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DISCLAIMER

This report was prepared as an account of a workshop sponsored by the U.S. Department of Energy.
Neither the United States Government nor any agency thereof, nor any of their employees or officers,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of document authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof. Copyrights to portions of this report (including graphics) are reserved by original copyright
holders or their assignees, and are used by the Government’s license and by permission. Requests to
use any images must be made to the provider identified in the image credits.
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1 Executive Summary

The National Energy Research Scientific Computing Center (NERSC) is the mission-science
computing center for the DOE Office of Science, serving approximately 5,000 users working
on some 700 projects that involve nearly 600 codes in a wide variety of scientific disciplines.
In addition to large-scale computing and storage resources, NERSC provides support and
expertise that help scientists make efficient use of its systems. NERSC is one of three
supercomputing facilities funded by DOE’s Office of Advanced Scientific Computing
Research (ASCR).

In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to
characterize high performance computing (HPC) and storage requirements for NP research
through 2017. This review is the 12t in a series of reviews held by NERSC and Office of
Science program offices that began in 2009. It is the second for NP, and the final in the
second round of reviews that covered the six Office of Science program offices. These
reviews are vital for NERSC, ASCR, and the program offices in understanding future facility
needs for research supported by the Office of Science.

This latest NP review revealed several key requirements, in addition to achieving its goal of
characterizing NP computing and storage needs. High-level findings are:

1. Scientists will need access to significantly more computing and data resources to
meet their research goals and those of the Office of Nuclear Physics.

2. NP researchers and their teams require assistance getting codes ready for Cori
(NERSC’s next-generation system, to be deployed in 2016) and subsequent
advanced architecture systems.

3. Application teams need a supported software stack that executes well on next-
generation architectures

4. NP teams need to run codes at the largest scale and also require the ability to run
massive numbers of low to medium concurrency jobs.

This report expands upon these key points and adds others. The results are based upon
representative samples, called “case studies,” of the needs of selected group projects within
NERSC. The case study topics, case study authors, and review attendees were selected by
the NERSC meeting coordinators and NP program managers to represent the NP mission-
science computing workload. Prepared by the NP workshop participants, the case studies
contain a summary of science goals, methods of solution, current and future computing
requirements, and special software and support needs. Also included are strategies for
computing in the highly parallel “manycore” environment that is expected to dominate HPC
architectures over the next few years.

The report from the earlier (2010) NERSC NP review is available at
http://www.nersc.gov/science/hpc-requirements-reviews/target-2014/.
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2 Office of Science NP Mission

The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all
forms of nuclear matter. The fundamental particles that compose nuclear matter—quarks
and gluons—are relatively well understood, but exactly how they fit together and interact to
create different types of matter in the universe is still not fully explained. To solve this
mystery, NP supports experimental and theoretical research—along with the development
and operation of particle accelerators and advanced technologies—to create, detect, and
describe the different forms and complexities of nuclear matter that can exist in the
universe, including those that are no longer found naturally. !

Although nuclear physics originated as the study of atomic nuclei, this field has since
broadened considerably and now encompasses the study of all forms of strongly interacting
matter, as well as the use of strongly interacting systems such as nuclei to study other
phenomena. The newer topics in nuclear physics include searches for new phases of nuclear
matter, such as the quark-gluon plasma; aspects of nuclear astrophysics, including the
formation of the heavier elements in supernovae and the properties of condensed objects,
such as neutron stars; unusual, strongly interacting particles, such as hypothetical exotic
mesons that contain the gluons that bind quarks; and the use of nuclei to search for
evidence of new physics “beyond the standard model.”

DOE supports an extensive program of experimental research in nuclear physics at the
national laboratories, which is the largest component of the NP effort. This experimental
work is closely coupled to a strong program of research in theoretical nuclear physics,
which has the goal of interpreting the experimental results in terms of our current
understanding of theory and planning future experiments and facilities to exploit advances
in our understanding of the field.

In recent years, HPC has become remarkably important as a tool for promoting theoretical
advances in nuclear physics and hence for interpreting the results of the experimental
program. A unifying theoretical starting point for nuclear physics is provided by quantum
chromodynamics (QCD); this quantum field theory describes the strong interaction of
nuclear physics in terms of relatively simple basic interactions between the fundamental
particles within nuclei, known as quarks and gluons. A complete solution of the equations of
QCD would in principle answer most of the outstanding questions in nuclear physics. The
areas of nuclear physics at the immediate frontier of applications of QCD are studies of
strongly interacting particles themselves (medium energy nuclear physics) and studies of
QCD phases (heavy ion collisions). Our current approach for extracting numerical
predictions from this theory uses an elegant path integral method that relates QCD
predictions to Monte Carlo integrals on a space-time lattice, known as “lattice QCD.”
Because the extreme computational requirements of this approach are a limiting factor,
future progress in the direct solution of QCD will depend on the scientific community having
access to appropriate computing facilities.

1 DOE/NP Mission Statement, http://science.energy.gov/np/about
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For the study of atomic nuclei, the current state of the art uses various computational
methods for treating dynamical fermion systems. These range from direct quantum Monte
Carlo studies for smaller nuclei through the traditional nuclear shell model for moderate
sized nuclei to more phenomenological methods such as density functional theory for the
largest nuclei. In addition to determining properties of nuclei, this area also contributes to
“beyond the standard model” studies through predictions of transition strengths that may
occur under various assumptions about fundamental particle properties. A direct
connection between this traditional “low energy nuclear physics” area and the fundamental
theory QCD may be achieved in the relatively near future through a realization of the Holy
Grail of QCD-based calculations of nuclear forces.

Finally, research in nuclear astrophysics seeks to understand the nuclear processes that
have shaped the cosmos—from the origin of the elements, the evolution of stars, and the
detonation of supernovae to the structure of neutron stars and the nature of matter under
extreme conditions. Furthering the DOE goal of understanding the natural world, computer
simulations in these areas support DOE efforts in understanding the origin of the universe,
the nature of dark energy and dark matter, and astrophysical production of exotic nuclei, as
outlined in the 2011 DOE Strategic Plan.2

2 U.S. Department of Energy Strategic Plan, May 2011,
http://energy.gov/sites/prod/files/2011_DOE_Strategic_Plan_.pdf
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3 About NERSC

The National Energy Research Scientific Computing (NERSC) Center, which is supported by
the U.S. Department of Energy’s Office of Advanced Scientific Computing Research (ASCR),
serves more than 5,000 scientists working on over 700 projects of national importance.
Operated by Lawrence Berkeley National Laboratory (LBNL), NERSC is the primary high-
performance computing facility for scientists in all of the research programs supported by
the Department of Energy’s Office of Science. These scientists, working remotely from DOE
national laboratories; universities; other federal agencies; and industry, use NERSC
resources and services to further the research mission of the Office of Science (SC). While
focused on DOE's missions and scientific goals, research conducted at NERSC spans a range
of scientific disciplines, including physics, materials science, energy research, climate
change, and the life sciences. This large and diverse user community runs hundreds of
different application codes. Results obtained using NERSC facilities are cited in about 1,500
peer-reviewed scientific papers per year. NERSC activities and scientific results are also
described in the center’s annual reports, newsletter articles, technical reports, and
extensive online documentation. In addition to providing computational support for
projects funded by the Office of Science program offices (ASCR, BER, BES, FES, HEP, and NP),
NERSC directly supports the Scientific Discovery through Advanced Computing (SciDAC3)
and ASCR Leadership Computing Challenge* programs, as well as several international
collaborations in which DOE is engaged. In short, NERSC supports the computational needs
of the entire spectrum of DOE open science research.

The DOE Office of Science supports three major HPC centers: NERSC and the Leadership
Computing Facilities at Oak Ridge and Argonne National Laboratories. NERSC has the
unique role of being solely responsible for providing HPC resources to all open scientific
research areas sponsored by the Office of Science.

This report illustrates NERSC’s alignment with, and responsiveness to, DOE program office
needs; in this case, the needs of the Office of Nuclear Physics. The large number of projects
supported by NERSC, the diversity of application codes, and its role as an incubator for
scalable application codes present unique challenges to the center. However, as
demonstrated by its users’ scientific productivity, the combination of effectively managed
resources, and excellent user support services, NERSC continues its 40-year history as a
world leader in advancing computational science across a wide range of disciplines.

NERSC provides an important computational resource for NP scientists. During the 2013
allocation year, about 54 NP projects computed at NERSC. These NP projects consumed
approximately 215 million hours, about 10% of the total 2013 DOE-allocated time at NERSC.
Additionally, NERSC's PDSF cluster, NERSC Global Filesystem, networking, and science
gateway resources continue to play a vital role in NP experimental science, continuing a
tradition dating back to at least 1996

For more information about NERSC visit the web site at http://www.nersc.gov.

3 http://www.scidac.gov

4 http://science.energy.gov/~/media/ascr/pdf/incite/docs/Allocation_process.pdf
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Meeting Background and Structure

In support of its mission to provide world-class HPC systems and services for DOE Office of
Science research, NERSC regularly gathers user requirements. In addition to the
requirements reviews, NERSC collects information through the Energy Research Computing
Allocations Process (ERCAP), workload analyses, an annual user survey, and discussions
with DOE program managers and scientists who use the facility.

In April 2014, ASCR, NP, and NERSC held a review to gather HPC requirements for current
and future science programs supported by NP. This report is the result of that meeting.

This document presents a number of findings based upon a representative sample of
projects conducting research supported by NP. The case studies were chosen by the DOE
Program Office Managers and NERSC staff to provide broad coverage in both established
and incipient NP research areas. Most of the domain scientists at the review were
associated with an existing NERSC project, or “repository” (abbreviated later in this
document as “repo”).

Each case study contains a description of scientific goals for today and for the future, a brief
description of computational methods used, and a description of current and expected
future computing needs. Since future supercomputer architectures are expected to contain
multiprocessors with hundreds or thousands of cores per socket and perhaps millions of
cores per system, participants were asked to describe their strategy for computing in such a
highly parallel, “manycore” environment.

Requirements presented in this document will serve as input to the NERSC planning
process for systems and services and help ensure that NERSC continues to provide world-
class resources for scientific discovery to scientists and their collaborators in support of the
DOE Office of Science, Office of Nuclear Physics.

NERSC and ASCR have been conducting individual requirements reviews for each of the six
DOE Office of Sciences program offices that allocate time at NERSC. A first round of
meetings was conducted between May 2009 and May 2011 for requirements with a target
of 2014. This second round of meetings targets needs for 2017. Reports from the previous
reviews are available online at http://www.nersc.gov.

Specific findings from the NP review held in 2014 follow.
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4 Workshop Demographics

4.1 Participants

4.1.1 DOE / NERSC Participants and Organizers

Name Institution Role/Area of Interest
Program Manager, Nuclear Data and
Ted Barnes DOE / NP Nuclear Theory Computing, Office of
Nuclear Physics
Sudip Dosanjh NERSC NERSC Director
NERSC Services Department Head,
Katie Antypas NERSC NERSC Exascale Application
Readiness Program
NERSC Senior Science Advisor, User
Richard Gerber NERSC Services Group Lead, Meeting
Organizer
Dave Goodwin DOE / ASCR NERSC Program Manager
. User Services Group Consultant for
Lisa Gerhardt NERSC High Energy & Nuclear Physics
Richard Carlson DOE / ASCR Collaboratories and middleware
Randall Laviolette DOE / ASCR SciDAC Partnerships
NERSC Exascale Application
Harvey Wasserman NERSC Readiness Program, Meeting

Organizer

Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017
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4.1.2 Domain Scientists

Name Institution Area of Interest NERSC
Repo(s)
Robert Edwards Jefferson Lab Hadronic structure in m1383
Lattice QCD
Graham Heyes Jefferson Lab Experimental Nuclear N/A
y Physics Computing
Raphael Hix ORNL Nuclear Astrophysics m1373
NERSC High Energy &
. Nuclear Physics .
Lisa Gerhardt NERSC Consultant: IceCube icecube
neutrino experiment
Peter Petreczky Brookhaizr; National Hot QCD m1416
gc5,
Jeff Porter NERSC / LBNL ALICE experiment m1094,
alice
A . Some
Sofia Quaglioni LLNL ab Imtllio }Clilrf:lll?:ions of overlap
& with m94
. University of .
Martin Savage Washington Lattice QCD m747
. RIKEN BNL Research .
Sergey Syritsyn Center Lattice QCD mp133
. . ab initio calculations of m308,
James Vary Iowa State University light nuclei 94
. . . m1938,
Michael Zingale SUNY Stony Brook Nuclear Astrophysics m106
4.1.3 Observers
Name Institution Area of Interest
Hal Finkel ALCF Catalyst, Assistant Computational Scientist
Hai Ah Nam OLCF Scientific Computing Group; computational nuclear
physics
James Osborn ALCF Nuclear & High Energy Physics, Sparse Linear
Algebra
Jack Wells OLCF Director of Science for the NCCS at ORNL
George Fai DOE / NP Nuclear Theory Program Manager

Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017
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4.2

NERSC Projects Represented by Case Studies

NERSC projects represented by case studies are listed in the table below, along with the
number of NERSC hours they used in 2013. Note: NP resources at NERSC in 2013 included a
science category "Accelerator Science" that provided allocations for six projects that used

2.4 million hours that are not represented at this review. Also not represented is a project

allocated from the NERSC Director Reserve under the NP nuclear structure category for 14
million hours.

NERSC Jls ?el(lir:t Archival Shared
Project NERSC Project Title Prmcllpal Workshop NERSC Data at Dat.a on
ID Investigator Speaker in 2013 NERSC Disk
(Repo) 2013 (TB) (TB)
M)
Lattice Quantum Chromodynamics (LQCD)
m747 Hadfon-Hadron Interactions with Martin Martin 324 140 041
Lattice QCD Savage Savage
Exploration of Hadron Structure using Sergey
mp133 Lattice QCD John Negele Syritsyn 41.6 54 0.0
Lattice QCD Monte Carlo Calculation Robert
mp7 of Hadronic Structure and Keh-Fei Liu 14.2 437 26.5
Edwards
Spectroscopy
m1416 QCD Thermodynamics at High Alexei Peter 6.0 0 0.0
Temperature Bazavov Petreczky
Nuclear Structure
James Vary /
m94 ab initio Nuclear Structure James Vary Sofia 47.5 28 2.2
Quaglioni
Nuclear Astrophysics
m106 Core-Collapse Supernova Simulations Stan Woosley I\Z/[il:l:;l:f; 4.4 173 0.82
m1938 | Convection in X-ray Bursts M.IChael M.IChael 05 0s 05
Zingale Zingale
Developing an Understanding of Core-
Collapse Supernova Explosion . .
m1373 Systematics using 2D CHIMERA Raphael Hix Raphael Hix 2.1 76 5.5
Simulations
Data Analysis
. Data Analysis and Simulations for the
alice ALICE Experiment at the LHC Jeff Porter Jeff Porter 0.15 4 400
gc5 STAR Qetector Simulations and Data Jeff Porter Jeff Porter 0.34 1,490 125
m1094 | Analysis
Total Represented by All Case Studies 148 M | 2,403 TB | 560 TB
. . 1,367
All NP at NERSC in 2013 (54 projects) 216 M | 4,287 TB TB
Percent of NERSC NP 2013 Allocation Represented by Case Studies 69% 56% 41%

5m1938 is a new repo for 2014. The work being undertaken in m1938 was part of m106 in 2013 and earlier.
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5

5.1

Findings

Summary of Requirements

The following is a summary of requirements derived from the case studies. Note that many
requirements are stated individually but are in fact closely related to and dependent upon

others.

5.1.1

5.1.2

5.1.3

Scientists will need access to significantly more computing and
data resources to meet their research goals and those of the
Office of Nuclear Physics.

Science teams anticipate needing more than 5 billion hours of computing time at
NERSC to conduct NP research in 2017. This is about 25 times more than they used
in 2013 and consistent with the historical usage growth rate.

NP scientists expect to store 32 PB of data in the NERSC HPSS archival store system
in 2017. This need, 7.5 times what NP had archived in 2013, is growing faster than
the historical trend for NP, driven by requirements for saving both simulated and
experimental data.

Research teams in NP need 6 PB of storage in the NERSC /project file system in
2017 or in a similar shared location for community data and code.

NP researchers and their teams require assistance getting codes
ready for Cori and subsequent advanced architecture systems.

While some teams are using GPUs for portions of their work, most of the codes in
use have not been ported to run well—or at all—on manycore systems like the Intel
Xeon Phi that will comprise the NERSC Cori system, which is scheduled to be
deployed in 2016.

Scientists want NERSC to provide expertise and manpower to assist the porting
effort. This includes documentation, training, and consulting, in addition to
dedicated coding help and/or liaisons.

Researchers in NP want DOE to provide expert direct assistance to help port to new
architectures.

Developers need technical information about new architectures and access to early
hardware and simulators.

Application teams need a supported software stack that executes
well on next-generation architectures.

Scientists want supported software—Ilibraries, tools, solvers—that will run
efficiently on Cori and request that DOE support multidisciplinary teams along the
lines of what is available through SciDAC.

NP codes rely heavily on basic math libraries—LAPACK, SCALAPACK, BLAS,
ARPACK, PARPACK, MKL—and researchers need them to work well on Cori and
future systems. Some teams are planning to begin using HDF5 for 1/0.

Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017 13



5.1.4 NP teams need to run codes at the largest scale and also require
the ability to run massive numbers of low- to medium-
concurrency jobs.

* Some problems—such as gauge field generation in Lattice QCD—require full-
machine scale parallelism.

* Other codes and different stages of analysis within a single code framework need to
run massive numbers of jobs at lower concurrency.

5.2 Computing and Storage Requirements

The following two tables list, respectively, the 2017 computational hours and storage
needed at NERSC for research represented by the case studies in this report. “Total Scaled
Requirement” at the end of each table represents the hours needed by all 2013 NP NERSC
projects if increased by the same factor as that needed by the projects represented by the
case studies.

5.2.1 Computing Requirements

Compute Resources
NERSC S Needed in 2017
. rincipa
Case Study Title Repo(s) Investigator Million Factor
Hours Increase Over
2013

Hadron-Hadron Interactions with Lattice m747 Martin Savage
QCD
g)gJDIoratzon of Hadron Structure using Lattice mp133 John Negele 3,000 93
Lattice QCD Monte Carlo Calculation of s
Hadronic Structure and Spectroscopy mp7 Keh-Fei Liu
QCD Thermodynamics at High Temperature ml1416 Alexei Bazavov 100 17
ab initio Nuclear Structure m94 James Vary 246 5.2
Core-Collapse Supernova Simulations, m106 Stan Woosley, 100 23
Convection in X-ray Bursts m1938 Michael Zingale
Developing an Understanding of Core-
Collapse Supernova Explosion Systematics m1373 Raphael Hix 200 94
using 2D CHIMERA Simulations
Data Analysis and Simulations for the ALICE .
e e T alice Jeff Porter 0.7 2
STAR Detector Simulations and Data Analysis m%CO?M Jeff Porter N/A N/A
Total Represented by Case Studies 3,647 24.5
Percent of NERSC 2013 NP Allocations Represented by Case Studies 68.8 %
All NP at NERSC Total Scaled Requirement 5,302 24.5
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5.2.2 Storage Requirements

Archival Data Storage Shared Online
Repo(s) Needed in Data Storage
TB Factor TB Factor
Increase Increase
Hadron-Hadron Interactions Martin m747
with Lattice QCD Savage
Exploration of Hadron John mp133 10.000 16
Structure using Lattice QCD Negele ’ 1,000 37
Lattice QCD Monte CaI?IO Keh-Fei mp7
Calculation of Hadronic Liu
Structure and Spectroscopy
QCD Thermodynamics at High Alexei m1416 200 286 10 i
Temperature Bazavov
ab initio Nuclear Structure James m94 280 10 16 7
Vary
Core-Collapse Supernova W(S)gzllle 1211190368
Simulations, Convection in X-ray . v 500 3 25 30
Michael
Bursts .
Zingale
Developing an Understanding of m1373
Core-Collapse Supernova Raphael
Explosion Systematics using 2D Hix 2,000 26 400 73
CHIMERA simulations
Data analysis and simulations Jeff alice
for the ALICE experiment at the 14 3.4 800 2
Porter
LHC
STAR Detector Simulations and Jeff gc5,
Data Analysis Porter m1094 5,000 34 250 2
Total Represented by Case Studies 2,404 7.5 560 4.5
Percent of Nl:'IRSC 2013 NP Allocations Represented 56 % 41%
by Case Studies
All NP at NERSC Total Scaled Requirement 32,000 7.5 6,000 4.5
Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017 15




NERSC and NP Computational Hours

——NP Trend ——NERSC Trend =>&=NP Usage =>=All NERSC Usage
% NP Need 2014 % All NERSC Need 2014 % NP Need 2017
100,000.0 i T i i T
'X-Needsfrom Requirement Reviews' //
-~ 10,000.0 >(
[7,) ’
5 —X X
S 1,000.0 —
T:'.: /
S
9 1000 e
& w1
S P
10.0 X
Q LI
g =
2
1.0
0.1 f
SN SRS PN SN PN LN SN S N A MR SN N PN
Year
NP and All NERSC Archival Storage
=>&NP Usage =>&=All NERSC —AIll NERSC Trend —NP Trend
% NP Need 2014 % All NERSC Need 2014 % NP Need 2017
1,000,000 ¢
100,000 - X// _—
) *I‘!ea‘ x
= cRSC 1.5 X/
< 10,000 = M
o F (-—(—_
5 F
- L
m r ld
© 1,000 X Np: L3 X ye
© b
o L
100 -
10
3 \0) o A\ N O Q N ) > N \e) © A
Q Q Q Q Q Q M N M M ) ) M M
R S S S S S S S S S S S I Y

Year

Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017

16



6 Lattice QCD Case Studies

6.1 Lattice QCD for Cold Nuclear Physics

Principal Investigator: Robert Edwards, Martin Savage, Sergey Syritsyn
NERSC Repositories: m747 (nplqcd), mp133 (Negele), mp7 (Liu)

6.1.1 Project Description

6.1.1.1 Overview and Context

The structure of the proton and neutron, and the forces between them, originates from an
underlying quantum field theory known as quantum chromodynamics (QCD). This theory
governs the interactions of quarks and gluons that are basic constituents of the observable
matter in our surrounding environment. QCD has been thoroughly tested by experiments at
high energies, giving us insight into nature’s workings over distances that are smaller than
the size of nucleons (the term used for both protons and neutrons). However, at low
energies or larger distances, the theory becomes formidable and efforts to theoretically
determine fundamental nuclear physics phenomena directly from QCD have been met with
less success. A long-standing effort of the DOE’s Nuclear Physics program is to determine
how QCD in this low-energy regime manifests itself into the observed spectrum of hadrons
and the observed nuclear phenomena, and to use QCD to make reliable predictions for
processes that cannot be experimentally accessed. These theoretical efforts provide critical
support to the DOE’s nuclear experimental projects, in particular those being executed at
the Thomas Jefferson National Accelerator Laboratory (JLAB), Brookhaven’s Relativistic
Heavy lon Collider (RHIC), and Michigan State’s Facility for Radioactive Beams (FRIB), as
well as a planned Electron-Ion Collider (EIC).

The specific goals of lattice QCD in cold nuclear physics are to:

* Determine the spectrum of QCD. In addition to the excited meson and baryon
spectrum, this includes the search for exotic states that may exist. This is tied closely
to the experimental program at JLAB, including the GlueX experiment to be
performed with the 12 GeV upgrade to JLAB.

* Determine how QCD makes hadrons and quantify their structure. This is tied
closely to a number of experimental nuclear physics programs, including the spin-
structure efforts at RHIC, JLab, and a future EIC, and also impacts the high-energy
physics program at the LHC.

* Determine how nuclei and their interactions emerge from QCD, and develop
technology to calculate these quantities with quantifiable uncertainties. This
will allow for reliable predictions of nuclear reactions and structure that are difficult
to measure in the laboratory but play a role in extreme conditions in the cosmos or
in neutron-rich environments. This includes a precise determination of the two-
nucleon, three-nucleon and multi-nucleon forces. This effort will compliment the
experimental program at FRIB and is crucial to refining the chiral nuclear forces.

* Quantify the connection between the underlying fundamental symmetries of
nature and experimental observables. For a number of observables that probe
fundamental aspects of nature, the strong interactions provide large, and presently
unquantified, modifications to the underlying interactions. Such modifications can

Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017 17



be precisely determined from Lattice QCD calculations. These theoretical efforts are
critical to the interpretation of precision experiments being performed at Los
Alamos National Laboratory and Oak Ridge National Laboratory, which are precisely
measuring the properties of neutrons in an effort to discover new physics.

6.1.1.2 Scientific Objectives for 2017

The objective of the nuclear physics program at NERSC for the 2014-2017 period is to
perform the suite of calculations that address the science goals stated above at light-quark
masses that produce a pion near and at the physical mass, but without strong isospin
breaking and without the complete electromagnetic interactions. Ensembles of gauge-field
configurations will be generated with a few lattice spacings and a few lattice volumes.
These, and ensembles produced elsewhere, will be used to produce the first realistic
calculations of the hadron spectrum, the structure of the hadrons, and the forces between
two and three hadrons. Specifically, with the HPC resources provided through 2017, we
anticipate calculations of the following:

* Resonance determination of the light quark meson spectrum, including possible
exotic mesons

* Photo-couplings of light and charmonium mesons

* N*and strange quark baryons—resonance determination of low lying spectrum

* Isovector and isoscalar form factors of the nucleon and generalized parton
distributions

* Individual contributions of the up, down, and strange quarks to hadronic structure
and nucleon spin

* Precise determination of low-energy nucleon structure observables

* Meson-meson interactions with precision

* Nucleon-nucleon, hyperon-nucleon, hyperon-hyperon interactions

* Two-body bound-states

* Lowest-lying states in light nuclei with A<8

* Neutron electric dipole moment

* Constraints on physics beyond the standard model (when combined with planned
experiments)

This list of calculations can be roughly grouped together under three specific goals
(discussed above). At the physical pion mass, but in the isospin-limit and without
electromagnetic interactions, the NERSC HPC resources will result in calculations of the
following:

* The spectrum and structure of light hadrons from QCD

* Nuclear forces and the interactions between hadrons from QCD

* The manifestation of fundamental interactions, and possible modifications to the
standard model, in the light hadrons

Estimates of the computational resources that are required to complete these calculations
and calculations of other important quantities are shown in Figure 1, Figure 2, and Figure 3.
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Figure 1. Estimate of the computational resources required to determine the spectrum and
structure of hadrons. [Figure is reproduced from the Scientific Grand Challenges: Forefront
Questions in Nuclear Science and the Role of Computing at the Extreme Scale workshop

held in 2009]
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Figure 2. Estimates of the computational resources required to calculate the two and three-
body nuclear forces. [Figure is reproduced from the Scientific Grand Challenges: Forefront
Questions in Nuclear Science and the Role of Computing at the Extreme Scale workshop

held in 2009]
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Figure 3. Estimates of the computational resources required to calculate the structure of the
nucleon. [Figure is reproduced from the Scientific Grand Challenges: Forefront Questions in
Nuclear Science and the Role of Computing at the Extreme Scale workshop held in 2009]

This period (2014-2017) will also see the evolution of the currently employed Lattice QCD
codes toward deployment and production on exascale facilities (for instance, workflow).
The resources provided by NERSC will be used coherently with other HPC resources
available to the nuclear physics community, such as the capacity resources provided by
USQCD (SciDAC project) at its HPC centers at the Brookhaven National Laboratory (BNL),
JLab, and FermilLab, the capability resources provided by USQCD via INCITE awards, and
awards from the NSF HPC centers (XSEDE and Bluewaters).

6.1.2 Computational Strategies (now and in 2017)

6.1.2.1 Approach

Lattice QCD is the numerical technique in which space-time is discretized and the path
integral that dictates the quantum dynamics of the quark and gluon fields is evaluated by a
combination of Monte Carlo techniques and sparse-matrix inversions. It is currently the
only known method to rigorously solve QCD. Realistic calculations with uncertainties that
can be systematically removed require highly optimized algorithms and cutting-edge HPC
systems that currently exist, and will exist, at NERSC in the near future. The current “mode
of operation” in Lattice QCD is to split the requisite tasks into two or three distinct
subtasks:
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1. Generating one or more ensembles of gauge-field configurations (lattices). A
number of ensembles with different lattice spacings and volumes are required at
each given set of light-quark masses to perform the necessary extrapolation to the
continuum and to infinite volume. This process has significant resource
requirements, which increase with decreasing lattice spacing, with increasing
volume, and with decreasing light-quark masses. Each configuration is saved to disk
and archived to be used in (multiple) subsequent calculations. The multiple volumes
and lattice spacings at a fixed quark mass allow for the reduction in the systematic
error(s) introduced by the non-zero lattice spacing and the non-infinite volume of
the gauge-fields. Gauge-field generation typically occurs over a period of months.
The generation of gauge fields requires HPC capability facilities.

2. Producing light-quark propagators on each gauge-field configuration. In
general, a large number of light-quark propagators, and also potentially low
eigenvectors, need to be determined on each gauge-field configuration. Some
intermediate objects may or may not be required for subsequent calculations
produced at the time of propagator generation (for example, intermediate-stage
hadronic blocks). These are either saved to disk and possibly archived for
subsequent use or used immediately without being written to disk. Parts of these
calculations can place significant demands on memory and [/O bandwidth. The
generation of propagators presently requires HPC capacity facilities but can be
performed equally well on capability resources.

3. Correlation functions of quantities that will yield the desired physics are
produced from the propagators. They are produced immediately after propagator
production or from propagators that have been saved to disk or archived. The
correlation functions are written to disk, archived, and moved off-site for
subsequent analysis that generally can be performed on workstations or small local
clusters. The generation of correlation functions require HPC capacity facilities but
can be performed equally well on capability resources.

6.1.2.2 Codes and Algorithms

In 2013 the Chroma lattice field theory code suite was ranked as the third code in terms of
allocated cycles at NERSC. This code suite, used for lattice QCD calculations, runs on almost
all parallel machines. It was designed from the ground up as part of the DOE SciDAC effort
within the USQCD initiative. The Chroma software system is built over a C++ data parallel
API and implementation called QDP++. This package provides an architectural independent
programming API along with 1/0 support. The Chroma suite is designed following modern
software engineering programming practices with regression tests and nightly builds.
Significant effort has gone into optimizing architecturally specific, time-critical routines.

Lattice QCD uses a four-dimensional rectangular grid to represent space and time. The grid
is divided into equal domains for each processing node. The grid spacing and size of the grid
are parameters in the theory. The quarks are site variables, while the “gluons” —the field
configuration—are situated on the links. For a given set of input parameters of the theory—
namely, the lattice spacing, volume, and quark masses—an observable is computed by
averaging over all possible values of the field configurations. A Monte Carlo method is used
to produce the most important set of configurations contributing to this average. These
importance-sampling methods allow for a systematically improvable calculation of an
observable.
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In broad terms, there are two main classes of computations: the generation of the gauge
field configurations requiring large-scale capability resources, and the analysis of these
configurations requiring either capability or capacity resources. The Chroma code suite is
actually a library, with parts of the code supporting both of these types of calculations.

Field configurations are generated by a molecular dynamics evolution of the gauge field
through an artificial simulation time. The time-consuming part of the calculation is the
computation of the force coming from the dynamical quark fields, which is a non-local force
involving the gluon fields. Computations of this force require the solution of large sparse
linear systems of equations; namely, the solution of a Hermitian positive-definite sparse
matrix problem.

As a part of the USQCD SciDAC initiative, significant effort has gone into better mathematical
formulations of the gauge updating (a Hamiltonian integrator). The formulation of QCD, and
the demands that the integrator satisfy reversibility and be area-preserving, limit the extent
to which improved mathematical formulations can be borrowed from standard ODE-s.
Nevertheless, over the last few years, improved methods have resulted in about a factor of
10 increase in the performance of the integrator.

Once the gauge-field configurations are computed and stored, subsequent calculations of
observables will typically be dominated in cost by repeated solution of these matrix
problems. Some calculations may involve the intermediate storage of large files scaling with
the lattice volume. These files are later staged back in and processed into numerous, but
smaller, files.

Lattice grid sizes in use now range up to 72x72x72x256. The gauge field variables on each
link are 3x3 complex matrices, and the site variables—the quarks—are represented as 3x4
complex matrices.

The Chroma codes can be compiled in several architectural modes supporting a hybrid
communications and threads model. The parallel version is built over a communications
package called QMP that was developed as a part of the USQCD SciDAC effort. This
communication package is implemented in MPI as well as other architecturally specific
hardware communication variants. The thread model is implemented in either OpenMP or a
package called QMT that was also developed as a part of SciDAC. The QMT package has been
implemented in Pthreads with architecturally specific thread semaphore routines that are
found to outperform OpenMP on some platforms. The choice of computational model is
usually suggested by the hardware architecture.

Recently, the underlying component of the Chroma code (QDP++) has been implemented
using a just-in-time compilation framework that can generate and execute code on GPUs.
This code is in production now utilizing 4,000 GPU nodes, or 120,000 equivalent cores, in
the generation of gauge fields on 72x72x72x256 lattice grid sizes on the Titan system at
ORNL. The code uses a hybrid MPI/OpenMP model, where the OpenMP directives are
generated automatically from within the QDP++ code. The code is linked against the QUDA
library that provides high performance matrix linear system solvers for GPU systems. The
just-in-time compilation system has been extended to use the LLVM compiler framework,
allowing for gauge generation on Cray XE systems as well as the Bluegene/Q systems.
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The analysis phase of the calculations is typically composed of a large number of matrix
linear system solutions, followed by the contraction of the solution vectors to produce
correlation functions—arrays of complex numbers. The deployment of large GPU-based
systems has had a profound impact on these analysis phases. In particular, the high-
performance linear system solvers available within the QUDA package have given more
than a 10x reduction in the time-to-solution in these critical parts of the calculations.
Recently, the deployment of an algebraic multigrid code linear solver in the QOPQDP
package has also shown a 10x reduction in the time for matrix solutions for CPU based
systems. Typical job sizes for solution of a single matrix are a few (10s) of nodes, but larger
numbers of solutions can be obtained on larger partition sizes, such as 10,000 to 20,000
cores. The increased capacity afforded by these improved methods has resulted in a
significant increase in [/O demands in both intermediate and long-term storage.
Intermediate datasets are approaching 1 TB. Parallel and global file systems available to
hold longer term datasets are being used. A common such system is Lustre, but other HPSS
systems can be used.

Another technique employed in the analysis phase is acceleration of the linear system
solutions by deflation of low-mode eigenvectors. The algorithm allows for the initial
construction and successive refinement of the eigenmodes while determining the matrix
solutions for each of the many required right-hand sides. Crucially, the low eigenmodes can
be employed in the analysis phase in a method call all-mode averaging (AMA) and allows for
a dramatic increase in the statistical precision of the final correlation functions by a factor of
10x to 20x. Combined with deflation, the overall computation is accelerated by a factor of
100x.

The computation of the eigenvectors is done with ARPACK, and the deflation and analysis
methods used are implemented in the Qlua software package. The large number of
eigenmodes places large demands on memory and I/O throughput. For a single gauge

configuration, the intermediate storage can reach 20 to 35 TB in size. Thus, high-
performance [/0 becomes crucial on the large problem sizes.

6.1.3 HPC Resources Used Today

6.1.3.1 Computational Hours
At NERSC, we have in MPP units 30 million (NPLQCD), 40 million (LHP), and 18 million

(Spectrum), for a total in the vicinity of 90M MPP units. Outside of NERSC, we have
allocations on USQCD, INCITE and XSEDE resources in 2014.
NPLQCD:
USQCD: 41M CPU core-hours and 320K GPU node-hours
XSEDE: 25M CPU core-hours
LHP:
USQCD: 20M CPU core-hours

Spectrum:
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USQCD: 34M CPU core-hours and 3,500K GPU node-hours
INCITE: 58M ORNL core-hours

If we consider one USQCD core-hour to be about the same as a NERSC MPP unit and add the
INCITE allocation, we have a total of about 211 million MPP node-hours. The USQCD GPU
node-hour allocation is 3.8 million.

6.1.3.2 Parallelism

Gauge generation typically uses about 40,000 to 60,000 cores on NERSC systems. Further
analysis jobs sizes range from a very small number of cores to in excess of 64,000 cores.
Analysis calculations with AMA/deflation require 512 nodes of Edison and 1,024 nodes on
Hopper.

The maximum limits are determined by the smallest local volume per compute element,
which is considered to be 2x2x2x2. Thus, for the 72x72x72x256 lattice gauge generation,
the maximum number of cores that can be used is about 3 million. For the analysis portion,
the same maximum holds.

Severe strong scaling sets in at the largest possible core counts. For this reason, most of our
running is on partitions that are smaller than the maximum possible. This is because some
of the subprocesses in the production work flow run efficiently on smaller partitions. More
reasonable scaling is found for a local volume of 4x4x4x4, where the calculations could be
scaled to 370,000 cores for the largest problem size. For the NERSC systems, problem sizes
such as 48x48x48x96 are in use, resulting in 40,000 partition sizes.

Both strong and weak scaling are important to our research programs. Given the type and
size of the problems we have been recently running at NERSC and what we expect to obtain
from INCITE resources on leadership facilities, we anticipate requiring better weak scaling
properties compared with strong scaling.

6.1.3.3 Scratch Data

We require 100 TB of temporary disk space for our current production, given our
allocation(s).

6.1.3.4 Shared Data
NPLQCD used 27 TB of data in the following directory in 2013:

/project/projectdirs/nplqcd
This directory is used for sharing data among users and for storing configurations.

6.1.3.5 Archival Data Storage
We stored 632 TB of data in the NERSC HPSS archival storage system in 2013.
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6.1.4 HPC Requirementsin 2017

6.1.4.1 Computational Hours Needed

In the 2011 NERSC case studies, we estimated that we required about 1 billion hours per
year by 2014 to accomplish our stated goals by 2014. In retrospect, these estimates were
quite accurate, and consequently, we are approximately one year behind schedule in
delivering the described science. To accomplish the goals we have set out for 2017, we
estimate that 3 billion hours will be required per year by 2017. This represents essentially a
Moore’s Law growth of resources used at NERSC in 2011, which has been the underlying
assumption in projecting resource requirements but represents a significant increase over
the allocations obtained between 2011 and 2014.

We expect to obtain resources from USQCD and also INCITE for this research direction.
Historically, the USQCD collaboration has received allocations that are greater than 3% of
the available combined INCITE resources of ALCF and OLCF.

We will certainly require more compute hours in 2017 than in 2014. This is driven by the
need to reduce the mass of the light quarks to their physical values to produce quantities
that can be directly compared to nature and to make predictions for extreme environments.
In turn, the associated reduction in the pion mass requires larger lattice volumes for the
calculated systems to be well-contained within the lattice volume.

It is important to note that the resource requirements we have presented for 2017 are
insufficient to fully quantify all of the uncertainties associated with these lattice QCD
calculations at the physical light-quark masses. We estimate that more than 100 billion
hours are required to reliably estimate the lattice spacing uncertainties at the physical point,
and precision calculations with a complete quantification of all uncertainties is currently
estimated at a sustained 100 Pflop years.

6.1.4.2 Parallelism

We expect to run jobs from small core counts to partitions on the order of 500,000 cores.
The maximum we could use is > 3 million cores.

6.1.4.3 1/0

Our applications do not have built-in checkpoint/restart, but a similar effect is achieved by
the nature of the workflow, namely task-level restarts. For the analysis phase, the basic unit
of work is a configuration, usually a collection of matrix solutions. If these collections fail,
then they can be re-evaluated.

The requirements for the eigenvector computations are more stringent though, going
through third-party packages, and overall the codes do not allow for checkpointing.

For gauge generation on 96x96x96x256 lattices, we need:
150 GB per configuration and about 1,000 configurations, leading to ~150 TB.
For the propagator and analysis portion:

150 GB (read per configuration)
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100 x 1.5 TB (intermediate write per configuration for ~ 100 propagators)
300 GB (final write per configuration, and need 1000 configurations)
Checkpoint: gauge generation and analysis ~ 300 TB.

For the gauge generation portion, except for an initial load, the code is writing only 150 GB
about every 20 minutes. The code blocks on this write.

For the propagator portion, the code blocks on a 150 GB read (done once) and then must
write the 1.5 TB every minute or so.

Whenever deflation is used, the code will have to load 35 TB at the start of the job. To avoid
idling, peak available bandwidth (as high as possible) will be required at the start. Less than
about 10% of the runtime would be acceptable for the /0 portion of the code.

At the current peak SCRATCH 1/0 bandwidth on Edison (~150 GB/sec), reading 35 TB will
take ~4 min. Lattice QCD jobs are typically longer than 1 hour, so we expect the /0 to take
less than 7%.

6.1.4.4 Future Data Needs

In 2017, we expect to need <1,000 TB of temporary scratch disk space, <1,000 TB of NERSC
project space (globally accessible shared data), and <10,000 TB of storage on NERSC HPSS.
The growth in these requirements relative to 2013 is due primarily to increasing lattice
volume, reduced lattice spacing, and reduced light-quark masses.

6.1.4.5 Memory Required

New algorithms that are being employed, such as all mode averaging, are memory intensive,
currently requiring ~3 GB/core on 16,000 core partitions. While this algorithm is not
required, it is desirable for some calculations, and therefore it would be desirable to have
more than 3 GB/core on partitions > 50,000 cores, and hence > 50 TB of memory per run.

6.1.4.6 Emerging Technologies and Programming Models

Our codes make extensive use of CUDA directives. The Chroma code, using the Just-In-Time
compilation framework, can generate Nvidia PTX code and, using the Just-In-Time compiler,
can dynamically produce and execute code on the GPUs. All lattice grid based operations are
executed on the GPUs, and data is transferred to the front end as necessary, such as for MPI
communications. The code is linked against the QUDA QCD library, which is implemented
directly in CUDA. At runtime, the QUDA code dynamically tunes the block sizes that will give
optimal performance on the particular GPU system.
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Figure 4. Sustained strong scaling performance in Gflops of a Wilson-clover mixed precision
BiCGstab, and DD-GCR, a GCR solver with a domain decomposed preconditioner that
minimizes communications.

The development of domain-based formulations of the gauge field integrators and inverters
is precisely aimed at these heterogeneous architectures. Crucial to these methods is the
importance of the characteristic length scale within QCD. This length scale, basically the
distance for confinement of quarks within QCD, indicates the minimal size by which
domains of space-time can be decomposed and isolated from other domains. These domains
of space can be allocated to a computational node with fast local communications (say,
through memory) but relatively slow off-node communications. This situation is quite
characteristic of GPU embedded accelerators.

A generalized conjugate residual with a Schwarz-based decomposed preconditioner is in
production now, and strong scaling results are shown in Figure 3. A sustained performance
of ~200 Tflops is achievable using the domain-based preconditioner on the target lattice
size of current calculations, and higher performances (~450 Tflops) are achievable on
larger lattice sizes. These results are a strong indication that such decomposition techniques
are appropriate. More refined decomposition methods involving Algebraic based multi-grid
methods are now implemented and deployed, but so far only on CPU-based systems. The
performance per socket is roughly comparable between the current GPU-based systems
using a more conventional BiCGstab based Krylov solver and the newer multigrid systems.
Current work is directed toward implementing the multigrid systems directly onto GPUs.

The development and implementation of these domain-based methods is crucial to achieve
high performance and lower time to solution on future large HPC systems with their distinct
memory hierarchies. Further refinement is expected in the methods used for spare matrix
solves in the analysis phase of the calculations, resulting in greater throughput. First results
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have already shown that such domain-based methods are very effective in the integrator
portion of gauge generation, and it is expected that such techniques will be incorporated
soon into USQCD codes, including the Chroma code.

V=403x256 sites, 2 + 1 flavors of Anisotropic Clover, m_~ 230 MeV, 1=0.2, 2:3:3 Nested Omelyan
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Figure 5. Strong scaling for the time to solution of one gauge configuration trajectory.
Shown are the times with only CPUs, the new QDP-JIT compilation framework for GPUs
which dynamically compiles, offloads and executes all lattice based operations directly onto
the GPUs, the time with the code only including the QUDA solver, and both the QDP-JIT and
QUDA solver. Significant speedups can be obtained by combining methods, demonstrating
the efficiency of the methods at mitigating Amdahl’s law. [Figure reproduced from “A
Framework for Lattice QCD Calculations on GPUs,” F.T. Winter, M.A. Clark, R.G. Edwards, B.
Joo, to appear in IPDPS’14.]

The Chroma code is now in use in gauge generation production on the Titan system. Strong
scaling results are shown in Figure 4. When only the improved matrix solver in QUDA is
used, performance increases are observed for small partitions, but strong scaling is
curtailed due to Amdahl’s law. The new JIT compilation system lowers these performance
penalties but offloads more code to the GPUs and leaves data within the GPU memory.

Reasonable performance is obtained up to 400 nodes for the smaller problem size
(40x40x40x256) used in these calculations. For the target lattice size now (72x72x72x256),
we expect reasonable performance to about 4,000 nodes.

OpenMP directives are used extensively in the code, and the hybrid MPI/threading model is
crucial to obtaining good performance. Our software runs in production now on Mira using
threading. Extensive work is under way to improve the performance through an LLVM
back-end code generator.
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We have a significant partnership with Intel Parallel Computing labs to implement QCD
codes on the MIC architectures. Several publications have already appeared. Figure 5 shows
comparisons of performance of a highly optimized conjugate gradient iterative linear
system solver on various lattice volumes and systems, including Xeon (Sandy Bridge) and
Xeon Phi systems, as well as an optimized solver for the NVIDIA K20m. The results show
that comparable levels of performance are achievable on a Phi and Nvidia GPU system. Our
partnership with Intel is moving toward deploying a suite of optimized multi-node linear
system solvers suitable for Knights Landing based systems, such as NERSC-8 (Cori). Current
work, as presented in the ISC’13 paper, have already shown strong scaling results for
Knights Corner based systems such as Stampede.
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Figure 6. Performance of a conjugate gradient iterative solver on various lattice volumes for Xeon E5
(Sandy Bridge), XeonPhi 5110P, Xeon Phi 7110P, and NVIDIA K20m. The vertical axis shows
performance in Gflops. [Figure reproduced from “Lattice QCD on Intel Xeon Phi Processors,” B. Joo, P.
Dubey, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. Lee, P. Dubey, W. Watson, in ISC’13.]

Regarding the question of plans for other funded groups or researchers engaged to help
with these activities, a component of the current Nuclear Physics Lattice QCD SciDAC-3
software project is devoted to porting and optimizing codes to GPUs and MIC architectures.
There has been significant progress during the last five years in migrating code to GPUs, and
a concerted effort is currently under way for the MIC architecture. These efforts have
included a collaboration with the SciDAC FastMath and Super Institutes. In addition,
collaborations with Nvidia and Intel are ongoing.

We believe that NERSC should support the activities related to the transition to these
architectures by providing fulltime people, physically located at the PI's institution, until the
porting is complete. Our SciDAC-3 software project was not supported at the requested
level, and as a result we have less than an optimal number of FTEs dedicated to translating
our codes to GPU and MIC architectures.

DOE, NP, and/or ASCR should also provide more resources to support people to help with
the porting to these architectures. Transitioning to new architectures is costly in human
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resources. The reduced support of the SciDAC-3 grant means that not all of our codes are
ready to run on all architectures as they become available, delaying production running
significantly. A further diversification of hardware will require additional FTEs for our
effort to remain competitive.

6.1.4.7

There is increasing dependence of USQCD codes on software libraries, but it tends to be at
the level of BLAS, LAPACK, and ARPACK. Useful services can extend to training workshops
or NDA access to new emerging architectural systems.

Software Applications and Tools

On-line disk storage and long-term tape storage demands are increasing with more
ambitious analysis campaigns. Access to global file systems is a benefit.

With the increasing demand for high /0 throughput, we believe that HDF5 will be the data
format of choice. Performance of HDF5 may vary, and we will need assistance in tuning its
performance.

6.1.4.8 HPC Services

With the demand for high I/0 throughput, we believe that HDF5 will be the data format of
choice. Performance of HDF5 may vary, and we will need assistance in tuning its
performance.

6.1.4.9

There is an increasing need for data transfer. Currently, Globus is regularly used. Some
assistance with tuning to optimize data transfers may be helpful. In addition, data transfers
directly from the tape systems will become more essential.

Additional Data-Intensive Needs

We currently have a data management plan, but it becomes impractical to store and transfer
large datasets to USQCD facilities. Thus we will need more access to local tape facilities.

6.1.4.10 Additional Data-Intensive Needs: Burst Buffer

This technology might be helpful in moving large intermediate datasets to local storage, but
this will require more investigation as to the efficacy of such methods.

6.1.4.11 Requirements Summary Worksheet

NERSC repos m747, mp133, mp7 Used at NERSC Needed at NERSC
in 2013 in 2017
Computational hours (millions) 90 3,000
i *
Typical pumber of cores* used for 16-64K 100-200K
production runs
; *
Maximum numbgr of cores* that can be 1M > 1M
used for production runs
Data read and written per run 0.1TB 1TB
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Maximum I/0 bandwidth 10 GB/sec 10 GB/sec
Percent of runtime for 1/0 10 10
Scratch file system space 100 TB 1,000 TB
Shared file system space 27 TB 1,000 TB
Archival data 632 TB 10,000 TB
Memory per node 64 GB 100 GB
Aggregate memory 50 TB >300TB

* Conventional cores
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6.2 QCD Thermodynamics at High Temperature

Principal Investigator: Alexei Bazavov (Brookhaven National Laboratory)
Worksheet Author: Peter Petreczky (Brookhaven National Laboratory)
NERSC Repository: m1416

6.2.1 Project Description

6.2.1.1 Overview and Context

This project aims to improve our understanding of the thermodynamics of QCD, the theory
of strong interactions. QCD possesses a low-temperature confined phase, where states like
the proton, pion, etc. are observed, and a high-temperature deconfined phase, where quarks
and gluons are the fundamental degrees of freedom (quark-gluon plasma, QGP phase).
Understanding the properties of QGP is important for understanding fundamental
interactions as well as the early evolution of the universe. Experimentally, QGP can be
achieved by colliding heavy nuclei at high energies. Such experiments are ongoing in RHIC
at BNL and LHC at CERN. The physics of the deconfinement transition is non-perturbative,
accessible to lattice QCD techniques, while at very high temperatures conventional weak-
coupling techniques are expected to work due to asymptotic freedom.

6.2.1.2 Objectives for 2017

To date we have learned a lot about bulk properties of quark-gluon plasma at zero net
baryon density (chemical potential). The goal is to extend these studies to non-zero baryon
density using a Taylor expansion approach. In particular, we would like to calculate the
equation of state, the transition temperature, and fluctuations of conserved charges at non-
zero baryon density. The calculations of the Taylor expansion coefficients require
calculations of the product of the inverse of the fermion matrix and a vector multiple times.
At very high temperatures, such as T >500 MeV, charm quarks will start to play a significant
goal in QCD thermodynamics, in particular in the equation of state. The effect of the charm
quarks will need to be included in the calculations of the equation of state.

Another goal is to gain a better understanding of dynamical properties of the quark-gluon
plasma, such as meson spectral functions and certain transport coefficients (for example,
the heavy quark diffusion constant or electric conductivity). So far, most of such studies
have been performed ignoring the effects of dynamical quarks.

6.2.2 Computational Strategies (now and in 2017)

6.2.2.1 Approach

We calculate quantum statistical averages using importance sampling. To do so we use the
MILC code. Using molecular dynamics algorithms, the code realizes the Markov process that
samples the phase space of 4D field theory in discretized Euclidean space-time (imaginary
time formalism). A molecular dynamics (MD) algorithm produces typical (most probable)
configurations of fields that give dominant contribution into the QCD path integral. Physical
observables are calculated as averages on these configurations. The main ingredients of the
code are the calculation of the force, guiding the MD evolution, and inversion of the sparse
fermion matrix with a conjugate gradient algorithm. For fractional powers of the fermion
matrix (related to staggered fermion discretization scheme), a rational hybrid Monte Carlo
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(RHMC) algorithm is used. Combined with a multi-mass inverter, RHMC is very efficient.

6.2.2.2 Codes and Algorithms

The MILC code is written in C with MPI and runs on a variety of platforms such as
BlueGene/L, P and Q, and Cray XT5/XE6 with platform-dependent low-level optimization
based on USQCD SciDAC libraries. It also has a version that can run on GPU-based systems
using CUDA.

6.2.3 HPC Resources Used Today

6.2.3.1 Computational Hours

Six million core hours were used by our project at NERSC in 2013. In addition, 18 million
BG/Q core hours and 50 million BG/L core hours were used at BNL; 15 million BG/Q hours
were used from centers in Europe; 25 million BG/Q hours were used at ANL (via INCITE);
and 40 million hours were used on USQCD clusters.

6.2.3.2 Parallelism

The code has been tested to run reasonably well up to 300,000 cores. For QCD
thermodynamics jobs, a much smaller number of cores is used because the lattice sizes are
smaller. Strong scaling is more important than weak scaling for our problems.

6.2.3.3 Scratch Data

We estimate needing less than 10 GB for temporary disk space.

6.2.3.4 Shared Data

We don't use a project directory at this time.

6.2.3.5 Archival Data Storage
We had less than 1 TB stored on the NERSC HPSS data archive in 2013.

6.2.4 HPC Requirements in 2017

6.2.4.1 Computational Hours Needed
We estimate needing 100 million core hours at NERSC in 2017.

Our NERSC allocation is a very small fraction of the cycles available for the study of high-
temperature QCD. The increase at NERSC over 2013 usage reflects the expected increase in
other resources and a healthier fraction of NERSC resources in the total mix.

6.2.4.2 Parallelism
We expect to be typically using about 4,096 cores in 2017.

6.2.43 1/0

We would ideally like to have less than 1 percent of our runtime devoted to /0, although
[/0 bandwidth is generally not critical for our work. We typically write or read less than 10
GB for the runs and do not use checkpoint/restart.
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6.2.4.4 Future Data Needs

In 2017, we expect to need about 0.5 TB of temporary scratch disk space, 10 TB of NERSC
project space (globally accessible shared data), and 200 TB of storage on NERSC HPSS. The
growth in these requirements relative to 2013 is due primarily to the fact that many more
gauge configuration files will be generated in the future, and these are typically
stored/archived for future use.

6.2.4.5

We estimate needing very little memory, probably less than 1GB per core.

Memory Required

6.2.4.6

The code does use CUDA now to perform the inversion of the fermion matrix on GPUs. We
have a code for the calculation of the Taylor expansion coefficients of the QCD pressure that
primarily involves calculation of the inverse of the fermion matrix that now runs on Titan.
We believe that GPU- based architectures would be the most cost- effective way to
provide the compute cycles needed for lattice QCD.

Emerging Technologies and Programming Models

The code does not presently use OpenMP directives, but there are plans to implement this.
However, due to limited manpower it has not happened yet.

There are efforts to port codes, primarily the fermion matrix inverter, to MIC, but there is no
production code. Vectorizing the code for QCD with a vector length of 16 appears to be a
challenge.

All software development activities related to GPU and MIC reside with other groups we
collaborate with; we do not have a dedicated person in our group working on this.

NERSC could play a role in the transition to these architectures. A NERSC liaison who deals
with lattice QCD applications would be useful to us.

From DOE/ASCR, we believe there should be more funding to support code development
for GPU and MIC architectures.

6.2.4.7 Requirements Summary Worksheet

(NERSC Repository m1416) Used at NERSC Needed at NERSC
in2013 in2017

Computational Hours (millions) 6 100

Typical number of cores* used for 512-4,096 512-4,096

production runs

Maximum number of cores* that can be 4,096 4,096

used for production runs

Data read and written per run <0.01TB <0.01TB
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Percent of runtime for I/0 <1% %1
Scratch file system space <0.01TB <0.01TB
Shared file system space 0TB 10 TB
Archival data 0.7 TB 200TB
Memory per node <1GB <1GB
Aggregate memory <0.1TB <1TB

* Traditional cores
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7 Nuclear Structure Case Studies

7.1 ab initio Nuclear Structure

Principal Investigator: James P. Vary
NERSC Repository: m94 (Split between this and the next case study in 2013)

7.1.1 Project Description

7.1.1.1 Overview and Context

Atomic nuclei are quantum systems that comprise 99.9% of the mass of the visible universe;
yet, unlike the situation for atomic electrons, we lack precise knowledge of most of their
properties. That is, we do not have a detailed microscopic understanding, based on first
principles, of how their constituents—neutrons and protons—are bound together, how the
nuclear modes of excitation are formed, or how nuclear reactions take place. This lack of
precise knowledge limits our ability to efficiently use atomic nuclei for nuclear energy, both
for next-generation fission reactors and for fusion reactors under development. We need ab
initio (first principles) simulations of nuclear structure based on the underlying theory of
the strong interactions to develop this knowledge and provide predictive tools for these
applications.

Another driver for ab initio simulations of atomic nuclei is the quest to solve fundamental
problems that will help uncover new laws of nature. A primary example is the search for the
exotic process called neutrinoless double beta decay in nuclei, which violates one of the
fundamental conservation laws accepted up to the present time: lepton number
conservation. There are vigorous worldwide efforts by many groups searching for this rare
process in experiments that require investments of tens of millions of dollars. Once this rare
process is detected, the nuclear structure physics for the nuclei participating in the decay
process will need to be calculated with high precision to determine exactly the new laws
that violate this conservation law. This research area is dubbed "new physics" or "physics
beyond the standard model," and it has major implications for our knowledge of the birth of
the universe and the asymmetry between matter and antimatter in the universe. A recent
National Academies of Sciences report identifies this as one of the leading science questions
for the 21st century.

HPC enables simulations of the theory at sufficient precision, with quantified uncertainties,
to compare with experimental results and determine new features of the theory, such as the
low-energy constants of chiral effective field theory. With these determinations, one
achieves a highly precise predictive tool capable of addressing practical problems related to
nuclear energy, as well as forefront theoretical questions such as the origin of nuclear
binding energy, nuclear collective motion, fundamental electroweak transition rates, and
physics beyond the standard model.

7.1.1.2 Objectives for 2017

Our main objective is to achieve ab initio no core shell model developments enabling the
calculation of nuclear double beta-decay in A=48 nuclei. This includes:
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* Theory of the nuclear matrix element, including higher order corrections arising in
effective field theory

* Code capability to solve for the structure of these nuclei, including coupling to the
continuum, with chiral nucleon-nucleon plus three-nucleon interactions

* Solving for that structure using an eigensolver for large sparse Hermitian
Hamiltonian matrices that is load-balanced and scalable to millions of cores

* Ability to work in a hybrid mode with partial recompute-on-the-fly of the many-
body Hamiltonian matrix elements to save on storage and achieve larger basis
spaces producing eigensolutions close to the converged, infinite matrix, limit

* Extensive production runs to verify and validate the theory and quantify its
uncertainties

7.1.2 Computational Strategies (now and in 2017)

7.1.2.1 Approach

The ab initio nuclear many-body problem is defined within non-relativistic quantum
mechanics to be the challenge of solving the Schroedinger equation for all nucleons of the
nucleus interacting simultaneously via state-of-the-art, strong nucleon-nucleon plus three-
nucleon interactions. Equivalently, in the matrix formulation of quantum mechanics, one
seeks the solution of the many-body Hamiltonian matrix eigenvalue problem. This includes
both stationary state solutions and solutions for states above breakup threshold that
require coupling to the continuum. Our approach is based on the Lanczos algorithm.

Parallelism in all our codes is expressed using MPI and OpenMP. We have begun employing
GPUs.

7.1.2.2 Codes and Algorithms

The primary code we have developed and continue to improve is “Many-Fermion Dynamics
- nuclear” or “MFDn”. There are seven major stages of the calculations performed by MFDn:

1. Enumerate the many-body basis space according to user-defined criteria

2. Determine the location of non-zero many-body matrix elements in this basis space
and hence the number of non-zeroes that must be evaluated for the full Hamiltonian

3. Read in the nucleon-nucleon plus three-nucleon interaction files that define the
Hamiltonian

4. Construct and store (partially or fully) the many-body Hamiltonian matrix

5. Perform the Lanczos iterations until either a fixed number of iterations are achieved
or a convergence criterium is met, and perform orthonormalization of the Lanczos
basis vectors after each iteration

6. Transform the eigenvectors from the Lanczos basis back to the original basis

7. Use a selected set of the eigenvectors in the original basis to calculate a suite of
experimental observables and 1-body density matrices that, optionally, may be
stored for reuse later (the option to evaluate and store 2-body density matrices is in
the planning stage)
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7.1.3 HPC Resources Used Today

7.1.3.1 Computational Hours

We employed approximately 27 million hours at NERSC in 2013 for MFDn production runs
aided by the resources available during the Edison acceptance phase. In addition, we
employed 55 million hours in 2013 for MFDn runs under the INCITE award for nuclear
structure and nuclear reactions (James Vary, PI). The total INCITE award was 155 million
cpu hours in 2013, split about evenly between ORNL and ANL leadership class machines. A
new INCITE award for 2014-2017 will provide 62 million hours for MFDn runs at ORNL and
ANL facilities in 2014. In addition, MFDn is employed by collaborating groups around the
world that collectively make MFDn runs that use an estimated 25 million hours/year
outside the U.S.

7.1.3.2 Parallelism

We employ between a few percent and 100 percent of the available cores since MFDn is
highly scalable and we frequently need results in the largest feasible basis spaces to achieve
convergence and minimize uncertainties. For the largest possible basis spaces we need the
maximum memory available on the machine.

We are not aware of a limit to the number of cores that MFDn may use since it has run
successfully on the largest machines available (Edison, Titan, and Mira) using all of the
cores.

Weak scaling is far more important since we need the problem size to become as large as
possible to approach convergence with minimum uncertainty. This will enable us to reach
larger nuclei (expanded scientific portfolio) and/or larger basis spaces (improved
convergence). These are the needs defined by our goals outlined above.

7.1.3.3 Scratch Data

We typically employ up to a few hundred GB for a single run. This storage is required for the
final eigenvectors, which we may wish to store for later post-processing to evaluate
additional experimental observables. When this occurs, we move the output eigenvectors to
HPSS for long-term storage.

7.1.3.4 Shared Data

We employ a project space (/project/projectdirs/m94) primarily for libraries of MFDn
interaction input files, MFDn output files enabling post-analysis, and code repositories. We
used 2.4 TB of this space in 2013.

7.1.3.5 Archival Data Storage
We employ about 5 TB of HPSS storage at NERSC.

7.1.4 HPCRequirementsin 2017

7.1.4.1 Computational Hours Needed

Due to our drive toward heavier nuclei and larger basis spaces, we anticipate our need for
NERSC resources to accelerate beyond our historical trend in utilization of hours at NERSC,
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which has approximately doubled each year. This was demonstrated in 2013 when we
exploited “free” time during the Edison acceptance phase and used 27 million hours. To
achieve our scientific objectives in 2017, we estimate that we will need 96 million hours.

Note that this estimate exceeds what we currently use in our INCITE award (62 million in
2014). We have been achieving growth of about 35% each year in our INCITE award over
the past several years, and we expect that to continue. Thus for 2017 we project INCITE
resources for MFDn production runs in the neighborhood of 155 million hours.

7.1.4.2 Parallelism

We expect to be in the multi-million-compute-core domain as soon as such resources
become available. We continually work with computer scientists and applied
mathematicians within our SciDAC award (NUCLEI) to refine our algorithms to exploit new
and emerging technologies.

7143 1/0O

We have a limited restart capability. Analysis has shown that it is not practical to store the
full Hamiltonian for restart as it is less costly in computational resources to regenerate it.
However, it is cost-effective to store the intermediate Lanczos vectors during a run that may
be used for a restart of the run at the point of the last successful Lanczos iteration.

We work to keep I/0 limited, although a single run may output 300-500 GB to scratch in the
form of converged eigenvectors that are saved for post processing. This is likely to grow to
600-800 GB in 2017.

We strive to limit I/0 to less than 5% of the total runtime.

7.1.4.4 Future Data Needs

In 2017, we expect to need 3 TB of temporary scratch disk space, 8 TB of NERSC project
space (globally accessible shared data), and 50 TB of storage on NERSC HPSS. The growth in
these requirements relative to 2013 is due primarily to storing the converged eigenvectors
of runs for larger nuclei and/or larger basis spaces. In addition, the growth in storage is for
1-body and 2-body density matrices produced in large runs.

7.1.45 Memory Required

We find it is more efficient to store the many-body Hamiltonian than to regenerate it on the
fly, so we would prefer the maximum memory per core that is feasible. When it comes to
tradeoffs between memory and communication bandwidth, we favor memory over
bandwidth.

7.1.4.6 Emerging Technologies and Programming Models

MFDn runs on Titan at ORNL and employs the GPUs with CUDA directives. Some, but not all,
of the most computationally intensive parts of MFDn have been upgraded for GPUs.
Additional developments are under way to implement further use of the GPUs by other
sections of the code.

MFDn is hybrid MPI/OpenMP. It runs on Mira with threading, Titan with GPUs, and a
variety of other architectures.
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There is no current effort to port to or optimize for MIC architecture.

With support from SciDAC/NUCLEI, we have an intensive research and development project
to continually improve MFDn. We have collaborated with researchers at LBNL (Ng, Yang,
Aktulga) and at Old Dominion University (Sosonkina) to produce major gains in efficiency
and scalability. These research projects are ongoing and have produced many jointly
authored publications.

NERSC can assist in transitioning to new and emerging architectures by providing experts
who can devote significant time to the challenges posed by the evolving architectural
landscapes. DOE can assist by continuing the successful SciDAC program that brings
together multi-disciplinary teams needed to achieve efficient use of new facilities for
discovery-level science.

7.1.4.7 Software Applications and Tools

We need BLAS, LAPACK, and SLAPACK for handling dense kernels. We also need PARPACK
for some of the eigenvalue calculations.

7.1.4.8 HPC Services

We utilize NERSC consultants typically on a call-in basis, and this has worked very well for
us. We anticipate this need to continue indefinitely. We also benefit greatly from the
extensive web resources on everything from “getting started” to details on compiler options
and information on libraries.

7.1.4.9 Additional Data-Intensive Needs

We do have a data plan for MFDn input libraries as well as MFDn outputs. Both of these data
sets are stored in project space and backed up on HPSS.

7.1.4.10 Additional Data-Intensive Needs: Burst Buffer

Our data is probably not in the category of “intensive,” although we would certainly benefit
from improved I/0 capabilities at NERSC.

7.1.4.11 Requirements Summary Worksheet

NERSC Repository m94. (Also see Used at NERSC Needed at NERSC
next case study.) in2013 in 2017
Computational hours (millions) 27 96

Typical number of cores* used for From 5% to full machine From 5% to full
production runs machine
Maximum number of cores* that can Full machine Full machine

be used for production runs

Data read and written per run <1TB <1TB

Maximum [/0 bandwidth Not known Not known
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Percent of runtime for 1/0 <5% <5%

Scratch file system space 1TB 3TB

Shared file system space 1TB 8 TB
Archival data 27.6 TB 250 TB
Memory per node All available GB Maximum possible GB

Aggregate memory

Full machine

Full machine

e Conventional cores
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7.2 ab initio Calculations of Nuclear Reactions and Exotic
Nuclei

Prepared by: Sofia Quaglioni, Lawrence Livermore National Laboratory (LLNL)

Contributors: G. Hupin, LLNL (present address: University of Notre Dame); C. Romero-
Redondo, LLNL; P. Navratil, TRIUMF; J. Langhammer, Technishe Universitdt Darmstadt;
Robert Roth, Technishe Universitat Darmstadt

Refers to the following HPC allocations:

NERSC Repository: m94 (Principal Investigator: ]. P. Vary, lowa State University)

INCITE: “Nuclear Structure and Nuclear Reactions” (Principal Investigator: ]. P. Vary)

LLNL Institutional Computing Grand Challenge: “From Nucleons to Nuclei to Fusion
Reactions” (Principal Investigator: S. Quaglioni, LLNL)

7.2.1 Project Description

7.2.1.1 Overview and Context

Our ultimate goal is to develop a fundamental theory and efficient computational tools to
describe dynamic processes between nuclei and to use such tools toward supporting
several DOE milestones. This includes:

* Performing predictive calculations of difficult to measure landmark reactions for
nuclear astrophysics, such as those driving the neutrino signature of our sun

* Improving our understanding of the structure of nuclei near the neutron drip line,
which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being
constructed at Michigan State University

* Helping to reveal the true nature of the nuclear force.

Furthermore, these theoretical developments will support plasma diagnostic efforts at
facilities dedicated to the development of terrestrial fusion energy.

Despite nearly 80 years of study, coming to a fundamental understanding of nuclei and their
role in the universe remains a central goal of nuclear physics. The origin of this lack of
understanding resides in two main challenges characterizing the nuclear many-body
problem: the interaction between nucleons is complex and is not yet fully understood at a
fundamental level; and a fully developed first-principles theory able to provide a unified
treatment of a large range of nuclear phenomena (bound-state, scattering, and reaction
observables) is still missing.

Our research program is devoted to advancing the state of the art in both these aspects. We
apply HPC to solve the nuclear many-body problem in terms of constituent protons and
neutrons interacting through the most fundamental interactions available nowadays:
nucleon-nucleon (NN) and three-nucleon (3N) forces grounded in the fundamental theory
of quantum chromodynamics (QCD) within the framework of chiral effective field theory.
(The 3N force is a direct consequence of the complexity of the QCD theory.) At the same
time, to achieve a robust ab initio description of nuclear properties we are developing a
unified and computationally efficient approach to bound and scattering states in light nuclei.
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7.2.1.2 Objectives for 2017

Until just five years ago, an ab initio treatment of light-nucleus fusion reactions was
impossible. With our work we have demonstrated that it is possible to describe complex
processes such as the 7Be(p,y)8B radiative captureé (important for its influence on the
Standard Solar Model) and the 3H(d,n)*He and 3He(d,p)*He fusion reactions? with first
principle calculations based on realistic NN potentials. In addition, we delivered an
evaluation of the (poorly known) n-3H elastic cross section for 14 MeV neutrons,8 important
for plasma diagnostics in fusion experiments, with the required 5% accuracy.

More recently, we have taken initial steps to achieve a complete ab initio description of
light-nucleus fusion and light exotic nuclei by incorporating the 3N force into our binary-
reaction formalism? and extending our approach to the description of three-cluster
dynamics.10 These technical developments are highly nontrivial and individually—let alone
combined—pose an unprecedented computational challenge. Therefore, initially we have
been pursuing them separately. However, our objective for 2017 is to achieve the first ab
initio description, complete with both 3N-force and three-cluster dynamic effects, of
processes important for plasma diagnostic in fusion experiments and for the standard solar
model, such as the 3H(3H,2n)*He and 3He(3He,2p)*He fusion reactions; and the spectroscopy
of exotic nuclei such as 11Li, a ternary system of two nucleons orbiting around a °Li core,
whose components are not bound in pairs. In addition, with increased access to HPC
resources in 2017, we will be able to use our present theory and codes to perform high-
fidelity calculations of the scattering of nucleons on a variety of p-shell targets, using
NN+3N forces, by accessing much larger model spaces than possible today.

To achieve these goals in 2017, we will need a significantly larger amount of computational
resources compared with our present usage. The concomitant storage of sparse matrices of
large dimensions associated with the description of three-cluster dynamics and the
enormous number of 3N force matrix elements (~6 billion) will dramatically increase the
required amount of memory per node. Algorithmic changes will likely be required to further
improve the distribution of matrix elements across all available processors and
systematically implement load-balancing techniques that have proven very efficient in the
most recently implemented parts of our production code.

7.2.2 Computational Strategies (now and in 2017)

7.2.2.1 Approach

Similar to ab initio nuclear structure calculations, which aim at describing the wave
functions of nucleons bound inside a nucleus, we deal with a strongly correlated non-
relativistic quantum many-body problem. We view the nucleons as point-like fermions, all
of which interact among each other through high-precision two- and three-nucleon forces.
However, in ab initio nuclear reactions we work on the even harder problem of describing

6 P. Navratil, S. Quaglioni and R. Roth, Phys. Lett. B704, 379 (2011).

7 P. Navrétil and S. Quaglioni, Phys. Rev. Lett. 108, 042503 (2012).

8]. A. Frenje et al, Phys. Rev. Lett. 107, 122502 (2011); P. Navratil et al., LLNL-TR-423504 (2010); J. D. Anderson
et al., LLNL-TR-435981 (2010).

9 G. Hupin, ]. Langhammer, P. Navratil, S. Quaglioni, A. Calci, And R. Roth, Phys. Rev. C 88, 054622 (2013).

10 S. Quaglioni, C. Romero-Redondo, P. Navratil, Phys. Rev. C 88, 034320 (2013); C. Romero-Redondo, S.
Quaglioni, P. Navrétil, and G. Hupin, Phys. Rev. Lett. 113, 032503 (2014).
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how nuclei—or clusters, as we like to call them—themselves interact with each other. To
describe two-cluster (or three-cluster) dynamics, we use basis states made of pairs (or
triplets) of nuclei in relative motion with respect to each other, in which each cluster of
nucleons is described by its ab initio many-body wave function.

Mathematically our approach casts the many-body problem into one-dimensional (or two-
dimensional, in the case of three-cluster dynamics) integral-differential coupled-channel
equations for the cluster’s relative motion. The main computational challenge is to construct
the Hamiltonian and overlap (or norm) non-local couplings from the input two- and three-
nucleon interactions and the many-body wave functions of the target and projectile nuclei.
(The non-locality and the algebraic complexity of these couplings are a consequence of the
Pauli exclusion principle, which is treated exactly in the formalism.) We use the R-matrix
method on a Lagrange mesh to find the elements for the scattering matrix. At the end of the
run we use the scattering matrix elements to calculate scattering and reaction observables
to compare with available experimental data or to make needed predictions.

The Hamiltonian and the norm couplings can be obtained in second quantization in terms of
matrix elements of creation and annihilation operators acting on the target nucleus. The
number of nucleons affected (i.e., the rank of the operator involved) increases with the
number of nucleons forming the projectile and going from two- to three-nucleon
interactions. For example, while the description of a nucleon scattering on a nucleus with a
two-nucleon interaction requires the evaluation of matrix elements of one- and two-body
densities of the target, calculations of deuterium-nucleus scattering including a three-
nucleon force involve up to four-body densities. Storing in memory many-body density
matrices is computationally very demanding. We adopt two computational strategies, which
we have used to benchmark our results. One, more recent, strategy takes advantage of the
target’s implicit expansion in Slater determinants of single-nucleon states to perform an
efficient on the fly calculation of the density matrix elements. In the second, first
implemented, strategy we first calculate and store in memory the reduced matrix elements
of tensor operators, from which we can then reconstruct the desired density on the fly. With
the exception of the treatment of isospin symmetry, the two implementations are formally
equivalent. The latter method is feasible only for very light systems but is more efficient for
reactions with different projectiles, while the former is ideally suited for addressing heavier
targets.

7.2.2.2 Codes and Algorithms

The calculations described above are performed using the NCSM_RGM (no-core shell model
- resonating group method) reaction code, with inputs from the auxiliary TRDENS
(transition densities) preprocessing code. Both are HPC codes mostly dealing with sparse
linear algebra but also including components featuring dense linear algebra. NCSM_RGM
uses a hybrid MPI/OpenMP parallelization to take full advantage of all computing cores,
plus MPI/IO to mitigate 1/0 costs associated with large input files. In the newest routines,
we make use of dynamic load balancing techniques. The largest runs utilize 12,288 MPI
tasks with eight OpenMP threads per MPI task (total size = 98,304 cores, 6,144 new Jaguar
XK6 nodes). TRDENS is based on the MPI-2 protocol and was run with up to 900 cores on
Sierra, a Dell supercomputing system with peak speed of 261 Tflops/s, 12 processors/node,
and 24 GB memory per node.

Finally, for reactions involving heavier targets, we are shifting large portions of the
calculations to an auxiliary sister code, which we will call here NCSM_RGM_SD, that pre-
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computes the Hamiltonian and norm couplings within a Slater determinant single particle
basis. NCSM_RGM_SD is also a hybrid code, adopting MPI parallelization between the
individual compute nodes and OpenMP parallelization across the cores of each node. The
largest runs have been performed on the NERSC Edison machine using 600 nodes, for a
total of 14,400 cores.

7.2.3 HPC Resources Used Today

7.2.3.1 Computational Hours

The LLNL Institutional Grand Challenge project “From Nucleons to Nuclei to Fusion
Reactions,” led by S. Quaglioni, has a significant allocation on Sierra, a LLNL capability
computer for moderate to large parallel jobs. Sierra is a Dell supercomputing system with
peak speed of 261 Tflops/s, 12 processors/node, and 24 GB memory per node, for a total of
1,944 nodes. We also have access to CAB, an LLNL large capacity machine for small to
moderate parallel jobs. CAB is a Linux cluster with 16 2.6-GHz processors/node and 32 GB
memory per node for a total of 1,296 nodes. Our combined utilization in 2013 was over 10
million core hours.

About 23 million hours were also used in 2013 for reactions calculations on the ORNL Cray
XK7 Titan machine as part of the INCITE project “Nuclear Structure and Nuclear Reactions”
led by ]. Vary.f3

Finally, in 2013 we made use of about 10 million CPU hours on the Edison machine at
NERSC (20 million NERSC MPP hours) to run the NCSM_RGM_SD code and calculate
nucleon-nucleus scattering on p-shell nuclei, including the 3N force. This work was
performed under NERSC project m94, “ab initio Nuclear Structure,” also led by ]. Vary.

7.2.3.2 Parallelism

As of today, the NCSM_RGM code has been run with as many as 98,304 cores (composed of
6,144 nodes, with 12,288 MPI tasks and eight OpenMP threads per MPI task).

The TRDENS code was run with up to 900 cores on Sierra.

The NCSM_RGM_SD code has been run on the Edison machine using between 200 and 600
nodes, for a total of 4,800 to 14,400 cores. Runs using twice the number of cores are likely
feasible, given the good scaling performance presented by the code so far.

Utilization for typical NCSM_RGM, TRDENS, and NCSM_RGM_SD runs varies depending on
the system under study (projectile/target mass, two- or three-nucleon Hamiltonian, or size
of the model space). Due to limits on the size of runs per user, typical NCSM_RGM runs on
LLNL machines are performed with 12,000 to 19,200 cores and are restarted multiple times.

Our project requires strong scaling. The size of our problems is such that calculations would
simply not be possible without parallel computing. We rely on scaling to complete our
calculations, or major stages of it, within the allowed runtime.

7.2.3.3 Scratch Data

The required amount of temporary space varies somewhat with the problem under
investigation. We require on the order of 1 TB per major run.
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7.2.3.4 Shared Data

We have used the project folder within project m94 for the common use of certain matrix-
element files for collaborations.

7.2.3.5 Archival Data Storage

We have not used the data archive.

7.2.4 HPCRequirementsin 2017

7.2.4.1 Computational Hours Needed

To reach the scientific goals listed in section 8.2.1.2, as well as other scientific achievements
that will be made possible by the sustained development of our ab initio reaction approach
and codes, we forecast that in 2017 our project will require on the order of 75 million hours
on a machine such as Edison (150 NERSC MPP hours).

We have not secured any significant allocation for 2017, although we expect that we will
compete for HPC allocations on LLNL and ORNL systems.

The primary factor driving the need for more core hours is the increased challenge of more
complex reaction calculations, including the 3N force on larger target and projectile nuclei.

7.2.4.2 Parallelism

In 2017 we expect that the NCSM_RGM code will typically use on the order of 28,400 to
60,000 conventional cores per run, with larger runs of up to 100,000 cores.

With further improvements on the MPI scaling, we expect that the NCSM_RGM code could
be run with using the full Edison machine.

7.243 1/0O

Our application has several built-in restart procedures that allow us to perform fairly large
calculations even on computers with a modest number of nodes, such as Sierra.

Our data requirement will grow in 2017, particularly in output. We expect that input should
not exceed 100 GB, while we estimate that we will reach on the order of half a TB of output
per run in our calculations of three-cluster dynamics. These outputs, including Hamiltonian
and norm couplings, scattering phase shifts, scattering wave functions, and elements of the
scattering matrix at various energy steps, can be moved to long-term storage and utilized
for later calculations of reaction observables.

We use MPI 1/0 to mitigate costs associated with large input files. We would like to keep the
time devoted to I/0 to less than 5% of the total runtime.

7.2.4.4 Future Data Needs

In 2017, we expect to need 4 TB of temporary scratch disk space, 8 TB of NERSC project
space (globally accessible shared data), and 30 TB of storage on NERSC HPSS. The growth in
these requirements relative to 2013 is due primarily to the increased scale of the scientific
problem under investigation. In particular, we will have to store multiple instances of input
three-nucleon force matrix elements, converged eigenvectors for the target, projectile and
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compound nuclei, and transition densities, as well as converged scattering phase shifts,
scattering wave functions, and elements of the scattering matrix at various energy steps.

7.2.4.5 Memory Required

We will need a minimum of 64 GB of memory per node but would benefit from the
maximum feasible memory per node, which would allow us to increase the model-space
size and hence the fidelity of our calculations. We can use all available memory per node.

7.2.4.6 Emerging Technologies and Programming Models

For the time being we have not explored the use of GPUs, mainly because for our
computational problem it is more straightforward to use OpenMP capabilities, and in part
due to the lack of manpower and readily available knowhow to explore these new
technologies. We envision that GPUs may be advantageous during the solution of the two-
and three-body dynamical equations, where the calculation of the scattering matrix
requires dense linear algebra (matrix multiplications and inversions, eigenvalue problems)
at each energy step.

Our software currently runs in production on Titan, but for the time being we do not take
advantage of the GPUs. Rather, our NCSM_RGM software uses a hybrid MPI/OpenMP
parallelization to take full advantage of all computing cores and memory in the nodes.

Currently we are not porting to, nor optimizing our codes for, MIC architecture. Our strategy
for exploiting GPUs and other new technologies will be to seek the help of experts in
computational science, perhaps through the SciDAC NUCLEI collaboration, which has
helped improve the ab initio nuclear structure code MFDn.

In transitioning to new and emerging architectures, the assistance of NERSC experts on the
new architectures will be fundamental. Ideally, large allocations on NERSC machines should
be accompanied by dedicated support from an expert on the computer architecture to help
nuclear scientists port their codes and use the machine in the optimal way, maximizing the
scientific impact of their calculations. This type of assistance should be accompanied by
DOE programs such as SciDAC that allow the close collaboration of nuclear physicists with
computational scientists to solve compelling nuclear science problems. In addition, it would
be desirable to create positions at the intersection between computational science and
nuclear physics that could foster the growth of a new generation of nuclear computational
scientists.

7.2.4.7 Software Applications and Tools

We need to link our codes to the multithreaded Intel Math Kernel Library (MKL). Our
compiler of preference is the Intel Fortran compiler. We make use of Lustre file system
software to stripe large input files onto multiple hard drives and speed up MPI [/0. At the
moment we have implemented our own binary file formatting through MPI /0, but we may
transition to HDF5 in the next few years.

7.2.4.8 HPC Services

We would benefit from consulting and account support, data analytics, training, and
collaboration tools.
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7.2.4.9 Additional Data-Intensive Needs

We would need to be able to transfer data among collaborators in the USA, Canada, and
Europe.

Currently we do not have a data management plan.

7.2.4.10 Additional Data-Intensive Needs: Burst Buffer

Technology aimed at improving I/0 would be useful for our work, although our data needs
may be not as intensive as in other projects.

7.2.4.11 Requirements Summary Worksheet

NERSC Repository m94 (See also Used at NERSC Needed at NERSC
previous case study) in 2013 in 2017
Computational hours (millions) 20 150

Typical number of cores* used for | 4,800 to 14,400 (3% to | 28,800 to 60,000 (20%
production runs 10% of machine) to 45% of machine)
Maimum pumber of cores” that | 28800 (205 of Full machine
Data read and written per run <1TB <1TB
Maximum I/0 bandwidth Not known Not known
Percent of runtime for 1/0 <5% <5%

Scratch file system space 1TB 4TB

Shared file system space 1TB 8 TB
Archival data Not used 30 TB
Memory per node All available memory All available memory
Aggregate memory <38 TB Typical: 160 TB

*Conventional cores
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8 Nuclear Astrophysics Case Studies

8.1 Convection in X-Ray Bursts

Principal Investigator: Michael Zingale (SUNY Stony Brook)
NERSC Repositories: m1938, m106

8.1.1 Project Description

8.1.1.1 Overview and Context

X-ray bursts (XRBs) are the thermonuclear runaway of a thin layer of hydrogen and/or
helium on the surface of a neutron star. This fuel layer accretes from a binary companion
star, and the immense gravitational acceleration on the surface of the neutron star
compresses it, increasing the temperature and density to the point of explosion. One-
dimensional hydrodynamic studies have been able to reproduce many of the observable
features of XRBs, such as burst energies (~1039 erg), rise times (seconds), durations (10s -
100s of seconds), and recurrence times (hours to days) (see Strohmayer & Bildsten 2006
for an overview of XRBs!1). By construction, however, one-dimensional models assume that
the fuel is burned uniformly over the surface of the star, which is unlikely if the accretion is
not spherically symmetric (Shara 198212). Furthermore, the Rossi X-ray Timing Explorer
satellite has observed coherent oscillations in the light curves of >20 outbursts from LMXB
systems (first by Strohmayer et al. 199613; more recently by Altamirano et al. 201014 and
references therein). The asymptotic evolution of the frequency of such oscillations suggests
that they are modulated by the neutron star spin frequency (Muno et al. 200215) and are
therefore indicative of a spreading burning front being brought in and out of view by stellar
rotation.

Before the actual outburst, the burning at the base of the ignition column will drive
convection throughout the overlying layers and set the state of the material in which the
burning front will propagate. One-dimensional simulations of XRBs usually attempt to
parameterize the convective overturn and mixing using astrophysical mixing-length theory
or through various diffusive processes (e.g., Heger et al. 20001¢). A proper treatment of the
convection in these extreme conditions, free from parameterizations, requires multi-
dimensional simulations. One of the major open questions is how does the burning begin in
a localized fashion. We know that rotation is important (Spitkovsky et al. 200217), but the
convective transport of heat is also important. Detailed models of the convective burning,
resolving the burning layer, are our initial targets.

11 Strohmayer & Bildsten 2006, in Compact Stellar X-Ray Sources, Cambridge Univ. Press, 113
12 Shara, 1982, Ap], 261, 649

13 Strohmayer et al. 1996, Ap]L, 469, L9

14 Altamirano et al. 2010, MNRAS, 409, 3, 1136

15 Muno et al. 2002, Ap], 580, 1048

16 Heger et al. 2000, Ap], 528, 368

17 Spitkovsky et al. 2002, Ap], 566, 1018
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Our simulation code, Maestro (Nonaka et al. 201018), is designed to efficiently model
subsonic convective flows by filtering sound waves out of the equations of hydrodynamics,
but maintaining changes in compressibility due to stratification and local heat release. With
this tool, we completed the most detailed study of convection in pure helium bursts to date
(Malone et al. 201119), and with NERSC resources this past year (2013) we finished a two-
dimensional study of mixed H/He bursts (Malone et al. 201420; see Figure 1) using a 10-
isotope network that captures hot-CNO, 3-alpha, and rp-process reactions. Both of these
studies were two-dimensional, and we found converged dynamics when run with a
resolution of 3 or 6 cm—although this extremely fine resolution limits the ability to model
these events over a significant fraction of the star (owing to memory requirements). Our
current studies can follow the rise in temperature of the H layer to above 109 K, evolving for
timescales of 0.1 s and bringing us close to the point where rp-process breakout reactions
will occur.
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Figure 1. Convective flow in a two-dimensional mixed H/He X-ray burst simulated with
Maestro at NERSC.

18 Nonaka et al. 2010, Ap]S, 188, 358
19 Malone et al. 2011, Ap], 728, 118
20 Malone et al. 2014, submitted to Ap]
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Most recently, we switched to three-dimensional studies (see Figure 2). At the moment,
these are low-resolution, small-domain proof-of-concept runs, but we expect to use the
remainder of our NERSC allocation exclusively for larger three-dimensional studies.

8.1.1.2 Scientific Objectives for 2017

The next major advancements for our XRB models are better/larger reaction networks,
larger three-dimensional domains, and subgrid-scale models for the burning. These will
require both algorithmic and computational developments. We believe that we can meet
these demands in the 2017 time frame.

Large reaction networks are computationally expensive, both because we need to carry the
additional species around and advect them with the flow and because the integration of the
network itself, done implicitly, requires the solution to larger linear algebra problems. To
allow us to model larger networks, our plan is to move the reaction part of our codes to the
accelerators (GPUs or Intel MICs) found on new supercomputer platforms. To maximize the
investiment of the code changes, we insist on using open standards, and therefore will
explore using OpenACC to start. We have a plan to begin this porting this year (2014).

Convection and turbulence are three-dimensional phenomena. Running in a small domain
artificially confines the convection and changes its dynamics, so we need to run as large of a
region as possible. At present we are modeling just a 15 m x 15 m area on the surface of the
neutron star. We will need to push toward kilometer scales to see the effects of rotation on
the convection, but there is no way we can do this while maintaining a 6 cm resolution. Our
goal is therefore to attack this on two fronts. First, we will expand the domain as large as
possible while maintaining our resolution requirements to see how the convective behavior
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changes with an increased domain size. At the same time, we will work on developing a
subgrid model that allows us to describe the unresolved burning if we simulate with a
coarser grid. These models are common in simulations of Type Ia supernovae, but the scales
involved in X-ray bursts are different (in particular, the relative size of the burning zone
thickness to a pressure scale height), so new methods will need to be devised. We have
begun some initial attempts and will continue to do so as we approach the 2017 time frame.

Finally, if the flow approaches sonic, we can transition the problem from Maestro into our
sister code, Castro, which solves the fully compressible equations of hydrodynamics using a
similar discretization strategy and microphysics. We will likely explore this transition for
some of our simulations in the time frame leading up to 2017.

8.1.2 Computational Strategies (now and in 2017)

8.1.2.1 Approach

We solve the equations of hydrodynamics under the assumption of a low Mach number.
This is expressed by requiring that the pressure everywhere in our domain remain close to
the background hydrostatic pressure of the star we are modeling. Mathematically, this
constraint manifests itself as an elliptic constraint on the velocity field; physically, the effect
is to filter sound waves from the system. Together with a hyperbolic system of PDEs
describing conservation of mass, momentum, and energy, we can efficiently model
convective flows in a stratified background. We use a finite-volume discretization to solve
the equations, advancing the state in each time step using a fraction step method consisting
of reactions, advection, and projecting the velocity field to satisfy the constraint. A key
benefit of our method is that by filtering sound waves from the system, we can take much
longer time steps that correspond with fully compressible hydrodynamics code (we are
limited by the time it take the fluid to cross a zone instead of the more restrictive time it
takes a sound wave to cross a zone).

Our simulation code, Maestro, uses the BoxLib library (developed at LBNL) to provide an
adaptively refining grid. Maestro can operate with two geometries: a full, spherical star, and
a plane-parallel region of an atmosphere. The latter is appropriate for XRBs; we model a
small patch of the surface and include reactions that describe hydrogen burning through the
hot-CNO cycle and helium burning and proton captures to some heavier nuclei. This energy
release heats the accreted layer on the neutron star and drives convection. In the Maestro
algorithm, we describe the background hydrostatic state of the atmosphere as a one-
dimensional base state that can evolve due to the large-scale heat release and carry the two-
or three-dimensional departures from this hydrostatic state of a Cartesian grid. An equation
of state appropriate to stellar interiors is used to complete the system. For the XRB, the
gravitational acceleration is assumed to be constant.

8.1.2.2 Codes and Algorithms

Maestro uses a Godunov-type second-order finite-volume method to predict the fluid state
on the interfaces through the zones. The velocity on these interfaces is required to satisfy
the elliptic constraint in our system, and this is enforced by solving a variable-coefficient
Poisson problem using multigrid. The fluxes through the interfaces can then be computed to
update the fluid state in the zones to the new time. Again, the new velocity must satisfy the
velocity constraint, so another multigrid solve of a variable-coefficient Poisson problem is
done. These two solves differ in the centering of the terms; in the first, the quantity being
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solved for is cell-centered, while in the latter it is node centered—BoxLib provides the two
multigrid solvers needed for this problem. Reactions are coupled in through Strang splitting
using the VODE ODE integration library to advance the reaction system.

Importantly, Maestro is publicly available (http://bender.astro.sunysb.edu/Maestro/),
allowing for reproducibility within the community.

8.1.3 HPC Resources Used Today

8.1.3.1 Computational Hours

We used 4.4 million MPP hours this year for XRB studies at NERSC. While we have time at
Titan and Blue Waters, none of that time is for the XRB studies.

8.1.3.2 Parallelism

For our initial, low-resolution three-dimensional XRB runs, we ran with MPI only at 192
cores (a bug in the Cray compiler prevented us from doing OpenMP, but gfortran is fine at
NERSC). Assuming that the OpenMP bugs are fixed (they were at OLCF, but we haven't tried
the latest compilers at NERSC yet), the low resolution run could be done at 1,536 processors.
Our next jump will be twice the resolution (eight times the number of zones), which would
put us on 12,288 cores. We could probably go a few times larger than that and still scale
reasonably well. Weak scaling of our code showed good results to 0(105) cores, although
that was for a different problem.

We also take the time spent in the queue into account when planning the job parameters.
Time to completing the science is our most important metric. Many factors can influence
this, including the problem size and the queue sizes. We generally pick a problem size that
we believe will give converged results. We then typically pick the number of processors
somewhere between the smallest number of processors that can fit that problem and the
maximum we can strongly scale to and run at that intermediate number. The rationale is to
minimize the time spent in the queue.

An additional consideration not captured by scaling metrics is that science often requires a
parameter study, so multiple medium-sized runs are more interesting (and scientifically
relevant) than a single “hero calculation.”

8.1.3.3 Scratch Data

Single files are 10-100 GB, and over the course of a queue window we output dozens, so a
minimum of 1 TB of scratch is needed. We do our best to migrate this data to HPSS as soon
as possible, but often we will want multiple files around to do some exploratory analysis
while the simulation is still running.

8.1.3.4 Shared Data

Project directories (under the NERSC repo m1400) are invaluable. Science is done by
collaboration, so often we need other members of our group to be able to explore the data
as the run is progressing to help with the analysis and to help plan the next simulations.
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8.1.3.5 Archival Data Storage

Repo m106 had 173 TB stored in HPSS at NERSC in 2013. Occasionally we delete some old
runs and test runs, but we want to keep the majority of the scientific output from
simulations that have been published for as long as possible (some agencies are asking for
data management plans, and without HPSS we could not store the data).

8.1.4 HPCRequirementsin 2017

8.1.4.1 Computational Hours Needed

A big three-dimensional run today with a bigger reaction network and larger surface region
modeled will take over 1 million core hours. That is the base point for our 2017 plans. We
need to do multiple runs to assess the robustness of the results. In the 2017 time frame, we
can imagine trying to go bigger still, putting individual runs at 10-20 M core hours, and
again wanting to do 10s of runs to understand the sensitivity of the results.

We typically work on several different science applications with the same codes and seek
resources for these different projects through INCITE, Blue Waters, and XSEDE. We will
continue to do so, but we expect the XRB work to remain our target for NERSC.

We want to run bigger problems. We are modeling only a small fraction of the star currently,
and to explore the effects of rotation and understand the distribution of burning regions we
need to model a much bigger region of the star.

8.1.4.2 Parallelism

We should comfortably run on 10,000s cores, but again the queue structure and the desire
to run many jobs in a parameter study will determine the optimal size.

For a true science run, if we have a lot of local physics (for example, a big reaction network),
we could use 100,000 cores.

8.1.43 1I/O

We use checkpoint/restart in our application. For large 3-D simulations, a single checkpoint
file can be hundreds of GB. Our total output for a big 3-D simulation is ~10 TB. We expect
these numbers to scale with the problem size, so files 10x the current size are to be
expected, giving 100 TB for a typical big simulation.

For a simulation on Jaguar at OLCF (the precursor to Titan) done in July 2012, we got a data
rate of 1.9 GB/s writing a 5.2 GB plotfile out from 1,024 processors (this was a moderate-
sized job). For a more recent job on Titan (done in the past few months), we got a data rate
of 8.5 GB/s writing an 85 GB plotfile out from 2,048 processors (this run had four levels in
the adaptive mesh grid hierarchy). These numbers are typical and result from real science
runs on the crowded machine.

Less than 5% of runtime is acceptable for /0. If /O becomes too slow, we will work on
doing in situ analysis instead.
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8.1.4.4 Future Data Needs

In 2017, we expect to need 10 TB of temporary scratch disk space, 100 TB of NERSC project
space (globally accessible shared data), and 500 TB of storage on NERSC HPSS. The growth
in these requirements relative to 2013 is due primarily to growth in the size of the
problems we wish to run.

8.1.4.5 Memory Required

The “sweet spot” for our code at the moment is 2 GB/core. By doing OpenMP on nodes,
some of the necessary metadata for the grid hierarchy is shared across the cores on the
nodes, allowing for a more efficient use of the memory. Aggregate memory can grow toward
1 TB or more depending on how big of a job we seek to run.

8.1.4.6 Emerging Technologies and Programming Models

Our goal is to use OpenACC, as it appears to be the more portable standard for accessing
GPUs. At the moment we do not use this, but we have plans to put some of our microphysics
(starting with the reaction networks) on the GPUs this year.

While we run on Titan frequently, we do not use the GPUs there (yet).

Our code makes extensive use of OpenMP for communication within a node. We split the
outermost loop across zones in a grid patch across the OpenMP threads when there is
enough work in the loop. This is a significant performance win. More tuning of the OpenMP
for the XRB simulations proposed here will take place this year.

We do not currently run on either Sequoia or Mira.

We have not started porting to MIC, but some of our collaborators at LBNL have reported
good success at porting BoxLib codes to the Intel MIC. We will rely on their experiences and
expertise if it becomes necessary for Maestro. A caveat is that utilizing the MICs may require
us to change our gridding strategy to allow for more uniformly sized grids. For the XRB
simulations, this is not likely a problem since we typically fully refine a rectangular region
that encompasses the convection, so we have the flexibility to grid uniformly there.

We collaborate closely with the CCSE group at LBNL that develops the BoxLIb library for
AMR, which is the core library we use in Maestro. We inherit any performance gains they
implement and work closely with them on the code development and science. They are
separately funded.

The dream, of course, is that one sends their code off and it gets sent back a short while later
completely optimized for the new machine. We know, of course, that this is impossible, and
as scientists we expect the code to remain functional during any changes and that testing
show that the code still gives the correct answer when ported. While there are some tools to
help with the migration process—in particular, identifying bottlenecks—it would be useful
for these to be made more well known (with online training provided) and, ideally, for
NERSC consultants to assist in doing the initial profiling of a code on the new architecture
and consult with the developers on some ideas and easy targets for optimization.

Having computational scientists (preferably postdocs) directly funded as part of the science
project is the optimal way to address new architectures. Supplemental funds to projects
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that are heavily invested in computational nuclear (astro)physics to help porting to these
codes would work best. Given that our simulation codes are publicly available, the
community will benefit from any optimizations. Having a dedicated NERSC science liaison
can also be useful, but this person would really need to be able to spend the time coming up
to speed on the science needs and the intricacies of the code for the effort to be worth it. In
effect, they would be embedded in the science group.

The main concern is that whatever technology is adopted, it should be accessible through
open standard programming models (i.e., OpenACC instead of CUDA). We don't want to be
in a situation where we need to customize our code, rewriting large swaths, for each
machine out there.

8.1.4.7 Software Applications and Tools

We are moving toward doing most of our visualization and analysis with the yt package
(http://yt-project.org/), which is written in python (and Cython) and provides a very
powerful way to script analysis and visualization. Having yt installed as a module on the
NERSC machines would be optimal.

Maestro is written in Fortran (95+) using MPI and OpenMP. Some C is used in the BoxLib
library and some python is used in our build system. Mainly, we need a robust Fortran 200x
compiler with support for OpenMP and (soon) OpenACC.

8.1.4.8 HPC Services

Training of graduate students and postdocs is a plus—ideally through a regular summer
school that teaches the students some of the more popular algorithmic techniques (maybe
domain-specific parallel sessions?) along with MPI/OpenMP/OpenACC.

8.1.4.9 Additional Data-Intensive Needs

At the moment, we are comfortable with our data handling.

We cannot bring all the data we generate back to our local facilities (the network speeds are
too slow), so we store all the needed data on HPSS at NERSC. Our submission scripts are
instrumented to automatically store the necessary files as the job runs, virtually eliminating
the possibility of data loss.

All of our code is in version control, allowing us to go back, if necessary, and recreate old
simulations. We also store a host of meta-data (the machine we are running on, build
directories, output directories, compiler versions and flags, git hashes for all of the source
repos we used, values of every runtime parameter, etc.) in all of our output files. This
greatly helps with reproducibility; all of the information needed to reconstruct the
simulation code and inputs is part of the output itself.

8.1.4.10 Requirements Summary Worksheet

NERSC Repos m1938, m106 Used at NERSC Needed at NERSC
in 2013 in 2017
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Computational hours (millions) 4.4 100
Typical number of cores* used for production 1,536 for small 10,000s
runs jobs;

12,288 for large
Maximum number of cores* that can be used 10,000s 100,000
for production runs
Data read and written per run 10-100TB 100s TB
Maximum I/0 bandwidth 8 GB/sec 10s GB/sec
Percent of runtime for I/0 1% <5%
Scratch file system space 1TB 10 TB
Shared file system space 0.82 TB 25TB
Archival data 173 TB 500 TB
Memory per node 2GB 2GB
Aggregate memory 0.1sTB few TB

*Conventional cores

Large Scale Computing and Storage Requirements for Nuclear Physics: Target 2017

58



8.2 Core Collapse Supernovae

Principal Investigator: W. Raphael Hix (ORNL)
Case Study Authors: Eric Lentz (our INCITE PI) and Bronson Messer
NERSC Repository: m1373

8.2.1 Project Description

8.2.1.1 Overview and Context

The deaths of massive stars (M > 8-10 solar masses) as core-collapse supernovae are an
important link in our chain of origins from the Big Bang to the present. They are the
dominant source of elements in the periodic table between oxygen and iron and potentially
are responsible for producing half the elements heavier than iron. Core-collapse supernovae
serve both to disperse elements synthesized in massive stars during their lifetimes and to
synthesize and disperse new elements themselves. As the name suggests, core-collapse
supernovae are initiated by the collapse of the cores of massive stars at the end of their lives.
The center of a massive star as it nears its demise is composed of iron, nickel, and similar
elements, the end products of stellar nucleosynthesis. Above this iron core lie concentric
layers of successively lighter elements, recapitulating the sequence of nuclear burning that
occurred in the core. Unlike prior burning stages, where the ash of one stage became the
fuel for its successor, no additional nuclear energy can be released by further fusion in the
iron core. No longer can nuclear energy production stave off the inexorable attraction of
gravity. When the iron core grows too massive to be supported by electron degeneracy
pressure, the core collapses. The collapse proceeds to ultrahigh densities, in excess of the
densities of nucleons in the nucleus of an atom (“super-nuclear” densities). The inner core
becomes incompressible under these extremes, bounces, and, acting like a piston, launches
a shock wave into the outer stellar core. This shock wave will ultimately propagate out of
the iron core and through the stellar layers beyond the core (silicon, oxygen, etc.) and
disrupt the star in a supernova explosion. However, the shock stalls in the outer core, losing
energy as it plows through. Exactly how the shock is revived is uncertain and remains the
central question pursued by our simulations.

After core bounce, 1046 Joules of energy in the form of neutrinos and antineutrinos of all
three flavors (electron, muon, and tau) are released from the newly formed proto-neutron
star (PNS) at the center of the explosion, over a period of tens of seconds. The kinetic energy
observed in supernova explosions is 1044 Joules, 100 times smaller than the available
energy in neutrinos. Past simulations have demonstrated that energy in the form of
neutrinos emerging from the PNS can be deposited behind the shock and potentially revive
it. While a prodigious amount of neutrino energy emerges from the PNS, the neutrinos are
weakly coupled to the material directly below the shock. In fact, because the neutrino
heating is very sensitive to the distribution of neutrinos in energy and direction of
propagation, realism in modeling core-collapse supernovae requires at least spectral
neutrino transport. Convection directly beneath the shock fundamentally alters the nature
of neutrino shock reheating, allowing simultaneous downflows that fuel the neutrino
luminosities and upflows that bring energy to the shock. And the instability of the shock
wave itself—the stationary accretion shock instability (SASI)—can dramatically alter the
shock and explosion dynamics. The combination of spectral neutrino radiation transport
with multi-dimensional hydrodynamics and complex microscopic physics renders
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simulations of core-collapse supernovae that require the use of HPC resources to attack this
problem.

8.2.1.2 Objectives for 2017

Our objectives for the coming years are a series of 2D and 3D simulations toward two goals:
to explore the neutrino-driven core-collapse supernova mechanism, and to predict
observable consequences of these explosions that may be compared to observations. These
simulations will be pursued across a range of computing platforms through programs such
as ERCAP, INCITE, PRAC, etc. Ultimately, our understanding of the core-collapse supernova
mechanism and our ability to use core-collapse supernova simulations to directly confront
observations will require an ensemble of numerical experiments to address the variety of
stars that undergo core-collapse (varying in stellar mass, rotation rates, metallicity, etc.)
and to examine uncertainties in our understanding of the core-collapse mechanism and the
progenitor stars.

Extreme computational cost—100 million of core-hours for a single simulation—precludes
pursuing these investigations solely in three dimensions. Instead, a range of 2D simulations
run at NERSC and similar centers will be checked against a smaller set of 3D simulations run
using resources provided by programs such as INCITE.

8.2.2 Computational Strategies (now and in 2017)

8.2.2.1 Approach

The core-collapse supernova problem is a coupled multi-physics problem that requires
sophisticated multi-physics codes linking the important ingredients with minimal
approximation and close attention to the conservation of energy. There is also a wide
variety in initial conditions (from stars of different masses, rotations, etc.). The contributors
to a supernova and supernova simulation include:

* Self-gravity with some general relativistic elements

* Multidimensional fluid dynamics

* Anuclear equation of state (pressure as a function of temperature

* Mass density and composition) to close the hydrodynamic equations

* A dynamic thermonuclear reaction network for low density/temperature regions
that are not in thermodynamic equilibrium

* A necessary set of neutrino-matter interactions

* A neutrino transport algorithm to transport neutrinos and deposit their energy in
the matter accurately.

A core-collapse supernova lacks any inherent symmetry, so full understanding requires
well-resolved 3D simulations.

8.2.2.2 Codes and Algorithms

Our code, CHIMERA, is a fusion of several codes that handle the required physics. We use a
spherical polar grid with extensive domain decomposition in axisymmetry (2D) and in full
3D.
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Gravity: We use a multi-pole method to solve the gravitational Poisson equation, with a
correction in the monopole term for general relativity to get the structure of the neutron
star correct.

Hydrodynamics: We use a finite-volume Riemann solver with PPM reconstruction in a
dimensionally split Lagrangian + Remap (PPMLR) scheme based on the astrophysics VH1
code.

Equations of state: We use two nuclear equations of state loaded onto localized tables with
thermodynamic variables and derivatives computed from the tables.

Nuclear network: We solve the thermonuclear Kinetic equations, where needed, with an
operator-split, implicit solver utilizing temporal sub-cycling (relative to the hydrodynamic
step). It is a fully integrated copy of the XNet astrophysical thermonuclear reaction network
code. For most CHIMERA simulations, the composition is limited to 17 isotopic species, but
we are now exploring simulations that evolve 150 species.

Neutrino transport: We use a flavor-coupled, spectral, flux-limited diffusion algorithm with
the flux limiter tuned to match full transport methods solved in spherical symmetry
independently for each solid angle element (d6, d¢) using an implicit, multi-variable
Newton-Raphson method. The independence of the transport solutions allows each “ray” to
be solved on a separate MPI task.

Neutrino opacities: These are computed as needed using various approximations and/or
codes from the literature and stored in a local table that is shared for all points on each MPI
task. The table is interpolated numerically to get the values and derivatives needed to build
the Jacobian for each iteration of the transport solve.

The transport (opacity interpolations, Jacobian building, linear solver) and the nuclear
network (for larger networks) are the most computationally demanding parts and are
thoroughly threaded (OpenMP).

8.2.3 HPC Resources Used Today

8.2.3.1 Computational Hours

NERSC: 2.1 million in 2013, 20 million in 2014, allowing for many 2D simulations on Edison
and Hopper. We also have used Darter and Kraken in the past. For 3D we have used Titan
(70 million hours in 2013, 85 million in 2014) and Mira in the past.

INCITE: 60 million in 2013, 85 million in 2014, allowing for one to two 3D simulations.

8.2.3.2 Parallelism

Our MPI parallelism is limited to assigning one transport solve on each MPI task, which is
also our typical running condition. In 2D, the number of transport solves is the number of
grid points in latitude, 0. In 3D, this is multiplied by the number of grid points in longitude,

o.

Our typical 2D runs at NERSC include 0(250) MPI tasks, affording sub-degree resolution.
With the current state of our OpenMP implementation, we can use two to four cores per
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MPI task with reasonable efficiency for the small 17-species composition we use for most
runs. With the larger 150-species network, we can use twice as many OpenMP threads (and
cores) with similar efficiency.

Our current 3D run at OLCF uses 180x180 (32,400) MPI tasks with two threads. To match
the resolution of our 2D simulations, we would eventually like to reach about 100,000 (250
x 500) MPI tasks. The OpenMP scaling in 3D is similar to 2D.

We have tested at up to 131,072 cores in 3D without OpenMP and could conceivably do so
with several cores for each MPI task at that level.

Our simulations require many—O(106)—time steps computed in sequence with
synchronization required within each time step, to follow the supernova over the 1-2
seconds when the explosion develops. As a result, they consume 1,000 or more wall-clock
hours per MPI-task. Higher angular resolution reduces the size of the time steps (requiring
more to complete). As a result, fully resolved 3D simulations would cost hundred of millions
of core hours, placing them outside the cost profile of current allocation sizes.

Both strong and weak scaling are important. We have spent much effort to ensure that our
weak scaling will allow us enough angular resolution to make reasonably (though not
ideally) resolved 3D simulations with 10,000-30,000 solid-angle elements on the same
number of cores. More recently, especially the last year, we have concentrated on
implementing OpenMP for additional strong scaling, using more than one core per solid-
angle element (transport and nuclear network solution domain). This has also enabled
greater flexibility to exchange MPI tasks for OpenMP threads within a node.

8.2.3.3 Scratch Data

For 2D models, roughly 0.1 TB per model of scratch data is required. With as many as 10
models running simultaneously, this requires 1 TB of scratch space in total.

For 3D models, roughly 40 TB per model of scratch data is required. With typically only 1
model running at any given time, the total is 40 TB.

8.2.3.4 Shared Data

Our communal analysis efforts can require the entirety of several models to be available in
the shared storage area at any one time. This would require roughly 2 TB for five 2D models
and 200 TB for a single 3D model. In 2013 we stored 5.5 TB in the NERSC /project file
system.

8.2.3.5 Archival Data Storage

Our current usage in NERSC HPSS includes the four models that were run in 2012 and 2013.
This represents roughly 1.5 TB. Our allocation in 2014 will allow us to add perhaps another
dozen models, raising the total to 16 models and roughly 6 TB. Combined with all our other
needs for archival data storage, we had 76 TB stored in HPSS at NERSC in 2013. This had
increased to about 100 TB by mid-2014.

Our current 3D models are archived at OLCF, consuming approximately 200 TB for a
completed model.
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8.2.4 HPC Requirementsin 2017

8.2.4.1 Computational Hours Needed

We expect to need 20-40 million hours for 2D runs to support the continuation of the
scientific program currently running at NERSC.

For a science program based on 3D models, three to four 1-degree resolution simulations
per year would require 200-300 million hours (conventional) from all large allocation
sources (including those listed below.)

We expect to compete for allocations at the level listed above for our 3D science program
through INCITE and NSF PRAC; however, we have no guarantee of success despite our
history of such.

For the 2D program, the increase in hours needed is due to computing a larger number of
models to investigate the wide range of uncertainties in the supernova problem and
including more accurate (and expensive) physics, most notably, realistic nuclear networks.

Any time allocated for 3D simulations in the future would be entirely new to our NERSC
allocations.

8.2.4.2 Parallelism

For 2D, we expect something similar to today (up to 1,000 cores per run).

For 3D, we would expect 60,000 “transport rays” with two to four cores each, for a total of
120-240,000 cores, distributed on 60,000 or fewer MPI tasks.

Provided the allocations are large enough to allow 1,000 hours per core, we could
reasonably use up to about 250,000 cores to achieve resolutions in latitude and longitude
comparable to our current 2D simulations.

8.243 1/O

We record 5-10 restart/checkpoint files every hour of operation using a checkpoint facility
built into the code. For 2D, the data stored is about 400 GB per simulation. This grows to
200 TB per simulation in 3D. For 3D, to meet the [/0 time percentage below and rate above,
the 80 GB restart file would need to be written in 10-20 seconds, or about 4-8 GB/s.

We try to keep the I/0 cost to less than 5% by balancing the restart output frequency with
the temporal resolution required to capture the dynamical features in the simulation during
analysis.

Our restart I/0 is more parallel than serial and is written from several hundred MPI tasks to
each of tens of files, with the number of files tuned to maximize performance.

8.2.4.4 Future Data Needs

In 2017, we expect to need 80 TB of temporary scratch disk space, 400 TB of NERSC project
space (globally accessible shared data), and 2,000 TB of storage on NERSC HPSS. The
growth in these requirements relative to 2013 is due primarily to the increasing number of
models and improved resolution in 3D.
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8.2.4.5 Memory Required

We have expended some effort in recent years to reduce CHIMERA’s memory footprint.
CHIMERA currently uses somewhat less than 1 GB per “transport ray” in 2D or 3D. Using
multiple cores per ray has minor impacts on the memory usage, and pooling multiple rays
per MPI task can provide some savings. For 2D, the aggregate memory footprint is about
200 GB, typically spread over 240 MPI tasks. For 3D, the total memory footprint is < 50 TB
for models of the size we anticipate running.

8.2.4.6 Emerging Technologies and Programming Models

We have thus far explored utilization of accelerators via library calls (CuBLAS) and
OpenACC directives. This seems to be adequate to the tasks we wish to implement on the
accelerators.

We run in production on Titan but are currently not using the GPUs. Recent progress should
allow us to move matrix solutions within the nuclear network and neutrino transport to the
GPU in the next couple of months. GPUs are currently difficult to use because of the small
matrix size on each CPU, at least until CUDAS.

We have OpenMP directives in our most computationally intensive sections (transport,
network) and are working to expand the coverage throughout CHIMERA. We use up to four-
way OpenMP.

We do run on Mira, but our performance was limited by memory constraints.

Porting to, and optimizing for, the Intel MIC architecture is not presently under way or
planned.

We do not collaborate with other groups on these issues. We are exploring these
technologies ourselves, though we have had conversations with Dongarra’s group at the
University of Tennessee and with the OLCF scientific computing group. Messer, a member of
the latter group, is a part of the CHIMERA team.

Our hope is to rely on directives and libraries, which seem to be sufficient at this time, but
time will tell.

Empirically gained expert advice will be crucial for the effective use of near-future
architectures; this is a role that NERSC could play. Furthermore (as we note in the next
answer), NERSC is perhaps one of the best sources of expertise and interest with respect to
software development and porting, especially for those tasks that are not immediately on
our production requirements list.

Lack of support for software development and maintenance has long been a problem with
respect to DOE (NP, ASCR, and other program offices) funding. However, the significant
code changes that will have to be undertaken to exploit near-future architectures over the
next decade or so make this problem far worse than it has, perhaps, ever been. Without
support for software development and maintenance, our scientific output will diminish over
time, regardless of the computational resources made available to us.
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8.2.4.7 Software Applications and Tools

We utilize HDF5-parallel for 1/0 and have used Vislt for visualization with Silo to get data
into Vislt. We use LAPACK (and some GPU libraries as well) for linear algebra. We like to
compile using a variety of Fortran compilers. Currently these include Intel, Cray, GCC, and
PGI. We've written our own analytics.

8.2.4.8 HPC Services

Our in-house data and code workflow system (Bellerophon) would benefit substantially
from federated authentication services to facilitate data flow. Any data and analytics
services that could be used via this mechanism could be incorporated into Bellerophon via
its modular architecture.

8.2.4.9 Data Management Plan

Our data management plan is to store completed models in long-term storage at the
computational facilities where the data as generated. In 2D, at 0.4 TB per model, it is
feasible to store completed models on hard drives or tape maintained locally (at ORNL). For
3D, network bandwidth and data volume preclude local storage.

8.2.4.10 Additional Data Intensive Needs: Burst Buffer

Given our necessarily very long runtimes, we find little use for a checkpoint/restart staging
function via an NVRAM burst buffer. We do (and always will) formulate our own
checkpoints and handle their writing and reading. Because the burst buffer will have to be
purged between batch submissions, and since we do not foresee an increased rate of
checkpointing data (i.e., the FLOP/s we will perform will increase faster than the total
amount of data we write to checkpoints), we do not see a benefit in the decreased latency to
disk.

The use of a burst buffer as a faster “out-of-core” workspace (for example, for the storage of
equation-of-state tables) and the possibility of using the NVRAM as a staging area for
intermediate analysis are use cases we would like to explore.

8.2.4.11 What Else?

One of our biggest concerns is babysitting runs that take ~years to finish.

8.2.4.12 Requirements Summary Worksheet

NERSC repo m1373 Used at NERSC Needed at NERSC
in2013 in 2017

Computational hours (millions) 2.1 200

Typical number of cores* used for 250-6,000 1,000-240,000

production runs

Maximum number of cores* that can be 120,000 480,000
used for production runs

Data read and written per run 0.4-200 TB 0.4-200 TB
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Maximum I/0 bandwidth 10 GB/sec 10 GB/sec
Percent of runtime for 1/0 <5% <5%
Scratch file system space 40 TB 160 TB
Shared file system space 5TB 400 TB
Archival data 76.5 TB 2,000 TB

Memory per node

1 GB per MPI rank

1 GB per MPI rank

Aggregate memory

0.2-50 TB

0.2-50 TB

*Conventional cores
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9 Nuclear Science Data Case Studies

9.1 RHIC and LHC Heavy lon Experiment Program
Requirements

Principal Investigator: R.]Jeff Porter
NERSC Repositories: rhstar, alice, gc5, m1094

9.1.1 Project Description

9.1.1.1 Overview and Context

Heavy lon Physics research is a subprogram of the Nuclear Physics program in the DOE
Office of Science, organized to study the high temperature phase of QCD matter.
Experimental research in the field carried out at the U.S. Relativistic Heavy lon Collider
(RHIC) facility pioneered discoveries of a new state of thermalized matter known as the
quark gluon plasma (QGP). The STAR experiment, one of the four original RHIC experiments,
provided pioneering measurements during the QGP discovery and in the initial exploration
of its properties. The STAR experimental program continues at RHIC providing new
measurements with new detector capabilities, higher statistics, and at different beam
energies to further map out the properties of the matter and determine threshold energy
densities for the onset of QGP formation. The ALICE (A Large lon Collider Experiment)
collaboration constructed and operates a heavy-ion detector designed to exploit the unique
physics potential of proton-proton and nucleus-nucleus interactions at even larger collision
energies accessible at the Large Hadron Collider (LHC). The science program with ALICE
extends the work done at RHIC with a principal goal of studying the physics of this new
phase of strongly interacting matter produced at these high temperatures.

The physics of the QGP is studied by exposing properties of heavy ion collisions from the
reaction products using a multitude of signals extracted from each collision. These signals
include global event properties such as produced particle multiplicities and event-type
characterizations, identified particle distributions in transverse energy and momentum,
particle correlations, and rare or heavy particle yields. The measurements are repeated for
different colliding systems in terms of the beam or collision energy and beam species. The
science is conducted by groups of physicists working on one or more of dozens of targeted
investigations, each analyzing the common event ensemble to explore different aspects of
the collisions and infer information about the QGP and its formation.

Three broad categories of computing activities are required to extract physics from the
experimental data. The first is event reconstruction, which takes the pure detector signals
from each event and, through a series of pattern recognition algorithms, produces highly
refined data in the form of the set of particle trajectories tagged with characteristics (energy,
momentum, and mass) emerging from the collision. Event reconstruction is done at specific
facilities that have access to the raw detector data and carried out by a team of scientists
and engineers on behalf of the entire collaboration for subsequent use in further data
analyses. A second category is very similar to, and includes, event reconstruction but is
done with simulated rather than real data. Full collisions are simulated (or specific particle
simulations are generated and mixed with real event data) to produce simulated detector
signals that are then passed through the same event reconstruction algorithms as in the
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first category. Since these simulations do not require (much) raw data, they are done on a
broader set of facilities but are carried out by a team on behalf of the collaboration. The final
category is the actual data analysis, in which individual scientists extract the various signals
noted above from the real data and evaluate the efficiency of that extraction by doing the
same analysis on simulated data sets. In all three cases, the processing is generally
“pleasantly parallel,” done independent event by independent event. As such, HPC resources
have largely been unnecessary for carrying out these computing tasks; however, storage
and network resources are critical to the work as individual data sets are hundreds of TB in
size, and full analyses may need to be spread over several runs to access PB scales of data.

9.1.1.2 Objectives for 2017

The goals for the next three years in both the STAR and ALICE experiments are a
continuation and expansion of their original physics mission to study QCD through
exploring the unique phases of nuclear matter formed during these heavy ion collisions.
Both experiments expect to see modest increases in annual data rates and volumes over
previous years (factors of 2-3x) due to improved accelerator luminosities and new detector
capabilities. The ALICE experiment also expects the LHC to deliver PbPb collisions at a top
energy of 5.5. TeV/c2, more than twice as large as in previous PbPb runs during the initial
LHC Run 1 period.2! In addition, the focus in both experiments will shift to take advantage of
new detector capabilities recently installed in these experiment systems.

In 2014, STAR installed two new detectors systems—the Heavy Flavor Tracker (HFT) and
the Muon Telescope Detector (MTD)—to study the characteristics of charm production in
heavy ion collisions. The dynamics of charm production are predicted to depend strongly on
the formation and evolution of the QGP during the collision. As a result, new high-precision
measurements from STAR of charmed hadron production should uniquely probe QCD
physics associated with QGP formation.

During the current LHC long shutdown period, Long Shutdown 1 (LS1), ALICE installed a
new patch of the electromagnetic calorimeter detector (EMCal) at the opposite azimuthal
angle as the original patch. The full calorimeter now provides the capability to explore back-
to-back jet production using the two patches as a single di-jet calorimeter (DCal). By
comparing known dijet phenomenology in proton-proton collisions with those observed in
PbPb and proton-Pb collisions, the group will be able to make new tomographic studies of
the matter produced in the collision.

The new detector capabilities described above will be operational in 2014 (STAR) and 2015
(ALICE). To take full advantage of these new capabilities, new algorithms and analysis
techniques will be developed and deployed. The goal by 2017 is to have fresh new insights
into the dynamics of QCD matter during the formation and evolution of the QGP.

21 The LHC schedule includes several multi-year running periods broken up by long shutdown
periods of a year or more in length. Run 1 lasted from 2010 to 2013, Run 2 will go from 2015 through
2017, and Run 3 is expected to start around 2019.
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9.1.2 Computational Strategies (now and in 2017)

9.1.2.1 Approach

In collider-based experiments like STAR and ALICE, collisions are registered within the
detector as independent events. A computing task is the processing of an event collection,
done as a set of independent jobs with each job assigned a subset of the collection. This type
of processing as noted earlier is “pleasantly parallel” and easily distributed onto clusters of
off-the-shelf hardware. Many of the specific investigations that the scientists pursue require
very large data samples to make statistically significant measurements. As such, both STAR
and ALICE have yearly data acquisition targets upward of 109 events corresponding to
petabyte-scale annual data volumes.

The common features of STAR and ALICE workflows—high throughput processing of large
data volumes on commodity hardware—have led these groups to invest in the NERSC/PDSF
system. The PDSF model is different than other NERSC systems in that the cluster hardware
is purchased by the scientific groups but operated and located at NERSC, which gives users
access to other important NERSC resources, such as HPSS, NGF, or other data-intensive CPU
systems like NERSC’s Carver system. Use of PDSF by both STAR and ALICE are fully
integrated into their distributed computing models. For STAR this includes some grid-based
simulation processing as well as giving users with direct access to STAR analysis-ready data
copied from its primary facility at BNL. For ALICE, PDSF is fully integrated with the ALICE
Grid facility, which is built from approximately 80 facilities around the world and
transparently operates as a single batch system to the ALICE user.

9.1.2.2 Codes and Algorithms

The large data sets and large number of physicists accessing the experiment data require
use of common software infrastructure. Both STAR and ALICE have built their
infrastructures upon the ROOT data analysis framework,22 an organized set of C++ class
libraries with utilities to handle data 1/0, data collection management, histograms and
plotting, functional fits to data, and many other useful tools. Experiment-specific software is
written in C++ and consists of several hundred thousand to more than a million lines of
codes with explicit reliance on the ROOT framework. In addition, simulations used for
studying experiment efficiencies and systematic effects rely on the GEANT23 (or GEANT424)
Detector Description and Simulation Toolkit to describe the geometry and materials of the
detector and their support structures and to simulate the passage of particles through the
material. Maintaining such large infrastructures of multiple platforms can be a challenge.
STAR software, for example, is validated on a very limited set of platforms, currently
versions of Scientific Linux. The ALICE computing team has been able to focus more on code
portability, packaging external dependencies within the software releases. ALICE software
can and is run on a large variety of modern Linux systems.

STAR software is manually deployed on PDSF and NERSC systems by downloading source
codes from the STAR repository and building the full suite of software. A full rebuild is done
with each major system change such as OS or ROOT version (typically once a year), while

22 http://root.cern.ch/drupal
23 http://wwwasd.web.cern.ch/wwwasd/geant/
24 http://geant4.web.cern.ch/geant4/
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STAR-specific codes are rebuilt more routinely (typically once or twice a month). All ALICE
software is maintained and built centrally and distributed as binary executable files through
the CVMFS25 toolset. Local installations of the ALICE software are done by individual users
for special runs on the local system, disconnected to the ALICE Grid facility.

9.1.3 HPC Resources Used Today

9.1.3.1 Computational Hours

On PDSF at NERSC, STAR and ALICE have an allocation based on their investment into the
system. Those allocations translate to about 7 million (STAR) and 9 million (ALICE) hours
for 2014. The PDSF allocations are a fraction of the overall computing in these experiments:
about 10% of STAR computing and about 3% for ALICE. STAR computing is carried out
primarily at BNL with additional resources at KISTI,26 while ALICE computing is spread over
80 facilities worldwide. Both groups also used a modest 340,000 hours on the NERSC
Carver system to develop production and analysis workflows for other NERSC resources.

9.1.3.2 Parallelism

As mentioned before, almost all of our workflow is perfectly suited for serial processing in
which each job uses just one core. Some analyses could be sped up by strategic use of
parallel processing, but the overhead in implementing such strategies has generally been
considered too high to pursue. There are special uses of parallel processing in the high-level
trigger (online) systems that support data-taking operations at the experiment sites;
however, those processing codes have not been deployed in carrying out the distributed
(offline) computing work done at NERSC and elsewhere. As will be described later, that
separation of online and offline processing is expected to disappear for ALICE in the 2018
time frame, making techniques used in parallel processing accessible to the workflow.

These codes are entirely serial today, using only a single core.

Our eventual use of parallel processing will be primarily focused on strong scaling to make
up for the loss of increasing per core processor power as clock speeds remain fixed, and to
handle the expected fast throughput demands that will exist for data filtering during data
taking operations.

9.1.3.3 Scratch Data

Regarding temporary disk space, a typical analysis task will process 50 TB of input data,
split into about 1000 individual jobs. The output data is modest by comparison, generally
<1% of the input sample. Depending on the workflow, data can be staged to local scratch
requiring about 10-20 GB/job. For simulation work, the input data is modest but the output
data can be 10-50 GB per job. Thus a simulation task of 1,000 cores may require 50 TB of
output scratch. This I/0 is basically serial, but with many serial jobs appears parallel.

9.1.3.4 Shared Data

Both STAR and ALICE have project directory space. In addition to the 40 TB allocated from
NERSC resources, the group has purchased space on project. STAR has two directories, “star”

25 http://cernvm.cern.ch/portal/filesystem
26 http://en.kisti.re.kr/
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and “starprod,” which had a combined 250 TB stored in 2013. The “star” space is of general
use for software deployment, web access, and user files, while the “starprod” space is
specifically restricted for holding STAR data used in analyses. ALICE has one directory,
“alice” at 150 TB, which is used by the ALICE-USA group for interactive analysis that
complement the grid-based work. Star uses an additional 125 TB of project space using the
“gc5” repository.

9.1.3.5 Archival Data Storage

NERSC HPSS has been a critical component to STAR use of PDSF, supporting both user
backups and copies of analysis-ready data from BNL. The group managing copies into HPSS
have not been able to keep up with data production. Thus, while there is currently on the
order of 1.5 PB of STAR data on HPSS, there should be another 2 PB of data stored there.
The ALICE-USA project has concluded that formally supporting archival storage for ALICE
as a WLCG Tier 1 facility is beyond the scope of the project. As a result, ALICE does not rely
on NERSC HPSS storage beyond the tens of TBs needed for archival by individual users.

9.1.4 HPCRequirementsin 2017

9.1.4.1 Computational Hours Needed

The overall computing capacities of the STAR and ALICE experiments at all sites are roughly
400 million CPU-hours combined. In 2017, we expect that this will be a least doubled (more
than doubled for STAR) to keep pace with the data rates of these experiments. This does not
take into account an increase in compute capacities needed to handle new analyses being
developed for the new detector systems. It is clear that NERSC in general and PDSF in
particular will remain as important resources to the experiments.

A majority of both experiments’ computing needs is currently met at resources outside of
NERSC. This will continue into 2017, with NERSC providing 5%-10% of the required
resources. These external resources are provided to the experiments from participating
institutions around the world. For STAR, the majority of those resources are at BNL. For U.S.
operations in ALICE, the other primary site will be at the ORNL CADES facility. Additional
resources at TACC and OSC (Ohio State) will likely also contribute to ALICE computing in
the U.S.

Based on projections for data increases and analysis goals noted above, we expect our
computing needs will approximately double in 2017 from what we have today. So while we
are currently using about 15 million hours annually, that number will be at least 30 million
in 2017.

9.1.4.2 Parallelism

The primary workflow will likely remain serial in nature, thus well suited for single core
processing. However, the processor technology will be changing in such a way that the
experiments will need to develop multicore processing schemes. Those efforts are under
way, but it is too early to know the mapping of typical cores per job.

One goal in ALICE is to develop a whole-node processing model by 2017 such that a single

job can occupy all the cores on a node. In that case, we expect to be able to use on the order
of dozens of cores per job.
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9.14.3 1/0O

These applications do not employ checkpoint/restart.

For the following three issues, | will separately address two tasks: simulation (CPU-bound
with little input) vs. analysis (I/O-bound with large input requirements). The estimates
should be considered with uncertainties (and variations) of factors of 2 or more.

Total data that will be read and write per run in 2017:
Simulation: Output of tens of GBs per core per 1,000 core run, order of 50 TB
per run
Analysis: Input of hundreds of GBs per core per 1,000 core run, order 100 TB
per run

I/0 bandwidth requirement (bandwidth = data read or written / time to read or
write):
Simulation: Output of tens of GBs per core per 10 hours, order of 1 MB/sec per
core
Analysis: Input of tens of GBs per core per minutes, order 100 MB/sec per core

Maximum percentage of total runtime that should be devoted to 1/0:

Simulation: We expect CPU/wall to remain over 90%
Analysis: Our experience has CPU/wall at 70% as typical for our workflow

9.1.4.4 Future Data Needs

In 2017, we expect to need about 100 TB of temporary scratch disk space, 1,000 TB of
NERSC project space (globally accessible shared data), and 5,000 TB of storage on NERSC
HPSS. The growth in these requirements relative to 2013 is due primarily to steady increase
in data volumes during the next three years and, for HPSS, the archival plans for STAR.

9.1.4.5 Memory Required

STAR and ALICE have somewhat different memory footprints, with STAR typically using 1
GB/core while ALICE often requires more than 4 GB/core. The goal for both experiments
will be to effectively occupy and use all cores in a given node. ALICE will have more of a
challenge to reach that goal but is actively working on a project to leverage concurrency
during processing. Both experiments will likely require footprints of 1 GB/core.

9.1.4.6 Emerging Technologies and Programming Models

In this section I will focus almost exclusively on ALICE because that experiment is facing a
significant challenge in the period just beyond the 2017 time frame that is motivating an
active project to prepare for and leverage next-generation architectures. The challenge will
occur during the LHC Run 3 period scheduled to begin in 2019, with planned upgrades to
both the ALICE detector and LHC luminosity. These changes will increase the data coming
off the detector by a factor of 100 relative to those observed in Run 1, reaching over 1 TB/s
or almost 100 PB/day. Such rates far exceed the expected storage capacity for the
experiment, which is estimated to remain on the order of tens of GB/s.

The typical solution in our field for handling such bandwidth limitations is to only store
events that satisfy some trigger signal; however, this will be at odds with the ALICE physics
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program goal to focus on obtaining the largest minimum-biased event sample possible.
Thus to reduce the stored data volume, the plan is to run full event reconstruction in near
real time and store only the reduced data. For example, as is already done in ALICE, the raw
pad signals from the TPC detector are used to reconstruct TPC space points in real time.
The pad signals are discarded, thereby reducing the data volume by a factor of 5. Other
strategies, such as keeping only those space points associated with tracks, are being
considered. To accomplish this goal requires fast real-time event reconstruction that
leverages new technologies and parallel programming techniques with a focus on strong
scaling to keep up with the data rates. At the same time, event reconstruction must be of the
same quality as what is currently done later at a more leisurely pace on the distributed
offline systems. Essentially, the goal is to restructure ALICE software to be able to
effectively run offline quality processing on the complex new architectures required for real
time online processing. The ALICE project that is working toward this goal is referred to as
the 02 project, representing an online/offline software merger. Satisfying this goal will
make emerging technologies accessible to ALICE software in the 2018 time frame or
perhaps earlier.

Our codes do not currently have CUDA/OpenCL directives and do not currently run on GPU
systems. The codes also do not currently have OpenMP directives and do not currently run
on IBM BG systems. However, porting to and optimizing for the Intel MIC architecture is
planned within the scope of the ALICE 02 project. The ALICE 02 project is composed of
several working groups and includes participation from ORNL staff working with code
modifications to support ALICE on Titan. We will try to leverage NERSC resources and user
support to help in this multi-year development process.

9.1.4.7 Software Applications and Tools

We expect to rely on much of the same tool base that we currently use, updated to support
multi-threading and C++11. The current mapped-out strategy includes a reliance on IPC via
0MQ tools.

9.1.4.8 HPC Services

Integration of any ALICE workflow at NERSC into the ALICE Grid model greatly simplifies
use of the facility. To do this without inventing new services requires that we have outgoing
connection from the compute nodes to the outside world (such as CERN and other ALICE
Grid sites).

9.1.4.9 Additional Data-Intensive Needs

The outgoing network connectivity mentioned above is very important and allows us to
support the full range of technologies needed for data and software access that we currently
use. We already have a data management plan for our project.

9.1.4.10 Additional Data-Intensive Needs: Burst Buffer

One possible use of such a burst buffer is to construct a temporary PROOF facility for data
analysis, such as is done with the PROOF On Demand toolset.2”

27 http://pod.gsi.de/
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9.1.4.11 Requirements Summary Worksheet

[ am filling this out using a combined ALICE and STAR usage and expectation. The
processing is expected to happen on a PDSF-like facility where the projects buy into both

CPU and storage hardware.

NERSC Repos alice, rhstar, gc5, m1094 Used at NERSC | Needed at NERSC
in 2013 in 2017
Computational hours (millions) 15 (PDSF) 30 (PDSF)
Typical number of cores* used for production 500 1,000
runs
Maximum number of cores* that can be used 5,000 10,000
for production runs
Data read and written per run 50 TB 100 TB
Maximum I/0 bandwidth ** (note I multiply 50 GB/sec 100 GB/sec
the per-core rate by nominal # of cores)
Percent of runtime for 1/0 20 20
Scratch file system space 50 TB 100 TB
Shared file system space 525TB 1,050 TB
Archival data 1,500 TB 5,000 TB
Memory per node (I assume 16-core node) 64 GB 32GB
Aggregate memory 32TB 16 TB
*Conventional cores
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Appendix A. Attendee Biographies

Ted Barnes is the DOE Program Manager for Nuclear Data and Nuclear Theory Computing
in the Office of Science, Office of Nuclear Physics (NP). His responsibilities include
supporting computationally intensive research in nuclear physics, for example through the
NERSC and SciDAC programs. He has also served as Acting Program Manager for Medium
Energy Nuclear Physics, and as a Detailee managed the NP Nuclear Theory program. Before
joining DOE he held a joint appointment in the ORNL Physics Division and the University of
Tennessee Department of Physics and Astronomy and specialized in research on theoretical
hadron spectroscopy and computational condensed matter physics. Barnes is an APS Fellow
and holds a Ph.D. in Theoretical Physics from Caltech.

Robert Edwards received a B.S. in Physics and a B.S. in Mathematics in 1984 from the
University of Texas at Austin. He obtained his Ph.D. in Physics in 1989 from New York
University. He was a postdoc and later a Staff Scientist at the Supercomputer Computations
Research Institute (SCRI), Florida State University, from 1989 to 1999, where he was a Co-
PI on the Theoretical High Energy Physics grant (DOE). Research included development of
new algorithms for calculations within spin systems and for dynamical fermion calculations
within lattice QCD as part of the HEMCGC grand challenge project. Also, new methods were
developed for calculations with chiral fermion actions that eludicated the role of topology
within QCD. In 1998 he shared the Gordon Bell Prize for the development of the QCDSP
supercomputer. Since 1999 he has been a Staff Scientist in the Theory Group at Jefferson
Lab (JLab). During this time, he jointly started the lattice group within JLab and has led the
Lab's effort in developing the infrastructure for the DOE SciDAC program, in particular for
the USQCD collaboration, of which he is a member of the Software Committee and the
Program Allocations Committee. Current research involves the determination of the highly
excited state spectrum of hadrons within QCD as part of the Hadron Spectroscopy
Collaboration. This work is using the DOE INCITE computing facilities at ORNL and ANL, as
well as NSF, LANL, and NERSC facilities.

Lisa Gerhardt supports the computational needs of the high energy and nuclear physics
communities on the PDSF cluster at NERSC. She completed her Ph.D. in Physics from the
University of California, Irvine in 2007. Prior to coming to NERSC, Lisa worked in neutrino
astrophysics with the IceCube group at Lawrence Berkeley National Laboratory.

Grapham Heyes is the Data Acquisition Group Lead at Thomas ]Jefferson National
Accelerator Laboratory.

Raphael Hix is a research staff member in the Physics Division at Oak Ridge National
Laboratory and a Joint Faculty Associate Professor in the Department of Physics and
Astronomy at the University of Tennessee.

Péter Petreczky is a research scientist in the Physics Division at Brookhaven National
Laboratory. He holds a PhD degree in Physics from E6tvos University, Budapest, Hungary.
His interests include finite temperature field theory, Lattice QCD, physics of quark gluon
plasma.
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R. Jefferson (“Jeff’) Porter currently works to support computing needs of experimental
High Energy Nuclear Physics (HENP) groups at NERSC and is leading a project to build an
ALICE production grid facility in the U.S. co-located at NERSC/PDSF and Lawrence
Livermore National Laboratory. Porter earned his Ph.D. in Nuclear Physics from the
University of California, Davis and has been a member of several HENP experiments: DLS at
LBNL, NA49 and ALICE at CERN and STAR at BNL's Relativistic Heavy Ion Collider (RHIC).
As the first liaison to NERSC for the Nuclear Science Division (NSD), he supported initial
operation of the NERSC PDSF cluster and participated in the HENP Grand Challenge
Collaboration, developing data-mining tools to access large data sets from the RHIC
experiments. Porter spent several years as Database and Deputy Computing Leader for the
STAR experiment at BNL before returning to the west coast with the STAR group at the
University of Washington. He rejoined LBNL in 2006 to work with the Open Science Grid
(OSG), operating testbeds for OSG and supporting deployment of grid middleware on
NERSC systems. In 2009, he began to directly support ALICE and STAR computing
operations at NERSC for the NSD.

Sofia Quaglioni has been a Scientific Staff Member in the Physics Division of the Physical
and Life Sciences Directorate at Lawrence Livermore National Laboratory since 2009. She
received a Ph.D. in Physics from the University of Trento, Italy in 2005 and earned an Early
Career Award from the DOE Office of Science in 2011. Her research is dedicated to the
theoretical and computational development of new approaches aimed at advancing the
state of the art in the first-principles description of light-nucleus fusion reactions, which are
important for astrophysics modeling and fusion energy applications.

Martin Savage is a Professor of Physics in the Nuclear Theory Group at the University of
Washington. His current research interests center around using the numerical technique of
Lattice QCD to calculate the properties and interactions of nuclei directly from quantum
chromodynamics. He earned is B.Sc. (1983) and M.Sc. (1984) at the University of Auckland
in New Zealand, and his Ph.D. from Caltech (1990). After postdoctoral positions at Rutgers
University (1990-1991) and the University of California, San Diego (1991-1993), he became
an Assistant Professor at Carnegie Mellon University (1993-1996) and then moved to the
University of Washington in 1996. Savage has held a SSC Fellowship and a DOE Outstanding
Junior Investigator award. He has published papers in a number of areas of subatomic
physics, including experimental nuclear physics, theoretical particle physics, theoretical
nuclear physics, and lattice QCD and is a founding member of the NPLQCD (Nuclear Physics
with Lattice QCD) collaboration.

Sergey Syritsyn is a postdoctoral fellow in theoretical physics at Lawrence Berkeley
National Laboratory.

James Vary is Professor of Physics at lowa State University, specializing in theoretical
nuclear physics with an emphasis on ab initio solutions of quantum many-particle systems
and quantum field theory. He received his graduate degree in Nuclear Theory from Yale
University and has held positions at MIT and Brookhaven National Laboratory before
joining the faculty at lowa State University. He has also held Visiting Professorships at
Caltech, University of Heidelberg, The Ohio State University, and Stanford University. He
held the position of Distinguished Visiting Professor at The Ohio State University in 1987-
1988 and served as Director of the International Institute of Theoretical and Applied
Physics (IITAP) at lowa State University from 1993-2000, which carried out programs with
joint sponsorship from UNESCO, foundations, corporations, and lowa State University. Vary
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is the author of more than 380 refereed publications and editor of 4 conference proceedings
books. He has delivered more than 500 invited lectures in more than 50 countries and has
mentored 16 Ph.D. students and six Masters of Science students. He leads a 10-member
nuclear theory group supported by the DOE and NSF. As part of his research activities, he is
the Principal Investigator of a DOE Office of Science grant, a DOE SciDAC (NUCLEI) grant,
and an NSF Peta-apps grant. Vary is the Principal Investigator of an INCITE award for 204
million CPU hours in 2014 on Titan at ORNL and Mira at Argonne. He has held several
elected offices in physics, including election as Member of the Executive Board of the
American Physical Society and is a Fellow of the American Physical Society and Recipient of
an Alexander von Humboldt Senior Scientist Award, among other honors.

Michael Zingale is an Associate Professor of Physics and Astronomy at Stony Brook
University. Michael earned a B.S. in Physics and Astronomy (1996) from the University of
Rochester and a Ph.D. in Astronomy and Astrophysics (2000) from the University of
Chicago. He was part of the Flash Code development team that won a Gordon Bell Prize in
2000, and received a Presidential Early Career Award for Scientists and Engineers
(PECASE) through DOE NNSA in 2005, and an Outstanding Junior Investigator award for the
DOE Office of Nuclear Physics in 2006. Michael's research involves the development of new
algorithms for efficiently modeling convection in stellar interiors. Together with
computational scientists at the Center for Computational Sciences and Engineering, he co-
developed and publicly released the Maestro low Mach number hydrodynamics code for
stellar convective flows. He applies the Maestro to studies of early phases of Type Ila
supernovae, novae, and X-ray bursts.

NERSC Editors

Richard Gerber is NERSC Senior Science Advisor and User Services Group Lead and, with
Harvey Wasserman, organizes the NERSC High Performance Computing and Storage
Requirements Reviews for Science and edits the reports. He holds a Ph.D. in physics from
the University of Illinois at Urbana-Champaign, specializing in computational astrophysics;
he held a National Research Council postdoctoral fellowship at NASA-Ames Research Center
1993-1996; and has been on staff at NERSC since 1996.

Harvey Wasserman is a member of the NERSC User Services Group and helps to organize
the NERSC High Performance Computing and Storage Requirements Reviews.
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Appendix B. Meeting Agenda

Tuesday, April 29
Time Topic
8:00 AM Informal discussions
8:30 AM Welcome, Overview of Requirements Reviews Richard Gerber, NERSC
8:45 AM The View from ASCR Barbara Helland, Dave
Goodwin, ASCR
9:00 AM NP Program Office Research Directions Ted Barnes, NP
9:30 AM NERSC Ten-Year Plan Sudip Dosanjh, NERSC
Director
10:00 AM AM Break
Lattice QCD Case Studies
10:15 AM Lattice QCD for Cold Nuclear Physics Martin Savage, University of
Washington
10:45 AM Hadron Spectroscopy with Lattice QCD Robert Edwards, JLab
11:15 AM Nucleon Structure on a Lattice Sergey Syritsyn, BNL
11:45 PM QCD Thermodynamics at High Temperature Peter Petreczky, BNL
12:15 PM Group Photo
12:45 PM | Working Lunch Presentation. "Transitioning to NERSC-8 Harvey Wasserman, NERSC
and Beyond: The NERSC Application Readiness Effort"
Nuclear Structure Case Studies
1:15 PM ab initio Nuclear Structure James Vary, lowa State
1:45 PM ab initio Calculations of Nuclear Reactions and Exotic | Sofia Quaglioni, LLNL
Nuclei
Nuclear Science Data Requirements
2:15 PM ASCR Data Activities Richard Carlson, ASCR
2:45PM | Computing and Storage Requirements and Plans for | Graham Heyes, JLAB
Experimental Nuclear Physics at Jefferson Lab
3:15PM PM Break
3:30 PM | RHIC/LHC Heavy lon Program Requirements Jeff Porter, LBNL
4:00 PM PDSF @ NERSC Update Lisa Gerhardt, NERSC
4:15PM | NERSC's Data Services Plan Katie Antypas, NERSC
4:30 PM | Cross-cutting issues for Nuclear Science Data All
5:00 PM | Adjourn
Wednesday, April 30
8:00 AM Informal discussions
Nuclear Astrophysics Case Studies
8:30 AM Convection in X-ray Bursts Michael Zingale, SUNYSB
9:00 AM Core Collapse Supernovae Raph Hix, ORNL
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9:30 AM AM Break

9:45 AM High-level findings discussion Richard and Harvey
10:45 AM Report schedule and contents All
11:00 AM Case Study Report Refinement and Discussions All
12:00 PM Working Lunch: Case Study Breakout Sessions All

1:00 PM Adjourn
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Appendix C. Abbreviations

ALCF
AMR
API
ASCR
AY
CUDA
EIC
ESnet
FFT
FNAL
FRIB
GCR
GPU
GPGPU
GPU
HDF
HPC
HPSS
1/0
IDL
INCITE
LANL
LBNL
LHC
LLNL
MD
MIC
MKL
MPI
NERSC
NetCDF
NGF

Argonne Leadership Computing Facility
Adaptive Mesh Refinement

Application Programming Interface
Advanced Scientific Computing Research
Allocation Year

Compute Unified Device Architecture
Electron lon Collider

DOE's Energy Sciences Network

Fast Fourier Transform

FermiLab National Accelerator Laboratory
Facility for Rare Isotope Beams
Generalized Collisional-Radiative
Graphical Processing Unit

General Purpose Graphical Processing Unit
Graphical Processing Unit

Hierarchical Data Format
high-performance computing

High Performance Storage System

input output

Interactive Data Language visualization software
Innovative and Novel Computational Impact on Theory and Experiment
Los Alamos National Laboratory

Lawrence Berkeley National Laboratory
Large Hadron Colider

Lawrence Livermore National Laboratory
Molecular Dynamics

(Intel) Many Integrated Core architecture
(Intel) Math Kernel Library

Message Passing Interface

National Energy Research Scientific Computing Center
Network Common Data Format

NERSC Global Filesystem
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OLCF
ORNL
0S
PDE
PDSF
QCD
RHIC
sC
SciDAC
SLAC
SN
XRB
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Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

operating system

Partial Differential Equation

NERSC’s Parallel Distributed Systems Facility
Quantum Chromodynamics

Relativistic Heavy lon Collider

DOE's Office of Science

Scientific Discovery through Advanced Computing
SLAC National Accelerator Laboratory
supernova

X-Ray Burst
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Appendix D. About the Cover Images

Image showing a portion of NERSC’'s “Hopper” system, a Cray XE6 installed
during 2010. Hopper is NERSC's first peta-FLOP resource, with a peak
performance of 1.28 PetaFLOPs/sec, 153,216 compute cores, 212 Terabytes of
memory, and 2 Petabytes of disk. Hopper placed number five on the November
2010 Top500 Supercomputer list.

Schematic image showing one of the two ultra-high-energy neutrino events
detected by the IceCube experiment in 2013. The colored spots indicate where
the optical modules detected a particle; red is where the particle interaction
began. The size of the colored spot refers to the intensity of the Cherenkov light
that was emitted. For more about the IceCube Collaboration, see
http://icecube.wisc.edu.

: Montage depicting evolution of the magnitude of vorticity
b R 1) (left column), Mach number (middle column), and specific
energy generation rate (right column) from a simulation of
two-dimensional convection in a mixed H/He accretor by
Malone, Zingale, Nonaka, Almgren, and Bell using the
Maestro code. Two times are shown: 6 x 10-4 s at the

. bottom and a portion of the result from 3 x 10-4 s above
that. From "Multidimensional Modeling of Type I X-ray Bursts. IIl. Two-Dimensional Convection in a
Mixed H/He Accretor,” The Astrophysical Journal, 788:115 (12pp), 2014 June 20.
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This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.






