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Identification of shared gene 
expression programs activated in 
multiple modes of torpor across 
vertebrate clades
Kurt Weir1,2,3, Natasha Vega4, Veronica F. Busa5, Ben Sajdak6,7,8,9, 
Les Kallestad10, Dana Merriman9, Krzysztof Palczewski10,15,16, Joseph Carroll6,7 & 
Seth Blackshaw1,2,11,12,13,14

Torpor encompasses diverse adaptations to extreme environmental stressors such as hibernation, 
aestivation, brumation, and daily torpor. Here we introduce StrokeofGenus, an analytic pipeline that 
identifies distinct transcriptomic states and shared gene expression patterns across studies, tissues, 
and species. We use StrokeofGenus to study multiple and diverse forms of torpor from publicly-
available RNA-seq datasets that span eight species and two classes. We identify three transcriptionally 
distinct states during the cycle of heterothermia: euthermia, torpor, and interbout arousal. We also 
identify torpor-specific gene expression patterns that are shared both across tissues and between 
species with over three hundred million years of evolutionary divergence. We further demonstrate 
the general sharing of gene expression patterns in multiple forms of torpor, implying a common 
evolutionary origin for this process. Although here we apply StrokeofGenus to analysis of torpor, it can 
be used to interrogate any other complex physiological processes defined by transient transcriptomic 
states.

To survive extreme ambient temperatures or food scarcity, some animal species dubbed heterotherms enter torpor, 
a state of inactivity accompanied by complex physiological changes. Torpid states are marked by suppressed 
heart rate, metabolic rate, body temperature, oxygen consumption, and blood flow as well as neuroprotective 
and muscle-protective mechanisms1–3, all of which contribute to large energy savings and resilience to muscle 
wasting and neurological and ischemic damage2–10.

Torpor is not limited to a single phylogenetic clade1–3,5. For instance, torpor strategies are used by a wide 
variety of mammals, birds, and reptiles1–3,5. Counterintuitively, heterotherms are often more closely related to 
non-heterotherms within the same clade than they are to other heterotherms1–3. It has therefore been suggested 
that torpor is an ancestral adaptation that has been repeatedly lost and that there are conserved regulatory 
mechanisms governing torpor between species1–3.

There are multiple named variations of torpor including hibernation, aestivation, daily torpor, and brumation. 
The criteria used to demarcate different forms is inconsistent, but generally include the length of the torpor bout, 
the season of inactivity, and/or taxonomic separation. For example, bouts of inactivity in daily torpor last less 
than a day while torpor bouts in hibernation can last weeks2. Aestivation is distinguished from hibernation by 
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environmental temperature, with aestivation employed in exceedingly hot periods and hibernation in exceedingly 
cold conditions11. Like hibernation, brumation involves long torpor bouts during the cold season, but the term 
is applied specifically to reptilian species5,8,9. The term “hibernation” is often applied to diverse torpid states. For 
instance, hibernating bears experience a smaller reduction in body temperature than small mammals during 
torpor and do not undergo interbout arousals7. Similarly, Syrian hamsters store food during torpor rather than 
store fat as is common among other commonly-studied small mammals12. While these terms are segregated, or 
not, based on these criteria, no definitive answer has been provided regarding how mechanistically similar or 
dissimilar these torpor strategies are.

Hibernation in small mammals is the most extensively studied form of torpor. It is characterized by long 
periods of very low activity and body temperature which, unlike other forms of torpor, are interrupted by periodic 
spikes to euthermic body temperature called interbout arousals (IBA). During this transition from torpor into 
IBA, gene expression is modified and global transcription as well as energy demands increase4,10. Despite the 
time points demonstrating similar body temperatures, IBA transcriptomes are distinct from euthermic time 
points10. Most early torpor transcriptomic studies have focused on the gene expression differences between 
euthermia and torpor9,13–15. However, due to the variability of activity between stages of torpor, more recent 
studies include multiple crucially-timed samples throughout torpor, including pre- and post-torpor, IBA, and 
pre- and post-IBA time points4,5,7,10,12. Sampling many time points increases the complexity of analyzing gene 
expression changes using pairwise comparisons. Various groups have used different approaches to overcome 
this issue, such as setting the euthermic time point as a single point of comparison or adopting something like a 
figure-8 approach4,10. Often, time points are sampled and sequenced before it is known whether they represent 
a distinct transcriptomic state, further convoluting comparisons. There is a need for a technique that identifies 
distinct transcriptomic states and state-specific gene expression programs to simplify and clarify the calculation 
of stage-specific gene expression.

Independent transcriptomic-based studies have shown consistent gene expression changes during torpor 
within tissues across species. For instance, genes in the liver involved in carbohydrate catabolism and fatty acid 
synthesis were broadly downregulated while those related to fatty acid catabolism were broadly upregulated 
during torpor in the liver of the Chinese alligator (Alligator sinensis), Himalayan marmot (Marmota himalayana), 
and grizzly bear (Ursus arctos horribilis)6–8. Transcriptomic shifts involved in neuroprotection and protection 
against skeletal muscle atrophy have also been observed across species4–6. Recent work has used a gene orthology 
approach to demonstrate shared molecular mechanisms during torpor among four mammalian species: the 
arctic ground squirrel (Urocitellus parryii), the 13-lined ground squirrel (13LGS, Ictidomys tridecemlineatus), 
the American black bear (Ursus americanus), and the Brandt’s bat (Myotis brandtii)1. However, there have to 
date been no reported comparisons between torpor transcriptomes in mammal and non-mammal species. 
Furthermore, comparisons across datasets based on the overlap of lists of significantly differential genes lack the 
capacity to demonstrate shared global gene expression, which will involve many sub-significant but functionally 
related changes in gene expression.

We introduce a novel computational pipeline, dubbed StrokeofGenus, to analyze publicly-available torpor 
bulk RNA-seq datasets. Like prior pipelines, StrokeofGenus identifies orthology across species without the need 
for a reference genome to enable comparison of gene expression in non-model organisms16, but extends its 
functionality by including non-negative matrix factorization and transfer learning analysis for the discovery of 
complex patterns of co-expressed genes and the comparison of these patterns across datasets17,18. StrokeofGenus 
is able to identify transcriptomically distinct (and indistinct) phases of torpor and cross-study sharing of torpor 
gene expression programs. By identifying shared gene expression programs across species, we demonstrate the 
presence of shared molecular mechanisms directing various forms of torpor, supporting the hypothesis that 
torpor is a conserved ancestral trait.

Methods
Sample collection
Eleven female and four male 13-lined ground squirrels (13LGS, Ictidomys tridecemlineatus) were obtained 
from the University of Wisconsin Oshkosh Squirrel Colony for use in this study. Animals were euthanized by 
decapitation under isoflurane anesthesia (isoflurane anesthesia was not used for winter torpor decapitations). 
The frontal cortex, hypothalamus, retina, RPE, and liver were dissected from each of three animals for five 
physiological states: summer euthermia, prehibernation/room temperature torpor, winter torpor, 3-days-post-
arousal euthermia, and 14-days-post-arousal euthermia. Bio Medic Data Systems microchips and/or a FLIR 
thermal camera pointed at the inner ear were used to determine body temperature and combined with distinct 
behavioral phenotypes associated with torpor to determine physiological state. The experimental procedures 
described were approved by the Institutional Animal Care and Use Committee of the Medical College of 
Wisconsin (AUA00005654) and were performed in accordance with both these guidelines and with the ARVO 
Statement for the Use of Animals in Ophthalmic and Vision Research, and were reported in accordance with 
ARRIVE guidelines.

RNAse-free tubes and pipette tips were used. RNAse Zap was used on surfaces, dissection tools, and gloves 
before and between dissections. Sterile surgery personal protective equipment and tools were used. Tissues were 
transported in 1 ml of RNAlater per 100 mg of tissue.

RNA sequencing
Tissue samples were removed from RNAlater and total RNA was isolated with the miRNeasy micro kit with 
an optional DNase step, per the manufacturer’s protocol (Qiagen, Hilden, Germany). The total RNA was used 
to generate cDNA libraries with the Illumina TruSeq stranded Total RNA kit and sequenced on an Illumina 
Nextseq 500 at 50 million reads per sample.
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Dataset download
Fastq files for publicly available torpor datasets in 13LGS (PRJNA418486, PRJNA702062, PRJNA361561), 
Djungarian hamster (PRJNA743775), Australian central bearded dragon (PRJNA476034), grizzly bear 
(PRJNA413091), Brandt’s bat (SRP017183), monito del monte (PRJNA416414), Syrian hamster (PRJDB6278), 
Chinese alligator (PRJNA593416, PRJNA556093), and MCF7 (PRJNA513383) were downloaded from the 
European Nucleotide Archive.

Sequencing quality was determined using fastqc v0.11.919,20 and adapter sequences removed using 
trimmomatic v0.3921.

De novo transcriptome generation, gene expression, and proteome inference
The bulk RNA-seq fastq files for each species were input to Trinity v2.13.122 for de novo transcriptome assembly 
using default parameters. Every sample was used for each species, except for 13LGS, where, to save computation 
time with the high number and redundancy of samples, approximately half of the biological replicates were used 
(Supplementary Table 3). Gene expression for each sample was calculated using RSEM v1.2.1523 and bowtie2 
v2.4.124 implemented through the align_and_estimate_abundance.pl Trinity script with the --bowtie2_RSEM, 
--samples_file, --gene_trans_map, and --prep_reference arguments. The de novo transcriptome fasta file output 
by Trinity was used as input for TransDecoder-v5.5.025 to generate predicted proteomes with the “single_best_
only” argument so as to produce only one protein sequence for each transcript sequence in the fasta file.

Orthologue identification
Gene orthology relationships between species were reconstructed from the TransDecoder predicted proteome 
fasta outputs using OMAStandalone v2.5.026 with the “DoHierarchicalGroups” parameter set to “false” and the 
“UseOnlyOneSplicingVariant” parameter set to “true” to generate one-to-one gene-level ortholog relationships. 
Splice files, which are used by OMAStandalone to keep track of splicing variants of the same gene, were generated 
from the gene_trans_map output of Trinity using a custom script. The yeast proteome from the Orthology 
Matrix website was used as the out-group in orthology reconstruction in OMAStandalone27,28. M. musculus, H. 
Sapiens, D. melanogaster, and C. elegans proteomes were downloaded from the Orthology Matrix website and 
included in orthology reconstruction as references for the quality of the de novo transcriptomes generated in 
this study.

Pattern identification and sharing
Gene expression patterns were identified from the RSEM output for each dataset by nonnegative matrix 
factorization using the R package CoGAPS v3.10.017. For each dataset, a gene expression matrix was constructed 
by concatenating the gene-level TPM-normalized RSEM output for each sample and fed into CoGAPS. To reduce 
computation time, we used the GWCoGAPS function with the parameter nSets = 24 to split pattern finding 
across twenty-four groups of genes. Pattern markers were calculated for each pattern using the patternMarkers 
function. Shared gene expression patterns across datasets were calculated using the R package ProjectR v1.6.018 
with default parameters. Orthology information across species was imported from the OMA Standalone outputs 
OrthologousMatrix.txt and Map-SeqNum-ID.txt. Only genes with orthologs in both the reference and target 
datasets were considered.

For some bulk RNA-seq datasets, CoGAPS identified a gene expression pattern with broad, though 
variable, enrichment across all or many of the samples (Fig. 2D). These patterns represent variable signal in 
highly expressed genes that is attributable to technical differences such as sequencing depth between samples. 
Removing technical noise strengthens the identification of variation attributable to biological factors in other 
patterns (personal correspondence with the creator).

Prunetree diagram
The prunetree diagram (Fig. S5A) was generated using species names on the TimeTree website29.

Gene set enrichment analysis
Biological process gene ontology (GO) terms were downloaded from MSigD/B30,31. For each dataset, all gene 
names were converted to ortholog human gene symbols and ordered by CoGAPS pattern weights, which are 
non-negative. We then used the weighted approach implemented in GSEA32 via the R package fgsea v1.16.033 
with parameter scoreType = “pos” to test for enrichment of gene sets.

Genome download and analysis
The 13LGS genome was downloaded from https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/016/881/025/
GCF_016881025.1_HiC_Itri_2/ and was converted to a form usable by StrokeofGenus with a custom script. 
Following that, gene expression, proteome inference, ortholog identification, and shared pattern identification 
were performed as with other datasets. The human genome was downloaded from https://ftp.ensembl.org/
pub/release-112/fasta/homo_sapiens/dna/ and gene expression was performed as with other datasets. Ensembl 
gene names were converted to human OMA names using the Identifier Mapping file available from https://
omabrowser.org/oma/current/ and a custom script. Identification of shared gene patterns was performed as with 
other datasets.

Data analysis
All data were processed and visualized using R version 4.0.2. Code to recapitulate all analyses is located at 
https://github.com/vbusa1/StrokeofGenus_manuscript.
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Results
StrokeofGenus enables cross-comparison of bulk RNA-seq torpor gene expression patterns 
across non-model species
We established an analysis pipeline able to reconstruct patterns of gene expression within bulk RNA-seq datasets, 
identify gene orthology across de novo transcriptomes, and compare torpor gene expression patterns across non-
traditional model organisms (Fig. 1A). First, bulk RNA-seq datasets for each species were fed into the de novo 
transcriptome assembly program Trinity22. From here, the pipeline bifurcates. Along one track, we calculated 
gene expression for each sample using Trinity’s native RSEM capability and the de novo transcriptome23. Gene 
expression information for each species was then fed to the non-negative matrix factorization R package 
CoGAPS17 to reveal the underlying structure of the data, including time point and tissue-specific patterns of 
gene expression. Along the other track, to obtain ortholog information across species, the de novo transcriptome 
was translated using Transdecoder25, and each species’ predicted proteome was fed into the orthology program 
OMA standalone26. OMA standalone identified the most similar orthologs for every gene across the species in 
question. Last, we input the OMA orthology information and CoGAPS-identified gene expression patterns into 
the transfer learning R package ProjectR18 to quantify the presence and strength of gene expression patterns 
across species.

Multiple approaches have been proposed to compare gene expression across species1,16,34 (Table 1). Unlike 
prior approaches, StrokeofGenus has both an adaptable pipeline, increasing usability, and has demonstrated 
utility to identify shared gene expression across species. It applies a de novo transcriptome assembly approach, 
enabling the analysis of non-model organisms with poor or missing reference annotations. Finally, StrokeofGenus 
is the only approach offering both dataset structure detection and orthology identification, and it is unique for its 
application of transfer learning to directly detect shared gene expression.

StrokeofGenus is available from GitHub and includes a comprehensive vignette. The entire StrokeofGenus 
pipeline is initiated via the command line and can be completed using only three commands. Although each 

Fig. 1. Overview of project design. (A) Flowchart for a novel analysis pipeline to reconstruct gene expression 
patterns and identify shared gene expression across species. The key software used in each step of the analytic 
pipeline is listed above each arrow. Table of datasets included in the study showing (B) time points and (C) 
tissues contained in each dataset. Cells for IBA-associated time points have been greyed out in species that do 
not undergo IBA.
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component of StrokeofGenus was independently developed, the pipeline automates filetype compatibility, file 
system organization, and output visualization across all tools incorporated in the pipeline, simplifying user 
experience.

Publicly-available bulk RNA-seq datasets are available studying different forms of dormancy in species 
from multiple clades35–37. To identify shared patterns of gene expression throughout dormancy within 
vertebrate species, we selected a shortlist of eleven datasets in eight species with overlapping time points and 
tissues4,5,7–10,12–15,35 (Fig. 1B, C). The datasets represent both mammals and reptiles that undergo variations of 
torpor including hibernation, daily torpor, brumation, and aestivation. The sampled tissues were enriched for 
central nervous system tissues and metabolically important tissues such as the liver. In addition, to further 
facilitate intra-species comparisons using StrokeofGenus, we generated a new 13LGS RNA-seq dataset that 
includes tissues for which data are publicly available in three other 13LGS hibernation datasets4,10,35.

Between 7,578 and 19,422 orthologous genes were identified between all species comparisons (Supplementary 
Table 1). The number of genes reconstructed by Trinity is driven by the number of sequencing reads provided 
to the program38. Accordingly, larger numbers of genes were reconstructed for species with more samples 
(Supplementary Table 1). Species with greater numbers of reconstructed genes also had more orthologs identified 
across comparisons than those with fewer reconstructed genes, although this also appears to be impacted by 
evolutionary distance (Supplementary Table 1).

Nonnegative matrix factorization identifies tissue- and time point-specific patterns of gene 
expression
To simultaneously uncover the distinct transcriptomic states and state-specific gene expression of the publicly-
available hibernation RNA-seq datasets, StrokeofGenus applies the matrix factorization tool CoGAPS. CoGAPS 
deconvolves the patterns of coexpression that cumulatively compose the variation within a transcriptomic 
dataset. Each learned pattern represents phenomena that direct gene expression in a sample, including technical 
artifacts or biological processes (e.g. tissue type, age, or torpor state). A weight is calculated for each gene for 
each pattern, with a high weight indicating the gene’s expression greatly contributes to the pattern. Samples also 
receive a weight for each pattern, with a high weight meaning the pattern is driving a lot of expression in that 
sample. To attribute functionality to a pattern, we must rely on available metadata. For example, we infer that a 
pattern enriched in torpid samples over euthermic samples is a torpor pattern. Gene expression associated with 
that pattern represents torpor-specific gene expression programs.

For almost all the datasets analyzed, CoGAPS was able to identify tissue and/or time point-specific patterns 
of gene expression (Fig. 2, S1). All datasets produced time point-specific patterns, except the monito del monte 
dataset, which only produced tissue-specific patterns (Fig. S1D). CoGAPS was also able to deconvolve which time 
points within each dataset represented distinct transcriptomic states. We directed CoGAPS to identify between 
two and ten patterns for each dataset’s gene expression matrix. The results for each number of patterns were 
visualized as a heatmap showing the enrichment for each pattern in each sample, which were used to identify 
the tissue and time point-specificity of each pattern and optimize pattern number. At low pattern numbers, 
samples were separated by tissue (Fig. S2A). As the number of patterns increased, time point and tissue/time 
point-specific patterns emerged (Fig. 2A). To determine how many patterns to derive from a dataset, we set the 
cutoff for hibernation-related patterns as the maximum number for which each pattern showed tissue and/or 
time point specificity but not sample specificity. If the number of patterns increased beyond this point, samples 
from the same time point and tissue would separate into sample-specific patterns (Fig. S2B). We reasoned that 
only patterns with greater signal than sample-specific gene expression noise were biologically meaningful and 
useful for the purposes of discovery.

After optimizing the number of found patterns, we determined that some samples obtained from apparently 
distinct phases of hibernation actually represent equivalent transcriptomic states. For instance, the period 
immediately following exit from torpor was not transcriptomically distinct from an euthermic time point 
further temporally separated from torpor in the Australian bearded dragon (Fig. 2B). We also found that the time 
points immediately preceding and following IBA— Arousal to IBA and Entrance to Torpor— are not distinct 
from Late Torpor in 13LGS (Fig. 2D). Our results corroborate the original publications’ findings, which were 
identified using principal component analysis (PCA) and random forest clustering techniques4,5,10, respectively. 
Our results demonstrate that the principal transcriptomic states characterizing hibernation in small mammals 

StrokeofGenus CoRMAP Canton et al. Villanueva-Canas et al.

Usability
Demonstrated across species ✓ ✓ ✓

Adaptable pipeline ✓ ✓

Alignment
Reference annotation ✓ ✓ ✓

De Novo transcriptome ✓ ✓

Utility

Dataset structure detection ✓ ✓

De novo orthology detection ✓ ✓

Expression quantification ✓ ✓ ✓

Quantification of conservation ✓

Table 1. Comparison of usability and utility for approaches to compare gene expression across datasets from 
different species.
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are euthermia, torpor, and IBA (Fig. 2C, D). Therefore, for following analyses, samples from Summer Active, 
Prehibernation, Posthibernation, and Spring Dark time points are considered euthermic and patterns found in 

Fig. 2. Identification of tissue and time point-specific gene expression patterns in torpor datasets. Heatmaps 
of tissue/time point-specific gene expression patterns in the (A) Chinese alligator dataset 1, (B) bearded 
dragon dataset, (C) 13LGS 4 dataset, and (D) 13LGS 2 dataset. Each row is a sample and each column is a 
CoGAPS-derived pattern. Select pattern-specific genes that align with prior analyses are arrayed next to the 
relevant patterns. All figure panels colored on the same scale with blue representing low pattern weight and red 
representing high pattern weight.
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those samples are considered euthermic patterns. Similarly, Arousal to IBA, Entrance to Torpor, and Late Torpor 
samples are considered torpid samples and patterns in those sample are considered torpid patterns.

Tissue and time point specificity manifested differently across datasets. In some datasets, individual patterns 
show combined tissue and time point specificity (Fig. 2A, B). In other datasets, separate tissue-specific patterns 
were discovered along with distinct time point-specific patterns that were shared across tissues (Fig. 2D, S2A). 
We observe that the latter case occurred in 13LGS 2, a dataset composed of closely-related tissues, whereas the 
former occurred in datasets containing more distantly-related tissues. This is likely because more closely-related 
tissues share essentially the same gene expression changes while more distantly-related tissues have distinct gene 
expression programs during torpor.

To identify genes with tissue- and state-specificity, we calculated the pattern marker genes for each pattern in 
each dataset (Supplementary Table 2, listed in order of pattern specificity). Each gene receives a pattern weight for 
each pattern. A high pattern weight for a gene reflects high expression in the samples enriched for that pattern. A 
gene may have high pattern weights in multiple patterns (Fig. 3B), but genes that are pattern markers only have 
high pattern weight in a single pattern (Fig. 3A). The top pattern-specific genes from our analysis aligned with 
those identified in prior analyses via pairwise comparisons, such as the circadian clock gene DBP upregulated 
in the Chinese alligator hypothalamus in summer8 and the transcriptional repressor TGIF2 upregulated in the 
torpid heart of the bearded dragon5 (Fig. 2).

Transfer learning reveals shared tissue and time point-specific gene expression across 
datasets
To determine whether there are shared torpor gene expression patterns across datasets, StrokeofGenus applies 
the transfer learning R package ProjectR18. ProjectR takes as input gene weights from a pattern learned in one 
dataset and tests for their enrichment in the samples of a second dataset (Fig. 3A). A higher ProjectR score means 
a sample’s gene expression profile is similar to the tested pattern. If a pattern from a tissue and/or time point in 
one dataset shows enrichment in the equivalent samples of another dataset, this indicates that the datasets have 
shared gene expression programs. As proof of principle, we first applied ProjectR to different datasets generated 
from the same species with overlapping tissues. For this purpose, we used our 13LGS 1 dataset, which profiles 
multiple tissues, as a scaffold to compare with other 13LGS datasets that profile only one or a few tissues.

We first explored shared time point- and tissue-specific patterns of gene expression between the 13LGS 3 
and 13LGS 1 datasets (Fig. 3B, S4C). The 13LGS 3 includes only retinal tissue. Retinal euthermic Pattern 14 
and torpid Pattern 11 found in the 13LGS 1 dataset (Fig. S1A), showed significant enrichment in the euthermic 
and torpid samples, respectively, in the 13LGS 3 dataset (Fig. S4C, Pattern 14 P = 3.3e-4, Pattern 11 P = 4.6e-
3, student’s t-test). Similarly, torpid Pattern 2 from the 13LGS 3 dataset (Fig. S1G) demonstrated the greatest 
variance in neural-related tissues in 13LGS 1, highlighting the tissue-specificity of this pattern across datasets. It 
also shows significant separation of torpid samples in the retina (Fig. 3B, torpor/euthermia P = 2.5e-3, torpor/3 
days post hibernation P = 5.7e-3, torpor/14 days post hibernation P = 7.7e-3), while the euthermic Pattern 1 
showed enrichment in the euthermic Posthibernation retinal samples in 13LGS 1 (Fig. 3B days post hibernation/
torpor P = 3.7e-3, 14 days post hibernation/torpor P = 8.4e-3). We found similar shared gene expression for both 
13LGS 2 and 13LGS 4 with 13LGS 1.

We further compared the 13LGS 2 dataset, which contains only brain tissue samples, with the 13LGS 1 
dataset (Fig. 3C, S4D). Pattern 6 in the 13LGS 2 dataset, which is enriched in torpid samples (Fig. 2D), showed 
greater variance within the four neural-related tissues than the liver samples in the 13LGS 1 dataset (Fig. 3C). 
In the hypothalamus, Pattern 6 showed significant enrichment in torpid samples relative to euthermic time 
points (torpor/euthermia P = 0.014, torpor/3 days post hibernation P = 0.031, torpor/14 days post hibernation 
P = 0.022). Similarly, Pattern 5, which is enriched in euthermic samples (Fig. 2D), demonstrated greatest variance 
in neural-related tissues and showed significant segregation between euthermic Posthibernation time points 
and torpid time points in the 13LGS 1 hypothalamus samples (Fig. 3C days post hibernation/torpor P = 5.1e-
4, 14 days post hibernation/torpor P = 3.5e-3). Pattern 7 from the 13LGS 1 dataset, which was enriched in the 
euthermic 14 days post hibernation hypothalamus samples (Fig. S1A), was also enriched in euthermic samples 
in the hypothalamus of the 13LGS 2 dataset, while the torpid Pattern 5 (Fig. S1A) showed enrichment in the 
torpid 13LGS 2 hypothalamus samples (Fig. S4D, Pattern 7 euthermia/torpor p < 2.2e-16, Pattern 5 euthermia/
torpor p < 2.2e-16).

The 13LGS 4, which includes only liver tissue, and 13LGS 1 datasets also demonstrate shared gene expression 
patterns (Fig. 3D, S4E). Pattern 2 from the 13LGS 4 dataset is associated with torpid samples (Fig. 2C). When 
projected into the 13LGS 1 dataset, this pattern showed greatest variance within liver samples and significant 
enrichment in torpor liver samples relative to euthermic time points (Fig.  3D, torpor/euthermia P = 3.2e-3, 
torpor/3 days post hibernation P = 2.7e-3, torpor/14 days post hibernation P = 1.1e-3), consistent with a shared 
torpor-specific gene expression program. Gene Pattern 1 of the 13LGS 4 dataset is enriched in euthermic time 
points (Fig. 2C). Projection of pattern 1 into the 13LGS 1 dataset also demonstrated greatest variance in liver 
samples and significant separation of active liver samples from torpid samples (Fig.  3D, euthermia/torpor 
P = 5.1e-6, 3 days post hibernation/torpor P = 2.8e-3, 14 days post hibernation/torpor P = 1.8e-3). Though 
ProjectR identified differences in gene expression between time points in the liver, CoGAPS analysis of the 
13LGS 1 dataset only produced a general liver Pattern 20 that did not identify any time point-specific gene 
expression (Fig. S1A). This demonstrates that ProjectR is able to discern gene expression differences between 
samples when other sensitive methods are unable to do so. Interestingly, when pattern 20 of the 13LGS 1 dataset 
was projected into the 13LGS 4 dataset, it was enriched in euthermic time points (Fig. S4E, post hibernation/
entrance to torpor P = 0.016). These results cumulatively demonstrate that StrokeofGenus can identify shared 
gene expression programs across multiple datasets generated from different laboratories.
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To demonstrate that the functionality of StrokeofGenus is not limited to mammals, we additionally compared 
two datasets from the Chinese alligator and found shared euthermic and torpor gene expression for each tissue 
shared between the two datasets (hypothalamus, skeletal muscle, and liver), though the limited number of 
replicates prevents statistical comparisons (Fig. S4A, B). These results further demonstrate the ability of ProjectR 
to identify shared gene expression programs despite disparate collection times.

We also found shared gene expression patterns across tissues within the 13LGS. For example, the euthermic 
brain Pattern 5, torpid Pattern 6, and IBA Pattern 7 found in the 13LGS 2 (Fig. 2D) demonstrate significant 
enrichment in the matching time points of the 13LGS 4 (Fig.  3E, Pattern 5 euthermia/entrance to torpor 
P = 1.1e-4, Pattern 6 entrance to torpor/euthermia P = 1.3e-3, Pattern 7 IBA/entrance to torpor P = 6.2e-4). 

Fig. 3. Shared gene expression patterns across datasets. (A) Diagram of the procedure of transfer learning to 
identify shared gene expression. Dot plots of tissue and time point-specific sharing in the 13LGS 1 dataset of 
patterns from the (B) 13LGS 3 (retina), (C) 13LGS 2 (brain), and (D) 13LGS 4 (liver) datasets. Dashed boxes 
surround shared and closely-related tissue types. Non-shared tissues are displayed at 25% opacity. Numbers 
to the right of each plot show the variance within that tissue. (E) Dot plots of tissue and time point-specific 
sharing in the 13LGS 2 dataset of patterns from the 13LGS 4 dataset. (F) Dot plots of time point-specific 
sharing in the 13LGS 4 dataset of patterns from the 13LGS 2 dataset. Each point represents a single sample. 
RPE = retinal pigment epithelium.
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Similarly, projection of euthermic Pattern 1, torpid Pattern 2, and IBA Pattern 3 liver patterns into the 13LGS 
2 dataset demonstrated coordinated upregulation in the corresponding time points in the forebrain (Fig. 3F, 
Pattern 1 euthermia/torpor P = 1.1e-4, Pattern 2 torpor/euthermia P = 1.6e-4, Pattern 3 IBA/torpor P = 2.1e-4). 
Thus, within the same species, patterns of gene expression in hibernation are shared not only across datasets but 
also across tissues.

Torpor gene expression programs are shared across species and different forms of torpor
Transfer learning provides an opportunity to quantify the degree of sharing of torpor gene expression patterns 
across species and even across forms of torpor. Therefore, we used ProjectR in StrokeofGenus to test for gene 
expression conservation in the most common tissues across datasets–brain, liver, skeletal muscle, and white 
adipose–representing different taxonomic groups and forms of torpor.

To determine whether we could identify shared torpor gene expression patterns between species, we 
compared liver torpor expression between the grizzly bear and the 13LGS (most recent common ancestor 
(MRCA) ~ 90 million years ago (MYA), Fig. S5A), both of which hibernate. Pattern 3 from the grizzly dataset 
showed significant enrichment in torpid liver samples, whereas Pattern 2 is enriched in euthermic liver samples 
(Fig. S1C). When projected into the 13LGS 4 dataset, these two grizzly patterns showed significant enrichment in 
the torpid and euthermic 13LGS samples, respectively (Fig. 4A, Pattern 3 entrance to torpor/euthermia P = 3.6e-
3, Pattern 2 euthermia/entrance to torpor P = 1.8e-4). We performed the reciprocal comparison, projecting the 
13LGS 4 dataset into the grizzly dataset, and found that Pattern 2, enriched in torpid time points, and Pattern 
1, enriched in euthermic time points (Fig. 2C), showed enrichment in the corresponding grizzly liver samples 
(Fig. 4B, Pattern 2 euthermia/torpor P = 0.016, Pattern 1 euthermia/torpor P = 9.2e-4). Pattern markers from the 
source dataset with orthologs in the target dataset showed matching expression in the target dataset (Fig. S5B, 
C). 

We also found that Pattern 3 and Pattern 2 from the grizzly dataset were enriched in the equivalent time 
points in bat liver (MRCA ~ 80 MYA, Fig. S5A, S6B), though small sample numbers prevented statistical 
comparison, and Patterns 4 and 5 in the bat showed equivalent enrichment in the liver samples of the grizzly 
(Fig. S6A, Pattern 4 euthermia/torpor P = 2.0e-8, Pattern 5 torpor/euthermia P = 0.014). This demonstrates the 
shared torpor gene expression across divergent mammalian species.

To identify whether shared torpor gene expression patterns are detectable over greater taxonomic distances, 
we compared white adipose tissue in the Chinese alligator 2 to the grizzly (MRCA ~ 320 MYA, Fig. S5A). When 
projected into the Chinese alligator 2 dataset, euthermic adipose Pattern 4 from the grizzly (Fig. S1C) showed 
enrichment in euthermic adipose samples (Fig. 4C). Similarly, projection of the torpid grizzly Pattern 5 (Fig. 
S1C) into the Chinese alligator 2 dataset demonstrated segregation between torpid and euthermic replicates 
(Fig. 4C), though small sample numbers prevented statistical comparisons in either case. Programs associated 
with euthermic adipose tissue in the Chinese alligator 2 dataset, Pattern 15 (Fig. S1B), show enrichment in 
euthermic adipose tissue in grizzly (Fig. 4D, euthermia/torpor P = 0.012). Taken together, these results suggest 
shared gene expression programs in torpor across vertebrate classes and hundreds of millions of years of 
evolutionary divergence.

To determine if distinct forms of torpor also share similar gene expression programs, we compared the 
Chinese alligator, which enters torpor in response to cold, to the bearded dragon, which enters torpor in response 
to extreme heat (MRCA ~ roughly 280 MYA, Fig. S5A). Euthermic and torpid brain patterns from bearded 
dragon showed enrichment in Chinese alligator 2 euthermic and torpid brain samples, respectively, though 
sample number precluded statistical comparisons (Fig.  4E). Similarly, euthermic and torpid hypothalamus 
patterns 4 and 5 from the Chinese alligator 2 dataset showed significant enrichment in the euthermic and torpid 
samples of the bearded dragon brain, respectively (Fig. 4F, Pattern 4 two days post torpor (2D)/torpor P = 0.017, 
two months post torpor/torpor P = 0.020, Pattern 5 torpor/2D, P = 0.048, torpor/2M P = 0.082). Shared gene 
expression was also found between Chinese alligator brain patterns 2 and 3 and bearded dragon brain, though 
the separation between time points did not rise to statistical significance (Fig. S6E). Shared torpor-specific 
gene expression between Chinese alligator and bearded dragon is also apparent in skeletal muscle (Fig. 4G, H, 
Chinese alligator 1 dataset Pattern 3 2D/torpor P = 3.1e-3, 2 M/torpor P = 1.2e-4, Pattern 4 torpor/2D P = 0.017, 
torpor/2M P = 3.1e-4). We found greater sharing for patterns where conserved genes had greater pattern weight, 
meaning comparisons can be hampered over large taxonomic distances (Fig. S5D, E). Not only is torpor gene 
expression shared across species and over large taxonomic distances, but across forms of torpor employed under 
opposite environmental conditions, such as extreme heat and cold.

We further found that Patterns 1 and 2 from the Djungarian hamster hypothalamus, which undergoes daily 
torpor, showed time point-specific enrichment in the hypothalamus of Chinese alligator 1, which undergoes 
brumation, though the limited number of samples precludes statistical analysis (MRCA ~ 320 MYA, Fig. 
S5A, S6C). Though the Chinese alligator euthermic hypothalamus Pattern 1 did not show significant time 
point enrichment in hamster hypothalamus, the torpid hypothalamus Pattern 2 was significantly enriched in 
torpid over euthermic hamster hypothalamus (Fig. S6D, Pattern 2 torpor/euthermia P = 0.0276). Torpor gene 
expression is shared across forms of torpor with very different torpid bout lengths.

To discern which biological processes comprise shared gene expression programs, we applied gene set 
enrichment analysis (GSEA). We found enriched biological processes that agree with known phenotypes in 
torpor. Enrichment for gene sets was calculated for gene expression patterns within each species (Supplementary 
Table 11), then gene sets with similar enrichment were identified across species. As expected, mRNA production 
was downregulated in torpor across species and tissues2 (Fig. 4I, J, L). Metabolic functions were upregulated 
in euthermic liver for both 13LGS and grizzly2 while immune cell development was selectively downregulated 
in torpid samples39 (Fig. 4I). Adipose function was upregulated during euthermia in both grizzly and Chinese 
alligator 22 (Fig. 4J). As has been found in the Yakut ground squirrel brain40, actin fiber assembly was upregulated 
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in both grizzly and Chinese alligator torpid adipose samples (Fig. 4J). Similar to the results in liver and adipose, 
terms relating to tissue function were enriched in euthermic muscle in Chinese alligator 1 and bearded dragon 
(Fig. 4L). Torpid animals retain muscle mass despite long periods of inactivity2 and in both Chinese alligator 1 
and bearded dragon genes controlling maintenance of cell number were upregulated in torpid muscle samples 
(Fig. 4L). Synapses retract during torpor before being rapidly regrown following a return to euthermia3. In both 
Chinese alligator 2 and bearded dragon brain samples, axon extension is upregulated in euthermic samples 
(Fig. 4K). Interestingly, oligodendrocyte differentiation is also enriched in the euthermic brain in both Chinese 
alligator 2 and bearded dragon (Fig. 4K). Demyelination of the hippocampus with the oligodendrocyte toxin 
cuprizone directs neurons to a dormant, axon-protective state in mice41. Not only do diverse species that employ 

Fig. 4. Shared gene expression patterns across species. (A) Dot plots displaying time point-specific sharing 
in the 13LGS 4 dataset of torpor and euthermic patterns from liver samples in the grizzly dataset. (B) Dot 
plots displaying time point-specific sharing in the liver samples of the grizzly dataset of torpor and euthermic 
patterns from the 13LGS 4 dataset. (C) Dot plots displaying time point-specific sharing in the white adipose 
tissue (WAT) samples of the Chinese alligator 2 dataset of torpor and euthermic patterns from the WAT 
samples of the grizzly dataset. (D) Dot plots displaying time point-specific sharing in the WAT samples 
of the grizzly dataset of torpor and euthermic patterns from the WAT samples of the Chinese alligator 2 
dataset. (E) Dot plots displaying time point-specific sharing in the hypothalamus samples of the Chinese 
alligator 2 dataset of torpor and euthermic patterns from the brain samples of the bearded dragon dataset. 
(F) Dot plots displaying time point-specific sharing in the brain samples of the bearded dragon dataset of 
torpor and euthermic patterns from the hypothalamus samples of the Chinese alligator 2 dataset. (G) Dot 
plots displaying time point-specific sharing in the skeletal muscle samples of the Chinese alligator 1 dataset 
of torpor and euthermic patterns from the skeletal muscle samples of the bearded dragon dataset. (H) Dot 
plots displaying time point-specific sharing in the skeletal muscle samples of the bearded dragon dataset of 
torpor and euthermic patterns from the skeletal muscle samples of the Chinese alligator 1 dataset. Each point 
represents a single sample. Dot plots displaying the enrichment of biological process gene sets in torpor (T) 
and euthermic (E) patterns in (I) liver in 13LGS 3 and grizzly, (J) in adipose in Chinese alligator 2 and grizzly, 
(K) in hypothalamus/brain in Chinese alligator 2 and bearded dragon, and (L) in muscle in Chinese alligator 
1 and bearded dragon. The X-axis corresponds to the CoGAPS pattern and the Y-axis corresponds to the gene 
set. Dot size reflects the normalized effect size (NES) and the shade the -log(p-value) of enrichment.

 

Scientific Reports |        (2024) 14:24360 10| https://doi.org/10.1038/s41598-024-74324-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


different forms of torpor show shared torpor gene expression programs, but these genes also regulate shared 
torpor-related biological processes.

Interestingly, metabolic aspects of the form of torpor reflect differences in gene expression. The grizzly 
bear is a fat-storing hibernator, meaning its white adipose tissue performs lipid catabolism throughout torpor. 
In contrast, the Syrian hamster is a food-storing hibernator, whose white adipose tissue performs both lipid 
anabolism and catabolism during torpor. Differences in gene expression in white adipose tissue between food- 
and fat-storing hibernators has previously been found12. To assess whether these gene expression differences 
constitute programmatic differences, we compared torpor gene expression patterns between Syrian hamster and 
grizzly bear white adipose tissue (MRCA ~ 90 MYA, Fig. S5A). Though the Syrian hamster euthermic Pattern 1 
showed no time point enrichment in the grizzly adipose, the torpid Pattern 3 showed enrichment in euthermic 
time points over torpid time points (S6F, euthermia/torpor P = 0.0041). Similarly, the Grizzly euthermic adipose 
Pattern 4 shows no time point enrichment in Syrian hamster, but the Grizzly torpid adipose Pattern 5 showed 
enrichment in euthermic hamster time points (S6G, euthermia/torpor P = 0.17, IBA/torpor P = 0.0025). In sum, 
we found opposite pattern enrichment between torpor and euthermic time points in grizzly bear and Syrian 
hamster white adipose. The Syrian hamster dataset only covers white adipose tissue, so we cannot determine 
whether gene expression programs are shared between fat- and food-storing hibernators in other tissues.

Reference genome annotation produces qualitatively equivalent results to de 
novo transcriptome
The rate of production of high-quality reference genomes for nontraditional model organisms has rapidly 
increased42,43, though some torpor model organisms still lack a reference genome44–47. StrokeofGenus includes 
the functionality to use a reference genome rather than generate a de novo transcriptome, which we demonstrate 
in 13LGS (GCF_016881025.1). An average of 33% more orthologs were identified between 13LGS and classical 
model organisms using the genome (Table S1). We hypothesize that this is because the genome does not have the 
same constraints surrounding tissue number and read depth as the de novo transcriptome. Nonnegative matrix 
factorization identified equivalent gene expression patterns for each dataset tested and transfer learning between 
13LGS dataset 2 and the grizzly bear liver found similar shared pattern enrichment between genome and de novo 
transcriptome (Fig. 2D, E, Fig. S1G, Fig. S7A-E).

Artificially-induced torpor demonstrates shared gene expression with natural torpor
Multiple groups have developed approaches to induce torpor in non-heterotherm species48,49. Li et al. induced 
torpor in the MCF7 human cell line by inhibiting the chloride channel cystic fibrosis transmembrane regulator 
(CFTR) and analyzed the effects of their treatment using RNA-seq. We applied StrokeofGenus to interrogate 
whether torpor induced by CFTR inhibition phenocopies naturally-occurring torpor.

We identified three patterns corresponding to untreated, 1-hour, and 24-hour GlyH-101-treated MCF7 
samples (Fig.  5A). The MCF7 cell line is derived from breast ductal adenocarcinoma cells48. Breast ductal 
cells derive from stromal adipocyte progenitor cells50, so we searched for shared gene expression between the 
MCF7 dataset and adipose samples from the grizzly dataset. Grizzly Pattern 4, found in euthermic adipose, 
showed significant enrichment in untreated MCF7 samples over 24 h-treated samples (P = 0.0080), and grizzly 
Pattern 5, found in torpor adipose, showed significant enrichment in 24 h-treated MCF7 samples over untreated 
(P = 0.013) (Fig. 5B). Similarly, MCF7 Pattern 1, found in untreated samples, showed significant enrichment 
in euthermic over torpid grizzly adipose (Pattern 1 euthermia/torpor P = 3.5e-5), and MCF7 Pattern 3, found 
in 24-hour treated samples, showed significant enrichment in torpid over euthermic grizzly adipose (Pattern 3 
torpor/euthermia P = 6.5e-5) (Fig. 5C). These findings cumulatively demonstrate that torpor induced by CFTR 
inhibition in MCF7 cells shows shared gene expression with natural torpor in grizzly adipose, suggesting that 
CFTR inhibition successfully phenocopies in vivo torpor.

Limitations of the study
StrokeofGenus relies on the identification of one-to-one gene orthology. This approach simplifies the 
identification of shared gene expression, but may lead to loss of signal and nuance especially in circumstances of 
species with genome expansion events.

StrokeofGenus was designed to use de novo transcriptomes. In this approach, gene reconstruction and 
subsequent ortholog discovery are impacted by sample tissue type diversity and sequencing depth. However, 
StrokeofGenus is also able to use reference genomes which will not be impacted by those same factors.

Shared expression pattern discoverability by StrokeofGenus is heavily dependent on study design. The 
determination of the correct number of patterns can be impacted when there are limited biological replicates. For 
instance, the Chinese alligator 2 dataset has only two replicates per condition and some sample-specific patterns 
were found before all condition-specific patterns were determined (Fig. S1B). Best practice is to generate outputs 
for a few patterns beyond when the first sample-specific pattern is identified. If more condition-specific patterns 
resolve, the sample-specific pattern can be disregarded because it is independent of condition-specific patterns 
and therefore does not impact the identification of condition-specific genes. Confidence in a pattern’s identity 
can be amplified by including a robust number of biological replicates (Fig. 2, Fig. S1).

Genes that are specifically downregulated in a transcriptomic state can be extracted from pattern weight 
outputs of CoGAPS. However, CoGAPS does not include a function to specifically generate a list of significant 
pattern-specific downregulated genes, so users would have to manually extract them from the CoGAPS outputs.

Also, StrokeofGenus has no function to directly determine which genes are driving the sharing of patterns 
across species. A strong inference can, however, be made by first identifying the global sharing of a pattern in 
the target dataset, and then identifying pattern markers whose expression in the target dataset aligns with that 
sharing (Fig. S5B, C). This limitation could be eliminated in the future by the development of computational 
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techniques to discern projection drivers. Overall, however, these limitations of StrokeofGenus are readily 
surmounted with robust study design.

Discussion
StrokeofGenus simplifies the analysis of time course gene expression data. Even with expanding numbers of 
time points, the identification of distinct transcriptomic states and state-specific gene expression is consolidated 
in a single step without the need for increasingly complex arrangements of pairwise comparisons. The matrix 
factorization output is also apt for cross-dataset and -species comparisons using transfer learning, enabling the 
identification of shared gene expression without the need for manual comparison of gene lists.

With the combination of matrix factorization and transfer learning in StrokeofGenus, we identified the 
distinct transcriptomic states that compose different forms of torpor and demonstrated that some sampled time 
points are transcriptomically identical. Distinct phases include euthermia, interbout arousal (IBA), and torpor 
(Figs. 2 and 3). In contrast, we show that pre- and post-hibernation and pre- and post-IBA are indistinguishable 
from euthermia and torpor, respectively (Figs. 2 and 3). Prior studies have suggested similar conclusions, but the 
broader view of the transcriptome considered via matrix factorization and transfer learning allows for clearer 
delineations between transcriptomic states.

Transfer learning demonstrates that torpor gene expression programs for various tissues such as the brain, 
liver, and white adipose tissue are shared across species, including between the mammal and reptile classes 
and between forms of torpor such as brumation and aestivation (Fig.  4). Shared gene expression programs, 
which involve complex inter-regulation of many genes, support the hypothesis that torpor is an ancestral 
adaptation that has been repeatedly lost rather than repeatedly independently evolved. Further, we found that 
a torpor phenotype induced in the MCF7 human cell line, which does not naturally undergo torpor, shared 
gene expression with the torpid grizzly bear, suggesting that non-heterotherms maintain a cryptic torpor 
phenotype. A prior study demonstrated that heterotherms share regions of accelerated evolution enriched for 

Fig. 5. Shared gene expression between artificially-induced and natural torpor. (A) Heatmap of treatment-
specific gene expression patterns in the MCF7 dataset. Each row is a sample and each column is a CoGAPS-
derived pattern. Blue represents low pattern weight and red represents high pattern weight. (B) Dot plots 
displaying treatment-specific sharing in the MCF7 dataset of torpor and euthermic patterns from adipose 
samples in the grizzly dataset. (C) Dot plots displaying time point-specific sharing in adipose samples in the 
grizzly dataset of torpor and euthermic patterns from the MCF7 dataset. Each point represents a single sample.
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noncoding regions51. Torpor may therefore represent a cryptic metabolic state that only requires mutations in 
select cis-regulatory elements to be activated. Variations in torpor phenotypes, such as between daily torpor 
and full hibernation or between fat-storing and food-storing hibernation, may represent activation of different 
components of this program.

Genes that drive conserved torpor patterns and which are found across multiple species in this analysis are 
likely to be enriched for important torpor drivers and represent a pool of likely candidates for the manipulation 
of transcriptomic states. For instance, oligodendrocyte differentiation and axon extension show enrichment in 
the euthermic brain in both Chinese alligators and bearded dragons (Fig. 4K). Genes directing these processes 
may play an important role in the brain’s rapid recovery and re-establishment of synapses following torpor3.

StrokeofGenus can be applied to further torpor and non-torpor questions. For instance, additional forms of 
torpor have been described in invertebrate species, such as aestivation in snails and sea cucumbers, the dauer 
state in nematodes, and diapause in insects36,47,52,53. Identification of shared gene expression between torpor in 
more basal animals and those discussed in this paper could push back the date of the evolution of torpor and 
generalize the torpor state to include pauses in development. An additional goal of torpor research is to identify 
effective methods of inducing torpor in non-heterotherm species, which could improve organ transplantation 
and space flight54–57. As demonstrated in this paper, application of matrix factorization and transfer learning 
can determine how closely induced torpid states match naturally-occurring torpor. Our pipeline could further 
be applied to identify shared gene expression across species for shared processes other than torpor, such as 
shifting coat color in response to seasonal changes, post-infection immune recovery, or limb regeneration58–60. 
Any process that involves shifts between transcriptomic states and which is shared across species could be 
investigated for shared gene expression using matrix factorization and transfer learning.

Data availability
Publicly-available RNA-seq reads were downloaded from the European Nucleotide Archive for each species: 
13LGS (PRJNA418486, PRJNA702062, PRJNA361561), Djungarian hamster (PRJNA743775), Australian cen-
tral bearded dragon (PRJNA476034), grizzly bear (PRJNA413091), Brandt’s bat (SRP017183), monito del mon-
te (PRJNA416414), Syrian hamster (PRJDB6278), and Chinese alligator (PRJNA593416, PRJNA556093), and 
MCF7 (PRJNA513383). Raw sequencing reads generated for this study will be available upon publication on the 
Gene Expression Omnibus as GSE248932.
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