihood methods can provide consistent and efficient estimates [68], but here U may

not capture the correct likelihood.

In this setting of longitudinal data with informative dropout, Paik (1997) [44] defined

a consistent estimator by first applying a sequential regression approach to impute the missing

outcome values and then applying U to the completed data. Consistent estimates may also be

obtained by inverse probability weighting (IPW) of the estimating equations U applied to data

from completers only, using the estimated probability of dropout, as reviewed in Robins et al.

(1995) [50]. They showed that any efficient estimator in this setting takes the form of an augmented

IPW estimator (AIPW) that combines a regression modeling component, which ’imputes’ missing

data, and an IPW component, which weights observed data. Scharfstein, Rotnitzky and Robins

(1999) [58] noticed that these AIPW estimators enjoy a double robustness property, in that they are

consistent when either the regression model is correct or the model for the dropout probability is

correct. Bang and Robins (2005) [2] first extended such DR estimators to longitudinal monotone

missing data using a sequential regression approach, but the method did not apply to estimating

equations U . Tsiatis and colleagues [68, 69] first extended optimal AIPW estimating equations to

the longitudinal setting with dropout. However, the estimator is computationally complex and did

not demonstrate superiority in simulations. Seaman and Copas (2009) [63] developed a simpler

DR generalized estimating equation (GEE) estimator for estimating regression coefficients in

longitudinal studies, which still requires specialized optimization routines. Since then, doubly

robust estimators have been extensively developed, as reviewed in Seaman and Vansteelandt (2018)

[64]. However, doubly robust longitudinal estimating equations seem to be rarely used in practice,
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possibly because existing approaches are complex and require specialized software.

Here, we develop two imputation-based doubly robust estimators for longitudinal data

based on the full data estimating equations U , using the approaches of Paik (1997) [44] and

Seaman and Copas (2009) [63]. These imputation-based estimators require only standard software

tools, and one is computationally simpler than existing approaches. We show that any AIPW

estimator can be written in substitution (plug-in) form, for U which are linear in the data, and

conversely. This development also provides a simple and direct proof of double robustness for

these estimators. We also extend the approach of Bang and Robins (2005) [2] to estimating

equations and relate it explicitly to Paik (1997) [44]. We compare the performance of these

estimators by simulation and by application to data from a prodromal stage trial in Alzheimer’s

Disease.

3.2.1 The MCI trial of Donepezil

Figure 3.1: Estimated mean of ADAS-Cog for Donepezil group over time

Donepezil is a widely used cholinesterase inhibitor that improves symptoms and might

delay the clinical diagnosis of Alzheimer’s disease in subjects with the amnestic form of mild
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cognitive impairment (MCI). A randomized, double-blind, placebo-controlled, parallel-group

trial was conducted by the Alzheimer’s Disease Cooperative Study (ADCS) between March 1999

and January 2004 [46]. The study compared the time to progression to possible or probable AD

among 769 subjects with MCI randomized to treatment for 36 months with either Donepezil

(n=253), Vitamin E (n=257), or placebo (n=259). Dropout rates by month 36 were 42.7%, 38.1%,

and 32.0% for the Donepezil, Vitamin E, and placebo groups, respectively. Figure 3.1 displays

the apparent bias due to dropouts for the mean score on one of the primary outcome measures,

the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), for the Donepezil

group. The left panel shows that patients who eventually dropped from the study had a much

higher ADAS-Cog, indicating greater cognitive impairment than patients who completed the study,

and that the gap increases over time. The right figure shows that the estimated mean from a DR

approach is consistently higher than the mean of the observed data, indicating that a DR approach

may help to improve estimated effects from this trial. These data are taken from the data archives

at the ADCS; these and similar data are often used in simulation studies that inform the design of

current AD trials.

3.2.2 Aims and organization of this chapter

The chapter is organized as follows: in section (3), we describe notation and give details

of the IPW and sequential regression approaches which are the building blocks of our longitudinal

DR methods. We briefly review existing DR methods for cross-sectional data in section (4) and

longitudinal data in section (5). In section (6), we develop the DR imputation approach and show

its equivalence with an AIPW approach. In section (7), we use the DR imputation approach to

define two specific DR estimators. We use simulation to compare the two DR imputation estimators

with an extension of the Bang and Robins estimator, as well as with maximum likelihood and GEE

approaches, in section (8). Section (9) presents an application to a trial in Alzheimer’s Disease,

and section (10) presents discussions and conclusions.
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3.3 Regression modeling and inverse probability weighting ap-

proaches to longitudinal dropout

3.3.1 Notation and data structure

Assume we have N iid subjects potentially observed at times j = 1, . . . ,M, and for individ-

ual i at time j there is data Li j = (Yi j,Xi j), where Yi j is a univariate outcome and Xi j is a vector of

covariates; there may also be a vector of always observed time independent baseline covariates

Xi0. Let L̄i j = (Xi0,LT
i1, ...,L

T
i j) denote the historical data from time 1 to j. We will often drop

the subscript i when the meaning is clear. We assume the distribution of L̄M has finite second

moments.

Each subject can potentially drop out from the study. Let R j ∈ {0,1} be a binary missing

indicator, so that we observe R j and (R jY j,R jX j). Under the assumption of monotone dropout,

if R j = 0 then for t > j, Rt = 0. Let C j be a censoring indicator, where C j = 1 indicates j is the

last observed time for subject i, otherwise C j = 0, and let J be the index of the last observed time

point, so that CJ = 1. Under the MCAR assumption, R j is independent of L̄M. Under the missing

at random assumption (MAR), P(R j = 1|L̄M,R j−1 = 1) = P(R j = 1|L̄ j−1,R j−1 = 1) so that the

probability of a missing outcome depends only on previously observed data. We also assume

there is probability bounded away from zero of seeing full data over the whole support of LM:

P(RiM = 1|L̄M)> ε > 0.

3.3.2 Estimating equations which define the estimand

We assume that there is a vector of parameters β, and a corresponding vector of sufficiently

smooth estimating equations U(·,β) such that β∗ is the unique solution to E[U(L̄M,β)] = 0. One

or more of the parameters in β∗ is the primary estimand of interest in the study. Then the solution

β̂ to the full data estimating equations ∑
N
i=1U(L̄iM,β) = 0 is consistent for β∗ and asymptotically
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normal, by standard arguments. For the convenience of notation, we will often suppress the

dependence of U on β.

In particular we will often assume the data follow a generalized linear model for the mean

µ j = E(Yj|X j), with link function g(µ j) = X jβ. A common choice for longitudinal data is to

assume a multivariate normal distribution with a specific form for the variance-covariance matrix

of the random errors, such as a mixed effects model, which includes both fixed effects and random

slopes and intercepts. Thus U might be taken to be the score equations from the likelihood, or

alternatively, the generalized estimating equations (GEE) [25] applied to the full data:

N

∑
i=1

Uk(L̄iM) =
N

∑
i=1

∂µT
i

∂βk
V−1

i (Yi−µi) = 0 (3.1)

where Vi is an assumed working covariance matrix for Yi. Here, the efficient choice for V−1
i is the

true covariance matrix of the data. However, under general regularity conditions, the solution β̂ to

the full data GEE’s (3.1) is consistent for β∗ and asymptotically normal, for arbitrary V .

With missing data, instead of (3.1) we observe

N

∑
i=1

Uk(L̄iJ) =
N

∑
i=1

∂µT
i

∂βk
V−1

i Di(Yi−µi) = 0 (3.2)

where Di = diag(Ri1, . . . ,RiM). The solution β̂ to (3.2) remains consistent for the solution to (3.1) if

the data are MCAR, since then E[R jYj] = E[Y j] and so (3.2) is a consistent estimator of E[Uk(L̄iM)].

However, when the dropout is MAR so that E[R jYj] 6= E[Yj], then in general the solution β̂ to (3.2)

will not be consistent for β.
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3.3.3 IPW estimating equations, for dropout that is MAR

Robins et al. (1995) [50] showed how to incorporate inverse-probability weights into U

applied to observed data when the dropout is MAR. Let

λ j = P(R j = 0|R j−1 = 1, L̄ j−1) (3.3)

be the discrete-time hazard of dropout at time j, let

π j =
j

∏
t=1

(1−λt) = P(R j = 1) (3.4)

be the corresponding unconditional probability of being observed at time j, and let the weight

matrix be Wπ = diag(R1/π1, ...,RM/πM). The λ’s and thus π j and Wπ can be consistently estimated

by logistic regression if the MAR assumption holds. Then the inverse probability weighted GEE

(WGEE) has estimating equation

N

∑
i=1

UW
k (L̄iJ) =

N

∑
i=1

∂µT
i

∂βk
V−1

i Wi(Yi−µi) = 0. (3.5)

For longitudinal data with dropout that is MAR, WGEE provides consistent estimates of the

parameters β∗ provided that the estimates of the π j’s are consistent, since then E[R jYj/π j] = E[Y j].

3.3.4 Regression-based sequential imputation, for dropout that is MAR

Alternatively, Paik (1997) [44] defined a sequential regression approach for imputing the

missing outcome values. Consider a subject with J = j, so that Yk is missing for k > j. The idea

is to define a set of parametric imputation models m j
k(L̄ j) = E[Yk|L̄ j]. By the MAR assumption,

E[Yk|Rk = 0, L̄ j] = E[Yk|R j+1 = 1, L̄ j]. Hence we may use observed data to construct a consistent

estimate m̂ j
k, and then use the estimate to impute missing values as Ŷk = m̂ j

k(L j).

36



We give a formal version of Paik’s sequential imputation algorithm, which will make the

relation with Bang and Robins (2005) [2] more explicit :
Algorithm 1: Paik’s sequential mean imputation

Result: For a given k, the completed data Ŷ I
ik, in which all missing values at time k

have been imputed.

1 Initialize: Identify all subjects i with Ji ≥ k−1. Use these data to regress the

observed values of Yk on L̄k−1, to obtain a consistently estimated model m̂k−1
k (L̄k−1).

For subjects with Ji ≥ k−1 let

Ŷ k−1
ik =

 m̂k−1
k (L̄i,k−1) if J = k−1

Yik if J > k−1

2 For s = k−2, ...,1 sequentially: Regress the values of Ŷ s+1
ik on L̄is to obtain a

consistently estimated model m̂s
k(L̄s) . For all subjects with Ji ≥ s let

Ŷ s
ik =

 m̂s
k(L̄s) if Ji = s

Ŷ s+1
ik if Ji > s

3 Final step: Output the completed data Ŷ I
ik = Ŷ 1

ik

The above imputation is iterated through times k = 2, . . . ,M, requiring M(M−1)/2 esti-

mated models, and then estimating equation (2.1) is solved using the completed data:

N

∑
i=1

Uk(L̂I
iM) =

N

∑
i=1

∂µT
i

∂βk
V−1

i (Ŷ I
i −µi) = 0. (3.6)

Under regularity conditions, this procedure gives consistent estimates for the parameters

β∗ whenever the mean models ms
k are consistent and the data are MAR, as then the imputed

estimating equation is a uniformly consistent estimator of the estimating equations E[U(L̄M,β)].
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3.4 Doubly robust estimators for cross-sectional data

Doubly robust estimators combine both an imputation model and estimated IPW’s into

an augmented inverse probability weighted (AIPW) estimator, in such a way that the estimator is

consistent if either the imputation model or the IPW model is consistent. For expository reasons

we give the cross-sectional form of these AIPW estimators here, as they are simpler and easier to

understand.

AIPW doubly robust estimating equations

For cross sectional data (i.e. M=1), the augmented inverse probability weighted (AIPW)

form [51] of an estimating equation U is

N

∑
i=1

(
Ri

π̂i
Ui +(1− Ri

π̂i
)Ĥ(Xi0)

)
= 0 (3.7)

where Ĥ(X0) (the imputation model) is an estimate of E[U |X0].

It is easy to see that such an AIPW estimator is doubly robust if the data are MAR. If

π̂ is a consistent estimate of π, then E[R] = π, and it follows from the MAR assumption that

E[RU/π] = E[R]E[U ]/π. Similarly, E[(1−R/π)H(X0)] = 0, so that (3.7) is consistent for the

estimating equation E[U ] = 0. If Ĥ(X0) is consistent for E[U |X0], write (3.7) in the form

N

∑
i=1

(
Ĥ(Xi0)+

Ri

π̂i
(Ui− Ĥ(Xi0)

)
= 0 (3.8)

which is again consistent for the estimating equation E[U ] = 0.

Regression-based doubly robust estimating equations

Scharfstein, Rotnitzky and Robins (1999) [58] showed that a doubly robust AIPW estimat-

ing equation (3.8) can sometimes be written in a regression-based form. Construct the estimate
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Ĥ(X0, π̂) by regressing outcome RiUi on predictors (RiXi0,Riπ
−1
i ) using a generalized linear model.

Then the score equation for π−1 in this model is exactly

N

∑
i=1

Ri

π̂i

(
Ui− Ĥ(Xi0)

)
= 0

and so the estimating equation ∑
N
i=1 Ĥ(X0, π̂) = 0 is implicitly of the form (3.8) and thus of the

form (3.7).

3.5 Doubly robust estimators for longitudinal data

Optimal longitudinal AIPW estimating equations

In the longitudinal setting with MAR dropout, Tsiatis (2006) [68] showed that any consis-

tent and asymptotically normal estimator of β∗ using the observed data solves an AIPW estimating

equation of the form

N

∑
i=1

(
Ci,M

πi,M
U(L̄iM)+

M−1

∑
j=1

(
Ci, j−λi, j+1Ri, j

πi, j+1

)
H j(L̄i j)

)
= 0 (3.9)

where H j is an arbitrary function. The choice H j = E(U(L̄M)|L̄ j) yields the estimator with the

smallest variance. Tsiatis, Davidian and Cao (2011) [69] proposed an estimator that attains the

locally smallest asymptotic variance, using a linear mixed effects model to obtain estimates Ĥ j,

and introducing an additional parameter that solves a minimization problem. More generally, when

estimates are substituted for the unknown quantities λ j (and thus π j) and H j = E(U(L̄M)|L̄ j), the

solution β̂AIPW to (3.9) has the following properties [68] :

1. β̂AIPW is consistent for β∗ and asymptotically normal if either the missingness models λ̂ j or

the imputation models Ĥ j are consistent.

2. If the imputation models are consistent, then β̂AIPW has smaller asymptotic variance than
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the corresponding IPW estimator.

3. If both sets of models are consistent, β̂AIPW has the smallest asymptotic variance among all

doubly robust estimators of β.

4. For given estimators Ĥ j and λ̂ j, the asymptotic variance of β̂AIPW depends on their proba-

bility limits (which may or may not be consistent), but not their asymptotic variance.

Seaman’s doubly robust GEE

Seaman and Copas (2009) [63] proposed a two-step procedure for the case where U is a

GEE of the form (3.1). In particular, for j ≤ J, take

Ĥ j(L̄ j) =
∂µT

i
∂βk

V−1
i (Ŷ j

k −µ) (3.10)

where Ŷ j
k is from Paik’s sequential regression as in (1). For j > J, H j can be taken to be 0, as

the weights in (3.9) are then 0. Then, Newton-Raphson is used to solve the AIPW estimating

equations

N

∑
i=1

(
Ci,M

π̂i,M
U(L̄iM)+

M−1

∑
j=1

(
Ci, j− λ̂i, j+1Ri, j

π̂i, j+1

)
Ĥ j
)
= 0. (3.11)

Bang and Robins sequential doubly robust imputation for YM

The most commonly used approach was introduced by Bang and Robins (2005) [2], for the

particular case where the estimand of interest is E(YM). The algorithm uses sequential estimation

to impute the values of YM. However, it includes π̂
−1
j as a covariate in each imputation model in

order to achieve double robustness, similar to the ideas in section 3.4. The algorithm also differs

from Paik’s sequential imputation in that it uses imputed values ŶM as outcomes in each estimation

step, even when observed values are available.
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Algorithm 2: Bang & Robins DR sequential mean imputation for YM

Result: The completed data Y BR
iM , in which all missing values at time M have been

imputed, using a doubly robust method.

1 Preliminary step: Estimate π̂2, ..., π̂M by maximum likelihood.

2 Intialize: Identify subjects with Ji ≥M−1. Regress the observed values of YiM on

L̄i,M−1, π̂M, to obtain a consistently estimated model m̃M−1
M (L̄M−1, π̂M). For subjects

with Ji ≥M−1 let Ỹ M−1
i,M = m̃M−1

M (L̄i,M−1, π̂i,M).

3 For s = M−2, ...,1 sequentially: Regress the values of Ŷ s+1
M on L̄s, π̂s+1 to obtain a

consistently estimated model m̃s
M(L̄s, π̂s+1). For all subjects with Ji ≥ s let

Ỹ s
i,M = m̃s

M(L̄i,s, π̂i,s+1)

4 Final step: Output the completed data Ŷ BR
iM = Ỹ 1

i,M.

For the special case U(L̄M) =YM−β, Bang and Robins (2005) [2] show that the estimator

of E(YM) given by ∑
N
j=1 Ỹ 1

i,M satisfies an estimating equation of the form (3.9), and thus is doubly

robust, using arguments as in section 3.4.

3.6 Longitudinal AIPW estimating equations in imputation

form

We show that the AIPW estimating equations (3.9) can be written in a form that applies

the full data estimating equations U to data which has been completed using a set of doubly-robust

imputed observations, for the special case when U(L̄M) is a GEE. This approach has the advantage

that standard software can be used to solve for the estimates βAIPW , and provides a framework for

flexible construction of DR estimators.
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3.6.1 The optimal AIPW equation in imputation form

Here we show that for any DR estimator written in AIPW form (3.9), there is an equivalent

estimator in substitution (plug-in) form

N

∑
i=1

U(L̂DR
i,M) =

N

∑
i=1

∂µT
i

∂βk
V−1

i (Ŷ DR
i −µi) = 0 (3.12)

where Ŷ DR
i is a corresponding doubly robust estimator of the full data Y .

First, let πM+1 = πM and λ1 = λM+1 = 0. Then (3.9) can be rewritten as

N

∑
i=1

M

∑
j=1

(
Ci j−λ j+1Ri j

π j+1

)
H j(L̄i j) = 0. (3.13)

Also, it is easy to see that ∑
M
j=1(C j− λ̂ j+1R j)/π̂ j+1 = 1, since π̂ satisfies (3.4).

Next, as in Seaman and Copas (2009) [63], for U(L̄M) equals to a GEE of the form (3.1)

we have

H j =
∂µT

∂β
V−1(E[Y |L̄ j]−µ).

Then substituting into (3.13), switching the order of summation, and recognizing that ∑
M
j=1(Ci j−

λ̂ j+1Ri j)/π̂ j+1 = 1 we obtain that the efficient doubly robust estimating equations can be written

as:

∂µT

∂β
V−1

{(M−1

∑
j=1

(
C j−λ j+1R j

π j+1
)E[Y |L̄ j]

)
−µ
}

(3.14)

Finally, we can write

Ŷ DR =

{(M−1

∑
j=1

(
C j− λ̂ j+1R j

π̂ j+1
)Ê[Y |L̄ j]

)}
,

recognizing that the right hand side is representation (3.13) of a general DR estimator of E[Y ] in

its AIPW form.

Form (3.12) has the advantage that, once the values of Ŷ DR
i are obtained using any preferred
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method, standard software for the estimating equations U can be used to solve for the doubly

robust estimates βAIPW . From the theory in Tsiatis (2006), we can be assured that any efficient

doubly robust estimator can be written in this form. Although we have given the argument in the

special case of generalized estimating equations, the argument holds for any estimating equation

that is linear in Y.

We may also use the considerations above to provide a simple demonstration that a general

estimator β̂AIPW is doubly robust from below equations.

E
(
(
Ci,M

πi,M
)U(L̄iM)+

M−1

∑
j=1

(
Ci, j−λi, j+1Ri, j

πi, j+1

)
H j(L̄i j)

)
=

E
(

U(L̄iM)+(
Ci,M

πi,M
−1)U(L̄iM)+

M−1

∑
j=1

(
Ci, j−λi, j+1Ri, j

πi, j+1

)
H j(L̄i j)

)
=

E
[
U(L̄iM)

]
+E

[M−1

∑
j=1

(
Ci, j−λi, j+1Ri, j

πi, j+1

)(
H j(L̄i j)−U(L̄iM)

)]
= 0

Noting that R j ⊥ H j−1 by the MAR assumption, on the one hand, if the probabilities in (3.9)

are correct, then E[C j] = λ j+1π j; on the other hand, if the Ĥ j are consistent, then E[Ĥ j(L̄ j)−

U(L̄M)] = 0. Thus, in either case (3.9) is consistent for the complete data estimating equation

E[U(L̄M,β)] = 0.

3.7 Imputation approaches to DR estimating equations

Here we apply the doubly robust imputation framework to construct two particular DR

estimators for longitudinal data.

3.7.1 Doubly robust sequential imputation for longitudinal GEE’s

An immediate consequence of (3.12) is that for any complete-data linear GEE U(L̄M), a

doubly robust estimator of β∗ in the case of MAR longitudinal dropout is given by:
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1. For each subject i, impute a doubly robust full data vector using the AIPW estimate of Yik,

k = 1, . . .M

Ŷ AIPW
ik =

CikYik

π̂ik
+

k−1

∑
j=1

(
Ci j− λ̂i j+1R j

π̂i j+1
)m̂ j

k(L̄i j) (3.15)

with the models m̂ j
k(·) obtained by Paik sequential regression as in section 3.3.4.

2. Substitute Ŷ AIPW
i for Y DR

i in (3.12), which may then be solved using standard software to

obtain a doubly-robust estimate of β∗.

We denote the final estimator as β̂AIPW−I, to indicate AIPW estimating equations with sequential

imputation. Note that this is equivalent to the doubly robust estimator in Seaman and Copas (2009)

[63].

3.7.2 Computationally simpler baseline × time imputation for DR GEE’s

Form (3.12) of the optimal AIPW estimating equations can be used to motivate a computa-

tionally simpler approach using only baseline covariates and time for the imputation models, at

the price of potential loss in efficiency. We start with (3.14), and note that E[Yk|L̄ j] = Yk for j ≥ k.

Hence we can write the kth component of Ŷ DR as

Ŷ DR
k =

M

∑
j=k

(
C j−λ j+1R j

π j+1
)Yk +

k−1

∑
j=1

(
C j−λ j+1Rt

π j+1
)Ŷ j

k .

We next take Ŷ j
k to be an estimate of E[Yk|X0] independent of j, where X0 contains baseline

covariates and time. We are now outside the set of possible efficient estimators, except in the

special case where E[Yk|L̄ j] = E[Yk|X0]. Then Ŷ DR
k can be written as

Ŷ AIPW−S
k =

Rk

π̂k
Yk +(1− Rk

π̂k
)Ŷk, (3.16)

since ∑
M
j=k((C j− λ̂ j+1R j)/π̂ j+1) = Rk/π̂k.
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We may estimate, for example, a single mixed effects model m̂(X0, t) using all the observed

responses as outcomes, regressed on any always observed covariates, such as baseline covariates

X0 and time. Then Ŷik = m̂(Xi0, tk).

To obtain the doubly robust estimator, substitute Ŷ AIPW−S
i for Ŷ DR

i in (3.12), and solve for

β̂ using standard software. We denote the final estimator β̂AIPW−S as the simplified imputation

model only uses baseline covariates and time.

If the covariates are sufficient to render the data MAR and the model for m is correct,

then β̂AIPW−S will be doubly robust. Note that only one mixed effects model is estimated for the

imputation instead of M(M−1)/2 models as in the above two approaches. The cost is a potential

loss of efficiency, and a stronger assumption regarding the MAR conditions.

3.7.3 Bang and Robin’s imputation for longitudinal GEE’s

We apply (3.12) to extend Bang and Robin’s approach to longitudinal estimating equations.

Using the algorithm in section 3.5, set M = k and compute Ŷ BR
ik sequentially for k = 2, ...,M−1 .

Substitute Ŷ BR
ik for Y DR

i in (3.12). Equation (3.12) may then be solved using standard software to

obtain a doubly-robust estimate of β∗. We denote the final estimator β̂BR, since this incorporates

the Bang and Robins estimator in the AIPW equations.

3.8 Simulations

We use simulation to investigate the performance of three DR imputation-based methods

for a normal longitudinal generalized estimating equation under MAR dropout: AIPW-I, based

on augmented inverse probability weighting using sequential imputation (section 3.7.1); AIPW-S,

a computationally simpler version of the sequential impuation approach using only baseline

covariates (section 3.7.2); and BR, the extension of Bang and Robins’ regression-based estimator

(section 3.7.3). We study two different estimands: E[YM], and a vector of regression coefficients β̂.
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For comparison, we include two traditional regression approaches, maximum likelihood

by generalized least squares (GLS) using an unstructured covariance matrix and generalized

estimating equations using an independence working covariance matrix (GEE). We also include

correction for dropout using Paik’s sequential mean imputation (PAIK, section 3.3.4), and using

inverse probability weighting (WGEE, section 3.3.3). We computed a point estimate and a

bootstrap estimate of variance for each method with an associated 95% normal-theory confidence

interval. We consider both a moderate dropout rate (≈ 30%) and an extreme dropout rate (≈ 50%).

There are four situations, according to which of the missingness models and/or the imputation

models are either correctly specified or are misspecified.

3.8.1 The data generating model, the primary estimand, and specification

of correct and incorrect imputation models

Longitudinal responses Yi j were generated from the mixed effects model

Yi j = αi +bit +β0 +β1x1 +β2x2 +β3x2× t + ε

with sample size n = 500, and three time points t = 1,2,3. The bootstrap sample size was 300.

The primary estimand is either E[Y3] or the vector of regression coefficients.

Here, αi and bi were random intercepts and slopes from a bivariate normal with mean

µ =
(

1
6

)
and covariance Σ =

(
0.3 0.1
0.1 0.2

)
. The covariates were generated as x1 ∼ N(5,1), x2 ∼

Bernoulli(0.5), with ε∼ N(0, 1). The data generating coefficients were β0 = 0.5, β1 = 2, β2 =

−0.25, β3 =−6. Thus the expectation of Yi j was 11.375,14.375,17.375 for j = 1,2,3.

For all methods, the correctly specified mean model includes categorical time, (x1,x2), and

the interaction of time and x2. For sequential imputation methods, the correct models are of the

form Yj ∼Y1 + ...+Yj−1 +x1 +x2 +e for j = (2,3). For all methods, the misspecified imputation

model excludes x2 and the corresponding interaction terms.
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3.8.2 The dropout generating model and specification of correct and incor-

rect models for missingness

We generated dropouts according to the logistic regression models

logit(λ2) = γ2 +0.5× y1−2× x2 + e

logit(λ3) = γ3 +0.1× y1 +0.2× y2−4× x2 + e,

where λi j is the hazard of dropout as defined in formula (2.3). For the moderate dropout scenario,

γ2 =−7.625,γ3 =−5.225 and the empirical mean dropout rates from 500 Monte Carlo repeats

were 10.4% for Y2 and 30.1% for Y3. For the high dropout scenario, γ2 =−6.5,γ3 =−3.5 and the

mean dropout rates were 22% and 51% for Y2 and Y3, respectively. Misspecified models for the

missing mechanism omitted x2.

3.8.3 Performance metrics and sample sizes

We report Monte Carlo estimates (sample size 500) for the bias, standard deviation, and

root mean square error (RMSE) of the point estimate, and for the confidence interval, the coverage

probability, and mean interval score of Gneiting and Raftery (2007) [23] given by:

S(l̂, û,θ) = (û− l̂)+
2
α

(
(l̂−θ)1{θ < l̂}+(θ− û)1{û < θ}

)
, (3.17)

where θ is the true parameter of interest, and the interval limits are (l̂, û) and 1{} denotes the

indicator function. A GLS model with correct covariates, categorical time, and unstructured

correlation matrix will serve as the gold standard in our comparisons.
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Results for estimating E(Y3), under moderate dropout

The top left panel of Table 3.1 shows results for estimating E(Y3) under moderate dropout

when both imputation and dropout models are correct. The ”gold standard” GLS (correct maximum

likelihood) model had a bias of -0.03. GEE had a worse bias of 0.09 as expected. All three doubly

robust methods had bias smaller than 0.01, outperforming the gold standard. Paik’s imputation

performed well, and WGEE performed fairly with bias and less efficient. In all moderate dropout

scenario simulations, around 1% of Monte Carlo repeats for WGEE failed to converge, and 4% of

bootstrap estimates failed to converge, resulting in substantial standard errors in some cases for

WGEE.

When the imputation model was correct, but the dropout model was misspecified (top right

panel), all doubly robust methods had acceptable bias, ranging from 0.037 to -0.005, with RMSEs,

coverage probabilities, interval scores, Monte Carlo standard deviations, and average estimated

standard errors all similar to the gold standard. As expected, WGEE with an incorrect dropout

model had a relatively larger bias and was inefficient.

When the dropout model was correct, but the imputation model was misspecified (bottom

left panel), AIPW-I and AIPW-S still had acceptable bias and coverage probabilities, with some

loss of efficiencies compared to prior scenarios. The B&R estimator had an unacceptably large

bias and low coverage probability (85%), although it performed better than the non-doubly robust

regression methods, which performed disastrously. WGEE had a bias of -0.22 and coverage

probability of 68%; the incorrect GLS model had a coverage probability of almost 0, while a GEE

model with wrong mean structure and wrong working correlation matrix performed the worst.

The bottom right panel showed results when both models were incorrect. The doubly

robust methods performed better than the regression methods in every measure, although all

methods had worse performance than in other scenarios.
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Table 3.1: Comparisons of E(Y3) among methods in six evaluations: Bias, Root mean square
error (RMSE), interval scores (Ints), coverage probability (Covp), Monte Carlo standard deviation
(MCSD) and average standard errors (Ave SE), from 500 simulation runs and for B = 300
bootstrap.

Bias RMSE Ints Covp MCSD Ave SE Bias RMSE Ints Covp MCSD Ave SE
Y correct P correct Y correct P incorrect

AIPW-I -0.01 0.30 1.39 0.95 0.30 0.31 -0.00 0.30 1.37 0.95 0.30 0.30
B & R -0.01 0.30 1.36 0.95 0.30 0.30 -0.01 0.30 1.36 0.95 0.30 0.30
AIPW-S -0.01 0.31 1.39 0.95 0.31 0.31 0.04 0.31 1.39 0.95 0.31 0.31
Paik -0.01 0.30 1.35 0.95 0.30 0.30 -0.01 0.30 1.35 0.95 0.30 0.30
WGEE -0.03 0.36 1.84 0.92 0.36 0.31 0.09 0.37 1.81 0.90 0.36 0.31
GLS -0.03 0.30 1.36 0.94 0.30 0.30 -0.03 0.30 1.36 0.94 0.30 0.30
GEE IND -0.09 0.31 1.38 0.94 0.29 0.30 -0.09 0.31 1.38 0.94 0.29 0.30

Y incorrect P correct Y incorrect P incorrect
AIPW-I -0.01 0.31 1.44 0.95 0.31 0.31 -0.68 0.74 7.65 0.42 0.31 0.31
B & R 0.31 0.45 2.34 0.85 0.33 0.33 -0.62 0.69 6.42 0.50 0.31 0.31
AIPW-S -0.04 0.38 1.72 0.95 0.38 0.36 -0.62 0.71 6.44 0.55 0.36 0.36
Paik -0.65 0.72 6.95 0.45 0.31 0.32 -0.65 0.72 6.95 0.45 0.31 0.32
WGEE -0.22 0.72 6.92 0.63 0.68 0.34 -1.41 1.56 33.98 0.11 0.66 0.34
GLS -1.14 1.17 22.53 0.04 0.29 0.31 -1.14 1.17 22.53 0.04 0.29 0.31
GEE IND -2.18 2.20 63.94 0.00 0.30 0.31 -2.18 2.20 63.94 0.00 0.30 0.31

Results for estimating regression coefficients β, under moderate dropout

Table 3.2 presents results for estimating the vector of six regression coefficients since

the analysis model used a categorical time profile. Performance metrics, averaged across the

coefficients, are : (1) average percent bias, (2) z-score (among estimators within simulation

condition) of the relative RMSE’s, (3) z-score of the interval score, (4) average coverage probability.

Details are given in Appendix A.

With both models correctly specified, both the GLS and GEE estimating models gave an

average 1% bias, AIPW-I and AIPW-S gave an average percent bias less than 0.05%, and B&R

gave an average percent bias of 2%. The AIPW-I and AIPW-S methods had similar standardized

RMSEs, standardized interval scores, and average coverage probabilities as the correct GLS and

mean imputation methods, which were relatively better than other methods.

When the imputation model was correctly specified, but the dropout model was not, AIPW-
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I and AIPW-S again performed as well as the gold standard on all metrics. The B&R method had

an average 2.9% bias, which was not as good as other DR methods but not unacceptable. Notably,

in these situations, the AIPW-S method had no actual loss in efficiency compared to more complex

approaches.

When the dropout model was correctly specified, but the imputation model was not, the

regression-based B&R method performed unacceptably, with a 23% bias and a large standardized

RMSE and interval score. The AIPW-I and AIPW-S methods retained their good performance,

with average percent bias less than 0.8% . Notably, the AIPW-I estimator had comparable efficiency

to the correct regression methods.

When both models were misspecified, regression methods had average percent bias of

Table 3.2: Comparisons of β̂p among methods in four evaluations: Average % absolute values of
bias (Bias*), Standardized RMSE in average (RMSE*), Standardized interval scores in average
(Ints*) and average of coverage probabilities (Covp*), from 500 simulation runs and for B = 300
bootstrap.

Bias* RMSE* Ints* Covp* Bias* RMSE* Ints* Covp*
Y correct P correct Y correct P incorrect

AIPW-I 0.00 -0.45 -0.48 0.94 0.00 -0.45 -0.48 0.94
B & R 0.02 -0.20 -0.10 0.96 0.03 0.43 0.27 0.94
AIPW-S 0.00 -0.45 -0.48 0.94 0.01 -0.45 -0.48 0.94
Paik 0.00 -0.46 -0.48 0.94 0.00 -0.46 -0.48 0.94
WGEE 0.07 0.05 0.22 0.92 0.10 0.38 -0.26 0.92
GLS 0.01 -0.46 -0.48 0.94 0.01 -0.46 -0.48 0.94
GEE IND 0.01 -0.45 -0.48 0.92 0.01 -0.45 -0.48 0.92

Y incorrect P correct Y incorrect P incorrect
AIPW-I 0.00 -0.44 -0.47 0.95 0.04 -0.35 -0.38 0.58
B & R 0.23 0.44 0.44 0.92 0.55 1.96 2.20 0.67
AIPW-S 0.01 -0.40 -0.45 0.92 0.04 -0.34 -0.40 0.67
Paik 0.10 -0.14 -0.18 0.24 0.10 -0.14 -0.18 0.24
WGEE 0.36 0.89 0.86 0.26 0.48 1.22 1.44 0.15
GLS 0.43 1.04 1.22 0.12 0.43 1.04 1.22 0.12
GEE IND 0.47 1.18 1.41 0.08 0.47 1.18 1.41 0.08

Details about how to derive the adjusted evaluations were in ??
For Bias*, RMSE* and Ints*, the lower the value, the better the performance.

For Covp*, the higher the value, the better the performance.
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more than 40% and average coverage probabilities lower than 15%. In contrast, the AIPW-I and

AIPW-S methods had average percent bias less than 5% and average coverage probabilities higher

than 55%. The B&R approach had the worst performance, indicating that it was not robust in this

situation.

3.8.4 Extreme scenario

We conducted a similar comparison of these estimators in the extreme scenario, where the

mean dropout rates for Y2 was 22% and for Y3 was 51%. Other simulation parameters were kept

the same. Results were qualitatively similar to the moderate dropout scenario, with generally good

performance of the doubly robust AIPW-I and AIPW-S estimators compared to the GLS estimator

and much worse performance of the BR estimator. In some scenarios, the loss of efficiency of

AIPW-S relative to AIPW-I became apparent, although its performance was still good. WGEE

was very problematic due to convergence issues. Details are given in the Appendix A.

3.8.5 Summary of simulation results

The two doubly robust methods, AIPW-I and AIPW-S, demonstrated performance com-

parable to efficient MLE estimators whenever the imputation models were correctly specified in

these simulations. When the imputation model was incorrect, but the dropout model was correct,

the two AIPW doubly robust estimators still performed well, with low bias and good coverage

probabilities, although with some loss of efficiencies. By contrast, the purely regression-based

methods (GLS, GEE, Paik imputation) performed unacceptably, as expected. When both models

were incorrectly specified, the doubly robust AIPW estimators outperformed the regression-based

methods. WGEE did not perform competitively, perhaps due to convergence issues.

Among doubly robust estimators, the BR approach was not competitive with the two AIPW

estimators in these simulations, either in its original version or as extended here to apply to general
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estimating equations. This was especially true if the imputation model was misspecified, where

the BR estimator was not acceptable. Comparing the AIPW methods, AIPW-I performed the best.

The simplified AIPW-S estimator was comparable in the moderate (30%) dropout scenario but

had increased bias and less efficiency in the extreme (50%) dropout scenario, although it was still

acceptable.

3.9 Application to the MCI trial

The MCI trial was described in section 4.3.2. The primary outcome of the trial was time

to progression to Alzheimer’s disease (AD), and the main conclusion was that Vitamin E had no

benefit, while Donepezil had some benefits over placebo at 12 months but not at 36 months. This

is in accordance with the known symptomatic benefits of Donepezil. The trial showed no benefit in

secondary analyses comparing within-patient change on the two cognitive measures Mini-Mental

State Examination (MMSE) and the Alzheimer’s Disease Assessment Scale-Cognitive Subscale

11 (ADAS-Cog 11) at 36 months.

Here, for simplicity, only the Donepezil group and placebo group are used. The two groups

had similar demographic and clinical characteristics at baseline. MMSE and the ADAS-Cog 11

are used as our repeated measures outcomes. Higher MMSE and lower ADAS-Cog 11 indicate

improved cognition. These measures were assessed at baseline, 12 months, 24 months, and 36

months. The missing rates for the Donepezil group and the placebo group were 26.1% and 16.6%

at 12 months, 34.0% and 29.3% at 24 months, and 42.7% and 32.0% at 36 months.

We compared results from the two doubly robust estimators, AIPW-I and AIPW-s, and an

MMRM model with an unstructured correlation matrix and discrete time, fitted by GLS. These

models included categorical time, baseline outcome, arm, and the interaction between arm and

time, similar to the standard analysis model for AD trials. The estimand of interest was the

interaction between arm and time, which parameterizes the treatment effect at each time point.
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Figure 3.2: Regression coefficients of interaction terms

The dropout models for the doubly robust methods included arm and historical Y as covariates.

Normal theory confidence intervals were constructed using bootstrap estimates of variance; the

bootstrap sample size was 500.

Figure 3.2 displays the point estimates and 95% confidence intervals at each time point

for the three approaches. Using the MMRM approach, the Donepezil arm showed an estimated

benefit of 0.574, 0.346, and 0.302 additional points on the MMSE over the placebo arm at years 1,

2, and 3, respectively (top panel). However, none of these differences were significant at the 5%

level. The two doubly robust methods derived similar estimates for the regression coefficient of

the interaction terms; however, the standard errors at earlier time points were smaller, achieving a

53



significant treatment effect at one year. The standard errors from DR methods became larger over

time. However, we observed a similar phenomenon for the ADAS-Cog 11 in the lower panel, not

attaining statistical significance. This is consistent with the known efficacy profile of Donepezil

and the known poor performance of the ADAS-Cog 11 in an MCI population. When we mimic a

two-year trial using only data from the first two years to estimate the year one and year two effects,

the differences between methods are even more apparent (Table 3.3).

Table 3.3: Donepezil trial, MMSE outcome: estimated time and time x treatment effects at one
and two years, by different estimators. Data from years 1 and 2.

1-year 2-yr 1-yr:Donepezil 2-yr:Donepezil
Beta SE Beta SE Beta SE Beta SE

MMRM -0.618 0.235 -1.099 0.216 0.486 0.350 0.342 0.321
AIPW-I -0.730 0.159 -1.250 0.215 0.583 0.245 0.368 0.314
AIPW-S -0.725 0.160 -1.233 0.215 0.572 0.247 0.335 0.321

Standard errors for AIPW-I and AIPW-S were derived from 500 times bootstrap.

3.10 Discussion

In this chapter, we have shown that any doubly robust estimator that can be written in

AIPW form can also be written in a substitution (plug-in) form, for estimating equations that are

linear in the data. We use this framework to propose an imputation approach, AIPW-I, to construct

a doubly robust estimator suitable for longitudinal estimating equations with dropout. We also

propose a related but computationally simpler imputation estimator that uses only baseline data

for the imputation model, AIPW-S. Finally, we use the imputation framework to extend the Bang

and Robins approach for doubly robust estimates of a mean to more general estimands defined by

estimating equations, in the setting of longitudinal data with dropout.

We compare the performance of these three DR imputation estimators through extensive

simulations. The AIPW-I estimator performed well, equivalent to correct MLE models when the

imputation model is correct, and showed good robustness and efficiency when the dropout model,
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but not the imputation model, was correct. The simplified AIPW-S method performed as well as

AIPW-I in all but the extreme simulation scenario. At each time point, AIPW-S has the form of a

cross-sectional DR estimator, which is easy to interpret and compute. The original B&R estimator

is also easy to compute, as is the extension to estimating equations presented here. The B&R

estimator has been widely used in applications in its original formulation for estimating a mean.

However, its performance in our simulations was the worst. Therefore, it is not recommended

here.

These DR methods provide a good opportunity for sensitivity analysis in randomized

trials and other settings. In our application to a trial of Donepezil for Alzheimer’s disease, it was

clear that significant dropout induced differential bias in sample means compared between study

arms (Figure 3.1). Because the dropout rates depended on disease severity and were significantly

different between the Donepezil group and the placebo group, it is unclear whether a standard

regression model would produce consistent estimates. In such a situation, DR methods can be

helpful as a sensitivity analysis for the primary analysis. Because of the imputation form of

the proposed doubly robust estimators, the AIPW-I and AIPW-S estimators have promise in the

clinical trials setting. Future work will compare these doubly robust estimators to the more usual

multiple imputation approaches used in this setting.

3.11 Afterthoughts before next Chapter

In this chapter, we reviewed some widely used methods and a novel ”Doubly Robust”

approach to deal with monotone dropouts in longitudinal data, and compared their performance

through simulation studies. We proposed a substitution procedure for a general form of the doubly

robust method. We then developed a simplified form for the doubly robust method, which we

believe may be easier to interpret and apply in practice under the appropriate circumstance. Since

the substitution procedure has been demonstrated, how might investigators apply it in a randomized
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trial?

The next chapter will focus more on the regulatory guidance for randomized trials and

construct algorithms for doubly robust imputation, which may be useful in sensitivity analysis

for such trials, under the missing not at random (MNAR) assumption. Multiple imputation and

Paik’s sequential mean imputation are reviewed and compared with doubly robust imputation,

with algorithms incorporating the pattern mixture model framework.

This chapter, in full, has been submitted for publication as ”Qiu, Yuqi; Messer, Karen S.

Doubly robust imputation in longitudinal studies, with an application to an Alzheimer’s clinical

trial, submitted to Annals of Applied Statistics”. The dissertation author was the primary author

on this paper.
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Chapter 4

Doubly Robust Imputation for Randomized

Trials with Monotone Dropout under

Missing not at Random: Applications in

Alzheimer’s Trials

4.1 Abstract

Sensitivity analysis has been an important area of development in methodology for ran-

domized clinical trials. Regulatory guidelines emphasize the importance of conducting sensitivity

analysis when there is loss to follow-up and when intercurrent events occur. Multiple imputation

(MI) is one of the predominant missing at random (MAR) based methods used to deal with such

missing data. Alternatively, when the assumption of missing not at random (MNAR) has to

be incorporated into a sensitivity analysis, several extended MI methods such as δ-based and

reference-based MI approaches have been developed. We propose using a substitution-based

form of a doubly robust (DR) approach, building on our results from the previous chapter. In
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this chapter, we extend DR imputation to δ-based and reference-based approaches to address

the MNAR condition. Paik’s sequential mean imputation has also been reviewed and extended.

Then we compare the performance among these three imputation methods in a MAR scenario

and their δ-based and reference-based extensions in an MNAR scenario, with simulation studies

and application to two Alzheimer’s trials in different stages of the disease. Considering that DR

methods can deliver consistent estimation by correcting the bias through propensity scores even if

the imputation model is not specified correctly, this study supports DR imputation as a competitive

approach to performing sensitivity analysis for randomized trials.

4.2 Introduction

The International Council on Harmonization (ICH) and the Food and Drug Administration

(FDA) have recently held several workshops and published guidance elucidating how to describe

the estimand in clinical trials appropriately [66]. Since then, the word estimand in the context of

randomized trials has been extensively discussed in the statistical literature [9, 11, 18, 19, 22, 37].

One of the fundamental components of specification of the estimand requires the treatment of

any intercurrent events to be clarified specifically in the protocol. Discontinuation from the study

is a typical class of intercurrent events, and the outcome-related or treatment-related dropout is

prevalent in randomized trials for diseases such as Alzheimer’s disease (AD) and other dementias.

For example, in AD trials, the total attrition rate is often about 25% over two years. The treatment

group usually has a higher attrition rate than the placebo group, even if the randomization

performed well at baseline. Various methods to address dropout for randomized trials have

been developed, depending on assumptions regarding the missing data mechanism. Rubin and

Little (1976, 1992, 2002) [54, 29, 31] constructed and summarized the missing data mechanisms,

defining three main types, namely, data missing completely at random (MCAR), missing at

random (MAR), and missing not at random (MNAR). Little (1995) [30] further described similar
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mechanisms in longitudinal data with dropouts. In randomized trials, the dropout mechanism is

usually assumed to be MAR in the primary analysis, and the methods of handling it depend on the

attrition rate and whether covariates are missing or not.

Recently, regulatory reports have emphasized the importance of conducting sensitivity

analysis regarding the assumed dropout mechanism [17, 43], especially when severe dropout may

potentially cause significant bias in the study. The motivation for running a sensitivity analysis

is to examine the size of the treatment effect under several plausible assumptions regarding the

dropout, supposing that dropout is not missing at random. Sensitivity analysis in randomized

trials under the assumption of MNAR is a broad statistical topic of current interest. Consideration

of various sensitivity analyses is also important, because it can assist investigators in specifying

how to deal appropriately with intercurrent events, such as dropout, when defining the estimand.

The fundamental assumption of MNAR is that the missingness is related to unobserved data.

A straightforward idea to account for MNAR is to assume a specific model for the unobserved

data, conditional on observed information and dropout status. The pattern mixture model (PMM)

framework is a typical method that has been developed and used in this setting [39, 27, 28, 67].

The PMM framework defines several ”patterns” for the unobserved data, such as the time of

dropout, and jointly model the distribution of observed data and missingness for each pattern.

∆-based adjustment and reference-based adjustment are two commonly used approaches under the

PMM structure. Therefore, an approach that combines PMM with an imputation model becomes

an attractive approach to handle MNAR data.

Multiple imputation is the most commonly used method to impute missing values for

cross-sectional data or longitudinal data, whether the data is missing response or covariates, or

both. Rubin [55] proposed the original idea of multiple imputation, and since then, it has been

developed and explored in numerous studies in the context of randomized trials [35, 26, 53, 57, 7].

Multiple imputation is established based on the MAR assumption. By incorporating it with the

PMM framework, it can be extended to sensitivity analysis under the MNAR assumption [49, 11].
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Currently, most randomized trials use multiple imputation as the primary method for sensitivity

analysis in the protocols. Paik (1977) [44] developed a sequential mean imputation for longitudinal

data with missing response and proved that under MAR this approach is unbiased.

Doubly robust (DR) methods are an approach to modeling under the MAR assumption,

which were initially proposed by Robins [50] as an improvement to inverse probability weighting

(IPW) methods. The most common DR estimator, the augmented IPW (AIPW) estimator, has a

form that combines IPW and an imputation model. Scharfstein and colleagues [58] pointed the

”double robust” property of the AIPW estimator, namely that the AIPW model will be a consistent

estimator if either the IPW model or the imputation model is consistently estimated. DR estimation

has been explored for cross-sectional data with the missing outcome, and in the causal inference

setting [58, 2, 6, 52]. It has also been extended to longitudinal data with dropouts [2, 6, 52, 63].

Tsiatis and colleagues first presented the estimating equation of DR estimator in AIPW form for

longitudinal data, and then developed an improved approach to make it more efficient [68, 69].

In this study, we review the properties of the three proposed imputation methods under

MAR, and then develop approaches for sensitivity analysis in randomized trials based on Paik’s

mean imputation and the DR substitution method proposed in Chapter 3. We show that under

the condition that the imputation model is correctly specified, Paik’s mean imputation has a

somewhat heavier workflow than multiple imputation, but is competitive with multiple imputation

under either MAR or MNAR scenarios. Doubly robust imputation involves extra steps compared

to Paik’s mean imputation, to deriving the IPW (also called the ”propensity score”); however,

it performs as well as multiple imputation and Paik’s mean imputation. Considering that the

imputation model can never be completely accurate in real-life data, the DR method is proposed as

a competitive approach for sensitivity analysis, especially when there is comprehensive information

about dropouts to construct precise missingness models.
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4.2.1 Organization of this chapter

The chapter is organized as follows: in section (2), we introduce two AD trials in different

stages of the disease and elucidate the primary estimand for different scenarios. In section (3), we

describe notation and specifically review imputation methods for primary analysis under MAR in

randomized trials. The PMM framework with δ-based and reference-based approaches is explored

in section (4). Multiple imputation, Paik’s mean imputation, and DR imputation are implemented

using the PMM framework, and we demonstrate algorithms in detail for their use in sensitivity

analyses. In sections (5) and (6), the three imputation methods are evaluated and compared by

simulation studies, and then are applied to two AD trials under both the primary and sensitivity

analysis scenarios. Section (7) presents discussions and conclusions.

4.3 Alzheimer’s Trials

In this study, we acquired data from two randomized, double-blind, placebo-controlled

clinical trials conducted by the Alzheimer’s Disease Cooperative Study (ADCS) for patients at

different stages of Alzheimer’s disease.

4.3.1 DHA Trial

A randomized, double-blind, placebo-controlled trial of DHA supplementation in 402

individuals (238 in DHA and 164 in placebo) with mild to moderate Alzheimer’s disease (Mini-

Mental State Examination scores, 14-26) was conducted between November 2007 and May 2009

at 51 US clinical research sites of the ADCS [48]. The dropout rates by month 18 were 25.6%

and 22% for the DHA and placebo groups, respectively. The Alzheimer’s disease assessment

scale-cognitive subscale (ADAS-Cog) and clinical dementia rating sum of boxes (CDR-SOB),

two continuous scores widely used for cognition and function, were the two primary outcomes for

this study.
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4.3.2 Donepezil Trial

The ADCS conducted this trial between March 1999 and January 2004 ([46]). This

study compared the time to progression to possible or probable AD among 769 subjects with

mild cognitive impairment (MCI) randomized to treatment for 36 months with either Donepezil

(n=253), Vitamin E (n=257), or placebo (n=259). Dropout rates by month 36 were 42.7%, 38.5%,

and 33.2% for the Donepezil, Vitamin E, and placebo groups, respectively. This trial also assessed

the ADAS-Cog and CDR-SOB as secondary outcomes. We compare the Donepezil and placebo

groups in our example.

4.3.3 Primary Estimand

In November 2019, the International Council on Harmonization (ICH) released the final

version of an addendum (R1) to ICH E9 guidance [66] called ”Estimands and Sensitivity Analysis

in Clinical Trials” addressing statistical methods for use in clinical trials. In this context, the

estimand is specifically referring to the treatment effect associated with a clinical trial objective,

rather than its more general statistical meaning.

Four essential attributes need to be explicitly specified to describe the estimand, namely:

(1) defining the targeted study population; (2) defining the endpoint of interest; (3) describing any

intercurrent events and how to account for them in detail; (4) summarizing the variable of interest

at the population level. The estimand should be clearly specified in the protocol before conducting

the study.

Here, we describe the primary estimands for both AD trials as examples. The targeted

populations were elucidated in sections 4.3.1 and 4.3.2. For both estimands in this paper, we are

most interested in the change from baseline of ADAS-Cog 11 total score at the last time point

designed in the protocols (18 months for DHA trial and 36 months for Donepezil trial). We mainly

focus on the monotone dropout during the randomized trials, which is a typical intercurrent event.
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To summarize the variable of interest at the population level, we plan to report the modeled least

squares means of the difference in ADAS-Cog change between the control arm and active arm

at the last time point, as our unbiased estimators for our estimands. Under the two assumptions

regarding the dropout mechanism, MAR and MNAR, the specifications regarding dropouts and

how to handle them are different. For MAR, the dropouts are assumed to continue the effect of

treatment in their originally randomized arms. Therefore, a mixed effects model with repeated

measures (MMRM) would be appropriate to deal with the dropouts. Under the assumption of

MNAR, for example, if the dropouts are assumed to stop the treatment effect after withdrawing

from the study, multiple imputation with jump-to-reference adjustment would be appropriate.

Thus, the description of the estimand depends on the scientific question of interest, and determines

the appropriate statistical approach.

4.4 Summary of Imputation Methods in Primary Analysis

In a longitudinal data structure, we have N iid subjects potentially observed at times

j = 1, . . . ,M, and for individual i at time j there is data Li j = (Yi j,Xi j), where Yi j is an univariate

outcome and Xi j is a vector of covariates; there may also be a vector of always observed time

independent baseline covariates Xi0. Let L̄i j = (Xi0,LT
i1, ...,L

T
i j) denote the historical data from time

1 to j. We will often drop the subscript i when the meaning is clear. We assume the distribution of

L̄M has finite second moments.

Dropout can potentially happen on any individuals at time t > 1. Let R j ∈ {0,1} be a

dichotomous variable as missing indicator, so that R j and (R jYj,R jX j) are observed. Under the

assumption of monotone dropout, if R j = 0 then for t > j, Rt = 0. Let C j be another dichotomous

variable as censoring indicator, where Ci j = 1 indicates j is the last observed time for subject i,

otherwise Ci j = 0, and let J be the index of the last observed time point, so that CJ = 1. Under

the missing completely at random assumption (MCAR) assumption, R j and C j are independent
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of L̄M. Under the missing at random assumption (MAR), P(R j = 1|L̄M,R j−1 = 1) = P(R j =

1|L̄ j−1,R j−1 = 1) so that the probability of a missing outcome depends only on previously

observed data. We also assume there is probability bounded away from zero of seeing full data

over the whole support of LM: P(RiM = 1|L̄M)> ε > 0.

In most randomized trials, MAR is assumed to hold for the primary analysis. The analysis

population usually is an intent-to-treat (ITT) population, and the covariates usually are baseline

characteristics, which are fully observed. When dropouts happened, there are two widely used

ways to adjust the analysis for the attrition rate. If the attrition rate is low, a complete case analysis

would be used. Complete case analysis deletes subjects who dropped from the study and performs

the analysis on completers only. This method could make a consistent mean estimate when the

missing is at random and all useful covariates are measured and controlled in the analysis model.

However, because less information is used in the model, this method may be inefficient. If the

attrition rate is moderate or even worse, imputation methods would be more helpful. Imputation

methods file the missing responses in a variety of ways and make use of all observed information.

In the past, investigators commonly use last observation carried forward (LOCF). This method

replaces the missing responses by the last observed response, which is (Yj|R j = 0) = (Yt |Ct = 1)

where t < j. Worst case analysis is a more conservative alternative that investigators sometimes

use. This method imputes the worst observed response among the active arm for dropouts from the

active arm, and imputes the best response among the control arm for dropouts from the control arm.

It can be expressed as (Yj|R j = 0,arm) = Worst(Y |arm). These two methods are each problematic

in some situations; for example, LOCF would make biased estimates if the dropout is related to

the arm, while the worst case analysis is more appropriate for a sensitivity analysis instead of

the primary analysis. Regression-based imputation using maximum likelihood estimators and

multiple imputation are most commonly used at present. We will introduce these two methods and

two additional model-based imputation methods in this section.
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4.4.1 Maximum Likelihood Estimator

Under the assumptions of MAR and monotone dropout, a correctly specified regression

model such as a mixed effects model would make a consistent mean estimate for the primary

estimand. Comparing to the complete case analysis, this approach utilizes all the available

information thus obtains more power. A standard mixed effects model Yi j = ZT
i jBi +XT

i j β+ εi j

includes both random effects Zi jBi = bi1 +bi2t and fixed effects Xi jβi, where we usually assume

(bi1,bi2) are random variables distributed from bivariate normal distribution with µ = c(0,0) and

G =
( g1 g12

g12 g2

)
, and random errors εi j are from normal distribution with µ = 0 and variance σ2

0.

Zi =
(
1M,(ti,1, ..., ti,M)T) is the design matrix for random effects. This form can be rewritten as

Yi j = XT
i j β+ei j where the new error term ei = ZT

i Bi+εi follows a multivariate normal distribution

NM
(
µ= 0M,Σ= (

σ2
1,1 ··· σ2

1,M
... . . . ...

σ2
M,1 ··· σ2

M,M

)
)
. Specifically, σ2

j, j = Z jGZT
j +σ2

0 and σ2
j,k = Z jGZT

k . Transfer the

model to matrix form Y = Xβ+error, here error is a vector of n×m elements and its distribution

is Nn×m(0,D), thus the maximum likelihood estimator is β̂MLE = (XT D−1X)−1XTV−1Y . This

model can be generalized to similar form when each individual has different times of repeats. Also,

the generalized least squares (GLS) model, which only includes fixed effects but correlated εi j

within one subject i, can also be expressed in similar form as the maximum likelihood estimator.

Many statistical packages in different platforms can estimate the mixed effect model. It is

a commonly used analysis model for randomized trials. This method will consistently estimate

the primary estimand under the assumption that dropouts are still obtaining the treatment effect.

However, note that with MAR dropouts, both the mean structure and the covariance structure must

be correctly specified to get consistent estimates.

4.4.2 Multiple Imputation

When the attrition rate is high, the mixed effects model may have convergence issues,

especially when assuming a fully parameterized covariance structure. Multiple imputation was
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developed under MAR and there is a large literature using this method to fill in the missing

outcomes first, then performing the analysis model with complete imputed data. Rubin [55] first

introduced the multiple imputation idea by imputing a missing item with multiple values; since

then, many studies have explored the multiple imputation under different situations. Van Buuren

and colleagues [70] proposed a specific implementation of multiple imputation called ”multiple

imputation with chained equations” (MICE), which is frequently used in applications. MICE has

an iterative process to construct each imputed data set. A proper multiple imputation with chained

equation process is as below:

• Start from a variable Xp with missing items, regress Xp on other variables using all observed

values with linear regression or logistic regression depends on Xp to derive β̂ and residual

standard error σ̂.

• Draw β̂b and σ̂b from the Bayesian posterior of (β̂, σ̂) and impute missing values with β̂b

plus a random error with variance of σ̂2
b.

• Apply the above steps for every variable with missing values, and treat the already imputed

values as observed.

• Repeat the above steps Q times, which each Q is an iteration of the chain so that the imputed

values can be updated. At the end of Q times, one complete imputed data set is created.

• Repeat the above steps B times, and then we finally obtain B fully imputed data sets.

Many other imputation approaches have been developed in the multiple imputation liter-

ature to replace the Bayesian regression. However, most of them were proved to be ”improper”

multiple imputation. Rubin [55] demonstrated that multiple imputation with Bayesian regression

is proper; that is, it obtains with valid variance estimates by Rubin’s rule. Given the context of the

data, these approaches can be customized by setting the order of imputing Xp, choosing which

variables should be included as predictors for Xp, and so on.
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In the context of a standard randomized trial, we note that when the dropout is monotone

and covariates are fully observed, MICE seems unnecessary. Under the monotone dropout setting,

Y j should be predicted by previous Y1, ...,Yj−1 and X but not any Yk with k > j. Thus, this

sequential regression process would start from regressing the first Y j with missing items, usually

Y2, on Y1 and X . Since Y1 and X are fully observed, Y2 should be fully imputed after this step.

Along with the sequential regression process, each following Yj should be fully imputed, and

iteration makes no changes to the imputed values. This allows for a more efficient implementation

of multiple imputation.

4.4.3 Paik’s Imputation

Since MICE is not necessary for monotone dropout with covariates fully observed, other

imputation methods may perform as well as the sequential imputation described above. Here we

would like to briefly introduce an alternative sequential regression process called Paik’s mean

imputation [44] for handling longitudinal data with monotone dropouts. Paik’s mean imputation

forms the foundation for the doubly robust estimators for longitudinal data, which appear in the

literature [2, 63].

Paik defined a sequential regression approach for imputing the missing outcome values

under MAR. Instead of imputing Y2 at first, Paik’s mean imputation starts with imputing any Yj

regarding the dropout patterns. In other words, defining Ji = j|Ci j = 1 is the last observed time

point for subject i, we can categorize subjects into M dropout patterns from Ji = 1 represents Y1

observed only to Ji = M refers to completers. Then for a given time point k,1 < k≤M, we impute

the missing Yk by:

• First regress Yk on L̄k−1 for subjects with dropout pattern Ji ≥ k to obtain a consistently

imputation model m̂k−1
k (L̄k−1).

• Then impute Yk using model m̂k−1
k (L̄k−1) for subjects with dropout pattern Ji = k−1, and
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treat the imputed Yk as observed values.

• Sequentially from J = k−1 to 2, regress Yk on L̄J−1 for subjects with dropout pattern Ji ≥ J

to obtain consistently imputation model m̂J−1
k (L̄J−1). Impute Yk using the model for subjects

with dropout pattern Ji = J−1, and treat the imputed values as observed for next sequence.

Both multiple imputation and Paik’s imputation use sequential regressions to obtain the

same number of imputation models. The main difference between multiple imputation process

and Paik’s mean imputation process is that multiple imputation starts imputation from the first Yj

with missing items and uses imputed Yj as a covariate in the following sequences to impute Yk

where k > j. In contrast, Paik’s imputation starts imputation simultaneously with Y2 to YM and

uses imputed Yj as outcomes in the subsequent regression models. Under the monotone dropout

assumption, the sample size of the sequential regression models decreases for multiple imputation

but increases for Paik’s mean imputation, while the number of covariates increases for multiple

imputation but decreases for Paik’s mean imputation. The total computational load remains the

same between the two methods.

4.4.4 Doubly Robust Imputation

A novel method called ”doubly robust” (DR) estimator based on semi-parametric theory

has been developed for missing data issue or causal inference problems. The DR estimator

combines both an imputation model and estimated inverse probability weights (IPW) into an

augmented inverse probability weighted (AIPW) estimator, in such a way that the estimator is

consistent if either the imputation model or the IPW model is consistent under MAR. For cross

sectional data (i.e. M=1), the AIPW form ([51]) of a DR estimating equation U is

N

∑
i=1

(
Ri

π̂i
Ui +(1− Ri

π̂i
)Ĥ(Xi0)

)
= 0 (4.1)

where Ĥ(X0) (the imputation model) is an estimate of E[U |X0].
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Many studies have explored DR estimators in the cross-sectional data setting, while for

longitudinal data, there are fewer methodological studies, and it is hard to find examples of use in

applications, perhaps due to the complexity in calculation and interpretation. We extended the DR

method as an imputation method and proposed a specific simplified form for longitudinal data in

Chapter 3; here, we would like only to introduce the general form and idea of the DR method in

AIPW form.

Tsiatis [68] proved that the estimating equation of a DR in longitudinal form is:

N

∑
i=1

(
Ci,M

πi,M
U(L̄iM)+

M−1

∑
j=1

(
Ci, j−λi, j+1Ri, j

πi, j+1

)
H j(L̄i j)

)
= 0 (4.2)

where λ j = Pr(C j = 1|L̄ j−1) is the hazard function and πi, j =
j

∏
t=1

(1−λt) = Pr(R j = 1) is the

probability of observed or not.

In practice, the imputation model for H j(L̄i j) can be any consistently estimated model.

Seaman [63] came up with using Paik’s mean imputation model for H j(L̄i j). We showed that if

we set the target estimating equation U j =Yj−E(Yj) and assume πM+1 = πM and λ1 = λM+1 = 0,

then the DR process can be used as an imputation method with

Ŷ DR =

{(M−1

∑
j=1

(
C j− λ̂ j+1R j

π̂ j+1
)Ê[Y |L̄ j]

)}
. (4.3)

Like multiple imputation and Paik’s mean imputation, after filling in the missing items, any

standard statistical analysis can be performed on the fully imputed data set. When applying the DR

imputation, there are two parts of models to be estimated, and they can be calculated separately.

The first part is the IPW or propensity scores at each time point, these models are usually fitted by

logistic regression. The second part is the imputation model for E(Yj), and the process is same as

section 4.4.3 if we choose to use Paik’s mean imputation to estimate H j(L̄i j).

As we introduced at the beginning of section 4.4.4, DR estimators double the chance of
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making a consistent estimate by combining both the missing model and imputation model. DR

imputation inherits this property, thus the fully imputed data set supports consistent estimation

when either of the two models is correctly specified. In section 4.6 we showed that when the

imputation model is correct, DR imputation performs as well as multiple imputation and Paik’s

imputation.

4.5 Algorithms for Imputation Methods in Sensitivity Analy-

sis

Regulatory reports [17, 43] emphasize the importance of presenting a sensitivity analysis,

because of the concerns about the assumption of MAR in the primary analysis. MAR requires

the imputation model to be correctly specified, which not only asks for necessary covariates to be

controlled, but also requires a correct covariance structure to be specified for repeated measures

data. However, there is no test to demonstrate whether a model is accurately specified or a data set

is MAR in practice. Sensitivity analysis assists in constructing a more conservative framework

when estimating the primary estimand, which tests the reliance of the study’s conclusions on the

MAR assumption. More specifically, sensitivity analysis considers the condition that the missing

mechanism is MNAR, in which the unobserved data after discontinuation from the study has a

different distribution than the observed data, particularly in the treatment group.

One of the most favored and most straightforward ways to model the different distributions

of observed data and unobserved data is the pattern mixture model (PMM). Formula 4.4 is the

expression of PMM framework, where Yobs and Ymis represent observed and missing Y , respectively.

This model jointly models the distributions between the outcome Y and the missingness R, given

observed covariates X . In our context, pattern refers to the dropout time Ji as elucidated in section

4.4.3. The PMM can be further elaborated according to multiple meanings of the word ”pattern”.

For example, subjects can also be categorized by dropout reasons if the clinical data collects this
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information.

f (Yobs,Ymis,R|X) = f (R|X) f (Yobs,Ymis|R,X)

= f (R|X) f (Yobs|R,X) f (Ymis|Yobs,R,X) (4.4)

Since Ymis is unobserved, we cannot determine the function of f (Ymis|R,X) from the data,

which is denoted as the ”identifying restrictions” in the literature [67]. Although we cannot

identify the ”true” distribution of Ymis, an assumed or modeled distribution for f (Ymis|Yobs,R,X)

can be constructed, incorporating the distribution of Yobs, by means of a series of link functions

which connect Ymis and Yobs.

In this section, we focus on the algorithms of two widely used methods under the PMM

approach, namely δ-based adjustment and reference-based adjustment, incorporating the three

imputation methods of multiple imputation, Paik’s mean imputation, and DR imputation.

4.5.1 ∆-based Adjustment

∆-based adjustment builds a link function f (Ymis|X) = g
(

f (Yobs|X)
)
= f (Yobs|X)+δ for

active arm, where δ is a reasonable number selected under the context of the clinical outcome

Y . This link function assumes the distribution of Y |X ,arm = Active shifts by an amount δ from

the original distribution, after a subject withdraws from the study. This adjustment lessens the

treatment effect consistently; for example, if the continuous outcome Y becomes worse with a

greater value, δ would be a positive number to make the adjusted Y worse than before; on the

contrary, if a smaller value of Y infers more severe of the disease, then δ should be a negative

number. ∆-based adjustment can be used in three main approaches:

• The first approach is applying δ just once. For active arm’s subjects with dropout pattern Ji,

only shift YJi+1 by δ as the imputed ŶJi+1, and the subsequent missing outcomes YJi+2, ...,YM
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follow the original distribution of Y |arm = Active given X and Y1, ...,YJi,ŶJi+1.

• The second approach, which we call it δ-post-adjustment, is shifting every Ymis by δ after all

Ymis|arm = Active have been imputed under MAR.

• The last approach is a sequential process that imputes YJi+1 under MAR and adjusts it by δ,

then imputes YJi+2 under MAR given observed X , Y and the δ-adjusted YJi+1, and so on till

the last missing outcome YM is imputed and adjusted.

In the following sections, we mainly focus on the third approach. ∆-based adjustment

helps investigators test the critical value of the treatment effect, which is called the tipping point

of the δ, which precisely brings the estimate of our primary estimand to non-significant.

∆-based Multiple Imputation

As the principal method of handling missing data, multiple imputation in sensitivity

analysis has been developed in many studies [11, 49]. Here we write down the algorithms for δ-

based multiple imputation algorithm, and in section 4.5.2 the reference-based multiple imputation

algorithm, along with some special issues that need to be addressed when practically applying

these methods to data.

Algorithm 3 describes the δ-based multiple imputation process. As we mentioned in

section 4.4.2, under the assumption of monotone dropout, the chained equation does not make

additional contribution. The algorithm combines with δ adjustment after each unobserved Yj has

been imputed sequentially. The key of this approach is that each Ŷj+1|arm = Active should inherit

the distribution of observed L̄ j−1|arm = Active and then be δ-adjusted Ŷj with an additional δ

shift. In some statistical software like SAS and STATA, there are built-in packages to perform this

process. However, in R, it is not straightforward to obtain this estimate. We drafted some code in

R based on the ”MICE” package [72] for this process that can be shared by request.

Algorithm 3 describes the procedure for one of the multiple data sets created by multiple
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imputation. To obtain B imputed data sets, the algorithm is repeated B times. Furthermore, in

order to obtain the estimate of our primary estimand, a mixed effects model is fitted to every fully

imputed data set with the least squares mean estimator and its standard error of the estimand being

derived, followed by applying Rubin’s rule to attain the final estimate of the primary estimand and

its variance.

Algorithm 3: Sequential regression based MI with δ-based adjustment
Result: A fully imputed response data set Ŷ MI, in which all missing outcomes have

been imputed, using a δ-based sequential regression MI.
1 for j = 2,...,M sequentially do
2 MI step 1: Regress the values of Yi j on L̄ j−1 using complete data to obtain

estimated model m j(L̄ j−1) and then for imputation b using Bayesian paradigm to
draw model mb

j(L̄i,k−1).
3 δ-adjustment step: Add a δ to Y Miss

i, j in active arm. Usually the add-on δ indicates
active arm at time point j worse by a value of δ. Numerically add or minus the δ

should be decided by the context.

Ŷ Miss
i, j =

{
m̂b

j(L̄i,k−1) if arm =Control
m̂b

j(L̄i,k−1)+δ if arm = Active

4 MI step 2: Merge Ŷ Miss
i, j into Y obs

i, j as observed data, then go to the next sequence
j = j+1.

5 Note: In MI step 1, later L̄ j would include the imputed Ŷ Miss
i, j from previous round.

∆-based Paik’s Imputation

Paik’s mean imputation is widely used in the construction of longitudinal doubly robust

estimators.[2, 63] However, few studies discuss Paik’s mean imputation in the sensitivity analysis

unlike multiple imputation. We extend the procedure of Paik’s mean imputation combining with

δ-based approach in algorithm 4. As discussed in section 4.4.3, under the monotone dropout

assumption, we do not see multiple imputation outperform Paik’s mean imputation. Since Paik’s

imputation could start imputing Y j at any time point j, algorithm 4 presents the process for a given

time k. Consistent with the procedure in primary analysis 4.4.3, Paik’s mean imputation imputes

73



Yk by the sequence of subjects’ dropout patterns, and uses the imputed values as outcomes in

the sequential regression models. From Ji = k− 1 to Ji = 1, δ is added to the model predicted

m̂Ji
k (L̄i,Ji) before fitting next model m̂Ji−1

k (L̄i,Ji−1) so that the subsequent models could account for

the previous δ-adjusted Ŷk. We programmed Paik’s mean imputation in both primary analysis and

sensitivity analysis in R, and the codes can be shared as well.

By assigning k = 2, ...,M and applying algorithm 4, a fully imputed data set is produced

by Paik’s mean imputation with δ adjustment. Analogous to section 4.5.1, least squares mean

estimator of the primary estimand would be obtained by fitting a mixed effects model on the fully

imputed data set. The variance could be estimated by the Bootstrap resampling procedure. The

analytical variance could also be attained with a complicated form, which is not shown here.

Algorithm 4: Paik’s imputation with δ-based adjustment
Result: For a given time k, the fully imputed response data Ŷ Paik

k , in which all missing
outcomes at time k have been imputed, using a δ-based Paik’s mean
imputation.

1 Paik step: Identify all subjects i with Ji ≥ k. Use these data to regress the observed
values of Yk on L̄k−1 to obtain a consistently estimated model m̂k−1

k (L̄k−1).
2 δ-adjustment step: Add a δ to Y Miss

i, j in active arm. Usually the add-on δ indicates
active arm at time point j worse by a value of δ. Numerically add or minus the δ

should be decided by the context.

Ŷ (k−1)
ik =


m̂k−1

k (L̄i,k−1) if Ji = k−1 and arm =Control
m̂k−1

k (L̄i,k−1)+δ if Ji = k−1 and arm = Active
Yik if Ji > k−1

3 For s = k−2, ...,1 sequentially: Regress the values of Ŷ s+1
ik on L̄is to obtain a

consistently estimated model m̂s
k(L̄s) . For all subjects let

Ŷ Paik
ik = Ŷ (s)

ik =


m̂s

k(L̄s) if Ji = s and arm =Control
m̂s

k(L̄s)+δ if Ji = s and arm = Active
Ŷ s+1

ik if Ji > s
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∆-based Doubly Robust Imputation

DR imputation is a novel method for dealing with the missing data, and its properties

have been introduced in section 4.4.4. No literature that we are aware of has explored the DR

imputation in sensitivity analysis for randomized trials so far.

To estimate the estimand under MAR, DR imputation combines propensity scores and

an imputation model such as Paik’s mean imputation, thus if Paik’s mean imputation model

is correctly specified, the estimate should be consistent for Paik’s imputation as well as DR

imputation. In contrast, if Paik’s model is not correctly specified, Paik’s imputation would fail to

make a consistent estimate, but DR imputation still has the chance to obtain a consistent estimate

by using propensity scores to fix the bias. In the context of the sensitivity analysis, DR imputation

should also inherit this robustness property.

Algorithm 5 demonstrates the procedure of DR imputation with δ adjustment, with Paik’s

model as the imputation model. For a given time k, the algorithm is similar to Algorithm 4, with

additional steps to derive propensity scores by MLE and to obtain the final DR imputation by

incorporating propensity scores and Paik’s imputed values. Also, by conducting the Algorithm 5

M−1 times, we can obtain a fully imputed data set by DR imputation with δ adjustment. After

that, the procedure is identical to section 5, where we calculated the least squares mean estimator

and its variance for the primary estimand.

4.5.2 Reference-based Adjustment

Reference-based adjustment has been an active area of exploration recently. The original

idea was by Little and Yau [26], and extended to several similar approaches. Reference-based

adjustment creates a link function f (Ymis|X ,arm = Active) = g
(

f (Yobs|X ,arm = Control)
)
=

f (Yobs|X ,arm =Control), indicating that the essential idea assumes those subjects in the active

arm who dropped out from the study would follow the same distribution as the subjects in control
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Algorithm 5: DR imputation with δ-based adjustment
Result: For a given time k > 1, the fully imputed data Ŷ AIPW

ik , in which all missing
values at time k have been imputed, using a δ-based AIPW imputation.

1 Preliminary step: Estimate λ̂2, ..., λ̂k and their corresponding π̂ j by maximum
likelihood.

2 Paik step: Identify all subjects i with Ji ≥ k. Use these data to regress the observed
values of Yk on L̄k−1, to obtain a consistently estimated model m̂k−1

k (L̄k−1). For

subjects with Ji > k−1, let Ŷ (k−1)
ik = Yik.

3 δ-adjustment step: For subjects with Ji = k−1 let

Ŷ (k−1)
ik =

{
m̂k−1

k (L̄i,k−1) if arm =Control
m̂k−1

k (L̄i,k−1)+δ if arm = Active

4 For s = k−2, ...,1 sequentially: Regress the values of Ŷ s+1
ik on L̄is to obtain a

consistently estimated model m̂s
k(L̄s) . For all subjects with Ji > s let Ŷ s

ik = Ŷ s+1
ik ; for

subjects with Ji = s let

Ŷ (s)
ik =

{
m̂s

k(L̄s) if arm =Control
m̂s

k(L̄s)+δ if arm = Active

5 Calculating AIPW imputed values by:

Ŷ AIPW
ik =

CikYik

π̂ik
+

k−1

∑
j=1

(
Ci j− λ̂i j+1R j

π̂i j+1
)Ŷ ( j)

ik (4.5)
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arm, because they stop taking treatment and return to standard of care.

Currently, many investigators use jump-to-reference (J2R) adjustment, one of the most

straightforward and most frequently used reference-based approaches, for designing their sensitiv-

ity analysis in clinical trials. Jump-to-reference adjustment reflects the scheme of the reference-

based framework, which models the distribution of Ymis|arm = Active following the distribution of

Y |arm =Control, given observed X and Y . Carpenter [8] defined and placed three other options

into the reference-based family, which are ”copy increments in reference (CIR)” approach, ”copy

reference (CR)” approach, and ”last mean carried forward (LMCF)” approach. CIR means the link

function f (Yi,k|X ,arm = Active) = g
(

f (Yi,Ji|X ,arm = Active)
)
= f (Yi,Ji|X ,arm = Active)+w j,

where k > Ji indicating Yk is unobserved, and w j is the mean increment observed from the control

(reference) arm. CR refers to an approach that identifying all subjects i who are dropout and in the

active arm, then allow their distribution of Y |X follow the distribution of Y |X from the control arm,

for all Y regardless of observed or not. LMCF may be more familiar, which imputes the missing

outcomes by E(YJi|arm). LMCF is a transformation of LOCF described in section 4.4 and not

related to the reference-based framework as other approaches. We focus on the jump-to-reference

approach in later sections when describing the reference-based adjustment.

Comparing δ-based and reference-based adjustments, we found that they are equivalent

after transformation under some conditions. For example, if Yi j|arm = Active and Yi j|arm =

Control are independent random variables from two multivariate normal distributions with the

same variance but different means, and if their mean difference is a linear function of time, the

two models could be specified as a linear mixed effects model presented in section 4.4.1:

yi j = Xβ+α1× j+α2× j× I(arm = Active)+ ei j (4.6)

where X are fully observed baseline covariates. In addition, if the randomization is well done

at baseline between arms (which is a common assumption in randomized trials), CIR approach
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would be identical to the jump-to-reference approach, and δ-based adjustment would be equivalent

to these two reference-based approaches as well, with δ =−α2. However, we also found that if

missingness is related to historical Y , and if there are random slopes (even if they have a mean of

0), this equivalence would be broken between reference-based approach and δ-based approach.

We discuss more about the issue with comparing these methods in the simulation study section

4.6.

Reference-based Multiple Imputation

Multiple imputation with reference-based method also has been extensively studied [11,

49]. The whole procedure is similar to that in the δ-based adjustment section 4.5.1. Algorithm

6 presents this procedure for a single imputed data set. Sequentially from j = 2 to M, missing

outcome Y Miss
j is imputed by distribution of control arm’s Y obs

j , given covariates X except arm,

and previous observed or imputed Y1, ...,Y j−1.

By repeating Algorithm 6 B times, we can obtain B fully imputed data sets and then

perform statistical analysis such as a mixed effects model on each data set to calculate the least

squares mean estimator and its standard error for our primary estimand. Finally, we use Rubin’s

rule to merge B estimates into one ultimate reference-based multiple imputation estimate.

Algorithm 6: Sequential regression based MI with J2R adjustment
Result: A fully imputed response data set Ŷ MI, in which all missing outcomes have

been imputed, using a reference-based (J2R) sequential regression MI.
1 for j = 2,...,M sequentially do
2 MI step 1: Regress the values of Yi j on L̄ j−1 using Y,X |arm =Control,R j = 1,

where L̄ j−1 doesn’t include arm, to obtain estimated model m j(L̄ j−1) and then
for imputation b using Bayesian paradigm to draw model mb

j(L̄ j−1).
3 J2R-adjustment step: Let Ŷ Miss

i, j = mb
j(L̄ j−1) regardless of arms.

4 MI step 2: Combine Ŷ Miss
i, j and Y obs

i, j then go to the next sequence j = j+1.

5 Note: In MI step 1, later L̄ j would include the imputed Ŷ Miss
i, j from previous round.
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Reference-based Paik’s Imputation

We describe the procedure of jump-to-reference with Paik’s mean imputation in Algorithm

7. Similar to the primary analysis and δ-based approaches, Paik’s mean imputation with reference-

based adjustment is a comparable method to the popular multiple imputation with a similar

workflow.

Algorithm 7 shows how to impute Yj at a given time point through Paik’s mean imputation.

To attain a fully imputed data set, one should repeat this procedure M−1 times till all time points

have been imputed. As with the δ-based adjustment, the reference-based adjustment happens

within each sequence in Paik’s mean imputation. The adjusted values would be merged with

observed values and used as the outcome for the subsequent imputation model. After obtaining a

fully imputed data set, we collect the least squares mean estimator and its standard error of our

primary estimand through the same procedure described before.

Unlike multiple imputation, which starts from j = 2 to M sequentially and all Yj can be

imputed in one cycle, Paik’s imputation can only impute Yj at a given time k in a cycle, and starts

with dropout pattern Ji ≥ k to Ji = 1 sequentially, that is from subjects with longer duration to

minimum duration. Meanwhile, multiple imputation has to create B data sets to account for the

imputation variability, but Paik’s mean imputation only needs a single imputed data set. However,

the total workload is the same between the two methods.

Reference-based Doubly Robust Imputation

Last but not least, DR imputation with reference-based adjustment is summarized in this

section with the algorithm in Algorithm 8. Again we use Paik’s mean imputation as the imputation

model within the DR process. The procedure of Algorithm 7 is nested in Algorithm 8, while

DR imputation additionally derives propensity scores at each time point and combines them with

Paik’s imputed values in the end.

Comparing to Paik’s mean imputation, DR imputation adds a missingness model to doubly
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Algorithm 7: Paik’s imputation with J2R adjustment
Result: For a given time k, the fully imputed response data Ŷ Paik

k , in which all missing
outcomes at time k have been imputed, using a reference-based (J2R) Paik’s
mean imputation.

1 Paik step: Identify all subjects i in control arm with Ji ≥ k. Use these data to regress
the observed values of Yk on L̄k−1, where L̄ doesn’t include arm, to obtain a
consistently estimated model m̂k−1

k (L̄k−1).
2 J2R-adjustment step: For all subjects let

Ŷ k−1
ik =

{
m̂k−1

k (L̄i,k−1) if Ji = k−1
Yik if Ji > k−1

3 For s = k−2, ...,1 sequentially: Regress the values of Ŷ s+1
ik from subjects in control

arm on L̄is to obtain a consistently estimated model m̂s
k(L̄s) . For all subjects let

Ŷ Paik
ik = Ŷ s

ik =

{
m̂s

k(L̄s) if Ji = s
Ŷ s+1

ik if Ji > s

ensure that the estimation is consistent, which is an improvement over Paik. In contrast, the penalty

is that DR imputation has the extra steps of obtaining the propensity scores, as well as potentially

reduces efficiency. Like Algorithm 7, Algorithm 8 also derives the imputed value of Yj at a given

time k. Thus the complete Yj should be imputed by reproducing this procedure M−1 times. After

attaining the fully imputed data set, one can do the same before estimating the primary estimand.

4.6 Simulation Study

Simulation studies are performed to evaluate multiple imputation (MI), Paik’s mean

imputation, and AIPW-form DR imputation in both primary analysis assuming dropout at random

and sensitivity analysis assuming dropout not at random with 500 Monte Carlo repeats. Monotone

dropout is presumed, and baseline covariates are assumed to be completely observed.

The complete data is generated from a linear mixed effects model with random intercepts

and random slopes. Specifically, longitudinal outcome Yi j is generated from model (4.8) with
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Algorithm 8: DR imputation with J2R adjustment
Result: For a given time k, the fully imputed response data Ŷ AIPW

ik , in which all
missing outcomes at time k have been imputed, using a reference-based (J2R)
DR imputation.

1 Preliminary step: Estimate λ̂2, ..., λ̂k and their corresponding π̂ j by maximum
likelihood.

2 Paik step: Identify all subjects i in control arm with Ji ≥ k. Use these data to regress
the observed values of Yk on L̄k−1, where L̄ doesn’t include arm, to obtain a
consistently estimated model m̂k−1

k (L̄k−1).
3 J2R-adjustment step: For all subjects let

Ŷ k−1
ik =

{
m̂k−1

k (L̄i,k−1) if Ji = k−1
Yik if Ji > k−1

4 For s = k−2, ...,1 sequentially: Regress the values of Ŷ s+1
ik from subjects in control

arm on L̄is to obtain a consistently estimated model m̂s
k(L̄s) . For all subjects let

Ŷ s
ik =

{
m̂s

k(L̄s) if Ji = s
Ŷ s+1

ik if Ji > s

5 Calculating AIPW imputed values by:

Ŷ AIPW
ik =

CikYik

π̂ik
+

k−1

∑
j=1

(
Ci j− λ̂i j+1R j

π̂i j+1
)Ŷ j

ik (4.7)
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i = 1, ...,500 and j = 1,2,3. Covariates are simulated with mean and standard deviation derived

from DHA trial, where continuous covariates are random variables from normal distributions and

dichotomous covariates are distributed from Bernoulli distributions. Covariance of random effects

is taken from the trial as well, where bi1 and bi2 came from a bivariate normal distribution with

mean µ =
(

0
0

)
and covariance G =

( 9.60 −1.08
−1.08 5.90

)
. Two arms are randomly assigned to the subjects

in each repeat with same likelihood.

Yi j = bi1 +bi2Visit+β0 +β1Baseline Value+β2MMSE+β3Gender

+ β4Arm+β5Visit+β6Arm*Visit+ εi j (4.8)

Dropouts are simulated from two logistic regression models (4.9 and 4.10) for Pr(λ1 = 1) and

Pr(λ2 = 1). In these two models we assumed that whether a subject withdraws from the study or

not depends on its historical Y and arm. The attrition rates at j = 2 is around 18% and at j = 3 is

around 35%.

logit(Pr(λ1 = 1)) = −27+0.5Y1 +0.75Baseline Value+Arm (4.9)

logit(Pr(λ2 = 1)) = −31+0.3Y1 +0.5Y2 +0.9Baseline Value+Arm (4.10)

We focus on estimating the primary estimand, which is the difference based on the least

squares mean estimator in E(YM|X) between arms, as described in section 4.3.3. In addition,

based on the least squares mean estimators of E(YM|X) for each arm, we define an analogous

secondary estimand to be estimated. Bias, average standard errors, root mean square errors, Monte

Carlo standard deviation, and coverage probability are reported. Multiple imputation makes use of

Rubin’s rule to calculate the standard error, while Paik’s mean imputation and DR imputation use

the bootstrap to derive the standard errors. Sizes of both multiple imputation and the bootstrap
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replicates are set to B = 200.

4.6.1 Primary Analysis

In the primary analysis, we assume missing at random for monotone dropouts. Under

this assumption, the imputation model can be correctly specified when all useful covariates are

measured and controlled in the model. The truth of the secondary estimand is 12.06 and 8.46 for

control arm and active arm respectively, and the truth of the primary estimand is −3.6.

As reported in Table 4.1, all three imputation methods show biases smaller than 0.03

for every estimation. They also had consistent results of the averaging standard errors, where

AIPW was always approximately 0.01 higher than the other two methods. The three methods

indicate similar root mean square errors and coverage probabilities as well, demonstrating the three

methods are consistent with each other in both bias and efficiency. AIPW imputation performs as

well as multiple imputation in our simulation. Considering it is a robust method with the ability to

fix the bias even if the imputation model is not specified correctly, AIPW imputation seems to be a

competitive approach for handling longitudinal data with monotone dropouts.

Table 4.1: Simulation Results for the primary estimand and the secondary estimand

least squares Means Primary Analysis Sensitivity Analysis
Method Bias SE RMSE MCSD Covp Bias SE RMSE MCSD Covp

Control MI -0.023 0.512 0.545 0.544 0.938 -0.023 0.528 0.555 0.555 0.948
Paik -0.011 0.513 0.545 0.545 0.940 -0.012 0.524 0.557 0.557 0.938

AIPW -0.016 0.518 0.554 0.553 0.936 -0.005 0.528 0.562 0.562 0.934
Active MI -0.019 0.512 0.553 0.552 0.934 0.039 0.525 0.532 0.531 0.950

Paik -0.009 0.515 0.555 0.555 0.926 0.051 0.499 0.535 0.532 0.932
AIPW -0.012 0.520 0.553 0.553 0.922 0.011 0.501 0.534 0.534 0.940

Active−Control MI 0.013 0.708 0.705 0.705 0.948 0.073 0.710 0.658 0.654 0.966
Paik 0.012 0.711 0.709 0.709 0.942 0.073 0.662 0.661 0.657 0.940

AIPW 0.013 0.721 0.714 0.714 0.954 0.026 0.675 0.667 0.667 0.950
Abbreviations: MI, multiple imputatoin; Paik, Paik’s mean imputation; AIPW, AIPW-form DR imputation; SE, standard
error; RMSE, root mean square error; MCSD, Monte Carlo standard deviation; Covp, coverage probability.
MI constructed 200 data sets within each repeat; 200 Bootstrap resampling was done within each repeat for Paik and
AIPW.
SE: Averaging standard error across 500 Monte Carlo repeats.
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4.6.2 Sensitivity Analysis

Simulation studies of sensitivity analysis have been explored very little in the previous

literature. Here we design a jump-to-reference-based simulation study to evaluate the performance

among the three imputation methods. δ-based sensitivity analysis is not performed, but the idea

would be similar. An essential point in the sensitivity analysis simulation is how to quantify

the ”truth”. In this simulation, the true value of mean Y |arm = Control would be identical to

the primary analysis because, under jump-to-reference definition, participants in the control arm

who dropped from the study should still follow their original distribution. However, the true

value of mean Y |arm = Active would differ from the primary analysis because the ”truth” of

Ymis|arm = Active will follow the control arm’s distribution.

Table 4.1 presents the results of this sensitivity analysis. Although all the biases are very

small, AIPW imputation attains the smallest bias in each estimation across the three imputation

methods. Comparing with multiple imputation, AIPW imputation always has a bias about 3 to 4

times smaller than multiple imputation. Consistent results of average standard errors, root mean

square errors, and Monte Carlo standard deviation are reported among the three methods. All three

methods obtain acceptable coverage probabilities, while multiple imputation repeatedly reports

the highest coverage probabilities among all methods.

4.6.3 Summary and Discussion

Our analyses indicate that the three imputation methods perform very well, with small

biases and acceptable efficiencies and coverage probabilities. Since the imputation models are

correctly specified for all methods, they all obtain consistent estimates as we expected. In this

simulation study, AIPW-form DR imputation has similar efficiency as multiple imputation and

Paik’s imputation, even when the attrition rate is modest.

In the sensitivity analysis, we are happy to observe that the AIPW-form of DR imputation
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outperforms multiple imputation and Paik’s imputation in bias. Its efficiency is as good as the

other two methods. Thus, we anticipate that the double robustness of this method may provide a

substantial advantage without substantial loss of efficiency.

As we discussed in section 4.5.2, if subjects in both arms have distributions that only differ

in means, and this difference is a linear function of time, then the jump-to-reference approach can

be seen to be equivalent to a δ-based approach. An interesting finding from this simulation study

is that, under a model similar to the generating model 4.8, the jump-to-reference approach cannot

be transferred to a δ-based approach, even though the model is linear and both arms are following

multivariate normal distributions with non-identical mean. That is because when Pr(R j = 1) is a

function of Y1, ...,Yj−1, the distributions f (yi j|RiM = 0) for subjects who dropped from the study,

and f (yi j|RiM = 1) for the completers can be distinct.

Imagine an elementary setting with only two time points, subjects who will drop later

may have a lower mean of Y1 (E(Yi1|RiM = 0) < E(Yi1|RiM = 1)), but an average steeper slope

(higher increment), due to a higher mean random slope than that of completers. For dropouts i in

the active arm, imputing its Ŷi2 through a jump-to-reference approach should add the averaging

increment from the control arm’s distribution to its Yi1, which accounts for its random intercept

bi1, but not its random slope bi2, from time 1 to time 2. By contrast, the δ-based approach adds an

amount δ to its Ŷi2, which the Ŷi2 is drawn from f (yi j|RiM = 0), thus accounts for its bi1 and bi2.

In conclusion, the AIPW-form of the DR imputation method is a competitive approach

under either MAR or MNAR, as supported by our simulation studies. Furthermore, we suggest that

in sensitivity analysis, whether performing a jump-to-reference adjustment or a δ-based adjustment

depends on the desired assumptions regarding distribution of the data. These choices may be

discussed explicitly in the context of defining the corresponding estimands. An arbitrary choice of

the method may lead to unexpected results.
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4.7 Analyses in the Alzheimer’s Trials

In this section, the three imputation methods are applied to the two Alzheimer’s disease

trials described in section 4.3, one for mild cognitive impairment patients, and one for mild-to-

moderate AD patients. For both applications, a subgroup of the population is taken for the analysis

stratified by Apolipoprotein E (APOE) e4 status. APOE is a gene that is highly correlated to AD

progression. Studies show that individuals with APOE e4 positive are more likely to progress to

AD than individuals without.

As in the simulation study, we test estimation of both the secondary estimand and the

primary estimand, and compare results among different imputation methods. Standard errors and

95% confidence intervals are also presented. Standard errors of multiple imputation are calculated

following Rubin’s rule with 200 data sets, while other approaches use 200 times Bootstrap to

derive the standard errors.

4.7.1 DHA Trial

Mild to moderate AD is a stage prior to severe AD. In the DHA trial [48], participants

were all clinically diagnosed as AD or probable AD at the time of enrollment. Note that, the false

positive rate of AD among APOE e4 negative individuals in the trial is likely lower than in the

general MCI population, since they have not been diagnosed with AD. Under this consideration,

we take the subgroup of APOE e4 negative subjects for the analysis, because we believe that the

drug may bring more benefits to them than to APOE e4 positive individuals. Within this subgroup,

the dropout rates are 27.4% and 18.6% for DHA and Placebo groups, respectively.

The change of ADAS-Cog total score was used as the primary outcome in the original

publication. Following their analysis methods, a mixed effects model was applied, and fixed

effects include baseline ADAS-Cog score, baseline Mini-Mental State Examination (MMSE)

score, gender, arm, categorical visits, and the interaction of arm by visits.
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Primary Analysis

The primary analysis is under the assumption of MAR. The three imputation methods

are compared to each other, along with the mixed model with repeated measures (MMRM) as

shown in Table 4.2. For the secondary estimand, all three imputation models provide similar mean

estimates of ADAS-Cog change at 18 months of around 12.7 for the placebo group and 8.8 for the

DHA group, while MMRM reports slightly smaller estimates for both arms. This phenomenon

happens at months 6 and 12 as well, and the detailed results can be found in Appendix B. Standard

errors are similar across all approaches. In particular, Paik’s imputation and AIPW imputation are

almost identical in standard errors for both arms, while multiple imputation has a close but smaller

standard error in the placebo group, and a greater standard error in the DHA group.

For estimating the primary estimand, the three imputation methods obtained consistent

results, and mean estimates ranged from -3.86 to -3.91. At the same time, the MMRM attains a

smaller estimate of the treatment effect of -3.77. Multiple imputation attains a similar standard

error to MMRM, while Paik’s mean imputation and AIPW attain smaller standard errors.

In summary, the three imputation methods derive consistent estimates among each other,

while MMRM shows minor differences compared with the imputation methods. Focusing on the

least squares mean estimate of the difference between arms, we found all imputation methods

enlarge the mean estimates compared to the original MMRM estimates, and remain the statistically

significant results, indicating that the DHA does have benefits in this particular APOE e4 negative

group.

Sensitivity analysis

Both δ-based and reference-based methods are performed in the sensitivity analysis to

evaluate the estimation of the primary estimand and the secondary estimand when the dropout is

not at random. In our analyses, jump-to-reference (J2R) represents the reference-based approach,

and three δ’s are selected for the δ-based approach. Results are displayed in Table 4.3.
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Table 4.2: Primary Analyses for DHA trial Subgroup

ADAS-Cog score 18 month Est SE Lower Upper Est SE Lower Upper
MMRM MI

Placebo 12.43 1.16 10.13 14.73 12.72 1.18 10.41 15.03
DHA 8.66 1.01 6.66 10.66 8.85 1.02 6.85 10.85

DHA - Placebo -3.77 1.55 -6.80 -0.74 -3.87 1.56 -6.93 -0.80
Paik AIPW

Placebo 12.69 1.22 10.29 15.09 12.69 1.22 10.31 15.08
DHA 8.83 0.95 6.96 10.70 8.78 0.95 6.91 10.65

DHA - Placebo -3.86 1.48 -6.77 -0.96 -3.91 1.47 -6.80 -1.03
Data Source: The Alzheimer’s Disease Cooperative Study (https://www.adcs.org/).
Abbreviations: Est, estimate; SE, standard error; Lower, lower bound of 95% confidence
interval; Upper, upper bound of 95% confidence interval.

Overall, across the different imputation methods, in the placebo arm they obtain similar

mean estimates and standard errors for the secondary estimand. In the DHA arm, mean estimates

and the corresponding standard errors differ between multiple imputation and the other two

imputation methods for the secondary estimand, leading to a difference in the estimates for the

primary estimand as well. Paik’s imputation and AIPW imputation repeatedly show smaller mean

estimates for the DAH arm than does multiple imputation, which leads to an increase by about

10% (δ = 3) in the estimated difference in ADAS-Cog score between arms.

Furthermore, multiple imputation obtains greater standard errors estimates for both esti-

mands, compared with Paik and AIPW imputation. Specifically, in the jump-to-reference condition,

multiple imputation has an approximately 17% and 20% increase in standard errors than the other

two imputation procedures, respectively. These differences are smaller in the δ-based approaches.

Comparing the sensitivity analysis results with the primary analysis can be of interest as

well. Either the jump-to-reference or δ-based method provides a conservative way to test the

drug effect when dropouts happen. Regarding the definition of the jump-to-reference adjustment,

the mean estimate of the secondary estimand in the placebo group remains as what it is in the

primary analysis, while the mean estimate of the secondary estimand in the DHA group increases

from about 8.82 to 9.36 across all three imputation methods. This change brings a reduction
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in the estimate of the primary estimand from about -3.87 to -3.34. However, even assuming a

conservative effect by using jump-to-reference estimate, in this trial, the differences in change of

ADAS-Cog score between arms are still significant across the three imputation methods.

∆-based approaches show the same direction of a higher mean ADAS-Cog score in the

DHA arm and reduce the mean difference between arms. As presented in Table 4.3, the differences

between δ-adjusted estimates and primary analysis become larger when δ increases, and the values

of the jump-to-reference estimate are between δ = 1 and δ = 2 for all three imputation methods.

Multiple imputation indicates that the difference between arms turns to be non-significant after

assuming a shift of δ = 2 among study dropouts in the DHA arm (95% confidence interval upper

bound = 0.05). By comparison, AIPW imputation indicates that it requires a shift of δ = 3 to have

this boundary effect. Paik’s imputation reports that this critical value of shift would be even larger

than 3. The exact critical value (upper bound = 0) of δ could be detected by fitting this model for

more accurate numbers of δ. For example, δ0 could be a number near but smaller than 2 and 3

for multiple imputation and AIPW, respectively, and near but greater than 3 for Paik’s imputation.

This implies that the sensitivity analysis using DR imputation indicates a more robust treatment

effect than the other methods in this trial.

Table 4.3: Sensitivity Analyses for DHA trial Subgroup

ADAS-Cog score 18 month Est SE Lower Upper Est SE Lower Upper Est SE Lower Upper
jump-to-reference MI Paik AIPW

Placebo 12.65 1.27 10.16 15.14 12.76 1.24 10.33 15.18 12.68 1.23 10.26 15.09
DHA 9.40 1.10 7.25 11.55 9.27 0.94 7.43 11.10 9.34 0.93 7.51 11.17

DHA - Placebo -3.25 1.64 -6.47 -0.03 -3.49 1.36 -6.16 -0.82 -3.34 1.36 -6.01 -0.67
δ = 1

Placebo 12.72 1.19 10.38 15.06 12.72 1.22 10.32 15.12 12.69 1.22 10.31 15.07
DHA 9.24 1.03 7.21 11.26 9.06 0.97 7.16 10.95 9.09 0.96 7.21 10.98

DHA - Placebo -3.48 1.58 -6.58 -0.38 -3.66 1.50 -6.60 -0.72 -3.60 1.49 -6.51 -0.68
δ = 2

Placebo 12.72 1.21 10.34 15.09 12.72 1.22 10.32 15.12 12.69 1.22 10.30 15.07
DHA 9.63 1.05 7.57 11.68 9.35 0.98 7.43 11.28 9.41 0.98 7.50 11.32

DHA - Placebo -3.09 1.60 -6.23 0.05 -3.36 1.52 -6.34 -0.39 -3.28 1.51 -6.23 -0.33
δ = 3

Placebo 12.71 1.23 10.30 15.13 12.71 1.22 10.31 15.11 12.68 1.22 10.30 15.06
DHA 10.01 1.07 7.92 12.10 9.65 1.00 7.69 11.61 9.72 0.99 7.77 11.67

DHA - Placebo -2.70 1.63 -5.90 0.50 -3.06 1.54 -6.08 -0.05 -2.96 1.53 -5.95 0.03
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4.7.2 Donepezil Trial

MCI is an early stage of AD, and in this trial, which had progression to AD as the primary

outcome, the overall rate of progression from MCI to AD was 16% per year. There was no

significant difference in the probability of progression to AD in the Donepezil group compared

with the placebo group. Since the cohort was not clinically diagnosed with probable AD at the

onset of the study, many subjects with an APOE e4 negative genotype may actually have been

false positives, and may not progress to AD eventually. Thus in our application, we took the APOE

e4 positive subgroup for the Donepezil trial so that a drug effect could be more easily detected.

As in our analysis of the DHA trial, the change of ADAS-Cog score is used here as the

primary outcome. The fixed effects include baseline score of ADAS-Cog, age, gender, education,

arm, categorical visit, and interaction of arm by visit. Again we estimate both the secondary

estimand and the primary estimand: the average change from baseline of ADAS-Cog total score at

month 36 for each arm; and the difference in the change of ADAS-Cog total score between arms

at month 36. The average change score at other time points is also estimated, and details can be

found in Appendix B.

Primary Analysis

Similar to the DHA trial analysis, we compare the three imputation methods among each

other and with MMRM. As shown in Table 4.4, the mean estimates of both the secondary estimand

and the primary estimand are similar among the three imputation methods. Compared with

MMRM, the three imputation methods increase the estimates of ADAS-Cog change in the placebo

arm and also the differences in ADAS-Cog change between the Donepezil arm and placebo arm.

For the standard errors, we observe comparable results as in the DHA trial. Multiple

imputation has standard errors similar to MMRM, while Paik’s imputation and AIPW imputation

are almost identical. Multiple imputation and MMRM have about 14% and 17% higher standard

errors than Paik’s and AIPW imputations in Donepezil arm, for the secondary estimand and the
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primary estimand respectively.

Although there is still no significant effect seen for Donepezil in slowing the change in

ADAS-Cog, the three imputation methods consistently attain larger differences between arms,

indicating that the primary analysis model may not be specified correctly.

Table 4.4: Primary Analyses for Donepezil Trial Subgroup

ADAS-Cog score 3 year Est StdErr Lower Upper Est StdErr Lower Upper
MMRM MI

Placebo 6.24 0.82 4.62 7.87 6.40 0.84 4.76 8.04
Donepezil 4.85 0.84 3.20 6.50 4.82 0.85 3.15 6.49

Donepezil - Placebo -1.39 1.18 -3.70 0.91 -1.58 1.20 -3.93 0.77
Paik AIPW

Placebo 6.42 0.89 4.68 8.16 6.43 0.89 4.69 8.18
Donepezil 4.82 0.73 3.40 6.25 4.87 0.73 3.43 6.30

Donepezil - Placebo -1.60 1.02 -3.59 0.39 -1.57 1.02 -3.58 0.44

Sensitivity analysis

As described in the DHA trial analysis, the two sensitivity approaches, jump-to-reference

and δ-based analysis, are combined with the three imputation methods and then applied to the

data to test the impact on conclusions if the dropout is not at random. The results are reported

in Table 4.5. Among the three imputation methods, they all have similar mean estimates by

jump-to-reference adjustment, while multiple imputation has 27% larger standard errors than

Paik’s and AIPW imputations when estimating the primary estimand. With the δ-based adjustment,

multiple imputation always has the smallest mean estimate of the difference between arms, while

Paik’s imputation has the biggest estimate. The difference in estimates among the imputation

methods tends to increase along with the δ increases, and when δ = 3, Paik’s imputation obtains a

40% larger estimated effect than multiple imputation. The mean estimates of AIPW imputation

remain in the intermediate among the three imputation methods. In contrast to the δ-based method,

the jump-to-reference method reports a small estimate of the secondary estimand in the Donepezil
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arm and a large estimate of the primary estimand, indicating that the reference group’s distribution

and drug group’s distribution is similar. The secondary estimand for the placebo group has similar

estimates in all conditions, which is as expected.

The statement of no difference between the placebo group and Donepezil group distri-

butions is also supported by comparing the primary analysis with the sensitivity analysis. In

the primary analysis, the three imputation methods agree with the estimates of 6.4 for the sec-

ondary estimand in the placebo group, 4.85 for the secondary estimand in the Donepezil group,

and -1.6 for estimating the primary estimand. There are almost no changes of those estimates

after jump-to-reference sensitivity adjustment, demonstrating that even if those patients in the

Donepezil group follow the placebo group’s distribution after dropping out, their mean ADAS-Cog

change does not differ from the mean assuming they continue to take the Donepezil. This result

is consistent with the original finding of the trial that participants in the Donepezil group do not

show a significant difference in ADAS-Cog change at months 36 compared with participants in

the placebo group. ∆-based adjustment is an approach that artificially adds a difference to the

distributions between the reference group and active group. Furthermore, as we observed in the

primary analysis, MMRM obtains an estimate of the primary estimand at -1.39, which is smaller

than that of imputation methods. After comparing with δ-based adjustments, if we took a value

of δ between 0.5 to 1, the estimate of the primary estimand from the three imputation methods

would be comparable with MMRM’s estimate in the primary analysis.

4.7.3 Summary

Figure 4.1 illustrates the estimates of the primary estimand at each time point for both

jump-to-reference approach and three δ-based approaches, comparing with the estimate of MMRM

in the primary analysis (red line). In summary, the conservative methods in sensitivity analysis

clearly make changes in the estimates for the primary estimand. They all narrow the treatment

effect and reduce the difference between arms (the primary estimand) to some degree. ∆-based
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Table 4.5: Sensitivity Analyses for Donepezil trial Subgroup

ADAS-Cog score 3 year Est StdErr Lower Upper Est StdErr Lower Upper Est StdErr Lower Upper
jump-to-reference MI Paik AIPW

Placebo 6.36 0.86 4.69 8.04 6.39 0.89 4.64 8.14 6.40 0.90 4.64 8.16
Donepezil 4.80 0.88 3.08 6.53 4.83 0.70 3.46 6.20 4.87 0.71 3.49 6.26

Donepezil - Placebo -1.56 1.22 -3.95 0.83 -1.56 0.95 -3.43 0.30 -1.53 0.96 -3.41 0.36
δ = 1

Placebo 6.40 0.84 4.75 8.04 6.42 0.89 4.68 8.16 6.43 0.89 4.69 8.18
Donepezil 5.13 0.86 3.46 6.81 5.06 0.73 3.62 6.50 5.12 0.74 3.67 6.57

Donepezil - Placebo -1.26 1.20 -3.62 1.10 -1.36 1.02 -3.36 0.64 -1.31 1.03 -3.33 0.70
δ = 2

Placebo 6.39 0.84 4.74 8.04 6.42 0.89 4.67 8.16 6.43 0.89 4.69 8.18
Donepezil 5.45 0.86 3.76 7.13 5.30 0.74 3.85 6.76 5.37 0.75 3.90 6.84

Donepezil - Placebo -0.95 1.21 -3.31 1.42 -1.12 1.02 -3.12 0.89 -1.06 1.03 -3.08 0.96
δ = 3

Placebo 6.39 0.85 4.73 8.05 6.42 0.89 4.68 8.16 6.43 0.89 4.68 8.18
Donepezil 5.76 0.87 4.07 7.46 5.54 0.76 4.06 7.02 5.62 0.76 4.13 7.12

Donepezil - Placebo -0.63 1.22 -3.01 1.75 -0.88 1.03 -2.90 1.14 -0.81 1.04 -2.85 1.23

adjustment attains estimates strictly in order with the values of δ, and the difference of estimates

among δ-based approaches increases with time. It is straightforward to expect a change between

primary analysis and δ-based sensitivity analysis, no matter what the two distributions of the

control arm and active arm are. Jump-to-reference adjustment, however, tells another story

because it does consider the difference of distributions between arms. If the two distributions are

approximately identical, the jump-to-reference approach will make no change to the estimates in

the primary analysis, as in the Donepezil trial example. An essential aspect of the δ-based method

is that it can be used to identify the critical value of δ that makes the significant effect of treatment

disappear, by tracking the trend of estimates from a sequence of ordinal values of δ. This exercise

identifies the magnitude of the MNAR effect required to alter the conclusions of the trial.

4.8 Discussion

In this study, we have shown that any consistently estimated imputation model can be used

for joint modeling within a PMM framework to obtain consistent estimates under the assumption

of MNAR. We also provide explicit algorithms for these joint models, which are constructed

in a straightforward manner by incorporating the PMM adjustment into the imputation model
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Figure 4.1: Sensitivity Analyses by methods in the two AD trials

procedure. We discuss the possibility that reference-based PMM can be restated as a δ-based

PMM under different conditions. Furthermore, the AIPW-form DR imputation obtains estimates

that perform as well as multiple imputation and Paik’s mean imputation for the primary analysis

assuming MAR. At the same time, it outperforms the other two imputation methods in bias for

sensitivity analysis assuming MNAR, based on the simulation study. This finding supports the

viewpoint that DR imputation is a safer and more robust approach for sensitivity analysis in

randomized trials. Finally, we capture that in the primary analyses of the two AD trials, MMRM

repeatedly obtains smaller treatment effects than the three imputation methods, which may lead to

further discussions about the appropriate statistical modeling for primary analysis in randomized

trials with dropouts.

There are several possibilities to explain why MMRM obtains different estimates from the

other imputation methods. Under MAR, MMRM will derive consistent estimates only if both

the mean and the covariance structures are correctly specified. Since the other three imputation

models control identical covariates as in MMRM, one possibility would be that the covariance
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structure is wrong. Another possibility is that the data is MNAR. As we described in section 4.7,

the three imputation methods can eventually achieve similar estimates to MMRM by selecting a

particular δ with δ-based adjustment, which quantifies the degree of effect under MNAR needed

to explain these differences. If the difference is due to model misspecification rather than MNAR

missingness, DR imputation would be more favored because it can overcome any misspecification

in the outcome model by using propensity scores.

Workflow is an alternative evaluation metric to compare methods. In order to construct

a single completely imputed data set in longitudinal data with monotone dropout and fully

observed covariates, multiple imputation turns out to have a light workflow, with only M− 1

linear regression models needed since chained equations are not needed anymore. Paik’s mean

imputation has a somewhat heavier workflow with M(1+M)/2−1 models to be fitted. In our

example, DR imputation uses Paik’s mean imputation as the outcome model; thus, the workflow

of DR imputation is even heavier than Paik’s mean imputation with an additional M−1 logistic

regression models to be fitted to estimate the propensity score. Due to the complicated form of

the analytical variance of Paik’s imputation, if the bootstrap resampling procedure is chosen to

estimate standard errors for Paik’s and DR imputation methods, and if the size B of Bootstrap is

identical to the size B of data sets created by multiple imputation, the total workflow would stay in

this ranking (MI, Paik’s imputation, DR imputation) among the three methods. In our DHA trial

application with B = 200, however, the three methods all caused around 110 seconds for obtaining

the final least squares mean of estimates. Although the time is similar here, workflow is still an

aspect that should be considered.

Continuing with the above topic, DR imputation may be simplified in some circumstances

by choosing other outcome models instead of Paik’s mean imputation. In chapter 3, we proposed

a simplified DR imputation method with a mixed effects model, and the workflow would be M−1

logistic regression models plus one mixed effects model, which would help save time.

Another point we would like to make is that sensitivity analysis may be more meaningful
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when the primary analysis shows a significant treatment effect. If the treatment effect is very

small, in other words, if the distributions of the control arm and active arm are similar, conducting

a sensitivity analysis using the PMM framework is not helpful. The reference-based adjustment

would not make any change due to the similarity between the control arm and active arm; δ-based

adjustment artificially makes differences between the arms but in the wrong direction.

Finally, we also would like to make some discussions specifically for AD trials. First, as

we observed in the Donepezil trial, the ADAS-Cog total score may not be the best measurement for

people in the early stage of the disease, such as the MCI patients in this trial. Also, these subjects

may decline slowly in the first months of the trial, and they may decline faster later; thus, a non-

linear trend may be more suitable to model. Secondly, although we obtained encouraging results

from the subgroup analysis in the DHA trial, investigators should be cautious about performing

and reporting such ad hoc subgroup analysis. Lastly, we encourage and recommend investigators

to collect specific reasons for dropouts and also to continue to follow the participants even if

they have discontinued study medication. The additional information could significantly help

statisticians to construct more reliable and valid models in the future.

4.9 Afterthoughts before next Chapter

So far, we have reviewed popular imputation methods for dropouts in randomized trials,

and constructed algorithms for investigators to use in the sensitivity analysis. The doubly robust

method has been shown to be a competitive approach to address monotone dropouts for longitudinal

data.

In the last chapter, we will discuss the findings from Chapters 2 to 4, and make overall

conclusions about the three projects. We will also explain our future work and continue our

research work in this area.

This chapter, in full, has been prepared for submission for publication as ”Qiu, Yuqi;
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Feldman, Howard H.; Messer, Karen S. Doubly Robust Imputations for Randomized Trials with

Monotone Dropout under Missing not at Random: Applications in Alzheimer’s Trials”. The

dissertation author was the primary author on this paper.
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Chapter 5

Conclusions and Future Work

This dissertation illustrates novel statistical approaches using Doubly Robust estimation

methods to address dropout-related bias in longitudinal data, with applications and discussion

in Alzheimer’s disease clinical trials. Starting with a study exploring cognitive heterogeneity in

probable AD, we investigated the common question in AD trials about correcting for potential

bias due to discontinuation, evaluating both classic, widely used models and novel approaches,

either under MAR or under MNAR assumptions regarding the dropout. We reviewed regulatory

preferred methods such as MMRM, GEE, and multiple imputation; comparable methods such

as WGEE, IPW, Paik’s mean imputation; and novel alternatives such as doubly robust methods,

including our proposed novel form of longitudinal doubly robust imputation estimators.

Specifically, in chapter two, we identified heterogeneity in cognitive profiles of probable

AD patients by principal component analysis and Gaussian model-based clustering across inde-

pendent cohorts. We proposed a decision rule to classify patients as typical or atypical AD using

neuropsychological tests. The identified atypical group was associated with younger age, male

sex, lower probability of APOE e4, less severe global dementia, higher depression scores, lower

Braak stage at autopsy, and slower cognitive decline. We demonstrated that distinct cognitive

profiles among clinically diagnosed probable AD patients could be consistently identified. This
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heterogeneity is associated with tangle pathology and with different rates of decline.

In chapter three, we proved that most doubly robust estimators for longitudinal data

could be written in a more straightforward substitution form, which may be easier to understand

and apply under MAR. Moreover, a simplified AIPW form was constructed. We illustrated the

substitution approach with the simplified AIPW form using an AD trial with comparison to

MMRM. Simulation studies were also performed comparing classic methods, alternative methods,

and doubly robust methods under four different situations regarding the model specifications.

Based on the theoretical properties and results supported by simulation studies, we confirmed

that the doubly robust method performs well in bias and efficiency comparing other outcome-

model-based approaches in dealing with longitudinal data with monotone dropouts when the

outcome model is correctly specified. On the other hand, the doubly robust estimator obtains

unbiased estimators with acceptable efficiency when the outcome model is misspecified, but

the missingness model is correct. Furthermore, the imputation approach we presented has the

advantage of computational simplicity and transparency compared to existing doubly robust

approaches.

In chapter four, we reviewed several imputation methods and the PMM framework, and

then constructed algorithms that combine the imputation approaches and PMM framework under

MNAR. Regulatory requirements were discussed in this chapter, and we compared the doubly

robust imputation to multiple imputation, which is the predominant method used in practice for

handling missing data. Two AD trials with different stages of disease conducted by ADCS were

used as example applications. We identified that imputation methods all increased the estimated

treatment effects compared to the widely used MMRM. Simulation studies under either MAR or

MNAR were performed. We described the connections between the MNAR statistical framework

and the new framework on estimands proposed by the regulatory agencies. Furthermore, we again

confirmed that doubly robust imputation performs as well as other imputation methods when the

outcome model is correctly specified. We suggest that the doubly robust imputation method is
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competitive due to its robustness properties.

In conclusion, the doubly robust imputation method is recommended for longitudinal

data with monotone dropout because (1) through both theoretical and practical proofs, when

assuming the outcome model is correctly specified (both mean structure and covariance structure

for MMRM), the DR imputation method can obtain unbiased estimators, with acceptable standard

errors; (2) once the outcome model is misspecified (including insufficient covariate adjustment),

which is a usual case in real-life clinical trials settings, DR imputation can still obtain unbiased

estimators by specifying a correct missingness model, while other outcome-only- model-based

methods would have biased estimators due to dropouts; (3) when both outcome model and

missingness model are not able to be specified correctly, our simulation studies support that DR

imputation method obtains better estimators than other methods with less bias and better RMSE.

The main limitation of the DR imputation method is the increased workflow. Our proposed

AIPW-S form is simpler and easier to calculate than existing longitudinal DR estimators in the

literature, thus alleviating some workflow burden. The trade-off is that the AIPW-S estimator may

lose some efficiency. Another obstacle for practical use is the difficulty of obtaining the analytical

variance for the DR imputation method. Considering the DR estimator belongs to the M-estimator

class, a sandwich estimator would be appropriate for estimating the variance of the DR method.

Our next step would be finding a more straightforward and interpretable way to derive the variance

for the DR imputation method and program it in commonly used statistical software.

Some points in the context of AD clinical trials are also worth discussion. First, inves-

tigators would be eager to determine the particular circumstances in clinical trials in which the

DR imputation method should be applied. As discussed above, when the outcome model is not

convincing, the DR imputation method would be more favorable. For example, sometimes the

number of covariates (including demographics, clinical characteristics, biomarkers, etc.) that

needs to be controlled in the model is large, which can cause the MMRM to fail to converge; or

the unstructured covariance matrix may not converge due to a large number of visits. In these
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scenarios, the DR imputation method may utilize the missingness model to control the covariates

and keep the outcome model simple and clean.

Secondly, in chapter 4, we suggest that investigators continue collecting the assessments

even if the participants dropped out from study treatment. This is a budget issue in most regulated

trials, and whether it is worth continuing follow-up may be debated. As statisticians, we suppose

that increasing information (data) would better assist us in building more precise models, obtaining

unbiased estimators, and enhancing the power. We also believe that additional data can help

us determine whether the missing at random assumption is correct. Due to the limited budget,

collecting all post-dropout data may be unnecessary. It may be more feasible to collect the final

visit or just a few subsequent visits.

Thirdly, many trials have been paused or remotely assessed due to the COVID-19 pandemic,

leading to a surge of missing data. The DR imputation method is proposed to deal with monotone

dropout. It may be extended using the PMM framework to help in this situation with a lot of

intermediate missing data. This would be an important topic for future research.

Several other topics are also valuable and can continue to be investigated in the future.

Firstly, we would like to discuss the performance of doubly robust imputation methods incorporat-

ing the PMM framework under MNAR in different model specifications. It would be interesting to

evaluate it when there are misspecifications in either the outcome model or missingness model, or

both, compared to other imputation approaches. Secondly, the variance is worthy of further study.

We obtained variance estimates through the bootstrap resampling procedure in this dissertation.

It is worth investigating the analytical variance and the corresponding sandwich estimator for

our proposed doubly robust estimator in the future. Thirdly, as we recommend recording more

information about dropouts and other biomarkers in clinical trials, the approach to utilize the

additional information with our proposed methods would be an interesting topic.
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Appendix A

Additional simulation results for Chapter 3

A.1 Simulation performance metrics for regression coefficients

For the estimand of the vector of regression coefficients, we report the following perfor-

mance metrics, averaged across the six coefficients except intercept: (1) Average percent bias

for each method. For each method, we took the absolute value of the percentage bias for each

coefficient βp and then calculated the average across the six coefficients. (2) Z-score (among

estimators by conditions) of the relative RMSE’s. For each estimator in each of 22 conditions (7

estimators by 4 ”correctness” conditions, minus duplicate conditions), the RMSE was calculated

and divided by βp. Then we computed the z-score across the 23 conditions, and finally averaged

the z-scores across the 6 coefficients. (3) Z-score (among estimators by conditions) of the interval

score. We standardized and averaged the interval scores with the same process as for the RMSE.

(4) Average coverage probability. The coverage probability of a 95% confidence interval for each

β′ps was averaged over the 6 coefficients, for each method.
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Table A.1: Comparisons of E(Y3) among methods in six evaluations: Extreme Scenario

Bias RMSE Ints Covp MCSD Ave SE Bias RMSE Ints Covp MCSD Ave SE
Y correct P correct Y correct P incorrect

AIPW-I 0.01 0.36 1.70 0.95 0.36 0.35 0.00 0.34 1.66 0.95 0.34 0.34
B & R 0.00 0.32 1.51 0.95 0.32 0.32 -0.00 0.32 1.53 0.95 0.32 0.32
AIPW-S -0.00 0.40 1.80 0.94 0.40 0.36 0.10 0.37 1.71 0.95 0.36 0.35
Paik -0.00 0.32 1.51 0.95 0.32 0.32 -0.00 0.32 1.51 0.95 0.32 0.32
WGEE -0.10 0.46 2.87 0.85 0.45 0.44 0.12 1.50 5.12 0.90 1.50 0.51
GLS -0.05 0.32 1.53 0.95 0.31 0.31 -0.05 0.32 1.53 0.95 0.31 0.31
GEE IND -0.15 0.35 1.65 0.93 0.31 0.32 -0.15 0.35 1.65 0.93 0.31 0.32

Y incorrect P correct Y incorrect P incorrect
AIPW-I -0.01 0.48 2.19 0.93 0.48 0.44 -1.51 1.56 33.84 0.05 0.39 0.37
B & R 0.33 0.49 2.50 0.82 0.36 0.36 -1.56 1.60 36.85 0.01 0.33 0.34
AIPW-S -0.09 1.32 5.53 0.84 1.31 0.90 -1.33 1.57 21.53 0.41 0.84 0.74
Paik -1.70 1.73 41.43 0.00 0.35 0.36 -1.70 1.73 41.43 0.00 0.35 0.36
WGEE -1.26 1.87 30.49 0.29 1.39 0.55 -2.99 3.17 79.20 0.06 1.03 0.62
GLS -3.18 3.19 103.45 0.00 0.31 0.32 -3.18 3.19 103.45 0.00 0.31 0.32
GEE IND -4.42 4.43 155.83 0.00 0.28 0.28 -4.42 4.43 155.83 0.00 0.28 0.28

103



Table A.2: Comparisons of β̂p among methods in four evaluations: Extreme Scenario

Bias RMSE Ints Covp Bias RMSE Ints Covp
Y correct P correct Y correct P incorrect

AIPW-I 0.01 -0.52 -0.49 0.95 0.01 -0.52 -0.49 0.95
B & R 0.05 0.42 0.05 0.96 0.01 -0.47 -0.34 0.94
AIPW-S 0.01 -0.50 -0.49 0.95 0.01 -0.51 -0.49 0.94
Paik 0.00 -0.54 -0.49 0.95 0.00 -0.54 -0.49 0.95
WGEE 0.14 0.87 0.19 0.87 0.16 0.34 -0.06 0.88
GLS 0.01 -0.54 -0.49 0.94 0.01 -0.54 -0.49 0.94
GEE IND 0.01 -0.53 -0.49 0.92 0.01 -0.53 -0.49 0.92

Y incorrect P correct Y incorrect P incorrect
AIPW-I 0.01 -0.46 -0.47 0.94 0.10 -0.27 -0.21 0.39
B & R 0.11 -0.02 -0.01 0.86 0.58 1.86 2.42 0.56
AIPW-S 0.02 -0.20 -0.39 0.86 0.10 -0.20 -0.22 0.56
Paik 0.22 0.20 0.38 0.29 0.22 0.20 0.38 0.29
WGEE 0.45 0.73 1.01 0.15 0.61 1.15 2.00 0.03
GLS 0.50 0.95 1.40 0.05 0.50 0.95 1.40 0.05
GEE IND 0.55 1.08 1.58 0.04 0.55 1.08 1.58 0.04
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Appendix B

Additional application results for Chapter 4

B.1 DHA Trial

Table B.1: Primary Analyses for DHA Trial Subgroup, full results for treatment effects

Est StdErr Lower Upper Est StdErr Lower Upper
MMRM MI

DHA - Placebo 1 year -1.57 0.85 -3.23 0.09 -1.58 0.85 -3.24 0.08
DHA - Placebo 2 year -2.85 1.19 -5.19 -0.52 -2.72 1.20 -5.08 -0.36
DHA - Placebo 3 year -3.77 1.55 -6.80 -0.74 -3.87 1.56 -6.93 -0.80

Paik AIPW
DHA - Placebo 1 year -1.60 0.81 -3.18 -0.02 -1.60 0.81 -3.18 -0.02
DHA - Placebo 2 year -2.75 1.21 -5.11 -0.38 -2.74 1.20 -5.10 -0.38
DHA - Placebo 3 year -3.86 1.48 -6.77 -0.96 -3.91 1.47 -6.80 -1.03

B.2 Donepezil Trial
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Table B.2: Primary Analyses for DHA Trial Subgroup, full results for Ŷ

Est StdErr Lower Upper Est StdErr Lower Upper
MMRM MI

Placebo 1 year 5.77 0.65 4.50 7.05 5.81 0.65 4.55 7.08
Placebo 2 year 6.53 0.90 4.75 8.32 6.66 0.91 4.87 8.45
Placebo 3 year 12.43 1.16 10.13 14.73 12.72 1.18 10.41 15.03

DHA 1 year 4.20 0.54 3.14 5.26 4.24 0.54 3.19 5.28
DHA 2 year 3.68 0.77 2.15 5.21 3.94 0.78 2.41 5.47
DHA 3 year 8.66 1.01 6.66 10.66 8.85 1.02 6.85 10.85

Paik AIPW
Placebo 1 year 5.83 0.66 4.54 7.12 5.83 0.66 4.54 7.12
Placebo 2 year 6.65 0.92 4.84 8.47 6.65 0.92 4.84 8.46
Placebo 3 year 12.69 1.22 10.29 15.09 12.69 1.22 10.31 15.08

DHA 1 year 4.23 0.50 3.24 5.21 4.23 0.50 3.24 5.22
DHA 2 year 3.91 0.78 2.38 5.44 3.91 0.78 2.38 5.44
DHA 3 year 8.83 0.95 6.96 10.70 8.78 0.95 6.91 10.65

Table B.3: Sensitivity Analyses for DHA Trial Subgroup, full results for treatment effects

Est StdErr Lower Upper Est StdErr Lower Upper Est StdErr Lower Upper
J2R MI Paik AIPW

DHA - Placebo 6 months -1.56 0.84 -3.21 0.10 -1.57 0.81 -3.15 0.02 -1.58 0.81 -3.16 0.00
DHA - Placebo 12 months -2.29 1.24 -4.73 0.15 -2.28 1.17 -4.58 0.01 -2.30 1.17 -4.59 -0.01
DHA - Placebo 18 months -3.25 1.64 -6.47 -0.03 -3.49 1.36 -6.16 -0.82 -3.34 1.36 -6.01 -0.67

δ = 1
DHA - Placebo 6 months -1.58 0.85 -3.23 0.08 -1.59 0.81 -3.17 -0.01 -1.59 0.81 -3.17 -0.01

DHA - Placebo 12 months -2.56 1.22 -4.95 -0.17 -2.58 1.22 -4.97 -0.19 -2.58 1.22 -4.97 -0.20
DHA - Placebo 18 months -3.48 1.58 -6.58 -0.38 -3.66 1.50 -6.60 -0.72 -3.60 1.49 -6.51 -0.68

δ = 2
DHA - Placebo 6 months -1.57 0.84 -3.23 0.08 -1.58 0.81 -3.16 -0.01 -1.59 0.80 -3.16 -0.01

DHA - Placebo 12 months -2.40 1.23 -4.82 0.01 -2.42 1.23 -4.84 -0.00 -2.42 1.23 -4.84 -0.01
DHA - Placebo 18 months -3.09 1.60 -6.23 0.05 -3.36 1.52 -6.34 -0.39 -3.28 1.51 -6.23 -0.33

δ = 3
DHA - Placebo 6 months -1.57 0.84 -3.22 0.08 -1.58 0.80 -3.15 -0.00 -1.58 0.80 -3.15 -0.01

DHA - Placebo 12 months -2.24 1.25 -4.69 0.20 -2.26 1.25 -4.71 0.19 -2.26 1.25 -4.70 0.19
DHA - Placebo 18 months -2.70 1.63 -5.90 0.50 -3.06 1.54 -6.08 -0.05 -2.96 1.53 -5.95 0.03
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Table B.4: Sensitivity Analyses for DHA Trial Subgroup, full results for Ŷ

Est StdErr Lower Upper Est StdErr Lower Upper Est StdErr Lower Upper
J2R MI Paik AIPW

Placebo 1 5.80 0.65 4.54 7.07 5.81 0.66 4.51 7.10 5.82 0.66 4.52 7.11
Placebo 2 6.61 0.95 4.75 8.48 6.60 0.94 4.77 8.44 6.61 0.93 4.78 8.44
Placebo 3 12.65 1.27 10.16 15.14 12.76 1.24 10.33 15.18 12.68 1.23 10.26 15.09

DHA 1 4.25 0.54 3.20 5.29 4.24 0.50 3.25 5.23 4.24 0.50 3.25 5.23
DHA 2 4.32 0.81 2.74 5.91 4.32 0.76 2.82 5.82 4.32 0.76 2.82 5.81
DHA 3 9.40 1.10 7.25 11.55 9.27 0.94 7.43 11.10 9.34 0.93 7.51 11.17

δ = 1
Placebo 6 months 5.81 0.65 4.55 7.08 5.82 0.66 4.53 7.12 5.82 0.66 4.53 7.12

Placebo 12 months 6.66 0.92 4.84 8.47 6.65 0.92 4.83 8.46 6.65 0.92 4.84 8.46
Placebo 18 months 12.72 1.19 10.38 15.06 12.72 1.22 10.32 15.12 12.69 1.22 10.31 15.07

DHA 6 months 4.24 0.54 3.19 5.29 4.23 0.50 3.24 5.22 4.23 0.50 3.24 5.22
DHA 12 months 4.10 0.79 2.55 5.64 4.07 0.79 2.51 5.62 4.07 0.79 2.51 5.62
DHA 18 months 9.24 1.03 7.21 11.26 9.06 0.97 7.16 10.95 9.09 0.96 7.21 10.98

δ = 2
Placebo 6 months 5.81 0.65 4.55 7.08 5.82 0.66 4.53 7.11 5.82 0.66 4.53 7.11

Placebo 12 months 6.66 0.94 4.82 8.49 6.64 0.93 4.83 8.46 6.64 0.92 4.83 8.46
Placebo 18 months 12.72 1.21 10.34 15.09 12.72 1.22 10.32 15.12 12.69 1.22 10.30 15.07

DHA 6 months 4.24 0.54 3.19 5.29 4.23 0.50 3.25 5.22 4.23 0.50 3.25 5.22
DHA 12 months 4.25 0.80 2.69 5.82 4.22 0.81 2.64 5.81 4.22 0.81 2.64 5.81
DHA 18 months 9.63 1.05 7.57 11.68 9.35 0.98 7.43 11.28 9.41 0.98 7.50 11.32

δ = 3
Placebo 6 months 5.81 0.64 4.55 7.07 5.81 0.66 4.52 7.11 5.82 0.66 4.53 7.11

Placebo 12 months 6.65 0.95 4.79 8.51 6.64 0.93 4.82 8.46 6.64 0.93 4.83 8.46
Placebo 18 months 12.71 1.23 10.30 15.13 12.71 1.22 10.31 15.11 12.68 1.22 10.30 15.06

DHA 6 months 4.24 0.53 3.19 5.29 4.24 0.50 3.25 5.22 4.24 0.50 3.25 5.22
DHA 12 months 4.41 0.81 2.82 6.00 4.38 0.83 2.76 6.00 4.38 0.83 2.76 6.00
DHA 18 months 10.01 1.07 7.92 12.10 9.65 1.00 7.69 11.61 9.72 0.99 7.77 11.67

Table B.5: Primary Analyses for Donepezil Trial Subgroup, full results for treatment effects

Est StdErr Lower Upper Est StdErr Lower Upper
MMRM MI

Donepezil - Placebo 1 year -1.10 0.57 -2.22 0.03 -1.11 0.57 -2.23 0.02
Donepezil - Placebo 2 year -0.81 0.82 -2.41 0.79 -0.85 0.82 -2.46 0.76
Donepezil - Placebo 3 year -1.39 1.18 -3.70 0.91 -1.58 1.20 -3.93 0.77

Paik AIPW
Donepezil - Placebo 1 year -1.13 0.49 -2.08 -0.17 -1.13 0.49 -2.09 -0.17
Donepezil - Placebo 2 year -0.88 0.77 -2.40 0.64 -0.88 0.77 -2.40 0.64
Donepezil - Placebo 3 year -1.60 1.02 -3.59 0.39 -1.57 1.02 -3.58 0.44
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Table B.6: Primary Analyses for Donepezil Trial Subgroup, full results for Ŷ

Est StdErr Lower Upper Est StdErr Lower Upper
MMRM MI

Placebo 1 year 1.25 0.40 0.46 2.04 1.26 0.40 0.48 2.05
Placebo 2 year 2.92 0.58 1.79 4.06 2.97 0.58 1.84 4.10
Placebo 3 year 6.24 0.82 4.62 7.87 6.40 0.84 4.76 8.04

Donepezil 1 year 0.15 0.41 -0.66 0.95 0.15 0.41 -0.64 0.95
Donepezil 2 year 2.11 0.58 0.98 3.25 2.11 0.58 0.97 3.26
Donepezil 3 year 4.85 0.84 3.20 6.50 4.82 0.85 3.15 6.49

Paik AIPW
Placebo 1 year 1.27 0.36 0.56 1.98 1.27 0.36 0.56 1.98
Placebo 2 year 2.99 0.57 1.88 4.11 2.99 0.57 1.87 4.11
Placebo 3 year 6.42 0.89 4.68 8.16 6.43 0.89 4.69 8.18

Donepezil 1 year 0.15 0.37 -0.59 0.88 0.15 0.37 -0.59 0.88
Donepezil 2 year 2.12 0.57 1.00 3.23 2.12 0.57 1.00 3.23
Donepezil 3 year 4.82 0.73 3.40 6.25 4.87 0.73 3.43 6.30

Table B.7: Sensitivity Analyses for Donepezil Trial Subgroup, full results for treatment effects

Est StdErr Lower Upper Est StdErr Lower Upper Est StdErr Lower Upper
J2R MI Paik AIPW

Donepezil - Placebo 1 -1.11 0.57 -2.23 0.02 -1.13 0.49 -2.09 -0.17 -1.13 0.49 -2.09 -0.17
Donepezil - Placebo 2 -0.88 0.82 -2.49 0.73 -0.91 0.73 -2.35 0.53 -0.91 0.73 -2.35 0.53
Donepezil - Placebo 3 -1.56 1.22 -3.95 0.83 -1.56 0.95 -3.43 0.30 -1.53 0.96 -3.41 0.36

δ = 1
Donepezil - Placebo 1 year -1.11 0.57 -2.23 0.02 -1.13 0.49 -2.09 -0.17 -1.13 0.49 -2.09 -0.17
Donepezil - Placebo 2 year -0.75 0.82 -2.36 0.86 -0.78 0.77 -2.29 0.73 -0.78 0.77 -2.29 0.73
Donepezil - Placebo 3 year -1.26 1.20 -3.62 1.10 -1.36 1.02 -3.36 0.64 -1.31 1.03 -3.33 0.70

δ = 2
Donepezil - Placebo 1 year -1.10 0.57 -2.23 0.02 -1.13 0.49 -2.09 -0.17 -1.13 0.49 -2.08 -0.17
Donepezil - Placebo 2 year -0.65 0.82 -2.26 0.96 -0.68 0.77 -2.19 0.83 -0.68 0.77 -2.19 0.83
Donepezil - Placebo 3 year -0.95 1.21 -3.31 1.42 -1.12 1.02 -3.12 0.89 -1.06 1.03 -3.08 0.96

δ = 3
Donepezil - Placebo 1 year -1.10 0.57 -2.23 0.02 -1.13 0.49 -2.09 -0.17 -1.13 0.49 -2.09 -0.17
Donepezil - Placebo 2 year -0.55 0.82 -2.16 1.07 -0.58 0.77 -2.10 0.94 -0.58 0.77 -2.09 0.93
Donepezil - Placebo 3 year -0.63 1.22 -3.01 1.75 -0.88 1.03 -2.90 1.14 -0.81 1.04 -2.85 1.23
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Table B.8: Sensitivity Analyses for Donepezil Trial Subgroup, full results for Ŷ

Est StdErr Lower Upper Est StdErr Lower Upper Est StdErr Lower Upper
J2R MI Paik AIPW

Placebo 1 1.26 0.40 0.48 2.05 1.27 0.36 0.56 1.98 1.27 0.36 0.56 1.98
Placebo 2 2.99 0.58 1.85 4.13 3.01 0.57 1.89 4.13 3.01 0.57 1.89 4.13
Placebo 3 6.36 0.86 4.69 8.04 6.39 0.89 4.64 8.14 6.40 0.90 4.64 8.16

Donepezil 1 0.15 0.41 -0.65 0.95 0.14 0.37 -0.59 0.88 0.14 0.37 -0.59 0.88
Donepezil 2 2.11 0.58 0.97 3.25 2.10 0.53 1.05 3.14 2.10 0.53 1.05 3.14
Donepezil 3 4.80 0.88 3.08 6.53 4.83 0.70 3.46 6.20 4.87 0.71 3.49 6.26

δ = 1
Placebo 1 year 1.26 0.40 0.48 2.05 1.27 0.36 0.56 1.98 1.27 0.36 0.56 1.98
Placebo 2 year 2.97 0.58 1.84 4.10 2.99 0.57 1.87 4.11 2.99 0.57 1.87 4.11
Placebo 3 year 6.40 0.84 4.75 8.04 6.42 0.89 4.68 8.16 6.43 0.89 4.69 8.18

Donepezil 1 year 0.16 0.41 -0.64 0.96 0.15 0.37 -0.59 0.88 0.15 0.37 -0.59 0.88
Donepezil 2 year 2.21 0.58 1.07 3.36 2.21 0.57 1.11 3.32 2.21 0.57 1.11 3.32
Donepezil 3 year 5.13 0.86 3.46 6.81 5.06 0.73 3.62 6.50 5.12 0.74 3.67 6.57

δ = 2
Placebo 1 year 1.26 0.40 0.48 2.04 1.27 0.36 0.56 1.98 1.27 0.36 0.56 1.98
Placebo 2 year 2.97 0.58 1.84 4.10 2.99 0.57 1.87 4.11 2.99 0.57 1.87 4.11
Placebo 3 year 6.39 0.84 4.74 8.04 6.42 0.89 4.67 8.16 6.43 0.89 4.69 8.18

Donepezil 1 year 0.16 0.41 -0.64 0.96 0.14 0.37 -0.59 0.88 0.14 0.37 -0.59 0.88
Donepezil 2 year 2.32 0.58 1.17 3.46 2.31 0.57 1.21 3.42 2.31 0.57 1.20 3.42
Donepezil 3 year 5.45 0.86 3.76 7.13 5.30 0.74 3.85 6.76 5.37 0.75 3.90 6.84

δ = 3
Placebo 1 year 1.26 0.40 0.47 2.04 1.27 0.36 0.56 1.98 1.27 0.36 0.56 1.98
Placebo 2 year 2.96 0.58 1.83 4.10 2.99 0.57 1.87 4.11 2.99 0.57 1.87 4.11
Placebo 3 year 6.39 0.85 4.73 8.05 6.42 0.89 4.68 8.16 6.43 0.89 4.68 8.18

Donepezil 1 year 0.16 0.41 -0.64 0.96 0.14 0.38 -0.59 0.88 0.14 0.37 -0.59 0.88
Donepezil 2 year 2.42 0.59 1.27 3.57 2.41 0.57 1.30 3.52 2.41 0.57 1.30 3.52
Donepezil 3 year 5.76 0.87 4.07 7.46 5.54 0.76 4.06 7.02 5.62 0.76 4.13 7.12
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