
UC Riverside
UC Riverside Previously Published Works

Title
From the ground up: Building predictions for how climate change will affect belowground 
mutualisms, floral traits, and bee behavior

Permalink
https://escholarship.org/uc/item/8vp138bm

Authors
Keeler, Andrea M
Rose-Person, Annika
Rafferty, Nicole E

Publication Date
2021-07-01

DOI
10.1016/j.ecochg.2021.100013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vp138bm
https://escholarship.org
http://www.cdlib.org/


 

Journal Pre-proof

From the ground up: building predictions for how climate change will
affect belowground mutualisms, floral traits, and bee behavior

Andrea M. Keeler , Annika Rose-Person , Nicole E. Rafferty

PII: S2666-9005(21)00013-7
DOI: https://doi.org/10.1016/j.ecochg.2021.100013
Reference: ECOCHG 100013

To appear in: Climate Change Ecology

Received date: 17 January 2021
Revised date: 5 May 2021
Accepted date: 11 May 2021

Please cite this article as: Andrea M. Keeler , Annika Rose-Person , Nicole E. Rafferty , From the
ground up: building predictions for how climate change will affect belowground mutualisms, floral traits,
and bee behavior, Climate Change Ecology (2021), doi: https://doi.org/10.1016/j.ecochg.2021.100013

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.ecochg.2021.100013
https://doi.org/10.1016/j.ecochg.2021.100013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1 

Highlights 

● Climate change affects species and their interactions, reshaping communities. 

● Mutualistic soil microbes are likely shifting in phenology and distribution. 

● Shifts may affect floral traits, such as flowering phenology and floral rewards. 

● Altered floral traits will affect bee behavior and plant-pollinator interactions. 

● As a result, soil microbe-plant-pollinator tripartite mutualisms may be disrupted. 
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Abstract 

Climate change affects species and their interactions, resulting in novel communities and 

modified ecosystem processes. Through shifts in phenology and distribution, climatic change can 

disrupt interactions, including those between mutualists. Mutualisms influence the structure and 

stability of communities and can link species to a common fate. However, research on climate 

change has focused on pairwise mutualisms, neglecting the higher-order interactions that can 

arise when species interact with multiple mutualists. We explore the effects of climate change on 

tripartite interactions involving belowground mutualists, namely soil bacteria and fungi, 

flowering plants, and pollinators. We outline how climate change is predicted to affect the 

phenology and distribution of these belowground mutualists, emphasizing the consequent effects 

on host plant floral traits, plant-pollinator interactions, and bee behavior. We find evidence that 

warming, advanced snowmelt, and drought are likely to cause phenological and distributional 

shifts in soil microbes, leading to diminished mutualistic interactions with plants and symbiont 

switching. Consequently, shifts in flowering phenology, smaller floral displays, and lower 

quality floral rewards are expected, increasing foraging time and energy demands for bees and 

altering their floral preferences. Such costs could translate into reduced fitness and novel 

selection pressures for bees and flowering plants in the short term. We highlight knowledge gaps 

and ways forward, urging studies on microbe dispersal and phenological cues, experiments that 

manipulate soil microbe-host plant interactions under simulated climate change conditions, and 

large-scale field studies across environmental gradients, all with the goal of understanding how 

climate change will affect soil microbe-plant-pollinator mutualisms. 

Keywords: distribution, higher-order interaction, mycorrhizae, phenology, rhizobia, tripartite 

1. Introduction 
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Mutualisms are ubiquitous in nature, and most species interact with multiple mutualists 

simultaneously [1–3]. Mutualistic interactions profoundly influence the structure and stability of 

ecological communities, in part because they can link species to a common fate, initiating 

extinction cascades that can follow directly or indirectly from the loss of interdependent species 

[4–12]. Environmental change can directly affect mutualistic networks by leading to changes in 

abundances of mutualistic partners. It can also indirectly affect mutualisms by altering traits that 

structure interactions [13]. For example, temporary removal of dominant bumble bee pollinators 

from natural communities caused behavioral changes in the remaining pollinator community, 

resulting in reduced foraging specialization and likely reduced plant reproduction [10]. 

Mutualistic interactions, and biodiversity in general, are thus critical to the stability and 

functioning of communities and the provisioning of ecosystem services, such as pollination.  

Anthropogenic global climate change is altering the phenology, distribution, trait 

expression, and, ultimately, evolution of species [14–22]. These climate change-driven effects 

can in turn alter the incidence and strength of mutualistic interactions [2,23–27]. Because 

mutualistic partners vary in quality, species are not equivalently effective, with functional roles 

that depend on the broader community context [10]. As potential partners may respond 

differently to changing climatic cues and because receptive partners must overlap in both 

phenology and distribution, the effects of climate change on mutualisms are complex and 

difficult to predict, even for pairwise mutualistic interactions [25,28–32].  

Adding to this complexity is the fact that climate change-induced shifts in phenology, 

distribution, or trait expression that affect one mutualism can alter the strength and persistence of 

a second mutualism involving a common focal partner. Higher-order mutualists can interact 

indirectly with the other partners of a mutualist via a shared partner, and these indirect mutualists 
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can benefit each other [33,34]. Though common, these higher-order interactions, which in this 

case are mutualistic interactions that are affected by the presence and strength of another 

mutualism, are greatly understudied relative to pairwise mutualistic interactions [35–37]. To 

understand the complex ecological implications of climate change on mutualisms, we must move 

beyond pairwise interactions and incorporate higher-order mutualisms [38–40].  

Multiple mutualist effects and emergent higher-order interactions may be particularly 

important for mutualisms involving soil microbes, flowering plants, and pollinators, as these 

mutualistic partners span multiple trophic levels that are likely to respond differently to climate 

change [41]. Whereas mutualisms between plants and pollinators have been relatively well-

studied, those between plants and soil microbes have received less attention until recently [e.g., 

42–45]. Plant-soil microorganism interactions strongly affect plant survival, phenology, and 

landscape-scale patterns of floral and faunal diversity [8,46–54; Fig. 1]. Similarly, soil microbial 

mutualists affect the production of flowers and floral rewards, including nectar and pollen, which 

in turn affects pollinator foraging behavior [55–59; Fig. 1]. Thus, by studying how the tripartite 

mutualistic interactions among soil microbes, flowering plants, and pollinators, such as bees, is 

affected by climate change, we can gain valuable insight into the higher-order interactions that 

may modify the direct effects of environmental change on species. 

 Pollinators and soil microbial symbionts, such as rhizobia and mycorrhizal fungi, 

provide very different benefits to plants, but both guilds of mutualists receive carbon resources 

(photosynthate) from plants and therefore potentially compete for shared resources or mutually 

benefit via positive effects on host plants [3,55,56,60]. Though we focus here on mutualistic 

interactions among rhizobia, arbuscular mycorrhizal fungi (AMF), plants, and pollinators, we 

note that context-dependent competition between mutualists can also shape these interactions 
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[61]. Interactions with one mutualist guild (e.g., soil microbes) are likely associated with 

increased investment in another mutualist guild (e.g., pollinators). Leguminous (Fabaceae) plants 

in particular can form mutualistic interactions with both rhizobial bacteria and AMF. Many 

legumes form specialized root structures called nodules that house rhizobial bacteria. Within the 

nodule, rhizobia fix atmospheric nitrogen (N) to biologically available forms [62]. Increased N 

benefits the plant in terms of increased growth, photosynthetic capacity, pollen and nectar 

quality, and flower production [63–69]. Often simultaneously, AMF colonize legume roots. 

AMF form symbioses with around 80% of all terrestrial plants and develop structures (e.g., 

hyphae, arbuscules) that increase plant access to resources, namely phosphorus and water [70], 

especially in dry conditions [71,72], thus increasing plant growth, flower production, and fruit 

production [55,73]. However, some species of AMF are parasitic and can negatively affect plant 

growth [2]. Weakening or disruption of soil microbe-plant mutualisms may shift flowering 

phenology, reduce floral abundances, and decrease plant nutrient content, lowering the quality of 

nectar and pollen floral rewards, consequently affecting pollinator foraging behavior and fitness 

[74]. However, few studies bridge the effects of soil microbe-plant mutualistic interactions on 

plant-pollinator mutualisms [75]. 

Here, we explore how global climate change can affect higher-order mutualisms by 

altering the strength and/or outcome of interactions (e.g., those between soil microbes and plants) 

that in turn affect higher-order partners (e.g., bees). We synthesize what is known about the 

effects of climate change on the phenology and distribution of soil microbes that interact 

mutualistically with plants, namely symbiotic N-fixing bacteria and AMF, and how these effects 

are in turn predicted to alter floral traits and bee behavior and fitness, thereby reshaping plant-

pollinator interactions. We conclude by discussing profitable future research areas that will be 
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critical for furthering our understanding of higher-order mutualistic interactions in a rapidly 

changing world. 

2. Known and predicted effects of climate change 

The phenologies of flowering plants and pollinating insects are shifting in response to 

changing climatic cues, including precipitation and temperature [31]. These shifts have been 

widely documented, and numerous studies have investigated the consequences for plant-

pollinator interactions [e.g., 26,76–82]. Similarly, it is well-understood that the distributions of 

plants and pollinating insects are shifting in response to climate change [83–86]. In contrast, 

phenological and distributional responses of soil microbes and how these responses will affect 

interactions with plants have received little attention. In this section, we focus on known and 

predicted effects of climate change on the phenology and distribution of soil bacteria and fungi. 

We then consider how phenological and distributional shifts in these belowground mutualists 

may scale up to influence floral traits and bee foraging behavior. 

2.1 Phenological responses of soil bacteria and fungi 

The phenology of microbes can be defined as periodic life cycle events driven by abiotic 

or biotic factors [87]. To date, studies on microbe phenology have examined temporal shifts in 

microbial metabolism, plant root infection, reproductive events, and production of growth 

structures [87–93]. For example, the warmer temperatures, longer day lengths, and increased soil 

moisture levels associated with the onset of spring in temperate environments initiate 

phenological transitions in the metabolic states of soil microbial species [94,95; Fig. 2]. Soil 

microbial biomass can increase or decrease with snowmelt [96,97], and microbial community 

composition exhibits seasonality, differing in winter, during snowmelt, and after snowmelt in 

spring [95,98,99]. Many soil microbes face ecophysiological challenges in drying soils that 
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shape their phenology. In dry conditions, soil microbes are expected to allocate fewer resources 

to reproduction and more to survival [100–102], thereby shifting the timing of reproduction.  

Initial work has indicated that soil bacterial phenology is driven by both stochastic, 

neutral processes and by niche-driven processes, and that the relative influence of these drivers 

changes seasonally [103]. Soil carbon availability, itself seasonally variable, may shape soil 

bacterial phenology [104,105]. For example, low soil carbon availability appears to limit 

rhizobial growth [106]. Additionally, strigolactones, plant hormones responsible for several plant 

growth processes, are released under resource limitation and can stimulate rhizobial motility, 

increasing the chance of infection and potentially also regulating nodule number [107–111]. 

These seasonally-variable root exudates may provide a link between the phenologies of plants 

and soil bacteria [112]. At the same time, soil bacteria shape host plant phenology. Numerous 

agricultural studies have demonstrated that bacteria are able to promote seed germination by 

excreting phytohormones [113–118], thereby advancing flowering and fruiting [119]. If bacteria 

are dormant or unable to interact with a host seed, there will be little to no germination 

stimulation from the bacteria [120,121], delaying downstream plant phenology. Bacteria, in 

particular, are susceptible to desiccation and cell death in dry conditions [100,122–124]. To 

avoid losing water to their environment, many cells become dormant [102,125]. For example, 

drought leads to dormancy in free-living rhizobia, the rapid inhibition of N-fixation in symbiotic 

bacteroid cells, and denodulation in legumes [126–130]. As a result, the mutualism between 

legumes and N-fixing bacteria can weaken or break down in the short term due to soil drying. 

Active cells in dry soils will have difficulty forming interactions with plant roots because 

decreases in soil moisture negatively affect the signaling abilities of soil bacteria and plants 

[102,131]. 
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The phenology of belowground fungi, including AMF, is driven both by the phenology of 

host plants [132,133] and by climatic variables such as temperature and precipitation [93,134–

139]. For example, the number of AMF arbuscules peaks during host seed production [88,139], 

when plants require more phosphorus and nitrogen. Seasonal patterns in percent root 

colonization by AMF can differ greatly among plant species within a single habitat [140,141], 

suggesting that phenophase-specific nutritional demands of host plants influence the intensity of 

plant-AMF interactions. Temperature significantly affects rates of root colonization by AMF, 

and higher temperatures can have positive, neutral, or negative effects depending on plant 

species studied [42,140,142,143]. Additionally, in two arid grassland systems, AMF root 

colonization increased with soil moisture [91,144] and was highest after rain events [89]. In 

contrast, in two tropical systems, root colonization of AMF occurred predominantly in the dry 

season [144,145]. The same was found in a long-term experiment in a subalpine ecosystem 

where increased drought stress led to increased AMF colonization in graminoids [146]. Increased 

AMF colonization may reflect drought and rainfall-event driven seasonal changes in 

strigolactone production [147,148], which initiates AMF spore germination and hyphal 

branching to stimulate AMF-plant interactions [149,150]. However, the variable effects of 

precipitation on AMF-plant interactions indicate that geographic context may determine the 

relative strength of abiotic factors and host plant phenology in shaping AMF phenology. Finally, 

because changing abiotic factors affect the phenologies of fungal guilds differently, temporal 

reshuffling of fungal symbionts may occur. For example, increasing global temperatures have 

lengthened the fruiting seasons of fungi that produce aboveground sporocarps [136]. However, 

among these fungi, the phenologies of saprotrophs and fall-fruiting ectomycorrhizae were 

strongly linked to temperature, whereas the phenologies of spring-fruiting ectomycorrhizae were 
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linked to primary productivity and precipitation [93,136]. Differing phenological cues among 

fungal taxa may increase the likelihood of mismatches and symbiont switching with host plants. 

2.2 Distributional responses of soil bacteria and fungi 

Generally, mutualistic interactions ameliorate abiotic stressors, allowing partners to 

overcome limitations in novel environments [151,152]. For this reason, mutualistic partners are 

often able to inhabit a broader range of habitats [22–24,34,153]. For example, because rhizobia 

increase plant N, the mutualism between legumes and rhizobia can help plants expand their 

ranges to nutrient-poor habitats. Similarly, because AMF associations improve plant water 

acquisition, host plants may be better equipped to tolerate climate change-induced drought 

conditions and thus less likely to contract in range [154,155]. In the event that plants shift in 

distribution, microbes have been shown to improve plant survival in higher-elevation habitats, 

likely due to improved nutrient and water acquisition [156]. Conversely, the absence of 

mutualists can negatively affect population persistence and limit species distributions [157–161].  

Although the hypothesis that, for microbes, “everything is everywhere, and the 

environment selects” was universally accepted for many years [162], recent work has shown that 

host plant range, soil properties, dispersal limitation, and chance are key factors determining the 

distributions of soil microbial populations [70,163–170; Fig. 3]. Three hypotheses have emerged 

to describe distributions of AMF: the driver hypothesis, which states that AMF communities 

drive plant community assembly; the passenger hypothesis, where AMF communities are shaped 

by changes in plant communities; and the habitat hypothesis, which states that habitat selects for 

both plant and AMF taxa, causing covariation [171,172]. In any of these scenarios, it will be 

important to understand how climate change is modifying microbe distributions.  
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Despite the important role of dispersal in shaping soil microbe distributions, we know 

very little about the dispersal abilities of soil microorganisms [173,174]. A partnership that lacks 

co-dispersal is more likely to become spatially mismatched than a symbiosis that is vertically 

transmitted, as co-dispersal may ensure the spatial co-occurrence of partners [32; Fig. 3]. Non-

co-dispersed symbionts, including legumes and rhizobia as well as mycotrophic plants and AMF, 

may be at higher risk of becoming spatially mismatched as they may track climate differently. 

Moreover, because AMF reproduce underground [70], they are likely to be dispersal-limited and 

at a greater risk of spatial mismatch with former interaction partners [45]. Some plant-AMF 

interactions may, however, be buffered from distributional mismatches by the similar dispersal 

patterns of host seeds and the spores of their associated AMF taxa, known as “pseudo-vertical 

transmission” [175,176]. Additionally, in horizontally transmitted mutualisms, cell motility can 

alter root infection rates [177], such that increased motility could increase competitive ability and 

thus likelihood of root infection. 

Little is known about how and if soil microbial species are shifting spatially in response 

to climate change [44,178]. Climate change-driven increases in temperature and interannual 

rainfall variability will likely cause the distributions of some soil-based fungal taxa to move up 

in elevation, whereas the plants they interact with may shift at a dissimilar rate [179], leading to 

spatial mismatches between former partners and novel interactions (Fig 3). For example, 

Helianthella quinquenervis formed interactions with dark septate endophytes, beneficial, 

facultative fungal plant symbionts [180], more so than with AMF when near Festuca thurberi, a 

dark septate endophyte host [181], indicating symbiont switching in H. quinquenervis. Similarly, 

range-shifting plant species were found to have root symbionts more similar to plants in their 

new range compared to plants in their native range [182,183]. A generalist strategy may be 
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important for establishing in new ranges. Specialist legumes may be less likely to find a 

compatible rhizobial partner in novel habitats and thus may fail to establish [22,184], although 

legumes in novel habitats without coevolved rhizobial partners often have relaxed partner choice 

mechanisms [185]. Although plants may form interactions with different partners, those partners 

may not confer equivalent benefits to the host plant, affecting flowering and ultimately plant 

fitness [180,186–188]. Indeed, some AMF species have been shown to be parasitic [189]. 

Additionally, some soil microbes may decrease in abundance near the soil surface due to climate 

change-driven increases in temperature, potentially affecting the overlap of plant roots and 

microbes and the outcomes of interactions [190,191; Fig. 4]. For example, thawing of permafrost 

led to a shift in fungal communities from beneficial to pathogenic groups [192]; warming could 

expose plants to different, possibly less beneficial, partners.  

2.3 Effects of soil bacterial and fungal responses on floral traits 

In considering how shifts in the phenology and distribution of soil bacteria and fungi will 

affect floral traits, we note that obligate mutualisms are expected to have lower risk of mismatch 

than facultative mutualisms, partly because selection is stronger for partners to maintain obligate 

interactions [32]. As AMF are obligate symbionts [193], we predict there will be strong pressure 

to maintain phenological and spatial overlap with host plants, and therefore host plant floral traits 

that are strongly influenced by AMF mutualisms are less likely to be altered. Conversely, N-

fixing bacteria and several other plant-associated soil microbes able to survive as free-living cells 

can interact with host plants facultatively and are therefore more likely to become mismatched in 

a changing climate.  

Just as floral traits such as nectar quality can be directly related to soil nutrient 

availability [194], weakening or loss of the interaction between plants and mutualistic soil 
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bacteria due to phenological or distributional mismatches will indirectly affect floral traits by 

altering host plant nutrient acquisition [119]. Supplemental N increases vegetative growth rates, 

herbivore defenses, photosynthetic rates, flower production, floral reward quality, pollinator 

visitation, pollen germination success, and plant reproductive success [63–69,74,195–197]. 

Increased plant-available N from the interaction between rhizobial bacteria and legumes is 

expected to have effects similar to supplemental N [58], as nodulating bacteria directly increase 

the N content of the host plant [198–200]. Indeed, mutualistic rhizobia have been found to affect 

some of these same traits [119,200–205]. Nectar sugar content [glucose, fructose, and sucrose; 

206], volume [65], amino acid diversity [207], and pollen mass [63] vary with plant N and are 

also altered by the floral microbial community and other plant mutualists [200,208–210]. 

Disruption of the interaction between N-fixing bacteria and legumes could strongly influence 

host-plant functional traits, such as flowering phenology and floral reward quantity and quality. 

Though drought may decrease interaction strengths between legumes and previously 

competitively dominant rhizobia as a result of prolonged dormancy, drought-tolerant rhizobia 

may experience increased nodulation success [211]. Symbiont switching in stressful conditions 

has been found to negatively affect some host species [212]. For example, seedlings grown 

without their “home” microbial symbionts experienced decreased growth rates compared to 

seedlings grown with coevolved root symbionts, with growth benefitting when these plants were 

later inoculated with coevolved microbes [213]. Similarly, novel soil microbial symbionts may 

confer lower-quality rewards for the same investment, reducing the net benefit of the mutualism 

for host plants, and altering floral traits that affect higher-order interactions [214]. Though host 

plants may impose sanctions on cheating strains of rhizobia in the long-term [215,216], symbiont 

switching in stressful conditions can cause novel, sometimes negative, effects in the short-term.  
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Most work linking belowground symbionts to floral traits has been focused on AMF. 

While it has long been understood that AMF play an important role in plant productivity and 

nutrient cycling [217–219], more-recent work has established that plant-AMF interactions also 

affect the production of flowers and floral resources [58,220]. AMF colonization of plants can 

increase flower number in some plant species and flower size in others [55], potentially a result 

of increased water availability [221]. While this effect may in some cases be linked to the 

positive effect of AMF on plant biomass, some plants colonized by AMF preferentially allocate 

resources to reproductive rather than vegetative structures [222]. Interactions with AMF on the 

parasitic end of the continuum may decrease floral display size [2,186,223–225]. By using 

extraradical hyphae to hydrolyze organic phosphates and transporting the resultant inorganic 

phosphorus to plants [226], AMF increase pollen production, pollen grain size, nectar volume, 

and nectar sugar content [55,227,228]. AMF also decrease concentrations of the alkaloid nicotine 

in pollen [229]. Although the effects of AMF on floral micronutrients have received little study, 

AMF-colonized plants have higher levels of foliar potassium [230], indicating that 

micronutrients in floral resources may indeed be affected by AMF. 

Switching of AMF symbionts in response to climate change-driven phenological or 

spatial shifts may affect host plants in various ways, as the effects of plant-AMF symbioses on 

floral traits appear to depend on both the species and strain of AMF [222,228,230]. For example, 

among plants inoculated with either Glomus hoi or G. claroideum, plants inoculated with G. 

claroideum were more likely to produce flowers than those inoculated with G. hoi [228]. As 

distributions shift, plant species that are more positively affected by interactions with novel AMF 

can increase in abundance, leading to shifts in floral evenness [56]. Habitat type and soil fertility 

may also be important predictors of how floral traits will be affected by altered plant-AMF 
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interactions. For example, fungicide application increased nectar sugar content in an alpine 

krummholz habitat but had no effect on floral rewards in a tundra habitat. As plants and AMF 

shift in distribution, they are likely to experience novel soil fertility regimes that similarly alter 

their dynamics [231].  

Although we focus here on nodulating rhizobial bacteria and AMF, other soil microbes 

are known to influence floral traits. For example, soil Streptomyces bacteria, when in the 

rhizosphere, have been found to protect both flowers and honey bees from pathogens [232]. 

Natural soil microbes, including fungal, bacterial, and archaeal operational taxonomic units 

(OTUs), affect the mean flowering time of Boechera stricta [53]. Endophytic Pseudomonas 

bacteria enhanced the drought tolerance of host plants in serpentine soils [233], which could 

increase flower production and longevity under stressful conditions. Low-abundance strains of 

Pseudomonas increased root biomass and leaf chlorophyll content in host plants [181], which 

could affect floral traits. Dark septate endophytic fungi increased flower and fruit density in 

tomato plants [234], and exhibited increased host plant colonization rates after 20 years of 

experimental soil warming [146]. Ericoid mycorrhizae, which associate only with plants in the 

order Ericales, increased the number of Vaccinium inflorescences and flowers per plant, though 

this response was dependent on host plant genotype [235]. Additionally, plants grown in soils 

with experimentally simplified bacterial communities produced fewer flowers than those grown 

with more complex soil communities [48]. 

2.4 Consequences for bee behavior and plant-pollinator interactions  

Altered resources for leaf, flower, fruit, and seed growth will mediate species 

interactions, including those with pollinators [43,58,65,236–240]. The quality and quantity of 

floral resources have dramatic effects on bee energetics, fitness, and population sizes [66,241–
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245]. Pollen and nectar provide carbohydrates, lipids, protein, and micronutrients that bees [246–

248] and other pollinating insects [249] rely upon to maintain existing populations and establish 

new broods [250]. Dietary protein content is crucial for reproduction, growth, and survival of 

bees and other insects [64,242,244,251–254]. Diets deficient in protein (e.g., a lack of essential 

amino acids) can negatively affect larval bee development and shorten adult lifespan 

[64,255,256]. Both nectar and pollen quality have been shown to alter feeding preferences of 

pollinators [207,252,257,258]. Most bees and many other insect pollinators prefer floral rewards 

with higher protein content [207,252,259–263]. In nectar, the concentrations of sugars influence 

the thoracic temperatures of social bees [264,265] and thus foraging energetics and behavior 

[266,267].  

Though many studies have assessed the effects of altered soil N on plant fitness and floral 

functional traits, none to our knowledge have directly tested the effects of N-fixing bacteria on 

plant-pollinator interactions. Under severe abiotic stress, bacteria will become dormant, affecting 

interaction outcomes with legumes and influencing higher-order interactions with pollinators 

[268]. A reduction in or loss of germination stimulation by soil bacteria will delay host plant 

germination phenology and alter downstream phenophases, such as flowering onset [119], which 

will alter phenological overlap and interaction strengths between host plants and pollinators 

[269]. A shift in flowering phenology without a corresponding shift in pollinator phenology 

could decrease the fitness of both mutualists [79,82,269,270]. In the long-term absence of 

pollinators, traits that facilitate selfing may be selected for [271].  

N-fixing bacteria may also allow plants to produce higher quality rewards, increasing 

pollinator visitation. A reduction in the strength of the interaction between legumes and rhizobia 

will affect plant N and negatively affect bee feeding preference via decreased flower number and 
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nectar and pollen quality, which may affect bee fitness [272–274]. A change in reward quality 

and quantity would be especially important for oligolectic bees which feed on just one genus or 

species of plant. For example, Osmia iridis are Fabaceae-specialists which forage exclusively on 

Lathyrus lanszwertii var. leucanthus and Vicia americana flowers in parts of their range 

[275,276]. Reduced floral reward quality, caused by a mismatch between these legumes and N-

fixing bacteria, could alter the foraging behavior of O. iridis and lead to fitness costs for both 

adults and larvae [274–276]. If flowers offer lower-quality rewards, more time and energy will 

be required to provision brood cells [277] increasing time and energy allocated to foraging and 

decreasing reproductive output of oligolectic bees.  

The increased size and number of flowers produced by AMF-colonized plants [55,222], 

as well as effects on inflorescence structure [278], are likely to influence the behavior of bees 

and other pollinating insects. Indeed, plants colonized by AMF tend to receive higher rates of 

visitation [55] and are visited by different assemblages of pollinators [56]. In particular, floral 

visitation patterns of Hymenoptera were strongly affected by plant AMF colonization [55]. The 

mechanism for increased visitation differed among plant species: one species produced larger 

flowers, one produced more flowers, and one produced more nectar [55]. Additionally, 

suppression of AMF induced a shift in the insect visitor community from larger-bodied bees to 

smaller-bodied bees and flies, which was attributed to altered patch-level display [56]. Long-

term loss of AMF may lead to selection for nutrient absorption traits, such as cluster roots or 

carnivory [212,279,280] and exert selection on pollinator foraging behavior in response to 

altered floral reward availability [281].  

Climate change-driven switching of AMF symbionts may affect floral display and 

pollinator behavior and, because some pollinating insects prioritize nectar rewards whereas 
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others prioritize floral abundance [282,283], shifts in plant-AMF interactions may lead to floral 

patches that are more or less attractive to different groups of pollinators. For example, AMF 

inoculation increased flower number and number of pollen grains, but bumble bees did not 

respond to these effects while dipterans and other hymenopterans visited AMF-inoculated plants 

more frequently [228]. Similarly, among plants inoculated with either individual species and 

strains of AMF species or an assemblage of AMF species, bumble bees visited plants inoculated 

with one AMF strain frequently, but honey bees probed fewer flowers of plants inoculated with a 

different AMF strain. Patterns of increased visitation by bumble bees and decreased visitation by 

honey bees were not related to the number or size of flowers; instead, the preferences may have 

been driven by unmeasured traits such as nectar quantity or floral volatile organic compounds 

that varied among plants inoculated with different fungal assemblages, species, and strains [230]. 

Similarly, AMF colonization increased insect visitation rates across three plant species, but the 

mechanisms (flower abundance, flower size, and nectar standing crop) driving this pattern were 

species-specific [55]. Differences in attractiveness may be particularly pronounced if some plants 

are colonized by AMF species on the parasitic end of the mutualism-parasitism continuum 

[186,189,224–227], leading to decreased floral displays and resource production. 

Further, mycorrhizal plants may also be able to provide pollinating insects with higher 

quality floral rewards by increasing availability of micronutrients and phosphorus. These 

micronutrients play an important role in linking mycorrhizal fungi and pollinators. For example, 

by affecting nutrients in pollen and nectar, AMF can in turn reduce parasitism of bumble bees 

[229]. Likewise, by increasing plant potassium, which may be an important micronutrient for bee 

overwintering [284], AMF symbioses can indirectly shape pollinator fitness.  

3. Ways forward 
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In section 2, we highlighted the predicted effects of climate change on the phenology and 

distribution of N-fixing bacteria and AMF, with an emphasis on how these shifts may affect 

plant traits important to higher-order mutualists, such as bee pollinators. Many of our predictions 

stem from work on pairwise interactions, agricultural studies, and nutrient supplementation or 

limitation studies. In this section, we outline lab-, greenhouse-, and field-based studies that could 

advance our understanding of higher-order interactions and multiple mutualist effects. We also 

identify key gaps in our understanding of the bottom-up effects of soil microbe-plant interactions 

on pollinator behavior and fitness.  

3.1 Phenological responses of soil bacteria and fungi 

 As described in section 2.1, little is known about the phenology of soil microbes. Most 

work has examined soil microbial phenology in the context of plant phenology and does not 

address how climate change-driven shifts in temperature and precipitation may affect soil 

microbial phenology itself. To move forward, we first need to build on our understanding of how 

temperature and soil moisture influence microbial life history stages and transitions among them. 

This work could be performed in a field setting by sequencing the active microbial soil 

community throughout seasons [88,285]. Active communities could be examined by direct 

microscopy, using RNA-based FISH (fluorescence in-situ hybridization) [286,287] with 

complementary staining, and microbial growth approaches [285]. These methods may help to 

identify species that are active at each time point and avoid underestimating the abundance of 

microbes due to RNA decay in soil [285]. Quantifying structures, such as AMF hyphae, spores, 

and arbuscules [139], or comparing gas fluxes to identify functional groups that are active in 

soils [288] may also offer insight into how microbial communities change seasonally. To 

understand how plant phenology affects microbial phenology, similar studies could be performed 
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with sampling during specific plant phenophases. Quantum dots, nanoparticles that fluoresce 

under fluorescent light, could be used to track periods of nutrient and water transport and 

inactivity in microbes [289]. It may also be important to identify how and when microbes form 

“seed banks”, or reserves of propagules that are resilient and last in soil for long periods of time 

[125]. This work could be performed by collecting and identifying spores of AMF [290] or by 

sequencing soil for inactive rhizobial species, though relic DNA should be controlled for in 

analyses [291]. 

To more directly assess the effects of temperature and soil moisture on microbial 

phenology, plants and microbes could be grown together under different abiotic conditions 

representing different climate change scenarios, and plant and microbial phenophases could be 

compared. It is understood that changes in plant phenology alter the phenology of AMF and 

rhizobia; the host plant life cycle shapes AMF phenophases [139] and can alter the timing of 

nodule formation and bacterial release to the environment [292,293]. However, disentangling the 

effects of microbial phenology on plant phenology from the effects of plant phenology on 

microbial phenology presents a significant hurdle. Examining how the phenologies of plants and 

microbes respond to abiotic treatments may provide a step forward. For example, greenhouse 

studies could compare the effects of an “extended summer” treatment on duration of flowering 

versus AMF arbuscule formation. If the treatment causes plants to flower longer but does not 

extend periods of arbuscule formation, this would suggest that AMF and plants respond 

differently to climatic cues. 

 To assess the effects of potential phenological mismatches between plants and soil 

microbes, experimental studies could simulate novel partner interactions, weakened interaction 

strength, and mutualism breakdown. These studies could be performed in a greenhouse setting, 
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by growing plants of the same genotype with partners they would be expected to interact with 

given a phenological shift, with current mutualistic partners in dormant stages, and without any 

mutualists present. Antibiotics could be applied to soil [231] to decrease bacterial or fungal 

growth at certain plant phenophases to simulate the potential effects of partner mismatch and 

loss. Then, functional traits of these plants and microbes could be measured under different 

climate change scenarios. 

3.2 Distributional responses of soil bacteria and fungi 

To form a predictive framework for how climate change will affect the distributions of 

soil microbes, it will be crucial to better understand how microbial distributions are affected by 

the current climate. This could be achieved by sampling soils across large environmental 

gradients, identifying and quantifying the abundances of microbes such as rhizobia and AMF in 

these samples, and combining microbe abundance with climatic data to produce species 

distribution models [294]. Joint species distribution models and co-occurrence networks could 

also be used to assess how the distributions of microbes and plants are affected by one another 

and by the environment [295,296]. Recent work using species distribution modeling to compare 

plant and bacterial ranges revealed that the presence of one group of bacteria explained absence 

of one plant species [297] and that soil microbe distribution can determine competitive outcomes 

in plants [298]. To improve our understanding of how distributional shifts may affect tripartite 

interactions among microbes, plants, and pollinators, future species distribution models could 

focus on microbial taxa that are known to affect flowering [such as Rhizophagus irregularis; 

230]. However, our knowledge of soil microbe dispersal, a component critical to accurate species 

distribution modelling [299], is currently limited. 
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As little is known about how soil microbial species disperse, it is difficult to predict how 

microbial ranges will expand and contract in a changing climate. Foundational studies on the 

dispersal mechanisms and limitations of important fungal and bacterial clades would be an 

important start. For example, regular soil coring along elevational gradients will reveal if 

isotopically labeled microbes are dispersing to higher elevations or moving down in the soil 

profile to track cooler, wetter conditions [44,300,301]. Similarly, greenhouse and growth 

chamber experiments that manipulate soil moisture and temperature, among other factors, would 

help us understand if soil microbial communities will undergo reshuffling in the soil profile 

under different climatic conditions. If soil microbes that were previously at a soil position where 

they could interact with host plant roots subsequently move down in the soil profile to access 

cooler temperatures, soil microbe-plant interactions, and thus plant traits, will be affected (Fig. 

4). Additionally, some species of AMF are dispersed by animals, including small insects [302]. 

Next-generation sequencing could be used to identify the particles carried by belowground 

insects, and based on their life histories, inferences could be made about how far AMF spores are 

able to travel. Finally, by sampling across environmental gradients and performing a distance-

based redundancy analysis, it may be possible to infer the importance of dispersal versus 

environmental processes in shaping AMF distribution [303]. 

Field experiments could be used to assess how plant traits important to pollinators may be 

affected by interactions with novel soil microbial communities. For example, sterile seeds from a 

single source population could be planted at various elevations, including beyond the current 

elevational range of an upward range-expanding plant. The floral traits of these plants could be 

quantified, then plant roots could be stained and sequenced to assess which microbial symbionts 

are present and to what extent they associate with plants across elevational gradients. This could 
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give insight into how floral resources may be affected as seeds disperse into novel ranges with 

potentially novel soil symbionts. Similar work has been performed successfully in alpine systems 

with a focus on vegetative growth [156]. 

3.3 Effects of soil bacterial and fungal responses on plant-pollinator interactions  

We know of no studies that have examined how the effects of climate change on soil 

microbe-plant interactions will affect plant-pollinator interactions. Profitable areas of research in 

this field include the use of experimental studies that manipulate the incidence and strength of 

interactions among N-fixing bacteria, AMF mutualists, and host plants under simulated climate 

change conditions. Treatments involving elevated temperatures and more frequent, intense 

periods of drying could be applied to determine the effects of stressful environmental conditions 

not only on bacterial and fungal performance (e.g., hyphal growth, nodulation capacity, spore 

formation) but also on floral traits important to bees, and plant-pollinator interactions. Floral 

functional traits, such as flowering phenology, floral abundance, nectar and pollen protein 

content and amino acid diversity, volatile organic compound production, and nectar sugar 

content, could be quantified and pollinator foraging behavior measured. Field studies in sites that 

differ in mycorrhizal and rhizobial community composition can relate floral functional traits to 

sequenced root symbionts and pollinator foraging behavior. Additionally, in systems where 

snowmelt timing can be experimentally manipulated, the abundances and OTUs of N-fixing 

bacteria and AMF could be compared between advanced snowmelt and control plots and linked 

to floral functional traits and bee behavior. 

To better understand what factors influence pollinator visitation to flowers of soil 

microbe-symbiotic plants, choice trials, wherein pollinators of different taxonomic and 

functional groups are given the choice to forage on plants inoculated with or without rhizobial 
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bacteria and/or AMF could provide insight into pollinator preferences. Multi-generational studies 

measuring pollinator fitness could then be used to understand how N-fixing bacteria and AMF 

indirectly affect pollinator behavior, survival, and reproduction. To date, most work has ignored 

the effects of mutualistic soil microbes on insect pollinator fecundity [but see 229]. 

To elucidate the pathways through which rhizobia and mycorrhizae affect flowering and 

pollination, it may be useful to examine the gene functions of these microbes. Transposon 

insertion sequencing allows high-throughput gene functional analysis of microbes [304,305] and 

has been used to identify the functions of genes driving basic physiological processes in 

Rhizobium leguminosarum under different growth media [306]. By identifying genes in 

microbial taxa that affect mutualistic interactions and those that affect responses to changing 

climatic conditions, we may be able to determine which microbes are most likely to positively 

affect flowering and how they will respond to climate change. Additionally, the use of quantum 

dots may help inform which microbial genes are responsible for nutrient transport from soils to 

pollen and nectar [289]. A genome-wide association study or coexpression network approach 

could be implemented to identify loci that connect plant-microbial association with plant 

flowering [60,307,308]. 

It is also important to note that AMF and rhizobia interact to affect plant traits. Co-

inoculation of rhizobia and mycorrhizae positively affects plant biomass and fitness [309,310], 

and harboring both N-fixing bacteria and AMF has been shown to synergistically increase 

legume fitness in particular [39,60,307,311]. How co-inoculation affects floral traits is an 

important area to explore. For example, co-inoculation with rhizobia and AMF increased legume 

photosynthetic rates by 51% [67], which could alter nectar quality and quantity [312]. Work on 

multiple belowground mutualists has found that N-fixing rhizobia increased colonization and 
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sporulation of AMF on plant roots [313–315], whereas other lab studies have found that rhizobia 

inhibit or have no effect on AMF colonization [39]. AMF inoculation also affects bacterial 

communities. AMF increased the number and biomass of nodules, traits correlated with the 

presence and strength of rhizobia-legume mutualism [316,317], likely due to increased host 

phosphorus [313–315]. AMF-inoculated treatments had greater total bacterial biomass and a 

lower ratio of soil fungal biomass to bacterial biomass [318]. All in all, promotion of co-

inoculation by both symbionts will increase plant fitness and may positively affect floral traits 

that shape plant-pollinator interactions.  

4. Conclusions 

 Based on current understanding, we have generated predictions about how climate 

change will affect the phenologies and distributions of mutualistic soil bacteria and fungi, 

projecting how those shifts will affect the floral traits of host plants, and ultimately bee foraging 

behavior and plant-pollinator interactions. In part because the effects of climate change on soil 

microbes are inconspicuous relative to phenological and distributional responses of plants and 

pollinators, fewer data exist on how these mutualists will shift temporally and spatially in 

response to changing climatic conditions. Despite the paucity of data, we predict that elevated 

mean temperatures and prolonged drought will cause rhizobia and AMF to exhibit shifts in the 

timing of metabolic activity, dormancy, root colonization, and reproductive events, though the 

direction and magnitude of shifts will likely be shaped by environmental context. Phenological 

shifts are expected to alter the timing of interactions with host plants and the costs and benefits 

of these mutualisms. We further predict that these climatic changes will cause belowground 

mutualists to shift in distribution, both laterally and vertically, reshuffling soil microbial 

communities and leading to symbiont switching by host plants [180–183]. Consequently, we 
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predict that changes in interaction timing or symbiont identity will alter host plant flowering 

phenology and generally reduce floral display sizes and the quality of nectar and pollen floral 

rewards [58,220]. These shifts in flowering time, driven by altered interactions with microbial 

mutualists rather than by altered abiotic cues, are predicted to reduce phenological overlap with 

some pollinators, particularly oligolectic solitary bees that have specialized diets and relatively 

short foraging seasons. Similarly, reduced floral resource availability will decrease pollinator 

foraging efficiency, potentially reducing reproductive output, and alter visitation patterns for 

bees with labile preferences. Finally, because pollinators differ in their effectiveness [e.g., 

269,319], these changes in bee foraging behavior will likely affect pollination success and plant 

reproductive output. 

 To improve our ability to predict how climate change will affect the tripartite mutualism 

among soil microbes, flowering plants, and pollinators, we recommend three major research 

avenues. First, foundational studies are needed to determine the drivers of rhizobia and AMF 

phenology and to document the dispersal abilities of these microbes. These studies will enable us 

to better anticipate how climate change will affect microbial phenology and distribution. Second, 

we urge greater use of experiments that manipulate soil microbe-host plant interactions to isolate 

the effects of reduced interaction strengths, novel partners, and complete mismatches on plant 

functional traits, particularly floral traits that structure interactions with pollinators. Third, we 

advocate for large-scale field studies, both observational and experimental, on communities of 

soil microbes and flowering plants across environmental gradients. Observational studies would 

serve to characterize the relationships between soil microbial community composition and 

abiotic factors, particularly factors such as temperature and precipitation that are affected by 

climate change. Experimental studies, such as reciprocal transplants of seeds and/or microbes, 
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would yield data on the outcomes of novel interactions and environmental contexts that 

accompany distributional shifts. By incorporating data on floral traits and pollinator visitation, 

such studies could also shed light on the consequences of novel soil microbe-plant interactions 

for plant-pollinator mutualisms. 

Beyond the fundamental importance of these multipartite mutualisms for community 

stability and ecosystem services, such as pollination and nutrient cycling, our understanding of 

the ecology of rhizobia and AMF has implications for native plant conservation and restoration. 

For example, there are advantages to inoculating restoration sites with soils from the home range 

of the focal plant species. Coevolved microbial symbionts increase plant germination success, 

growth, and fitness [320–324], whereas commercially available microbial inoculum containing 

AMF and/or rhizobia that are not coevolved with the focal plants have been found to negatively 

affect plant establishment and growth in restoration sites [325]. In addition, conserving and 

restoring soil microbe-plant mutualisms in natural communities will benefit native bee 

populations, many of which are declining [326,327], by improving the quantity and quality of 

floral resources. 

The study of multiple mutualists offers key insights into how climate change will reshape 

communities, yet these multipartite interactions have received little attention relative to bipartite 

interactions. In neglecting the potential higher-order interactions that can arise from multipartite 

mutualisms, we risk mischaracterizing how species and the ecosystem services they provide will 

be affected by climate change. For example, studies on plant-pollinator phenological synchrony 

that focus on abiotic drivers, without considering the influence of belowground mutualists on 

flowering time, may misjudge the risk of mismatch. We therefore advocate for greater study of 

the effects of changing climatic conditions on tripartite mutualisms involving soil microbes, 
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flowering plants, and pollinators. With the advent of more-sophisticated sequencing technologies 

to characterize soil microbial communities, there is much opportunity to push forward our 

understanding of how these mutualisms will fare in a changing climate. 
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Figure Legends 

 

 

Figure 1. Links among belowground microbial symbionts rhizobia and arbuscular mycorrhizal 

fungi (AMF), host plant traits and fitness, and bee behavior and fitness. Mutualistic interactions 

with microbes affect plant vegetative growth, floral display, floral resources, and plant 

reproductive output. The affected plant traits in turn affect bee behavior and fitness. Bee 

behavior affects plant reproductive output. 
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Figure 2. Potential outcomes of microbe phenological shifts. Climate change may induce shifts 

in the seasonal timing of microbial activity and dormancy. Active periods may be shifted earlier 

(yellow microbes), lengthened (blue microbes), or shortened (purple microbes). Dormant periods 

may be lengthened (purple microbes) or shortened (blue microbes). 
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Figure 3.Potential outcomes of microbe and plant distributional shifts. (A) Climate change and 

microbe dispersal may interactively shape microbe distributional shifts, such that some microbial 

taxa shift upward in elevation to a greater (yellow microbes) or lesser extent (blue microbes) and 

others constrict in distribution (purple microbes). (B) Some plants may shift upward in elevation 

to a lesser extent than their historical microbial partners, resulting in reduced interaction strength 

(yellow plant). Some plant taxa may shift upward in elevation to a greater extent than their 

historical microbial partners, resulting in novel interactions (blue plant) or interaction loss 

(purple plant). However, vertically transmitted mutualists are less likely to experience partner 

mismatches than horizontally transmitted mutualists. 
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Figure 4. Potential outcomes of microbe distributional shifts in soil horizons. Higher 

temperatures and drier conditions near the soil surface (indicated by yellow lines and blue drops, 

respectively), driven by climate change, may cause soil microbes to shift downward, thereby 

disrupting interactions with host plants. This could potentially affect floral display or floral 

resource production. 

                  




