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G E N E R A L A R T I C L E
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Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Genetic association studies have identified
the highly variable human leukocyte antigen (HLA) region as the strongest susceptibility locus for IBD and specifically
DRB1∗01:03 as a determining factor for ulcerative colitis (UC). However, for most of the association signal such as delineation
could not be made because of tight structures of linkage disequilibrium within the HLA. The aim of this study was therefore
to further characterize the HLA signal using a transethnic approach. We performed a comprehensive fine mapping of single
HLA alleles in UC in a cohort of 9272 individuals with African American, East Asian, Puerto Rican, Indian and Iranian
descent and 40 691 previously analyzed Caucasians, additionally analyzing whole HLA haplotypes. We computationally
characterized the binding of associated HLA alleles to human self-peptides and analyzed the physicochemical properties of
the HLA proteins and predicted self-peptidomes. Highlighting alleles of the HLA-DRB1∗15 group and their correlated
HLA-DQ-DR haplotypes, we not only identified consistent associations (regarding effects directions/magnitudes) across
different ethnicities but also identified population-specific signals (regarding differences in allele frequencies). We observed
that DRB1∗01:03 is mostly present in individuals of Western European descent and hardly present in non-Caucasian
individuals. We found peptides predicted to bind to risk HLA alleles to be rich in positively charged amino acids. We
conclude that the HLA plays an important role for UC susceptibility across different ethnicities. This research further
implicates specific features of peptides that are predicted to bind risk and protective HLA proteins.
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Introduction
Ulcerative colitis (UC) is a chronic inflammatory disease of the
gut. Like Crohn’s disease (CD), the other main subphenotype of
inflammatory bowel disease (IBD), it is most likely caused by an
abnormal reaction of the immune system to microbial stimuli
with environmental factors also playing a role. Currently, >240
genetic susceptibility loci have been associated with IBD in Cau-
casians. The majority of these loci are shared between UC and CD
(1–4). Strong genetic association signals with both diseases have
been identified in the human leukocyte antigen (HLA) region.
The HLA is mapped to the long arm of chromosome 6 between 29
and 34 Mb and moderates complex functions within the immune
system. One of the major tasks of the HLA is the presentation
of antigens to the host immune system. While HLA class I
proteins usually present peptides derived from the cytosol (i.e.
peptides derived from intracellularly replicating viruses), HLA
class II proteins present peptides from extracellular pathogens
that have entered the cell e.g. by phagocytosis. In Caucasian
IBD a large percentage of the phenotypic variation is explained
by variants within the HLA class II locus, with DRB1∗01: 03
being the most significant risk allele for UC [P = 2.68 × 10−119,
odds ratio (OR) = 3.59; 95% confidence interval (CI) = 3.22–4.00]
(5), specifically by alleles of the HLA-DR and -DQ loci, although
tight structures of linkage disequilibrium (LD) have hindered
the assignment of the causal variants. Additionally, a system-
atic comparison across ethnicities for the HLA association in
UC has not been performed, also because of the lack of HLA
imputation panels that could accurately infer HLA alleles for
transethnic genetic data sets (5–14). Recently, we created such
a transethnic HLA imputation reference panel including dense
single nucleotide polymorphism (SNP) fine mapping data typed
on Illumina’s ImmunoChip, covering a large proportion of the
HLA, within eight populations of different ethnicities (15). Here
we report the first transethnic fine mapping study of the HLA in
UC and some biological implications of the results.

Materials and Methods
Cohort description

A detailed description of the cohorts and recruitment sites can
be found in the Supplementary Methods and Supplementary
Material, Table S1. In brief, a total of 52 550 individuals (including
18 142 UC patients and 34 408 controls) were used in this study,
of which 10 063 (3517 UC cases and 6546 controls) were of non-
Caucasian origin. The Caucasian, Iranian, Indian and Asian data
set (from which we extracted Japanese and Chinese individuals)
are of part of the data freeze published in (2), whereas individ-
uals of African American (16), Korean (17), Maltese and Puerto
Rican descent were added. The recruitment of study subjects
was approved by the ethics committees or institutional review
boards of all individual participating centers or countries. Writ-
ten informed consent was obtained from all study participants.

Genotyping and quality control

All individuals were typed on the Illumina HumanImmuno
BeadChip v.1.0 or the Illumina Infimum ImmunoArray 24
v2.0 (Malta). Genotypes of the study subjects were quality
controlled as described in the Supplementary Methods. A
median of 8555 SNPs were extracted from the extended HLA
region (chromosome 6, 25–34 Mb) and submitted to SNP Phasing
and imputation and HLA allele imputation (Workflow in
Supplementary Material, Fig. S1).

Phasing of single nucleotide variants

Using SHAPEIT2 (18) version r727, we phased quality-controlled
genotype data on chromosome 6, 25–34 Mb of the respective
cohorts using variants with a minor allele frequency (MAF) >1%.
We excluded SNPs that did not match 1000 Genomes Phase III
(19) (October 2014) alleles [published with the SNP imputation
tool IMPUTE2 (20,21)] and ATCG variants that did not match
the AFR, EUR, SAS, EAS or AMR populations (+ strand assumed
for both). AFR (used for comparison with our African Ameri-
can samples), EUR (Caucasian, Iranian, Maltese), SAS (Indian),
EAS (Chinese, Korean, Japanese) and AMR (Puerto Rican). Using
default values of SHAPEIT2 (–input-thr 0.9, –missing-code 0,
–states 100, –window 2, –burn 7, –prune 8, –main 20 and –
effective-size 18 000), we first generated a haplotype graph and,
as suggested by the authors of SHAPEIT2, calculated a value of
phasing certainty on the basis of 100 haplotypes generated from
the haplotype graph for each population separately. Then, we
excluded SNPs with a median phasing certainty <0.8 within each
population separately.

Imputation of single nucleotide variants

To increase the density of single nucleotide variants (SNVs,
including variants with MAF <1%) within the HLA region, we
used publicly available nucleotide sequences of HLA alleles and
further imputed SNVs on the basis of the HLA alleles imputed
for each individual using IMPUTE2 (22) with the 1000 Genomes
Phase III (19) individuals as a reference (October 2014) using
parameters: -Ne 20,000, -buffer 250, -burnin 10, -k 80, -iter
30, -k_hap 500, -outdp 3, -pgs_miss, -os 0 1 2 3, allowing addition-
ally for the imputation of large regions (-allow_large_regions).
Imputation of the Caucasian data set was performed in batches
of 10 000 samples. Imputation quality control was performed
post-imputation excluding variants with an IMPUTE2 info
score < 0.8. For the Caucasian data set, we excluded variants with
a median IMPUTE2 info score < 0.8 and a minimum IMPUTE2 info
score < 0.3. Additionally, we imputed SNPs into the data set using
imputed HLA allele information (i.e. translated imputed HLA
information into real nucleotide information at each position of
the allele) (Supplementary Material, Methods).

HLA imputation

QC-ed genotype data for each cohort were imputed using
Beagle version 4.1 (22,23) on the basis of the corresponding
genotype variants observed in the respective cohort to fill in
missing genotypes with the study reference itself serving as a
reference. We imputed HLA alleles at loci HLA-A, -C, -B, -DRB3,
-DRB5, -DRB4, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1 at full
context four-digit level using the IKMB reference published
in (15) and the imputation tool HIBAG (24). Imputation of the
Caucasian panel was additionally performed with the HLARES
panel published with HIBAG (ImmunoChip-European_HLARES-
HLA4-hg19.RData). Alleles were not excluded by setting a
posterior probability threshold. However, we took the sensitivity
and specificity measures we generated as previously reported
(15) into consideration during interpretation.

Generation of HLA haplotypes

HLA haplotypes were generated by comparing SNP haplotypes
generated by SHAPEIT2 (18) for each individual and SNP haplo-
types stored for the alleles within the classifiers of the HLA ref-
erence model (15) for the alleles that were imputed for each indi-
vidual at a given locus. For 10 random classifiers, we calculated
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the minimal distance between the SNP haplotypes stored for the
allele of interest in the HLA reference model and the SNP haplo-
types generated by SHAPEIT2. We assigned alleles to a parental
haplotype on the basis of how often this allele had minimal
difference to the haplotype. Phasing certainty was calculated as
the percentage of times an allele was correctly assigned to the
chosen parental haplotype. In cases no decision could be made
or both alleles were assigned to the same haplotype, phasing cer-
tainty was set to 0. If an individual was homozygous at a locus,
phasing certainty was set to 1. Only SNPs present in both the
classifier and the SNP haplotypes generated by HIBAG were used
after aligning the alleles to alleles stored in the HIBAG model.

HLA haplotype benchmark

We tested the generation of HLA haplotypes with the above
method, using genotype information of trio samples [Utah
Residents (CEPH) with Northern and Western European Ancestry
(CEU) and Yoruba in Ibadan, Nigeria (YRI)] extracted from the
Hapmap Phase 3 project and HLA allele information published
for these individuals in the 1000 Genomes HLA diversity panel
(25) (extracted from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/te
chnical/working/20140725_hla_genotypes/20140702_hla_diversi
ty.txt) using the most common allele for ambiguous calls. The
relationship between the individuals was extracted from the file
relationships_w_pops_121708.txt published with the HapMap
data. In total, 27 CEU samples and 24 YRI samples and their
parents were analyzed. SNP genotype data were downloaded
from the HapMap Phase 3 Server (version 2015-05) and positions
present on the Illumina ImmunoChip were extracted. We applied
the procedure described above for phasing of HLA alleles. The
results are shown in Supplementary Material, Table S2. In brief,
we phased the HLA alleles of an individual manually using the
information on the parental HLA allele genotypes (g.mom, g.dad
g.child) as shown in Supplementary Material, Table S2. We also
phased the HLA alleles using the approach described above. The
phasing certainty was calculated from assignments across 10
classifiers and the number of positions analyzed per classifier
were noted.

Calculation of marginal probabilities for each allele

Since HIBAG stores a matrix of all posterior probability values
of each allele combination per individual, we calculated the
marginal sums of posterior probability for each allele per indi-
vidual. The overall marginal probability of an allele was then
calculated as the mean of the marginal sums of the posterior
probability calculated for alleles predicted to carry this allele.

Association analysis

Subsequently, we performed a standard logistic regression asso-
ciation analysis on single alleles and SNVs. HLA alleles were
coded as present (P) or absent (A) with genotype dosages (PP = 2,
AP = 1 and AA = 0) by simply counting the number of times an
allele occurred for a specific individual. SNPs imputed with
IMPUTE2 were included as dosages. SNVs inferred from HLA alle-
les were coded as 0, 1, 2 on the minor allele. Additive association
analyses for each marker were performed using.

log(oddsi) = β0 + β1xi + β2U1i + β3U2i + β4U3i + β5U4i + β6U5i +β (β7bi).

for individual i = 1, . . . ,N, genotype dose or call (x) and eigenvec-
tors (U1–U5). For the analysis of the Puerto Rican and Indian

cohort, we additionally adjusted for batch (b) (Supplementary
Methods; batches during QC).

Meta-analysis

We performed a random effects (RE) meta-analysis of associa-
tion statistics from the nine analyzed cohorts using the tools
RE2 and RE2C (26,27). Classical fixed-effects (FE) meta-analyses
are not optimal for the analysis across study estimates where
underlying allele frequencies are different between cohorts or
similar only for some of the analyzed cohorts (28) as in the
case of transethnic analyses. Using RE2 (26) and REC2 (27), tools
optimized for the analysis of heterogeneous effects, we com-
bined the association statistics for all nine cohorts for SNPs
and HLA alleles with MAF (SNPs) and allele frequency (AF) (HLA
alleles) >1% in the respective cohorts to calculate a combined P-
value. For the analysis with RE2C, we set the correlation between
studies to uniform. We report both FE and RE measures in the
Supplementary Tables.

Clustering according to preferential peptide binders

Using NetMHCIIpan-3.2 (29), we predicted binding affinities for
five sets of the 200 000 unique random 15mer peptides (Sup-
plementary Methods) for all alleles that were significant in the
meta-analysis and had a frequency of >1% in at least one of
the nine populations. We give the amino acid distribution of
these sets in Supplementary Material, Table S3. We selected the
top 2% (strong binders) preferential peptide binders as given by
the NetMHCIIpan-3.2 software for each allele and calculated the
pairwise Pearson correlation between alleles on the basis of the
affinity values of the top 2% binders shared by the respective
allele combinations (29) using R (version 3.3.1) creating a matrix
of correlations. Clustering was performed on this matrix using
hclust of the R package stats.

We additionally analyzed correlations between cluster den-
drograms produced for each of the five sets of 200 000 unique
random peptides using the R packages corrplot (version 0.84) and
dendextend (version 1.12). Here, the correlation between cluster
dendrograms (i.e. the concordance of the tree-structure) is calcu-
lated with a value of 0 signifying dissimilar tree-structures and
1 signifying highly similar tree-structures. Dendrograms were
plotted using the ape (version 5.3) package, for HLA-DQ and DRB1.

Generation of combined peptide motifs

On the basis of the clusters generated above for the human
peptides, we grouped the risk alleles and protective alleles into
two clusters each (Supplementary Methods). For each of the
five peptide sets, we concatenated the top 2% ranked binders
(percentile rank of NetMHCIIpan-3.2) for alleles within each pro-
tective and risk group and excluded peptides that were among
the 10% top-ranked binders (percentile rank of NetMHCIIpan-3.2)
in two or more of the groups. On the basis of this, we generated
peptide binding motifs using Seq2Logo (30) for each of the groups
and also plotted the position-specific scoring matrix scores for
chosen amino acids within a group.

Clustering according to physico-chemical properties

Clustering of HLA proteins was performed using five different
numerical scores: the Atchley scores F1 and F3 (31), residue-
volume (32) and self-defined parameters charge and hydrogen-
acceptor capability (Supplementary Material, Table S4). The
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amino acid sequence of each respective allele was extracted at
positions noted in Supplementary Material, Table S5 for Pockets
1, 4, 6, 7 and 9 from HLA allele protein sequences that were
retrieved from the IMGT/HLA database (version3.37.0) (33) and
aligned using MUSCLE (34). The alpha chain, of the HLA-DR locus
is invariable and was not considered in the analysis of this locus.
For the respective analysis, each amino acid was assigned its
numerical score. Clustering was then performed on the scores
using the hclust function of the R (version 3.3.1) package stats
and Euclidian distances.

Results
Here we imputed HLA alleles for a total of nine cohorts (Sup-
plementary Material, Fig. S2, Supplementary Material, Table S1)
within three HLA class I (HLA-A, -C and -B) and eight class II loci
(HLA-DRB3, -DRB5, -DRB4, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1)
at full context four-digit level utilizing a median of 8 555 SNP
genotypes (located within extended HLA between 25 and 34 Mb
on chromosome 6p21) from Illumina’s ImmunoChip. After QC,
a total of 17 276 UC cases and 32 975 controls remained. 13 927
cases and 26 764 controls were previously reported Caucasians
(5) and 3251 cases and 6021 controls were non-Caucasian indi-
viduals (2). After SNP imputation and respective quality control
a median of 88 087 SNVs with INFO score > 0.8 were additionally
analyzed.

In line with our previous study in Caucasians (5), we observed
strong, consistent association signals for SNPs and HLA alleles
within the HLA class II region, featuring HLA-DRB1, HLA-
DQA1 and HLA-DQB1, for all UC case-control panels except
the small-sized Puerto Rican and Maltese cohorts (Fig. 1 and
Supplementary Material, Fig. S3). The strongest association
signal was seen for SNP rs28479879 (PVALUE_RE2 = 5.25 × 10−156,
I2 = 79.56), located in the HLA-DR locus, including HLA-DRB1 and
HLA-DRB3/4/5. In the Japanese and Korean panels, we further
observed a ‘roof-top’-like association signal spanning the HLA
class I and II loci (Fig. 1) that, as we subsequently demonstrated,
was caused by strong LD between the most disease-associated
class II alleles DRB1∗15:02, DQA1∗01:03 and DQB1∗06:01 and
the class I alleles B∗52:01 and C∗12:02. The ‘roof-top’-like signal
disappeared when conditioning on class I and class II alleles
separately (Supplementary Material, Fig. S4). Likely due to the
lack of statistical power, e.g. for the Maltese data set, and/or
diversity of the population, e.g. for the Puerto Ricans, association
P-values for these populations did not achieve the genome-wide
significance threshold (P < 5 × 10−8).

The most strongly and consistently associated class II
risk alleles within the meta-analysis were alleles of the
DRB1∗15 group (PVALUE_RE2 = 1.10 × 10−116, I2 = 92.13) (Fig. 2,
Supplementary Material, Table S6), observed to be located on
the same haplotype as DQA1∗01:02/03 and DQB1∗06:01/02 (Fig. 3,
Supplementary Material, Table S7). DRB1∗15:02 was most
frequent in the Asian populations (Japanese, Korean), whereas
DRB1∗15:03 was specific to the African American population
and DRB1∗15:01 had the stronger association and higher allele
frequency in the Chinese and Caucasian population (Fig. 2,
Supplementary Material, Table S6), which is consistent to
data published in the HLA allele frequency database (35).
Since effect sizes were heterogeneous across populations, we
did not compute a combined score, but rather show the OR
in Supplementary Material, Fig. S5. Other associated class II
alleles included DQA1∗03 alleles (PVALUE_RE2 = 3.51 × 10−81,
I2 = 6.47) that were observed to be located on a haplo-
type with DRB1∗04 (PVALUE_RE2∗ = 1.37 × 10−55, I2 = 0.00),

DRB1∗07:01 (PVALUE_RE2 = 3.66 × 10−35, I2 = 68.44) or DRB1∗09:01
(PVALUE_RE2∗ = 1.65 × 10−12, I2 = 0.00). DRB1∗04/07/09 alleles are
all located on the same haplotype as HLA-DRB4 alleles (15),
therefore absence of HLA-DRB4, hereafter named DRB4∗00:00,
was significantly associated with high risk (PVALUE_RE2 = 7.43
× 10−128, I2 = 27.74). Along the same line HLA-DRB5 is located
on the same haplotype as DRB1∗15. Its absence was therefore
observed to be protective. We identified DRB1∗10:01 as a novel
association signal (PVALUE_RE2 = 6.41 × 10−7, I2 = 15.08). It was
observed to be most frequent in the Iranian (3.2% controls
and 1.6% cases) and Indian (6.7% controls and 3.3% cases)
populations and rare in other populations (Supplementary
Material, Table S6), which is most likely why it has not
been described before. Among population-specific signals, we
also observed significant association of UC with DRB1∗14:04
(P = 0.004, OR = 1.64; 95%CI: 1.18–2.29) in the Indian population
(Fig. 2). Overall, alleles of 11 of the 13 known HLA-DRB1 two-
digit groups and all 5 known -DQB1 groups were associated
with UC across the different cohorts (Fig. 2, Supplementary
Material, Table S6, Supplementary Material, Fig. S6), with more
HLA-DRB1 alleles conferring protection than risk. Effect sizes in
the larger Caucasian and Japanese populations were observed
to be moderate (0.5 < OR < 2.0 for alleles with AF > 1%, with
the exception of DRB1∗15:02 (OR = 2.87; 95%CI: 2.46–3.36 in the
Japanese population). The comparison of beta estimates also
showed that Japanese and Korean effects estimates were most
similar (weighted correlation of 0.84, P = 1.3 × 10−30), whereas
Iranian and Indian effects estimates correlated better with
those of the Caucasian population (weighted correlation of
0.65, P = 1.0 × 10−16 and 0.69, P = 2.0 × 10−17, Supplementary
Material, Fig. S7, Supplementary Methods). Notably, we identified
DRB1∗01:03, which was identified as the strongest association
signal for IBD in our previous fine mapping analysis (5) to be
population specific. It was not present in the Asian populations
and was only observed with a frequency of <0.1% in the African
American and Puerto Rican populations. Detailed analysis of
the geographic distribution of the DRB1∗01:03 allele showed
that it seemingly occurs in Western Europe (Great Britain,
Ireland, France, Spain) and former Western colonies with
AF > 1%, whereas it seems to be infrequent in the Eastern
parts of Europe. We therefore hypothesize that this allele is
linked to the history of Western European countries (Fig. 6).
Within this study, the frequency of DRB1∗01:03 in the Caucasian
population is likely underestimated and therefore not the top
associated signal in the Caucasian analysis (i.e. DRB1∗01:03 was
imputed as DRB1∗01:01 or DRB1∗01:02 because of similarities
in SNP haplotype between these alleles) because of applying a
reference panel containing mostly non-Caucasian individuals
and European individuals from Germany only. Indeed, using
the European HLARES imputation panel, which contains a more
diverse Caucasian population, we re-established the signal. The
frequency of the remaining alleles imputed with our transethnic
reference data set highly correlated with our original study in the
Caucasian population (Supplementary Material, Fig. S8). Other
DRB1∗15, for instance DRB1∗15:06, did not show association
with UC. Interestingly, however, DRB1∗15:06 has the same amino
acid sequence as DRB1∗15:01 in the peptide binding groove and
may therefore biologically indeed play a role in IBD. With low
overall global frequency of the DRB1∗15:06 allele, it was not
statistically associated with UC. It was most frequent in the
Indian population (AF = 2.1%, OR = 1.27, 95%CI: 0.77–2.11). The
theoretical power to detect an effect at the given sample size
1621, with OR 1.27 and AF 2.1% is estimated to be 0.50 for a
significance level of 0.05. This is also true for other alleles listed

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data


Human Molecular Genetics, 2021, Vol. 30, No. 5 361

Figure 1. HLA regional association plots. Association analysis results for imputed and genotyped SNVs (gray) and four-digit HLA alleles (yellow) are shown for (A) 373

African American cases and 590 controls (AA), (B) 13 927 Caucasian cases and 26 764 controls (EUR) and (C) 709 Japanese cases 3169 and controls (JPN) as well as (D) the

meta-analysis (META) results from the analysis with RE2 (26) at variants with a MAF > 1% in the respective cohorts (including 17 276 cases and 32 975 controls from nine

different cohorts). The association plots for the remaining populations are provided in Supplementary Material, Fig. S3. The curves in (A–C) show the P-value of the

meta-analysis (PVAULE_RE2). In (D), the overlying curve shows the I2 as a measure of heterogeneity in the meta-analysis indicating the heterogeneity of effects and allele

frequencies in that region. Dashed lines indicate the thresholds of genome-wide (P = 5 × 10-8) and nominal significance (P = 10−5) The association analyses indicate

HLA class II as the most associated susceptibility region across the different populations. In the Korean and the Japanese populations, a strong association signal is

also seen for B∗52:01 and C∗12:02, both alleles being in strong LD with the HLA class II loci DRB1∗15:02, DQA1∗01:02 and DQB1∗06:01, i.e. another population-specific

haplotype association in these ethnicities exists.
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Figure 2. HLA single allele association analysis results at 2- and 4-digit resolution for MHC class II loci (A) HLA-DRB3/4/5, (B) HLA-DRB1 and (C) HLA-DQA1-DQB1. (AF;

common defined as AF > 1%), OR, P-value (P) and whether an allele had a P-value < 0.05 (circle symbol) is shown for the respective population (e.g. circles with black

boundary and red color represent an allele that is common and associated with risk). We depict association results of the analysis of the African American (AA),

Puerto Rican (PRI), Caucasian (EUR), Maltese (MLT), Iranian (IRN), North Indian (IND), Chinese (CHN), Korean (KOR) and Japanese (JPN) cohorts and the meta-analysis

(META) with I_SQUARE as an indicator of allelic heterogeneity and the P-value of association (PVALUE_RE2), combined here with single study P-values. Only HLA

alleles, which are significant in the meta-analysis, have an AF > 1% in at least one population and have a marginal post-imputation probability > 0.6 are shown. The

strongest association signals in the meta-analysis are for risk alleles of the DRB1∗15 group, i.e. DRB1∗15:01, DRB∗15:02 and DRB1∗15:03 and the alleles located on the

same respective haplotype (Fig. 3). Alleles with OR > 5.0 or OR < 0.2 (rare and nonsignificant alleles may have larger/smaller OR) values were ‘ceiled’ at 5.0 and 0.2,

respectively. The ‘consistent alleles’ that are highlighted in Figure 3 are highlighted in bold type on the left side. Null alleles at the HLA-DRB3/4/5 loci are described as

DRB3∗00:00, DRB4∗00:00 and DRB5∗00:00, respectively.
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Figure 3. Haplotypes for associated HLA alleles. For a selection of associated HLA alleles, we show the most frequently observed risk (A) and protective (B) haplotypes

in the respective populations. African American (AA), Puerto Rican (PRI), Caucasian (EUR), Maltese (MLT), Iranian (IRN), North Indian (IND), Chinese (CHN), Korean (KOR)

and Japanese (JPN). Here we show only DRB1-DQA1-DQB1 haplotypes with a frequency > 1% in the case individuals in each respective population. The most frequently

observed C-B alleles in each population were then added if the C-B-DRB1-DQA1-DQB1 haplotype occurred in more than or equal to five individuals. HLA-DRB3/4/5

alleles were taken from (15) and calculated on the basis of individuals hemizygous for HLA- DRB3/4/5 (i.e. carrying only one HLA-DRB1 observed with either HLA-DRB3,

-DRB4 or -DRB5 and one DRB1∗01, DRB1∗08 or DRB1∗10, which are not observed with any of the HLA- DRB3/4/5.)

in Supplementary Material, Table S8. The deviation from non-
additivity of effects at the HLA locus observed in (5) could not be
replicated in this study (data not shown).

To reduce the complexity of the HLA signal further and to
identify the properties of potential culprit antigens leading to

disease, we analyzed peptides preferentially bound by proteins,
attributed risk and protection on the genetic level (Fig. 4).
Additionally, we tried to identify shared physicochemical
properties of these proteins. For this analysis, we only selected
proteins for which the corresponding alleles had a significant

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab017#supplementary-data
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Figure 4. Clustering of DRB1 proteins according to preferential peptide-binding and combined peptide-binding motifs. (MIDDLE CLUSTER): For five sets of 200 000

unique random human peptides the percentile rank scores of preferential peptide binding were calculated using NetMHCIIpan-3.2 (29) for all DRB1 proteins that were

significant in the meta-analysis of genetic analysis of the HLA with and AF > 1% in at least one cohort. We additionally included DRB1∗01:03. Within each set, the top

2% binders (according to NetMHCIIpan-3.2 threshold) were used to perform a clustering on the pairwise correlations between two alleles using complete observations

only. We show clustering results for peptide set 2. Labels were colored according to risk (red) or protective (blue). (BINDING MOTIFS): Top 2% binders were combined for

proteins (RISK 1) DRB1∗11:01/04 and DRB1∗13:01 DRB1∗12:01, DRB1∗14:04 and DRB1∗15:01/03 (RISK 2), DRB1∗04:01/05, DRB1∗07:01, DRB1∗09:01 and DRB1∗10:01 (PROT

1) and DRB1∗04:03/04/06 (PROT 2). For this analysis, shared peptides (10% top binders) between at least two of the groups were deleted from the set. Here we depict the

results for human peptide set 2. Peptide motifs were plotted using Seq2Logo (30). The color scheme shows the chemistry of the amino acids. Red: positively charged

amino acids, blue: negatively charged amino acids, green: polar amino acid, purple: neutral amino acid and black: hydrophobic amino acid.

P-value in the meta-analysis (PVALUE_RE2 < 0.05) and focused
on the results of the DRB1 proteins (DQ shown in Supple-
mentary Material, Fig. S9). First, we predicted the binding
affinities for five sets of 200 000 random unique peptides
sampled from the human proteome to the DRB1 proteins
using NetMHCIIpan-3.2 (29) (Supplementary Material, Table
S3, amino acid distribution). Next, we performed clustering
analysis across all alleles using the top 2% ranked preferentially
binding peptides. In brief, we correlated the affinity values
of binders shared between combinations of HLA alleles and
used these correlations for clustering. In general, we found
DRB1-clustering (Fig. 4) to be more informative regarding
separation of protective and risk alleles than DQ-clustering.
Additionally, DRB1-clustering was more stable across the sets
of random peptides (Supplementary Material, Fig. S9). Larger
‘risk clusters’ were identified for DRB1 including DRB1∗15:01
and the newly identified DRB1∗15:03. We defined two risk
clusters including DRB1∗11:01/04 and DRB1∗13:01 (RISK 1)
DRB1∗12:01, DRB1∗14:04 and DRB1∗15:01/03 (RISK 2) and
two protective clusters including DRB1∗04:01/05, DRB1∗07:01,
DRB1∗09:01 and DRB1∗10:01 (PROT 1) and DRB1∗04:03/06 (PROT
2). Within each cluster, we calculated a unique peptide binding

motif by combining the top 2% of binders for each allele in
the groups (Fig. 4). The peptide binding motifs of the two
risk groups were enriched for basic amino acids (K and R)
and depleted for acidic amino acids, whereas the peptide-
binding motifs of the protective group were enriched for
hydrophobic and polar amino acids. Interestingly, DRB1∗01:03
clustered with protective alleles DRB1∗04:01/05, DRB1∗07:01,
DRB1∗09:01 and DRB1∗10:01; however, a more detailed analysis
of its physicochemical properties resulted in a predominant
clustering with DRB1∗15 (Fig. 5). Equally, DRB1∗15:02 clustered
with DRB1∗13:02, whereas physicochemical properties resulted
in a predominant clustering with the DRB1∗15 group. In
Supplementary Material, Figures 9–12, we show that this may
be an artifact of NetMHCIIpan-3.2 caused by extrapolation of the
DRB1∗15:02 signal for unknown peptides from DRB1∗13:02.

Discussion

Several conclusions can be drawn from this transethnic HLA
fine mapping study in UC: HLA allele associations and their
effect directions are broadly consistent across the different
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Figure 5. Clustering according to chosen physicochemical properties of amino acids within the peptide binding pockets. We only show sites with variable information

in pockets (P) 1, 4, 6, 7 and 9 and only proteins for which the genetic analysis was significant (meta-analysis PVALUE_RE2 < 0.05) and for which at least one cohort had

AF > 1%. We additionally show DRB1∗01:03. Clustering was performed using the hclust function of the R package stats. The box below the cluster plot shows positions

of P1, 4, 6, 7 and 9 of the beta (B) chain of the molecules (as defined in Supplementary Material, Table S5). Here we show combined scores F1 (A) and F3 (B) derived

from a factor analysis of 54 unique amino acid properties (31). F1 captures polarity and hydrophobicity of the amino acid, whereas factor F3 captures amino acid size

and bulkiness. For F1, high values indicate larger hydrophobicity, polarity and hydrogen donor abilities, whereas low values indicate nonpolar amino acids. For F3,

high values indicate larger and bulkier amino acids, whereas low values indicate smaller, more flexible amino acids. We additionally show the residue-volume (C)

as a measure of pocket size and defined a score ‘hydrogen acceptor’ (HB-acceptor) (D), which defines the ability of an amino acid to participate in hydrogen bonds

and corresponds to the number of atoms within the sidechain that can accept a hydrogen. Additional information for the ‘charge’ parameter and the analysis for

DQA1-DQB1 can be found in Supplementary Material, Fig. S9 and S10.

populations analyzed in this study, and signals previously
observed in a Caucasian-only approach can be replicated in
this context (5). Magnitudes of effects vary and are more similar
across populations with regard to shared ancestry (e.g. effect
magnitudes are more similar within distinct populations of
Asian and European populations, respectively). Although not in
every case the same HLA allele is implicated across the different
populations, alleles of the same HLA allele group are associated
with UC, as is the case for the HLA allele group DRB1∗15, of
which DRB1∗15:01, DRB1∗15:02 and DRB1∗15:03 are all associated
with the disease dependent on the HLA allele frequencies in
each respective population. The frequencies for these alleles
computed in this study were consistent to the frequencies stored
in the allele frequency net database (35). Population-specific
association signals largely correlate with the frequencies of
these alleles in the respective cohorts (i.e. being frequent in
this population, DRB∗15:03 is associated with UC in the African
American population, whereas DRB1∗15:01, more frequent in the
Caucasian populations, is associated here. Likewise, DRB1∗09:01
is associated with UC in the Korean and Japanese population and
newly identified DRB1∗10:01 is very infrequent in the Caucasian

population and thus previously not associated with UC in
this population). Heterogeneity of effect sizes was observed;
however, the accuracy of estimation of the effect sizes would
increase with larger per-population sample sizes. As observed
also in the Caucasian-only approach, HLA associations are
correlated across different HLA genomic loci, especially for HLA-
DRB1, -DRB3/4/5 and -DQ alleles, such that neither locus can
be ruled out as disease relevant. Overall a high conservation
of HLA-DQ-DR haplotypes was observed across different
ethnicities. In the Japanese and Korean population and entire
haplotype spanning class I and class II was observed for C∗12:01-
B∗52:02-DRB5∗01:02-DRB1∗15:02-DQA1∗01:03-DQB1∗06:01. For
South Western Asian (Iranian, Indian) individuals, other HLA
associations were observed to be more dominant (i.e. HLA-
DRB1∗11 and HLA-DRB1∗14). Overall, the HLA association was
dependent on the frequency of the allele and the size of the
study cohort (i.e. alleles with a sufficiently high frequency at the
DRB1 locus were usually also associated with the disease, except
for alleles of the HLA-DRB1∗08 and HLA-DRB1∗16 groups, which
had frequency of 2.9% and 1.7%, respectively, in the Caucasian
population). Associations at DPA1-DPB1 can most likely be ruled
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Figure 6. Frequency of DRB1∗01:03 across populations available in the allele

frequency net database. (A) ‘Worldmap’, (B) zoom into European continent.

Frequencies are shown within different ranges noted by AF. Allele frequencies

of DRB1∗01:03 are lower across central Europe than in the UK, Spain, India,

South Africa, USA and coastal regions of South America. Frequencies were

binned according to allele frequency. The figures were created using the R-

package rworldmap. Frequencies were extracted from the allele frequency net-

work database (35) for populations >100 individuals. To plot the geographic

locations, we converted assigned degree and minutes to decimal numbers. We

deleted all non-Caucasian populations with USA coordinates prior to plotting.

out, and associations may merely result from correlation with
HLA-DQ-DRB1. In the analysis of peptide-binding preferences
for HLA-DRB1 alleles, we observed clustering according to the
effect’s direction in the genetic analysis, i.e. protective or risk,
which may point more to HLA-DRB1 playing a role. However,
an important limitation for the analogous DQ analysis is the
limited availability of data present in models for HLA–peptide-
binding prediction. The highly similar binding pockets of HLA-
DRB1∗13:01 and HLA-DRB1∗13:02 suggest HLA-DQ alleles to
mediate disease risk. DRB1∗13:01, which was estimated to
confer risk, is correlated with DQA1∗01:03-DQB1∗06:03, whereas
DRB1∗13:02, which was estimated to be protective, is correlated
with DQA1∗01:02-DQB1∗06:04.

Alleles of the DRB1∗15 group also play a role as risk factors
in other immune-related diseases including multiple sclerosis
(36–39) (a chronic inflammatory neurological disorder), systemic
lupus erythematosus (40) and Dupuytrien’s disease (41,42) (both
are disorders of the connective tissue). They have also been

reported to be associated with adult-onset Still’s disease (43)
(a systemic inflammatory disease), Graves’ disease (an autoim-
mune disease that affects the thyroid), pulmonary tuberculosis
and leprosy (44,45) (a disease caused by Mycobacterium leprae
that affects the skin). For multiple sclerosis, DRB1∗15:03, like
in our study, was observed to be specific for African Ameri-
can populations (36). DRB1∗15 alleles have been reported to be
strongly protective in type 1 diabetes (in which the autoimmune
system attacks insulin-producing beta cells of the pancreas)
and pemphigus vulgaris (a skin blistering disease). However, the
functional consequences of HLA-DRB1∗15 association with these
diseases have not been addressed and for most of them the
potential disease-driving antigens are not known. Exceptions
are leprosy, in which M. leprae causes the disease and pemphi-
gus vulgaris, in which the skin protein desmoglein is targeted.
Krause-Kyora et al. (44) found that DRB1∗15:01, among 18 con-
temporary DRB1 proteins, was predicted to ‘bind the second
smallest number of potential M. leprae antigens’ and further
hypothesized that limited presentation of the M. leprae anti-
gens may impair the immune response against this pathogen.
Here an important note should be, that DRB1∗15:01 is on aver-
age also the most frequent HLA-DRB1 allele in the most ana-
lyzed British/Central American European populations as such
has a higher statistical power to be detected in an association
analysis.

Analysis of peptide-binding motifs showed that protective
and risk alleles cluster stably and that risk and protective groups
have peptide binding motifs that are distinguishable by their
physicochemical properties. In this study, we opted for analyz-
ing properties of the binding pockets, known to be important
for peptide binding, which we believe is most accommodating
to the biology of HLA–peptide binding, rather than analyzing
single amino acid positions. The arginine (R) and lysine (K)
content was observed to be increased in peptides bound by
HLA–proteins that were assigned to confer risk on a genetic
level. This was more prominent for risk cluster 1 than risk
cluster 2. Interestingly, Dhanda et al., who compared 1,032 known
T-cell epitopes from 14 different sources (including Mycobac-
terium tuberculosis, dengue fever, virus, zika virus, house mite
and other allergens) and known nonepitopes from the same
data set, showed that T-cell epitope amino acid motifs also are
enriched in lysine and arginine content. The established motif is
especially similar to the binding motif of risk cluster 1. Arginine
is also found at an increased level in antimicrobial peptides (46–
48). Antimicrobial peptides are made of cationic residues and
are part of the innate immunity. They target the cell wall of
bacteria or structures in the cytosol of bacteria (49). If and how
this plays a role in the etiology of UC is however only to be
speculated about.

One important limitation of the analysis of preferential HLA–
peptide binding is the amount of data that is used to train
machine learning algorithms, which was especially limited for
the HLA-DQ proteins. In the future, larger data sets from pep-
tidomics experiment will likely increase the accuracy of these
predictions and increase confidence in the risk and protective
motifs that may be indicative of culprit antigens in UC because of
distinct features. Larger per-population patient collections will
be needed in future studies to confirm our results and to obtain
even more precise effect estimates of associated HLA alleles. In
addition, we hope that IBD patient panels from other ethnicities
will become available for genetic fine mapping studies. With
typing of HLA alleles now being possible using next-generation
sequencing methods, real typing rather than imputation
analyzes should become standard, thereby avoiding possible
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imputation artifacts. The construction of haplotype maps will
then likely be even more accurate.
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