
UC Riverside
UC Riverside Previously Published Works

Title
Shared Signatures of Parasitism and Phylogenomics Unite Cryptomycota and 
Microsporidia

Permalink
https://escholarship.org/uc/item/8vk5g834

Journal
Current Biology, 23(16)

ISSN
0960-9822

Authors
James, Timothy Y
Pelin, Adrian
Bonen, Linda
et al.

Publication Date
2013-08-01

DOI
10.1016/j.cub.2013.06.057

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vk5g834
https://escholarship.org/uc/item/8vk5g834#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Shared Signatures of Parasi
Current Biology 23, 1548–1553, August 19, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.06.057
Report
tism

and Phylogenomics Unite
Cryptomycota and Microsporidia
Timothy Y. James,1,* Adrian Pelin,2 Linda Bonen,2

Steven Ahrendt,3 Divya Sain,3 Nicolas Corradi,2

and Jason E. Stajich3

1Department of Ecology and Evolutionary Biology, University
of Michigan, Ann Arbor, MI 48109, USA
2Canadian Institute for Advanced Research, Department of
Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
3Department of Plant Pathology and Microbiology and
Institute for Integrative Genome Biology, University of
California, Riverside, CA 92521, USA

Summary

Fungi grow within their food, externally digesting it and

absorbing nutrients across a semirigid chitinous cell wall.
Members of the new phylum Cryptomycota were proposed

to represent intermediate fungal forms, lacking a chitinous
cell wall during feeding and known almost exclusively from

ubiquitous environmental ribosomal RNA sequences that
cluster at the base of the fungal tree [1, 2]. Here, we sequence

the first Cryptomycotan genome (the water mold endopara-
site Rozella allomycis) and unite the Cryptomycota with

another group of endoparasites, the microsporidia, based
on phylogenomics and shared genomic traits. We propose

that Cryptomycota and microsporidia share a common
endoparasitic ancestor, with the clade unified by a chitinous

cell wall used to develop turgor pressure in the infection pro-

cess [3, 4]. Shared genomic elements include a nucleotide
transporter that is used by microsporidia for stealing

energy in the form of ATP from their hosts [5]. Rozella har-
bors a mitochondrion that contains a very rapidly evolving

genome and lacks complex I of the respiratory chain. These
degenerate features are offset by the presence of nuclear

genes for alternative respiratory pathways. The Rozella
proteome has not undergone major contraction like micro-

sporidia; instead, several classes have undergone expan-
sion, such as host-effector, signal-transduction, and folding

proteins.

Results and Discussion

The RozellaGenome Encodes Four Chitin Synthase Genes
Cryptomycota (also known as Rozellida) have recently been
proposed to represent the earliest diverging branch of fungi
whose diversity may be equal to that of the rest of the kingdom
[1]. Somemembers of this phylumwere hypothesized to lack a
chitinous cell wall throughout their life cycle, and have thus
been referred to as potential intermediate forms that diverged
before the evolution of one of the defining features of the
fungal kingdom, that of feeding across a chitinous cell wall.
However, these claims are based primarily on microscopy
and single-sequence analyses of environmental samples.
By using a culture of the only described genus assigned to
Cryptomycota, Rozella, we were able to perform in-depth
*Correspondence: tyjames@umich.edu
investigations into the cell biology and genome content that
were previously unfeasible.
Rozella allomycis can be cultivated as an obligate endopar-

asite of the water mold Allomyces. The parasite grows in the
host as a naked,mitochondriate protoplast suspected of using
phagocytosis to devour the cytoplasm of its host [6, 7]. For
reproduction, it either stimulates the host to form a cell wall
around developing zoosporangia containing motile zoospores
or produces a thick-walled resting spore that stains positive
for chitin or cellulose [8]. Using a combination of Illumina and
Pacific Biosciences (PacBio) sequencing technologies, we
assembled the genome of Rozella into 1,060 contigs totaling
11.86 Mbp. The genome is apparently diploid, with 3,972
high-quality heterozygous SNPs and 6,350 predicted genes.
We identified four chitin synthase genes, all of which are in
class IV or V/VII of division II [9]. Importantly, division II chitin
synthases (Figure S1 and Table S1 available online) are known
to be specific to fungi and microsporidia [10]. Among the divi-
sion II chitin synthases of Rozella, one contains a myosin
domain, a feature that could function in polarized growth dur-
ing host invasion, similar to the development of the penetration
tube in corn smut [11]. Previously, we showed that the inner
wall of the resting spore was chitin positive using calcofluor
white [8]; here, we show that the infective cyst form is also pos-
itive for N-acetyl-D-glucosamine (the primary sugar of chitin)
and that the chitin stain is most intense at the penetration point
(Figure 1).

Cryptomycota Are Related to Microsporidia

Cryptomycota may be related to two other groups, microspor-
idia and aphelids, both of which are endoparasites that also
grow as naked protoplasts in their hosts [12, 13]. The phyloge-
netic placement of microsporidia has long been contentious
and is confounded by an accelerated rate of evolution causing
long branch attraction (LBA) [14], but a consensus has recently
emerged that microsporidia are related to or derived from
within basal fungi, with which they share the presence of a
chitinous cell wall, but remarkably little else [15–17]. The only
phylogenetic studies that have used protein-encoding gene
sequences from both Cryptomycota and microsporidia have
clustered these lineages together as the earliest branch of
the fungal tree, but without robust statistical support [12, 13].
In the present study we generated a 200-gene concatenated
supermatrix and estimated the phylogeny of 28 fungi and 11
outgroup species using maximum likelihood and Bayesian
methods. These phylogenies strongly supportRozella+micro-
sporidia as the earliest divergence within the fungi (Figure 2).
To test for LBA, we sequentially removed the most rapidly

evolving sites [18]. After deleting an eighth, a quarter, and
then half of the most quickly evolving sites, each tree and
analysis method recovered strong support for Rozella +
microsporidia, with bootstrap support increasing to 100%
and Bayesian posterior probabilities remaining R0.99. We
then tested whether alternative placements of the microspor-
idia could be statistically rejected using the approximately
unbiased test. We were able to reject the placement of micro-
sporidia at eight alternative locations (p < 0.05) (Figure 2); how-
ever, we were unable to statistically reject the possibility that
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Figure 1. Rounded Cysts Stain with Wheat-Germ Agglutinin, Conjugated

with Oregon Green

Shown are three slides in phase contrast and with fluorescence. Cysts were

stained after 1 hr of infection ofAllomyceswith zoospores and show intense

staining of the penetration peg. The scale bar represents 5 mm.
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microsporidia branched just before Cryptomycota/Rozella
diverged from the remaining fungi (p = 0.375). Using the
approximately unbiased test, we also tested the support for
the nine possible alternative placements of microsporidia
under fast site removal. As sites were removed, the posterior
probability for the alternative placement of microsporidia at
the base of the fungi decreased, meaning that the alternative
placement was statistically less likely (but not significantly
worse) as fast sites were removed (Table S2).

Given the rapid evolution of microsporidian proteins, we
searched for additional evidence of phylogenetic relatedness
that does not suffer from LBA due to sequence evolution
(i.e., genomic synapomorphies), and here we found that three
genes previously thought to be exclusive to microsporidian
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genomes also have orthologs in Rozella (Figure S2). Interest-
ingly, all of these were hypothesized to have originated from
taxonomically diverse lineages by means of horizontal gene
transfers to facilitate intracellular parasitism [19, 20]; they
include the nucleotide phosphate transporters (NTTs; Pfam:
PF03219), the nucleoside H+ symporters (specific family of
PF03825), and the chitinase class I genes (specific family of
PF00182). The identification of these genes in Rozella repre-
sents an independent line of evidence for a close evolutionary
link between Cryptomycota and microsporidia and indicates
shared signatures of energy parasitism in the form of nucleo-
tide and nucleoside transporters and genes for chitin degrada-
tion. Importantly, NTP transporters are known to be involved in
the specific theft of ATP from the host in microsporidia and the
intracellular parasitic prokaryotes (Chlamydia) from which the
genes were originally transferred [5, 20].

The Rozella Mitochondrial Genome Shows Evidence
of Degeneration

The capacity of microsporidia to steal ATP from their hosts
using these bacterium-like NTTs has been linked with the
degeneration of their mitochondrion. Specifically, this latter
organelle can only be found as a vestigial, genome-less organ-
elle called a mitosome [21]. By assembling the mitochondrial
genome of Rozella, we found that its mitochondrial genome
is degenerate; an intriguing finding that supports the idea
that the capacity to import ATP results in drastic genome
changes for the mitochondrion. Specifically, the mitochondrial
genome of Rozellamaps as a circular, 12-kbp-long, extremely
AT-rich (86%) molecule that encodes a total of six known
proteins, the small- and large-subunit ribosomal RNAs, and
four transfer RNAs (tRNAs) (Figure 3). All genes are character-
ized by extreme sequence divergence and remarkably low GC
content (e.g., atp6 has only 9% GC). The mitochondrial
genome also harbors a gene that requires one trans-splicing
event, involving a group I intron located within the first subunit
of cytochrome oxidase (Figure S3) at a position identical to
that found in Placozoa and in more diverged fungal lineages
(i.e.,Gigaspora spp. [22]). The remaining protein genes encode
components of the respiratory chain, except for complex I (i.e.,
these NADH dehydrogenase genes are absent from both the
mitochondrial and nuclear genomes). The loss of complex I
from both the mitochondrial and nuclear genomes is also
eneusi

ota

iomycota
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Figure 2. Phylogeny of Fungi Based on 200

Genes Shows Rozella and Microsporidia Form a

Clade

All branches have 100% bootstrap and Bayesian

support except the ones indicated (bootstrap/

Bayes posterior probability). All microsporidian

branches are reduced in length 43 for clarity.

The inset shows the original tree with the unal-

tered branch lengths. Green triangles indicate

an alternative placement of the microsporidia

clade that is significantly worse (approximately

unbiased test), and the red triangle shows a

placement that is not significantly different.



mitochondrial
matrix

intermembrane
space

AOX

NDext

NDint

II

III IV V

COB

COX1
COX2
COX3

Cytc

Q

ATP6
ATP9

M(cat) Y(gta) 

C(gca)

W
(cca)cox1a

Rozella allomycis

12,055 bp

6.02 kb

Mitochondrial DNA
3.01 kb9.03 kb

0 kb

co
x1
b

at
p9

cox2 atp
6

co
b

rns

rnl

co
x3

O
RF

12
8

ORF61

Figure 3. Reduced Mitochondrial Genome and Electron-Transport Chain in

Rozella

Top: Genome map. Filled boxes represent genes, and group I introns are

shown in gray. tRNA genes are shown according to their one-letter amino

acid code, followed by their anticodon. Cox1 messenger RNA is generated

by trans-splicing of Cox1a and Cox1b (Figure S3). All open reading frames

(ORFs) longer than 60 codons are shown. Bottom: Schematic of potential

respiratory chain pathways in R. allomycis. Subunits encoded in the mito-

chondrial genome are shown in red, and nucleus-encoded components

are shown in either white, for complexes II–V of the oxidative phosphoryla-

tion pathway, or in gray, for the rotenone-insensitive (NDext and NDint) and

cyanide-insensitive (AOX) alternative pathways. The gray and black arrows

represent the flowof electrons and protons, respectively. For complex I core

components, only a 39 kDa subunit homolog was detected in the nuclear

genome. Nuclear-encoded genes involved in the respiratory chain are listed

in Table S4.
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observed in apicomplexan mitochondrial genomes, such as
Plasmodium falciparum [23], as well as in several Saccharo-
mycetes, including the fungal species with the smallest
mitochondrial genome, Hanseniaspora uvarum [24]. However,
the loss of this complex may not dramatically impact the
capacity of Rozella to produce ATP, given that this step of
the respiratory chain can be bypassed through the involve-
ment of several nuclear-encoded proteins in ways that are
similar to those found in certain other eukaryotes. Specifically,
R. allomycis encodes both external and internal NADH dehy-
drogenase genes and alternative oxidase (Table S3). These
alternativemeans of regenerating NAD+ are unlinked to proton
pumping in the mitochondrion, and thus generate less energy
in the form of ATP. This may reflect a specialized lifestyle, as
in apicomplexans for example, or alternatively, that the mito-
chondrion is deteriorating into a mitosome, as in microspori-
dial parasites [25, 26].
The Rozella Genome Lacks Many Genes for Primary
Metabolism but Is Enriched for Signal-Transduction Genes

As expected for an obligate intracellular pathogen, the Rozella
proteome is missing key components of primary metabolism.
However, the Rozella genome encodes for the standard
enzymes of the Krebs cycle and the proteins necessary for
Fe-S cluster formation and heme biosynthesis, suggesting
that the function of the mitochondrion is diverse and typical
of other eukaryotes. Other key components of primary meta-
bolism are more consistent with a lifestyle as an intracellular
parasite, with core components of de novo nucleotide and
oxidative phosphorylation missing (Figure 4). Overall, the
portion of the proteome responsible for primary metabolism
of Rozella is more similar to that of the apicomplexan para-
sites,Plasmodium and Toxoplasma, than that ofmicrosporidia
or other fungi. On the other hand, the amino acid metabolism
ofR. allomycis is more similar to that of Metazoa and Amoebo-
zoa, perhaps suggestive of a phagotrophic mode of protein
consumption and amino acid extraction.
Despite the large number of missing primary metabolism

genes, the predicted Rozella proteome is larger than that of
yeast (6,350 versus 5,770 proteins). This number of genes
greatly exceeds that found in microsporidia, which typically
ranges between 1,800 and 3,800 genes [28]. Using gene-
ontology terms and Pfam domains of the 6,350 proteins, we
sought to determine which biological categories are enriched
in Rozella, and we found that proteins involved in protein-
protein interactions (e.g., signal transduction, protein folding,
kinases, and proteins with WD40 domains) are all enriched in
percentage of the proteome (Figure S4; Table S4). We hypoth-
esize that some of the protein-protein interaction domains are
actually involved in the direct manipulation of host signaling or
recycling of host proteins. In support of this argument, we
identified 22 genes of the Crinkler family of effector proteins.
Crinkler proteins are found in many symbiotic, microbial
eukaryotes but are best known in oomycete plant pathogens
as secreted proteins that translocate into the host cytoplasm
or nucleus to induce plant cell death [29].

A Parasitic Root on the Fungal Tree of Life
Sequencing of theRozella genome provides a glimpse into the
early origin of fungi and their characteristics. Because Crypto-
mycota remained uncharacterized for so long, it may be spec-
ulated that they are largely unculturable fungi that parasitize
hosts that are understudied orwith little economic importance,
such as diatoms or water molds [1, 8]. Given the recent data
suggesting that Cryptomycota may be related to the algal
parasites known as aphelids [13, 30], it is predicted that the
earliest fungi lacked a cell wall in the trophic phase but re-
tained the capacity for phagocytosis. Having a genome
sequence of an aphelid would be very useful for ancestral-
state reconstruction and gene-content analysis of the earliest
fungal lineages.
Many Cryptomycota and aphelids appear to be aquatic and

disperse by flagellated motile spores. A search for homologs
of flagellum-associated proteins from the flagellated proto-
zoan Naegleria genome [31] reveals a pattern of presence
and absence of approximately 60 genes that can be found in
the genomes of Rozella and zoosporic Chytridiomycota and
Blastocladiomycota fungi, but not in Dikarya (Table S1). In
nearly all cases wherein homologs of flagellar proteins were
absent in Dikarya, they were similarly absent in the microspor-
idia, suggesting convergent losses of the flagellum. Although
the primary radiation of terrestrial fungi is linked to what may
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Figure 4. Principal-Component Analysis of the

Presence and Absence of Primary Metabolism

Genes in 12 Species

The 12 species analyzed were as follows: Aca

(Acanthamoeba castellanii), Ddi (Dictyostelium

discoideum), Dme (Drosophila melanogaster),

Ecu (Encephalitozoon cuniculi), Hsa (Homo

sapiens), Ncr (Neurospora crassa), Npa

(Nematocida parisii ERTm1), Pfa (Plasmodium

falciparum), Ral (Rozella allomycis), Sce

(Saccharomyces cerevisiae), Tgo (Toxoplasma

gondii), and Uma (Ustilago maydis). Orthologs

and classification into functional groups were

obtained from the Kyoto Encyclopedia of Genes

and Genomes (KEGG). We used pre-existing

ortholog definitions for all species except

Aca, Npa, and Ral. For those three species,

we used the KEGG Automatic Annotation Server

(KAAS) [27].
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be a single loss of the flagellum [32, 33], it is clear from this
study that multiple independent losses of the flagellum have
occurred, with the one leading to the evolution of the micro-
sporidian polar tube distinct from that associated with aerial
dispersal in filamentous fungi.

In the majority of fungi, polarized apical cell growth involves
using both turgor pressure and cytoskeletal forces to push on
an elastic hyphal tip, revealing fungal protoplasm to be similar
to an amoeba crawling within an extracellular chitinous tube
[34]. In showing here that Rozella cysts actively produce a
chitinous wall in the invasion process (Figure 1), we identify a
characteristic that unites fungi with Cryptomycota, microspor-
idia, and possibly aphelids, namely, the use of a chitinous cell
wall to generate turgor pressure during the polarized move-
ment of the protoplasm. In Rozella, microsporidia, and aphe-
lids, this involves the uptake of water into a cyst or spore,
the formation of a posterior vacuole, and the forward injection
of protoplasm into the host. The unification of the mysterious
Cryptomycota with aphelids [13] and the well-known micro-
sporidia, a group probably comprised of many more than the
1,300 described species [35], establishes a new, hyperdiverse
clade of endoparasitic fungi near the root of the fungal tree that
had already evolved a chitinous cell coat for both reproduction
and invasion.

Experimental Procedures

Biological Material and Growth Conditions

R. allomycis isolate CSF55 was isolated from soil collected in a roadside

drainage ditch in Hattiesburg, MI, USA. The soil was added to distilled water

and baited with sterile hemp seeds. Coculturing of R. allomyciswith its host

Allomyces sp. was done using 1/8 strength Emerson’s YpSs, with or without
2% agar. Zoospores of the parasite were har-

vested from the surface of Petri dishes by flood-

ing with double-distilled H2O.

DNA and RNA Sequencing

DNA was extracted from the zoospores using a

standard protocol [36]. A genomic DNA library

of fragments approximately 650 bp in size was

prepared and run on 1/2 of a lane of an Illumina

Genome Analyzer IIx at the University of Michi-

gan DNA Sequencing Core, using paired-end

reads of the fragments run to 159 bp cycles. A

second genomic DNA library of fragment sizes

of a mean length of 2 kbp was generated using

a PacBio RS DNA Template Preparation Kit 1.0.
The libraries were run in two SMRT cells of a PacBio RS analyzer at the

University of Michigan DNA Sequencing Core.

Genome Assembly and Annotation

PacBio reads were postprocessed for correcting the high error rate of reads

using the PacBioToCA module of the Celera Assembler v.7.0 [37] and

assembled de novo into 4,866 contigs with an average size of 4 kb, with

the largest contig being 81,317 bp. All PacBio reads and contigs were

treated as long reads in the assembly process. De novo assembly was

accomplished with velvet v.1.2.03 [38] using the short paired Illumina data

and resolving repeats using the long PacBio reads.

The draft genomewas assembled into 1,060 contigs of a total size of 11.86

Mbp. The largest contig was 719 kbp in size, the N50was 58,027 bp, and the

estimated fold coveragewas 264X. TheGCcontent was 34.5%, and the total

number of bases in the assembly with Ns was 121,591. Genome annotation

was accomplished using the MAKER pipeline 2.25 [39].

Phylogenetic Analysis

OrthoMCL was used to extract orthologous proteins from Rozella and 38

other species with an elevation value of 18. From the set of 35,947 orthologs,

we discarded all orthologs that were not found in at least 36 of the 39 spe-

cies, leaving 329. These orthologs were then filtered by removing those in

which the multiple sequences were nonmonophyletic, leaving 200 ortholo-

gous proteins. The 200 proteins were concatenated into a supermatrix of

71,556 amino acids and analyzed using PhyloBayes 3.3 [40] with the CAT

model for 500 hr using two chains and RAxML 7.0.4 [41] with the LG model.

Accession Numbers

Illumina and PacBio reads are available at the Sequence Read Archive of the

National Center for Biotechnology Information (NCBI) under accession

number SRA068184. The whole-genome shotgun project has been depos-

ited at DDBJ/EMBL/GenBank under accession number ATJD00000000.

The version described in this paper is version ATJD01000000.The mito-

chondrial genome of R. allomycis is deposited in GenBank under the acces-

sion number KC702881.



Current Biology Vol 23 No 16
1552
Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, and four tables, and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.06.057.
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