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Abstract— The powerful standard representation for uncertainty de-
scriptions in a basic perturbation model based on a standard plant
representation can be used to attain necessary and sufficient conditions
for stability robustness within various uncertainty descriptions. In this
paper, these results are employed to formulate necessary and sufficient
conditions for stability robustness of several uncertainty sets based on
unstructured additive coprime factor uncertainty, gap-metric uncertainty,
as well as the recently introduced A-gap uncertainty.
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Fig. 1. Feedback connection structure 7 (P, C') of a plant P and a controller
C.

I. INTRODUCTION

In a model-based control design paradigm, the design is based on a
(necessarily) approximative model P of a plant to be controlled. An
apparently successful control design leads to a controller C' having
some desired closed-loop properties for the feedback controlled model
P, but due to the mismatch between the actual plant P, and the model
P, a verification of these desired closed-loop properties is preferred
before implementing the controller C' on the actual plant P,. In this
paper the discussion is directed toward the verification of one of the
most important closed-loop properties: stability.

To evaluate stability when the controller C is being applied to the
plant P,, a characterization of the mismatch between the plant P,

. and the model P is indispensible. Since the real plant P, is unknown,

the discrepancy in general is characterized by a so-called uncertainty
set, denoted with P. Typically, an uncertainty set P is defined by
the (nominal) model P which is found by physical modeling or
identification techniques and some bounded “area” around it [4].
The uncertainty set P itself reflects all possible perturbations of the
(nominal) model P that may occur. .

By defining the uncertainty set in such a way that at least the plant
P, € P, stability robustness results for the set P will reflect sufficient
conditions under which the plant P, will be stabilized by C; see [4]
or [5]. In this perspective, special attention will be given in this
paper to an uncertainty set Pcr which is characterized by additive
perturbations on a coprime factor description of the nominal model
P. The specific application of such an uncertainty set description
will be motivated by the favorable properties it has over a standard
additive or multiplicative uncertainty set description.

Using the simple and powerful stability robustness results for
a basic perturbation model in a standard plant configuration [4],
{51, [15], several different uncertainty sets employing weighted and
unstructured additive perturbations on a coprime factorization, gap-
metric based uncertainty sets, and the recently introduced A-gap
uncertainty sets will be shown to be closely related to each other.
The contribution of this paper is in the unified treatment of these
different uncertainty sets. While stability robustness results for uncer-
tainty sets using additive perturbations on normalized (left) coprime
factorizations [11] and gap-metric based uncertainty sets [10] have
separately been derived before, this paper amplifies their relation, as
well as the extension to a less conservative A-gap uncertainty set
description [1], [2].

II. PRELIMINARIES

Throughout this paper, the feedback configuration of a plant P and
a controller C' is denoted by T (P, C) and defined by the feedback
connection structure depicted in Fig. 1.

A plant P and a controller C' are assumed to be given by real
rational transfer function matrices, and it will be assumed that the

0018-9286/96$05.00 © 1996 IEEE



724

feedback connection is well-posed, i.e., that det [T + CP] % 0. Then
the feedback system 7 (P, C) is defined to be internally stable if the
mapping from col(r2,71) to col(uc,u) is bounded-input bounded-
output BIBO stable, i.e., if the corresponding transfer function is in
RH o, where RHoo denotes the Hardy space of real rational transfer
function matrices with bounded Hoo-norm [6]

Gl = sup T{G(e™)} )]
we[0,7)

with 7 the maximum singular value. Furthermore, the dynamics of the
closed-loop system 7 (P, C') will also be described by the mapping
from col(r2,71) to col(y,w) which is given by the transfer function
matrix T(P, C)

P

T(P,C):= {I}[I—{—CP]_l[C’ 1. ®)

Internal stability of 7 (P, C) is equivalent to the condition that
T(P,C) € RHe. Using the theory of fractional representations,
e.g., as presented in [17], a plant P is expressed as a ratio of two
stable transfer function matrices N and D. For two transfer functions
N,D € RHeo, the pair (N, D) is called right coprime over RHoo
if there exist X,Y € RMo such that XN + Y D = I. The pair
(N, D) is a right coprime factorization (rcf) of P if (N, D) is right
coprime and P = ND~'. An rcf (N, D) is called normalized
(oref) if it satisfies N*N + D*D = I, where * denotes complex
conjugate transpose. For (normalized) left coprime factorizations (Icf)
dual definitions exist.

Fractional representations have a close relation with approximation
in the graph topology. The graph topology is the weakest topology’ in
which a variation of the elements of a stable feedback configuration
around their nominal values preserves stability of that closed-loop
system [18]. The graph topology is known to be induced by several
metrics, e.g., the graph metric introduced in [16] or the gap metric
introduced in [19], expressed in the following way.

Definition 2.1 [8]: Consider two plants P, P with an nrcf
(N1, D1), (N2, D3), respectively. Then the gap between P and P,
is expressed by

8(Pr, Py):= max {5(P1, P2), (P2, P1)}

2 N s D; D;
o= |[2]- 2L

Stability robustness results will be considered for two equivalent
interconnection structures depicted in Fig. 2(a) and (b) (see [4]
and [15]). Internal stability of the feedback system of Fig. 2(a) is
equivalent 0 input-output stability of the upper linear fractional
transformation F (M, A) := Mag + Ma1 A[T — My A] ™" M2, where
the decomposition of M = [ﬁfgi %;:] is in accordance with
Fig. 2(b).

If the transfer function M is BIBO stable, the small gain theorem
can be applied to characterize stability results for the connection
structure of Fig. 2(b), as formulated next.

Lemma 2.2: Let the stable transfer functions M,A € RHe
construct a feedback connection (M, A). Then:

a) A sufficient condition for BIBO stability of F(M, A) is given
by

with

M1 Alleo < 1. 3)

I Given two topologies ©1 and Oz, O is said to be weaker than Oy if
O is a subcollection of Og; see also [18].
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Fig. 2. (a) Feedback connection structure of a (perturbed) plant P, and the
controller C. (b) Basic perturbation model (M, A).

b) Provided that for all A with ||Al|c < v the transfer function
Moy AT — M1 A]7 My2 does not exhibit unstable pole/zero
cancellations,” F(M,A) is BIBO stable for all A with
|[A]]loe < v if and only if

1Ml <777 @

Since M € RHoo, and thus Mi1, Mi2, Ma1, Moz € RH, the
small gain theorem directly leads to result a). Additionally, necessary
conditions can be formulated on the stability of [ — M1 A]_1 for all
A with ||Al|les < 7. Provided that unstable poles of [I — My A]™?
are not cancelled in M, this leads to the necessary condition of (4).
For a complete proof, see [11] or [17].

II. STABILITY ROBUSTNESS FOR UNCERTAINTY DESCRIPTIONS
BASED ON FRACTIONAL MODEL REPRESENTATIONS

The framework for stability robustness from the previous section
can be directly applied to uncertainty sets based on coprime factor
perturbations. As the uncertainty block A is assumed to be stable, this
implies that for simple additive or multiplicative uncertainty sets, the
locations of all unstable poles of the plant P, are assumed to be fixed.
Additive perturbations on coprime factorizations are more flexible
and allow changes in both the number and the locations of poles
and zeros anywhere in C [3]. Moreover, fractional representations
have a close relation with approximation in the graph topology.
First, an uncertainty set based on additive perturbations on.a coprime .
factorization will be discussed.

2This additional condition which is often discarded in literature excludes
trivial situations, e.g., M1 = 0 or Mi2 = 0. It can be shown to be
satisfied for the common uncertainty classes based on additive, multiplicative,
or coprime factor uncertainty.
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Corollary 3.1: Consider a plant P with rcf (N, D), stabilized by
a given controller C, and consider the uncertainty set

Por(N,D,Vp,Vn, W,7):= {PIP =[N +AN]D+Ap]™

Vo 0 |]AD |
{1 S
for stable and stably invertible filters Vp, Vv, W. Then the feedback

system 7 (P, C) is internally stable for all P € Pcp if and only if

Vgl 0 1
0 VJI]HM =T

with

HW‘I[D +CMT Q) [
Defining

A ':VD 0 jH:AD}Wy )

0 Vn||AN

it can simply be shown that this leads to an uncertainty set according
to Fig. 2(b) with
M = —WlE -1 {VD’I 0 ]
1 == [D+CNIT'[I C] 1. ©)
0 Vg

For unity weightings Vb, Vv, and W it follows from [11] that the
corresponding M is stable and pole/zero cancellations as mentioned
in Lemma 2.2-b) do not occur for stable A. These results can be
extended directly to stable and stably invertible weighting functions
Vb, VN, and W, and thus Lemma 2.2 can be applied.

The corollary can alternatively be proven by employing stability
results directly in terms of coprime factor representations of plant and
controller. Here it has been stressed that the considered uncertainty
set allows a description in terms of a standard perturbation model as
depicted in Fig. 2.

The following equivalent formulations of the coprime factor un-
certainty set discussed in Corollary 3.1 will appear to be useful in
the sequel of the paper.

Proposition 3.2: The uncertainty set PCF(N, D, Vo, VN, W, 7)
as defined in Corollary 3.1 can alternatively be written in the
following equivalent forms:

a)  Per(N,D,Vw,Vp, W,7) R
= {P|P = (NW + V'AN)(DW + V5Ap) ™Y

with [|[37]]]., <+} ™
b) Pcr(N,D,Vn,Vp,W,v)
= {P|P = N.D; ", (N, Dy) an nrcf and
3Q € RHco such that
M B = [Brellll, <) ®)

Part a) follows by simple calculation. The proof of part b) is more
involved and is based on the fact that in any stable right, but not
necessatily coprime, fractional representation (V, D) can be written
as a right fractional representation (N,Q, D,Q) with Q € RH
and (N.,Dy) an nrcf. In this way the right, but not necessarily
coprime, fractional representation of P in (7) can be written as
(NW + Vi'AN) = N,Q and (DW + V;'Ap) = D,Q with
(Nn,D,) an nref and Q € RHoo. It follows then that Ay =
Vn[N.Q — NW] and Ap = Vp[D.Q — DW] which proves the

result. Note that the factor ¢ cancels in the representation of P.

IV. STABILITY ROBUSTNESS BASED ON DISTANCE MEASURES

Stability robustness results for gap-metric uncertainty sets can
be considered in the same framework. It will be illustrated that
the available stability robustness results for this situation, proven
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separately in [10], can be considered as a special case of Corollary

- 3.1. To this end the following uncertainty sets are being considered:

’Pé’(P>'Y):={P|g(P7P)<7}
Ps(P,~):={P|s(P, P) <~}

for which the following relation with the coprime factor uncertainty
sets can be shown, as presented before.

Lemma 4.1: Let a plant P and a controller C' constitute an
internally stable feedback system 7 (P, C'). Consider the uncertainty
set Pc F(N D, VN, Vb, W, ~) under the additional conditions that
(N, D) is an nref of P, and Vp = I, Vy = I, and W = I. Then:

a) Por(N,D, Vi, Vb, W,7) = Py(P, 7).

b) For v < 1,Pe(P,~) = Ps(P, 7).

Part a): According to Proposition 3.2-b) and taking into account
the specific choice of weighting functions in the lemma, it follows:

POF(N»D,VN,VmVV»’Y)

= {P|P = NoD;t, (Na, D,y an nref and

[B]-Bfdl <}

Since (N, D) is chosen to be an nrcf of P, it is straightforward
to verify that Pcr = Pj.

Part b): This is proven in [10]. The restriction to v < 1 is caused
by the fact that these sets with v > 1 cannot be stabilized by a single
controller. 0

Lemma 4.1 relates the set defined by a gap metric bound with
the set of coprime factor perturbations by a special choice of
the weighting functions Vb, Vi, W and the coprime factorization
(N ,f)) of the model P. This gives rise to a unified approach
to handle sets of plants that are bounded by a gap metric, and
the stability robustness result for these sets follows directly from
Corollary 3.1.

Corollary 4.2: Consider the situation of Lemma 4.1 with v < 1.
Then each of the three sets of plants Pcr, Pz, and Ps, T(P,C) is
internally stable for all P € P if and only if

(2, C)lee < v )

3Q € RH such that

The proof follows simply by substituting the specific weightings in
the result of Corollary 3.1, employing the fact that premultiplication
of the expression within the norm by [N T f)T]T leaves the norm
invariant, due to the normalization of the rcf. O

Note that the result of this corollary is not new. It was shown
already in [10], where. a complete proof of the stability robustness
result is given. It has been shown here that the stability robustness
results in the standard form can simply be exploited, as formulated in
Section II. Restricting attention to the situation that v < 1 is natural,
as |IT(P,O)|ee > WII + CP]7}||e > 1, according to Bode’s
sensitivity integral, showing that stability robustness can only be
achieved for sets with v < 1.

Finally, it should be noted that the gap and graph metric are induced
by the same topology and are uniformly equivalent {8]. Therefore,
stability robustness in the graph metric yields a similar result as
mentioned in Corollary 4.2, and their interrelation is discussed in
[13].

V. STABILITY ROBUSTNESS IN THE A-GAP

The results obtained in the previous section for gap-based stability
robustness can be further extended for uncertainty sets based on
the recently introduced A-gap [1], [2]. This A-gap is a distance
measure that adds an additional frequency weighting in the expression
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that is utilized in the gap-metric, while the frequency weighting is
controller-dependent.

Definition 5.1: Let two plants P, P> have nrcf’s (N1, Di),
(N2, D3), respectively. Let C be a controller with nlcf (De, No)
such that 7 ( Py, C) is internally stable. Then the A-gap between the
plants P;, % is defined to be expressed by

QeRHoo

D —1 Ds | =
-l
with A = [D.D; + N.Ni].

The difference between 8( Py, Pz) and 55 (Py, P,) is the additional
shaping of the nrcf of P, with A™" into a rcf (N, D). In this way
A:=D.D+ NN = I, with N = NjA~ Y, D = D;A™Y, which
is used to consider the closed-loop operation of P induced by the
controller C' being employed. This makes the distance between P;
and P dependent on the controller C’ Note that the distance measure
6A(P1,P2) is not a metric, since 84 (P1, P2) # 8A( P2, P1) due to
the influence of the controller C' [2].

Accordingly, an uncertainty set based on A-gap uncertainty can be
defined as

Sa(P,P) = inf

Ps, (P,7):={P|es(P, P) <~}

This uncertainty set can also be shown to be equivalent to an
uncertainty set of coprime factor uncertainties, provided appropriate
weighting functions are chosen. o

Lemima 5.2: Let a plant P and a controller C with nlcf (De, Ne)
constitute an internally stable feedback system 7 (P, (). Consider
the uncertainty set Pg F(N D,Vw, Vo, W, ) under the additional
COHdlthﬂS that (N D) is an nrcf of P and Vp = I,Vn = I, and
W = A~ with A = [D.D + N.N|. Then:

a) Per(N,D,Vn,Vp,W,7) = Pg, (P, 7).

by 7(P,C) is internally stable for all P € Pcrp if and only if

v < L

The proof of a) is straightforward, along the same lines as the proof
of Lemma 4.1-a). Result b) then follows directly from Corollary 3.1,
employing the fact that A[D + CN]™[I C] = [D. N.| having
an co-norm of one due to the fact that it is a normalized left coprime
factorization. O

As said before, in case of the A-gap, the uncertainty set defined
accordingly considers perturbations of the nominal plant P that are
controller dependent.

.~ The introduction of weightings in the gap metric has also been

studied in [7], [9], and [14] In [7] a multxphcatlvc uncertainty
description on the nrcf (IV, D) of the model P is being used, leading
to an uncertainty structure A having a diagonal form. Due to the
diagonal form only necessary and sufficient conditions based on the
structured singular value p{-} can be obtained. The weightings in
the weighted gap of [9] have to be defined a posteriori which makes
the choice of the weighting functions, to access robustness issues on
the basis of a weighted gap, not a trivial task. Information on the
size of the coprime factor perturbations can be used in the weighted
pointwise gap metric defined in [14], but an efficient computational
method for pointwise gap metric is not available yet. The A-gap can
simply be calculated. Controller synthesis in the A-gap, however, is
" more complicated and is a problem that is not solved yet.

VI. CONSERVATISM ISSUES

All stability robustness results in this paper reflect necessary and
sufficient conditions of an uncertainty set to be stabilized by a single
controller. As such, no conservatism is introduced in the test for
checking stability robustness itself. However, for a single given
controller, different uncertainty sets contain a different portion of
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the set of all systems that is stabilized by the controller. In this
perspective, the concept of conservatism is an intrinsic property of
the uncertainty set being used. As a result, an uncertainty set will
be called more conservative than another if one controller stabilizes
both sets, while the former set is contained in the latter.

Theorem 6.1 [1]: Consider a plant Panda stabilizing controller
C with nlcf (DC,NC). Consider the following two uncertainty sets
resulting from the stability robustness results in the previous sections:

Ss(P.C):={UPs(P,b), b<|IT(P,O)lI=}

S;, (P,C):={UP; (P,c), c<1}
then
Ss(P,C) C 83, (P,C). (10)
The following implication will be proven:
P € Ss5(P,C)= P €S (P,C). an
As P € S5(P,C), there exists a U € RHo. such that
D] [ﬁ}— 1
2T € e (12)
[An L | T e
This implies that
-l < g
v |~ AT o € = (13)
“[N (P, C)lleo’
As [|T(P.C)||eo = HA‘IHOO, this implies that
Dn D+ -1 :
[N R

Lower bounding the left-hand. term of this expression implies that

D, |, - D=, _1
]+ Bl
which proves the result.

The gap-metric uncertainty set can exhibit severe conservatism, as
very well illustrated in, e.g., [12]. As the gap-metric does not take into
account the closed-loop operation of the plant P in the set, induced
by the controller C' being used, this conservatism can intuitively be
understood. In the situation that A = oV, with @ € R and V' a unitary
matrix, it can be shown that the two sets in (10) are equal. For other
situations, examples in [1] and [2] indicate a substantial decrease of

conservatism when using A-gap uncertainty. The controller-relevant
weighting within the A-gap is the basic reason for this.

<1 (13)

=5}

VII. CONCLUSIONS

The powerful standard representation for uncertainty descriptions
in a basic perturbation model based on a standard plant configu-
ration can be used to attain necessary and sufficient conditions for
stability robustness within various uncertainty descriptions. In this
paper these results are applied to uncertainty descriptions based on
fractional model representations, leading to necessary and sufficient
conditions for stability robustness in case of additive coprime-factor
uncertainties.

In this way a unified approach to handle additive coprime fac-
tor perturbations can be derived which yields a manageable and
comprehensive way to relate gap and A-gap based uncertainty sets
to (weighted) additive coprime factor perturbations. Based on this
framework necessary and sufficient conditions for gap and A-gap
based uncertainty sets are presented, and it is shown that in terms
of stability robustness, the A-gap uncertainty set is less conservative
than the gap uncertainty set.
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New Square-Root Smoothing Algorithms

PooGyeon Park and Thomas Kailath

Abstract—This paper presents new square-root smoothing algorithms
for the three best-known smoothing formulas: 1) Rauch-Tung-Striebel
(RTS) formulas, 2) Desai-Weinert—Yusypchuk (DWY) formulas, called
backward RTS formulas, and 3) Mayne-Fraser (MF) formulas, called
two-filter formulas. The main feature of the new algorithms is that they
use unitary rotations to replace all matrix inversion and backsubstitution
steps common in earlier algorithms with unitary operations; this feature
enables more efficient systolic array and parallel implementations and
leads to algorithms with better numerical stability and conditioning
properties.

1. INTRODUCTION

Square-root (or factorized, as they are sometimes called) algorithms
for state-space estimation have been found to have several advantages
over the conventional equation-based algorithms in terms of numer-
ical stability, conditioning, and amenability to parallel and systolic
implementation. While such algorithms for prediction and filtering
have by now been studied quite extensively (see, e.g., [1]-[8]), the
picture is not quite as complete for smoothing.

In the literature, there are two classes of square-root smoothing
algorithms, both based on using quantities propagated by the square-
root information filter algorithm (SRIF) presented by Dyer and
McReynolds in 1969 [4]. In 1971, Kaminski [9] proposed the square-
root information smoother (SRIS) of which Bierman in 1983 [10]
gave a so-called UD (free of arithmetic square-root) version. The
SRIF and SRIS propagate the square-root of the inverse of the filter-
ing and smoothing error covariances, respectively, hence the name
“information” form. In 1974, Bierman [11] proposed propagating
the smoothing error covariance itself, using certain outputs from the
SRIF to provide the coefficients of certain smoothing error covariance
recursions. He called this the DMCS (Dyer-McReynolds Covariance
Smoothing)—SRIF algorithm. A UD version of the DMCS-SRIF was
given by Watanabe and Tzafestas [12]; see also McReynolds [13].
Watanabe [14] also gave a square-root form of certain smoothing
formulas of Desai—Weinert—Yusypchuk (DWY) formulas {15], while
Dobbins [16] derived a square-root version of the Mayne-Fraser (MF)
(or two-filter) formulas.

These square-root algorithms have various advantages and disad-
vantages. However, all of them require certain matrix inversion and/or
backsubstitution steps and, thus, none of them is particularly well-
suited for parallel implementation. Recently, we have presented in
[17] a new square-root smoothing algorithm for Bryson—Frazier (BF)
formulas [18] (1963) that employs unitary rotations instead of matrix
inversion and backsubstitution steps, thus simultaneously improving
numerical stability and conditioning and also making parallel and
systolic implementation easier—see, e.g., the discussion of these
issues in [19] and [20].

There are essentially three more best-known smoothing formulas:
those of Rauch—Tung-Striebel (RTS) [21] (1965), DWY [15] (1983),
and Mayne [22] (1966) and Fraser [23] (1967). In this paper, we
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