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Summary.

Animals frequently make decisions based on expectations of future reward (“values”). Values 

are updated by ongoing experience: places and choices that result in reward are assigned greater 

value. Yet the specific algorithms used by the brain for such credit assignment remain unclear. We 

monitored accumbens dopamine as rats foraged for rewards in a complex, changing environment. 

We observed brief dopamine pulses both at reward receipt (scaling with prediction error), and at 

novel path opportunities. Dopamine also ramped up as rats ran towards reward ports, in proportion 

to the value at each location. By examining the evolution of these dopamine place-value signals, 

we found evidence for two distinct update processes: progressive propagation of value along 

taken paths, as in temporal-difference learning, and inference of value throughout the maze, using 

*Corresponding author: joshua.berke@ucsf.edu.
Author Contributions. T.A.K. developed, built, and optimized the maze task, performed the photometry experiments, analyzed 
the photometry data, and performed the computational modeling in partnership with N.D.D.. A.E.C. and L.M.F. provided regular 
scientific input and feedback. A.E.K performed RL modeling of hex-level choice behavior. N.D.D. provided guidance and code for 
computational modeling, and developed the computational models with T.A.K.. J.D.B. designed and supervised the study, developed 
the maze task, and wrote the manuscript together with T.A.K..

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declaration of Interests. The authors declare no competing interests.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2024 November 01.

Published in final edited form as:
Neuron. 2023 November 01; 111(21): 3465–3478.e7. doi:10.1016/j.neuron.2023.07.017.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



internal models. Our results demonstrate that within rich, naturalistic environments dopamine 

conveys place values that are updated via multiple, complementary learning algorithms.

Graphical Abstract

eTOC blurb

Krausz et al. investigate how such expectations of future reward are updated through experience. 

In rats traversing a complex maze they show that nucleus accumbens dopamine scales with 

reward expectation from each location. This expectation signal propagates between adjacent 

spatial locations, and is also inferred using knowledge of maze structure.

Introduction.

Animals frequently make motivated choices based on prior experiences - for example, 

selecting paths towards locations where food was previously found. Achieving such adaptive 

decision-making can pose a computational challenge. In particular, decision points can 

be separated from rewards by considerable gaps in time and space. When rewards are 

obtained (or unexpectedly omitted) this separation produces a “credit assignment problem”: 

determining which places and choices ought to gain or lose value. The specific algorithms 

that brains use to solve this problem are not well understood.

Reinforcement Learning (RL) theory provides an array of candidate algorithms for 

generating and updating value signals.1 In “temporal difference” (TD) learning, value 

is passed between sequentially experienced states (situations). In brief, as each state is 

encountered its associated value becomes eligible for updating. Unexpected rewards, or 

transitions to states with unexpected values, evoke “reward prediction errors” (RPEs). RPEs 

are learning signals: they update the values of eligible states. In this way, values can 

be progressively propagated back to earlier states, over repeated episodes of experience. 

Temporal difference RPEs can be encoded by brief (phasic) changes in the firing of 

midbrain dopamine (DA) cells,2–5 and by corresponding changes in DA release in the 

nucleus accumbens (NAc).5,6 However, despite the compelling correspondence between 

phasic DA and TD RPEs, current evidence that value propagates along sequences of states in 

a TD-like manner is sparse at best.7–9
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TD learning is a “model-free” (MF) algorithm: learning occurs only from direct experience 

of states, without using knowledge of how those states are related. A complementary set 

of “model-based” (MB) algorithms can achieve greater flexibility in learning and decision-

making, by using knowledge about state relationships to infer and update values. For 

example, after taking one path and receiving reward, MB algorithms can increase values 

along alternative paths to the same reward location.10,11 In at least some behavioral contexts, 

DA signals reflect RPEs that incorporate such inferred information.12–15

NAc DA release also ramps up as animals actively approach expected rewards.5,16–19 These 

ramps appear to signal the value of the upcoming reward, discounted by spatial distance 

(although they have also been interpreted as RPEs20,21). As DA ramps are more apparent 

when the behavioral context favors use of an internal model,22 they have been proposed to 

reflect ongoing MB calculations.

Yet overall, existing evidence does not tease apart the specific algorithms used to estimate 

and update values, or reveal how these values are reflected in DA signals. Many behavioral 

tasks commonly used to investigate DA and value coding involve only minimal separation 

between an action and its outcome (e.g.17,23,24), thus avoiding the challenging credit-

assignment question. In other paradigms, applying RL ideas involves unsupported arbitrary 

assumptions25 – e.g., choosing the set of discrete covert states to span a time interval 

between a cue and reward.2,9 Spatial tasks have the advantage that the brain has a well-

studied set of spatial representations that could serve as a basis for RL states.26 However, 

most spatial tasks – especially those in which DA dynamics have been investigated – are 

very simple (e.g., T-mazes19,27). This simplicity is often useful, but can prevent critical tests 

that distinguish between credit assignment algorithms.

To better elucidate neural credit-assignment processes within natural environments, we 

developed a dynamic, complex spatial foraging task for rats. In this task, animals 

traverse through numerous distinct decision points in the pursuit of reward, and choices 

are separated from their outcomes by multiple steps in space and time. Furthermore, 

reward contingencies can be unstable, and the available paths to reward locations can 

be unexpectedly reconfigured. We show that rats readily adapt to these changes, and 

incorporate both costs (current distances to reward ports) and benefits (current reward 

probabilities) into their decisions.

Using fiber photometry, we observe DA RPE coding at reward receipt and also strong 

DA pulses when rats discover newly available paths. We confirm that NAc DA ramps up 

with reward approach, and show that these ramps reflect a robust relationship between DA 

release at each location and the dynamically changing value of that location. We then take 

advantage of this DA place-value signal to examine how values are updated from trial-to-

trial. We report strong evidence for both MF TD-like local propagation of values between 

adjacent locations, and MB global inference of values throughout the maze environment.
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Results.

Cost-benefit decision-making in a novel maze task.

The maze (Fig. 1; Supplementary Video) is triangular with a reward port at each corner, 

each with a distinct reward probability.17,28–31 The available paths to these reward ports 

are defined by a set of barriers, constraining rats into making sequences of left and right 

turns from each “hex” location. The task is self-paced – the end location for each “trial” 

is the start for the next – and each reward port can be approached from multiple starting 

locations. Overall, rats (n =10) were more likely to choose a port if it had a higher 

probability of reward (Fig. 1B), and was closer (Fig. 1C), compared to the alternative. 

A mixed-effects logistic multiple regression, incorporating any turn biases (see Methods), 

revealed highly significant effects of both reward probability (mean β = 1.605 +/− 0.163 

SEM, p = 5.31×10−23) and distance cost (mean β = −6.805 +/− 0.550 SEM, p = 3.46×10−35) 

on port choices (Fig. 1D). After each block of 50–70 trials (traversals between ports), either 

the reward probabilities changed (Fig. 1E) or a barrier was moved to change available paths 

(Fig. 1F). After a change in reward probabilities, rats increased their choice of ports whose 

reward probability had increased (Fig. 1G). Following a barrier move, rats adjusted their port 

choices to favor shorter paths (Fig. 1H) and also progressively refined their specific paths to 

be more efficient (Supp. Fig 1).

Phasic dopamine responses to rewards and novel path opportunities.

During task performance we recorded NAc DA dynamics using fiber photometry with the 

fluorescent DA sensor, dLight1.3b32 (n = 10 rats, 19 fiber locations, 82 behavioral sessions, 

296 blocks, 16,379 trials, mean of 1638 trials per rat). We first examined DA changes around 

reward port entry, since receipt (and omission) of probabilistic reward is an obvious time 

to look for the best-known correlate of NAc DA, RPE signals. DA transiently increased or 

decreased depending on whether reward was delivered or omitted, respectively (Fig. 2B). 

The magnitude of these phasic changes depended on port reward probability, in a direction 

consistent with RPE coding (Fig. 2C, Pearson correlation, rewarded trials mean coefficient = 

−0.221 +/−0.098 STDEV; omission trials mean coefficient = −0.111 +/− 0.062 STDEV; both 

significantly different to zero across n=10 rats, two-tailed Wilcoxon Signed Rank tests, p = 

1.95×10−3 each). To better estimate RPE at the single-trial level, we fit a simple trial-level 

RL algorithm to rats’ port choices and reward outcomes (“Q learning”; see Methods). DA 

following port entry significantly scaled with these RPE estimates (Supp. Fig. 2), although 

encoding of positive RPEs was notably stronger and more consistent across rats, compared 

to negative RPEs (in line with prior studies3,5,33).

We also observed large phasic increases in DA when rats first encountered a newly available 

hex – i.e., where a barrier had been previously located, but no longer (Fig. 2D–F). This was 

not simply a response to any unexpected sensory event, since encountering a newly blocked 
hex resulted in a significantly smaller or absent DA pulse (Fig. 2F). Additional analyses 

suggested that the response to newly available hexes is larger on trials in which rats chose to 

take the new path, rather than ignoring it (Supp. Fig. 2C), and when the newly available hex 

was closer to the final destination port (Supp. Fig. 2D). However, these latter observations 

would require a larger data set of new path discoveries for solid statistical support.
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Dopamine ramps reflect expectations of upcoming reward.

We next examined whether the reward-approach ramps previously reported for NAc DA are 

also present in this more complex spatial environment. Average NAc DA indeed ramped 

up within each trial, until shortly before arrival at the reward port (Fig. 3A). This overall 

ramp was significantly positive in nine of ten individual animals (16/19 individual fibers; 

Supp. Fig. 3A). To better understand the computations that give rise to this ramp, subsequent 

analyses focused on those nine rats. The magnitude of the DA ramp scaled with the current 

reward probability of the approached port (Fig. 3B), consistent with DA tracking the rats’ 

evolving expectations of receiving reward on the current trial. We therefore assessed how 

DA ramping during port-approach is affected by whether that port was rewarded or not at 

the last visit (Fig. 3C). DA ramps were stronger when the destination port had been most 

recently rewarded, and weaker following an omission. This effect was significant along the 

full length of the path (note asterisks in Fig. 3C), not just the hexes closest to reward. To rule 

out non-specific effects of recent rewards on DA signals, we performed a multiple regression 

analysis comparing the impact of the most recent reward outcome at each of the three ports 

(Fig. 3D). DA ramps selectively reflected reward history for the port at the end of the path 

taken on the current trial, rather than (for example) tracking overall recent reward rate,34 or 

the history of rewards for both potential destination ports together. Average running speed 

was also greater as rats ran towards higher-probability ports (Fig. 3B). However, running 

speed peaked later than DA (Fig. 3A/B), and cross-correlograms suggested that DA was 

predictive of speed (potentially driving the vigor of running) rather than merely reflecting it 

(Supp. Fig. 3B).

A spatial map of value.

These ramping dynamics during port approach suggest that DA at each maze location may 

signal the rats’ evolving expectation of receiving reward, discounted by spatial distance. To 

assess this “place-value” possibility, we turned to models that generate reward expectation 

estimates for each specific spatial location (at entry into each hex, from each direction; 

126 distinct hex-states). As a first pass, we again applied a simple learning algorithm that 

tracks experienced reward probabilities at each port (Fig. 3E), but we then distributed these 

values, discounted by spatial distance, throughout the maze (“value iteration”;1,35 Fig. 3F; 

see Methods). The resulting hex-level pattern of value closely resembled DA on each trial 

(Fig. 3G), and a mixed-effects multiple regression analysis revealed a highly significant 

relationship between DA and these hex values (Fig. 3H, p < 0.0001, Likelihood Ratio Test, 

chi-square distribution with 77 degrees of freedom to account for each session-optimized γ 
value; see Methods). This regression analysis also included running speed, yet hex values 

accounted for much more of the explained variability in the DA signal (Fig. 3I).

Over repeated trials, DA signals propagate backwards along taken paths.

This value map provides a reasonable first approximation to DA signals as rats run through 

the maze. However, the value-iteration algorithm requires perfect knowledge of current maze 

structure, together with the immediate and complete distribution of value updates to all 

hex-states on every trial. Rat brains might actually use less computationally demanding 
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algorithms to generate place values. These algorithms could produce tell-tale signatures in 

value coding while foraging - including deviations from smooth ramps.

First, we looked for evidence of TD learning, as this has been an especially prominent 

framework for interpreting DA signals in simpler settings. In its most basic form, TD(0) 

(also called “one-step” TD), RPEs update only the values associated with the immediately 

preceding state1 (Fig. 4A). Therefore, when a sequence of states results in an unexpected 

reward, earlier states in the sequence do not receive value updates right away. Instead, 

updates progressively propagate backwards along the sequence, over multiple episodes of 

experience. This type of learning rule has a clear signature: values of states more distant 

from reward should depend on reward outcomes in the more distant past, rather than the 

most recent outcomes.

TD can also propagate value more rapidly by maintaining memory traces for recently visited 

locations and using these to determine eligibility for later value updates. Such an algorithm 

is referred to as TD(λ).1,7,35 By altering the eligibility trace decay parameter, λ, value 

updates can be restricted to the single preceding state (λ = 0, as above), or, at the other 

extreme, cover the entirety of the experienced path (λ = 1).

The resulting difference in value dynamics can be clearly illustrated by considering the 

impact of a single reward, among a series of omission trials for the same path (Fig. 4B). 

In simulations (see Methods), with TD(0) the reward evokes a value bump that propagates 

backwards over the course of multiple traversals (Fig. 4C). By contrast, with TD(1) value 

is immediately updated across the full traversed path, so that outcomes simply change 

the gain of the ramping value function (Fig. 4D). To broaden this analysis to include 

all sequences of reward outcomes, we turned to multiple regression. We examined how 

values at each location along a path depend upon prior reward outcomes. Specifically, we 

performed a multiple regression of how the path’s prior five reward outcomes affect value 

at each distance from the reward port (Fig 4E,F). We then identified the place along a path 

where each prior reward had its maximum effect (regression coefficient) on place value. 

As expected, in a TD(0) simulation the information from older reward outcomes had its 

strongest influence on value farther away from the reward port (Fig. 4E), in stark contrast to 

TD(1) (Fig. 4F).

We then applied the same analyses to DA signals. First, we examined DA dynamics after 

rats experienced one reward among a series of omissions for traversing the same path (as in 

Fig. 4B). The reward appeared to cause a spatial bump in DA, that moved further back from 

the reward port over successive traversals (Fig. 4G) – i.e., the key signature of TD learning 

with low λ. Next, we performed the multiple regression with all trial sequences, as in Fig. 

4E/F, but with observed DA signals. This analysis resulted in a pattern resembling TD(0): 

older outcomes had the largest influence on DA signals farther from the reward location 

(Fig. 4H; two-tailed Wilcoxon Signed Rank, p = 1.95×10−2). This provides clear evidence 

that updates of DA value signals incorporate TD(0)-like progressive, backward propagation.

No single algorithm is likely to explain both this evidence for value propagation, and 

the path-wide shifts in DA ramps following reward or omission described earlier (Fig. 
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3C). Although each of these can arise separately as the extreme cases of TD(λ) (i.e. λ 
close to zero or one respectively), there is no intermediate setting of λ at which both of 

these patterns co-occur. Consistent with this, fitting a TD(λ) hex-state RL algorithm (see 

Methods) to the observed DA data could model the broad shifts, but the resulting large λ 
failed to also reproduce the progressive propagation of DA and its dependence on reward 

history (Supp. Fig. 4A-E). Fit λ numbers were consistently high for individual sessions 

(Supp. Fig. 4B), ruling out the possibility that our results reflect variability in λ across time 

or between animals.

We therefore explored the possibility that multiple credit assignment algorithms, operating 

over distinct spatial scales, could collectively update DA value signals. To this end, we first 

built a model that learns through a mixture of TD(0) and TD(1). As expected, value ramps in 

this combined model superimposed bumps and broad shifts (Fig. 4I). This combined model 

also shows the same pattern as DA and TD(0) in regression analysis, namely the increasing 

distance of maximum impact of rewards earlier in time (Fig. 4J).

We reasoned that progressive propagation of DA values should be more apparent if we were 

to remove the broad shifts in the DA signal. We did this by modeling each trial’s ramp as 

a linear scaling of the average DA ramp (see Methods). As expected, removing the overall 

ramp left a residual DA signal that propagated backwards along the path over trials (Fig. 

4K/L). These results are consistent with updating of DA value signals updated by at least 

two mechanisms – a TD(0)-like process responsible for backwards signal propagation, and a 

second process capable of shifting the whole ramp at once.

DA place values are also globally updated through inference.

Furthermore, the behavioral choices of the rats were more sophisticated than would be 

expected from MF TD alone. In the maze, each reward port can be reached from multiple 

starting points (Fig. 5A). MF TD learning would only update values along the path that 

was actually taken. However, we found that reward at a given port increased rats’ likelihood 

of choosing that same port at the next opportunity, both when the rat previously took the 

same path (p = 9.77×10−4, two-tailed Wilcoxon Signed Rank test) or an alternative path 

(p = 4.88×10−3, two-tailed Wilcoxon Signed Rank test) to that port (Fig. 5B). A potential 

confound could arise from correlations between this most recent reward outcome and prior 

reward outcomes at that same port, for which the rat may have taken the same path. To 

control for this, as well as any turn-direction bias, we conducted a mixed-effects multiple 

regression analysis and included the past five reward outcomes as features (see Methods). 

We confirmed that a previous reward at a port made current choice of that port more likely, 

both when the rat had taken the same path to obtain reward (p = 2.26×10−6) or an alternative 

(p = 0.0242). This suggests the use of model-based (MB) algorithms to infer that hexes 

along alternative paths to that same reward location have also changed value.

We therefore assessed whether DA ramps similarly rely upon MB processing and knowledge 

of maze structure. We confined this analysis to the critical “path-dependent” hexes – those 

that have no overlap with other paths to the same port (Fig. 5A). We found that a prior 

reward at a port results in elevated DA in these path-dependent hexes, both when the rat 

previously took the same path (p = 3.90×10−3, two-tailed Wilcoxon Signed Rank test) or 
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an alternative path (p = 3.90×10−3, two-tailed Wilcoxon Signed Rank test) to that port (Fig. 

5C). Once again, to control for the possibility that this result reflects experiences on even 

earlier trials, we ran a regression analysis and included the prior five reward outcomes (see 

Methods). DA still displayed a significant relationship with the most recent reward outcome 

at the goal port, both when the rat previously took the same path (p = 5.80 ×10−3) or an 

alternative path (p = 0.0190) to the goal port. Consistent with this, the effect of prior reward 

(or omission) on DA ramping was observed whether reward had been obtained taking the 

same path, or the alternative (Fig. 5D/E). Thus, NAc DA signals reflect MB calculations of 

inferred future reward from any location, in addition to the MF TD-like learning from direct 

experience.

Dual processes account for NAc DA signals during goal approach.

To confirm that DA signals are best modeled as arising through the combination of MB and 

MF learning mechanisms, we applied a dual-process hex-level RL algorithm (Fig. 6). This 

RL agent experienced the same sequence of hexes and rewards as each rat, and generated 

corresponding value estimates at each moment. Upon each transition between hexes, MF TD 

(λ = 0) locally updated just the value of the previous hex-state. The second, MB, process 

updated the values of all hexes throughout the maze, each time a reward port was visited. 

This global update relied upon the rats’ evolving knowledge of maze structure, maintained 

as a recency-weighted average of the tendency of each hex to be followed by a visit to each 

specific port (whether rewarded or not; Fig. 6A; see Methods). Regression analysis revealed 

a significant relationship between values in this dual-process model and observed DA (mean 

β = 0.798 +/− 0.075 SEM; p < 0.05 in 8/9 rats, Wald test; rat population p = 5.408 × 10−6, 

two-tailed one-sample t-test, t-statistic = 10.620).

We then compared the performance of the dual-process model in explaining DA signals 

to two nested models,36 each with one update process removed (by setting the learning 

rate to zero). The combined model outperformed either process alone (Fig. 6B). This result 

was observed consistently across individual rats and sessions (Supp. Fig. 5), ruling out the 

possibility that individual rats use MF or MB processes idiosyncratically. Taken together, 

this series of analyses provides strong evidence that NAc DA reflects values that are 

jointly updated using two classes of learning algorithm: chained updates across sequentially 

traversed states, and maze-wide updates through MB inference.

Finally, we assessed whether these dual credit assignment processes are used to guide rats’ 

decisions at the level of the individual hex. Using the same dual-component hex-value 

RL algorithm, we tested whether a model with both learning components explained rats’ 

hex choices at decision points better than nested models with one process removed (see 

Methods). Parallel to the NAc DA place value map, rat hex choices were best explained by 

values updated using a combination of TD(0) and MB updates (Fig. 6C).

Discussion.

Theoretical models of reinforcement learning and decision making have very often 

employed multi-step navigation through simulated mazes to investigate the performance 

of distinct algorithms.1 As RL models form the standard framework for interpreting DA 

Krausz et al. Page 8

Neuron. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signals, it is perhaps surprising that the present study is the first - to our knowledge - to 

examine real-time DA dynamics in a rich and dynamic spatial environment.

Our observation of a DA pulse at reward receipt, scaling with positive RPE, is consistent 

with standard DA ideas (although it is noteworthy that such pulses were not observed in a 

prior study using a simpler T-maze19). By contrast we did not expect to see a similarly-sized 

DA pulse when rats detected a newly opened path. It is natural to interpret this as some 

form of error signal, but it is not yet clear what type. DA signals have long been associated 

with novelty and salient events,37,38 and some theories have argued that DA can signal 

a range of prediction errors beyond simply RPE39,40). However, a newly blocked path 

did not evoke a comparably sized DA pulse, suggesting that the relevant feature is not 

simply an unexpected stimulus, or the need to update models of the environment (as in 

successor representations40). It appears that the DA pulse is related to the newly discovered 

opportunity for action,41 perhaps reflecting the value of discovering possible new paths to 

reward through exploration.42,43 Specifying the underlying information processing in greater 

detail will require further experiments with a larger data set of barrier movements.

A major objective of this study was to investigate the ramps in NAc DA release that occur 

as unrestrained animals approach rewards.5,16–18 We and others have previously interpreted 

this ramping DA as reflecting increasing reward expectation (a.k.a. value). Consistent with 

this, here we found that ramps track the animals’ recent reward history, for example 

ramping more strongly when the destination port was rewarded at the last visit. As rats 

ran through the maze, the moment-by-moment DA levels formed a dynamic map of values: 

expected rewards discounted by distance from the reward port. This result contributes to an 

ongoing discussion about whether/how DA signals reflect the costs, as well as the benefits, 

of potential decisions.44 In the maze, rats clearly treated distance as a cost, as shown 

by their reluctance to choose paths leading to more distant reward ports. This cost was 

incorporated into the DA signal through spatial discounting, producing a net value signal 

potentially useful for governing motivation from each point. This interpretation fits well 

with observations that lesions of NAc DA shift motivation in cost/benefit decision-making 

in maze tasks,45,46 and that boosting DA can immediately enhance motivation to work.17 

Consistent with this interpretation, instantaneous NAc DA was predictive of speed shortly 

afterwards, as if energizing effort in the pursuit of reward. An interesting area for future 

studies is how discounting future rewards over space relates to discounting over time, which 

has been previously reported for DA signals47 and may involve distinct time scales in 

different striatal subregions.48

Alternative accounts have emerged arguing that DA ramps reflect RPE. This is possible 

under various assumptions: e.g. that values are rapidly forgotten,20 that there are constraints 

on the functional form by which value decays in space or time,49 or that animals are 

uncertain about their current state.50 The present study was not specifically designed to test 

those ideas. Nonetheless the strong correspondence between DA dynamics and upcoming 

reward estimates observed here make a value interpretation of ramps the most parsimonious. 

This value coding would be separate to the RPE coding noted above (although a recent study 

has argued that ramps themselves may contribute to credit assignment51). Evidence that DA 

ramping can be mechanistically distinct from RPE coding comes from a prior study in which 

Krausz et al. Page 9

Neuron. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we compared DA cell firing to release.5 Discrete reward cues evoked RPE-encoding burst 

firing of identified VTA DA cells, and a parallel increase in NAc DA release. By contrast, 

NAc DA ramps appeared to occur even without any increase in DA cell firing, suggesting 

a separate process. A similar comparison in the context of our maze task could be highly 

illuminating.

Regardless of whether ramping DA signals value in addition to, or as a side-effect of, 

error signaling, our results provide new insights into the specific algorithms by which these 

signals are updated. TD learning has been central to models of DA signals for decades,2 but 

evidence for the signature progressive backward propagation of value over trials has been 

limited.7–9 Using DA as a readout of values, we clearly observed just such propagation of 

value, across space. This observation may have been aided by our maze design, in which 

each hex can correspond to a discrete left/right decision point, and may thus be more likely 

to be treated by the brain as a distinct “state”. Nonetheless, we could not force the rats to 

treat hexes as states, and indeed inspection of the propagating DA “bump” suggests that the 

actual spatial resolution employed by the internal TD algorithm may be in the range of ~2–3 

hexes (Fig. 4).

Although TD learning is visibly present, we also demonstrated that rats additionally assign 

credit over long distances in a single step and over paths not directly experienced, suggesting 

they employ internal models of their environment to guide their DA signals and foraging 

decisions. We cannot currently say, however, exactly when they are using such models. 

For simplicity we simulated MB value updates as occurring when outcomes are revealed at 

reward ports. This may be the right time: after running along trajectories through mazes, 

rats often show sharp-wave ripple (SWR) events, in which dorsal hippocampal place cells 

can replay recently taken trajectories.52 This replay is especially common after reward 

receipt53,54 and has been proposed to update values along the encoded trajectories.52 

Replay can also encode alternative potential paths to reward,11,55,56 providing a potential 

mechanism underlying MB inference of updated values.57 Echoing this perspective, 

recent research in AI has increasingly emphasized the use of models retrospectively for 

credit assignment.58,59 Credit assignment might involve synaptic plasticity downstream of 

reactivated place representations60 and/or reconfiguration of network dynamics, which can 

support fast adjustments in valueguided decision-making.61

However, MB value updates might instead, or additionally, be occurring in a prospective 

manner as rats run towards goals (similar to another family of AI algorithms that that use 

models for planning62). First, SWRs occur not only following reward receipt, but also during 

pauses in behavior, when place cells can encode locations predictive of the animal’s future 

path.63 Such “forward” replay toward goal locations could, in principle, accomplish MB 

value updates similar to “backward” replay from them.57 Additionally, actively running rats 

show “theta sequences”, in which the maze location encoded by hippocampal places cells 

sweeps forward ahead of the animal within each theta cycle64 and can even rapidly switch 

between representations of distinct possible future paths.65,66 It may be that theta sequences 

help retrieve current values of potential goal locations to help guide decision making, 

although this is not yet known. We note that such cognitively demanding planning processes 

may be only activated when the brain perceives a need to do so. If DA ramping is linked to 
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prospective planning, this could explain why DA ramps peak just ahead of actually reaching 

the goal (Fig. 3). Within the last three hexes of the path the reward port is directly visible, 

so no internal calculations are required for navigation. This account is also consistent with 

prior reports that ramps disappear entirely as rat behavior becomes increasingly routine,18,22 

and can reappear immediately if task contingencies change.18 There is analogous evidence 

that non-local activity in hippocampus declines over repeated experience, including both 

SWRs54 and cycling between multiple paths during theta sequences.67 Furthermore, there is 

substantial behavioral and pharmacological evidence that NAc DA is specifically required 

when animals need to flexibly calculate trajectories to reward (e.g. from a variable start 

location) rather than performing a stereotyped sequence of actions.68,69 For future reports, 

we aim to combine measurements of DA ramps with high-density hippocampal recordings, 

to gain greater access to the internal calculations driving DA dynamics during active 

foraging.

Star Methods

Resource Availability.

Lead contact.—Further information and requests for data and code should be directed to 

and will be fulfilled by the lead contact, Josh Berke (joshua.berke@ucsf.edu).

Materials availability.—The study did not generate new unique reagents.

Data and Code Availability.

• Photometry and behavioral data are deposited at Mendeley Data: DOI: 10.17632/

m59zdjpm9h.1

• Original code is deposited to a public lab-maintained GitHub repository:https://

github.com/Berke-lab/DA_maze, and registered on Zenodo: DOI: 10.5281/

zenodo.8172780

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Study Participant Details.

Animals.—All animal procedures were approved by University of California San Francisco 

Institutional Committees on Use and Care of Animals. Male (300–650g) and female (250–

400g) wild-type Long-Evans rats (4–10 months old, bred in house) were maintained on a 

reverse 12:12 light:dark cycle and tested during the dark phase. Rats were mildly water 

deprived, receiving 30 minutes of free water access daily in addition to fluid rewards earned 

during task performance. During water deprivation, rat weights were maintained above 85% 

their baseline weight.

Methods Details.

Behavioral task.—The maze consists of a 1.30m-per-side equilateral triangular platform 

with liquid reward ports at each vertex. Solenoid valves control delivery of sucrose solution 

(10% sucrose, 0.1% NaCl) in 15μL droplets. Infrared photobeam sensors detect entry into 
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the reward ports. To prevent uncertainty over reward delivery, a brief (70ms) 3.0 kHz tone 

was played through a speaker below the center of the maze immediately before solenoid 

valve opening. Equally spaced columnar barriers divide the maze into 49 hexagonal units 

(“hexes”). Additional barriers can be placed in any combination of the 49 hexes to create 

unique maze configurations. The apparatus was controlled by an Arduino Mega, while the 

Open Ephys software, Bonsai, was used for behavioral and video data acquisition.

Prior to implantation, rats were mildly water deprived and trained in the maze for 

approximately three weeks. Pre-training consisted of learning to poke into reward ports 

to receive reward, at 100% delivery probability with no additional barriers. Rats were 

pretrained until they completed an average of at least one trial per minute in a 60-minute 

session (1–2 sessions to reach criterion on average). To discourage a sit-and-wait strategy, 

after each visit to a port that port was not rewarded again until another port is visited (this 

rule is present throughout training and testing). Rats were then trained on the task until 

reaching criterion (>= one trial per minute in a 90 to 120-minute session).

Before each session, barriers (8 or 9) are added to the maze to create a configuration that 

is novel to the rat. To prevent clearly visible paths between ports, we ensured that at least 

one barrier obstructed each direct path. We also configured at least one path to be longer or 

shorter than another path, to create distinct distance costs associated with different paths. In 

the probability-change variant, the maze configuration stays consistent throughout a session, 

but reward probabilities are changed following each block (50–70 trials). Probabilities are 

reassigned pseudo-randomly, according to the rule that the most rewarding port and the least 

rewarding port are not the same for two consecutive blocks. In the barrier-change variant 

of the task, reward probabilities remain fixed throughout the session, while one barrier 

is moved at each transition between blocks. Upon a block transition, barriers are moved 

strategically to simultaneously alter the lengths of multiple paths: at least one path will 

increase in length, and at least one will decrease in length. Critically, a short path prior to 

the block change does not necessarily become long afterwards, making it impossible for the 

rat to make inferences about which paths have become longer and shorter. Barriers were 

physically moved by the experimenter, who entered the task area after the rat poked into a 

reward port on the last trial of a block. To prevent the development of associations between 

experimenter entry and configuration changes, the experimenter randomly entered the task 

area to briefly raise and lower a barrier – without changing the maze configuration – at least 

once during each training session. Each daily test session used either the probability-change 

or barrier-change variant, and we only included behavioral sessions with 100 or more trials 

for further analysis. Individual rats were also excluded from analysis altogether if logistic 

multiple regression revealed a non-significant effect of either reward probability or distance 

cost on their port choices (n=1 rat without significant reward effect, and n=1 rat without 

significant distance effect from a total initial dataset of n = 12 rats). All rats experienced 

sessions with port-reward probabilities drawn from a set of [0.9, 0.5, 0.1], but four rats also 

had probabilities drawn from [0,8, 0.5, 0.2] on a subset of sessions.

Rats’ implant caps were labeled and tracked using Deeplabcut.70 Custom code was used 

to segment the maze into hexes and classify hex occupancy. For time points with missing 
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position information (i.e., when rat’s heads were momentarily obstructed by barriers), we 

used the maze’s hex adjacency matrices to interpolate between hexes.

Fiber photometry.—The nucleus accumbens core was bilaterally targeted using the 

following coordinates in relation to bregma: +/−1.7mm medial, 1.7mm anterior, and 

6.2mm below brain surface. Virus – 1μL of AAVDJ-CAG-dLight1.3b (Vigene) at a titer 

of 2×1012 – was delivered using a stereotaxic injection pump (Nanoject III). Virus was 

injected 200μm ventral to the target coordinates, as described in.5 During the same surgery, 

200μm optical cannulae were subsequently implanted and cemented in place. A subset of 

rats (n = 4; IM-1322, IM1398, IM-1434, IM-1478), were also implanted with a custom 

electrophysiology probe in the dorsal hippocampus.

Rats were removed from water deprivation at least 24 hours prior to surgery. One week after 

surgery, rats began mild water deprivation and were retrained on the task, while waiting for 

expression of dLight. Rats began photometry recordings in the maze at least two full weeks 

following surgery. Only one implanted fiber was recorded in a given photometry session.

Photometry data acquisition methods have been described previously.5 Baseline correction 

was performed using the adaptive iteratively reweighed Penalized Least Squares (airPLS) 

algorithm.71 Baseline-subtracted 470nm and 405nm (isosbestic control) signals were then 

each standardized (z-scored) using a session-wide median and standard deviation. The 

standardized reference signal was fitted to the 470nm using non-negative robust linear 

regression, and the normalized fluorescence signal was computed by subtracting the fitted 

reference signal from the standardized dLight signal. To reduce the frequency and severity 

of optical artifacts, we used a pigtailed optical commutator (Doric Lenses), oriented 

horizontally, and manually controlled its movement using a custom stepper-motor interface. 

Recording locations were histologically verified using immunohistochemistry.5 Recording 

sessions were excluded if a recording failure occurred at any point during the session, such 

as an optical fiber becoming broken or unplugged.

For all time-based analyses, the dLight signal was downsampled to 250 Hz and smoothed 

with a rectangular 100 ms rolling mean. For hex-level photometry analyses, we calculated 

the mean dopamine within each traversed hex on a given run. For comparison with RL 

model variables, we computed mean dopamine within each traversed hex from each possible 

direction of entry. This included repeat entries into hexes traversed multiple times within a 

trial (e.g., after leaving a hex, entering a dead end, and running back to through that same 

hex). To avoid analyzing subsets of data where rats mistakenly returned to the previous port 

(where reward is unavailable), only data between the final poke at one port and the first poke 

at a different port were included. Distance from the destination port was computed as the 

shortest possible distance, in hexes, to the destination port from the current hex, according 

to the current maze map. For event-aligned plots, traces were first averaged over sessions 

within each rat before taking the average over each rat, unless otherwise specified. Unless 

otherwise specified, we treated individual rats as the unit of analysis, rather than e.g. fiber 

recording locations.
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Reinforcement Learning Models.

Q(port) learning.: To estimate the rats’ expected value at each port on each trial, we used a 

simple, trial-based Q learning algorithm. The model learns values associated with each port 

using the following update rule:

Q portt (1 − α)Q portt + αRt,

where α is the learning rate, t denotes the current trial, and R denotes reward received 

at the end of the trial. Choice was modeled as a probabilistic decision between the two 

available destination ports, left (“L”) and right (“R”), denoted by their position clockwise or 

counterclockwise from the animal, on each trial using a softmax distribution:

P ct = c ∈ L, R ∝ exp βQ(c) + βccwIsLeft(c) + βdist(dist(c))

The inverse temperature parameter, β, controlled the degree to which the value of the 

destination port, Q(port) influenced choice. The (“βccw”) term was added to control for 

leftward (counterclockwise) turn biases, and a distance-sensitivity (“βdist”) term was added 

to control for effort cost scaling with the distance dist(c) to the port. “IsLeft” encodes 

whether the choice, “c”, was leftward from the current port. Parameters were optimized to 

maximize fit to rats’ observed port choices.

Value iteration.: We sought to generate spatially discounted chosen value estimates for 

each hex at the individual-trial level, in a manner faithful to the maze configuration on 

each trial. We first specified ground truth hex-state transition matrices for each unique maze 

configuration. We then used a value-iteration1,35 algorithm to dynamically estimate state 

value over each hex-state. Here, hex-states were defined by hex ID (1–49) paired with the 

direction of hex entry, which resulted in a 126-hex-state state space (each hex has between 

one and three possible directions of entry). For each trial, the reward function was set to zero 

at all states other than the chosen port, which was set to the goal port’s Q value on that trial. 

Hex values were initialized at zero, and value was iteratively learned by taking the maximum 

of the available discounted next-state values, over all hexes, until convergence. The update 

rule took the following form:

V (state) max
a ∈ (L, R)

(γV (nextstate(state, a)))for all hex‐states state

where “α” is a left or right exit from the current hex-state, and nextstαte(stαte, α) is the 

state obtained (through the transition matrix) by exiting state with action α. The discount 

factor, γ, was optimized for each behavioral session to maximize the fit to DA (minimizing 

negative log likelihood of the observed DA, given the estimated value function36).

TD(λ) toy-path value learner.: To test distinct predictions about reward propagation over 

space, we created a simple TD model with an adjustable eligibility-trace parameter (TD(λ) 

with replacing traces1). Each traversed state was associated with an update eligibility that 

decayed exponentially – by a factor of λ – with each timestep (state transition). To model 
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locally chained value propagation, we implemented a one-step TD model by setting λ equal 

to zero (TD(0)). To model updating over the entire traversed path, we set λ equal to one. 

Due to the absence of RPE during successive traversals of the same path under TD(1), value 

updates only occur at the terminal state, and for the entirety of the traversed path. Under 

these conditions, TD(1) is equivalent to a Monte-Carlo learning process.1 Eligibility traces e 
were initialized at zero, and the update rules were as follows, at each step t:

e(state) λγe(state) for all states

At non‐port states:e statet 1

δt = Rt + γV statet + 1 − V statet
V (state) V (state) + αe(state)δtfor all states

Upon reacℎing port:e(state) 0 for all states

where V is the value function, γ is the discount factor, and α is the learning rate. For 

clear visualization of model predictions, TD(0) α was set to 0.85 and γ was set to 0.8; 

TD(1) α was set to 0.5 and γ was set to 0.8 . To recreate a ramp similar to the DA 

signal, each learner started with a baseline value function peaking at 0.4 and discounted 

by a factor of 0.8. The toy environment was implemented as a six-state sequential path to 

a reward port, and the reward function equaled zero at all states except the terminal port. 

Port reward sequences could be set by the experimenter in order to visualize the resulting 

value functions. Alternatively, rewards could be drawn from a random distribution. For the 

regression analysis in Fig. 4, assessing the relationship between prior reward outcomes and 

model value estimates at each state, we simulated 1000 trials with random rewards delivered 

at 50% probability. To illustrate one possible combination of TD(0) and TD(1) learners (Fig. 

4I/J), we took a weighted sum of the outputs of each (choosing weights of 0.3 and 0.7 

respectively, without any fitting).

Dual-component hex-value learner.: To compare contributions of spatially local TD and 

maze-wide inferencebased learning processes, we developed a value learning algorithm 

over hex-states (location and direction, defined as before), with two separate value-update 

components: local TD(0) value learning, and a maze-wide model-based update.

A one-step TD(0) update occurred at every hex entry according to the following update rule:

Learning rule at eacℎ ℎex transition:V statet V statet + αTD γMFV statet + 1 − V statet

Learning rule upon port entry:V statet V statet + αTD Rt − V statet
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where αTD is the TD learning rate, and γMF is the spatial discount factor. The reward 

function, R, was zero for all non-port hexes. Hex-state values were initialized at 0.2, to 

convey a small uniform expectation of future reward from all locations. Upon reaching a 

reward port, model-based updates were also performed over the entire map according to the 

following rule:

V (state) V (state) + αMBT portt, state Rt − V (state) for all states,

where αMB is the model-based update learning rate, and T(port, stαte) weights the update 

by the discounted on-policy distance from each state to the current port. This map is learned 

online by recency-weighted averaging over states encountered on paths into the port. In 

particular upon each port arrival, it is updated according to:

T portt, state 1 − αT T portt, state + αTm(state) for all states,

using learning rate αT and a memory trace vector, m, of the most recent path into the port, 

reflecting each hex traversed on the current trial, discounted by the experienced distance 

from the port. The memory trace, m, is itself initialized to zeros at the start of each trial, then 

learned over the trial by discounting and accumulation at each timestep t:

m(state) γMBm state for all states

m statet 1

In this way, T reflects a model-based expected eligibility trace for possible paths to the 

port, comprising both experiential eligibility from the just-completed path into the port 

(analogous to TD(1)), and counterfactual eligibility arising from a recency-weighted average 

over previous port entries.58,72

To assess the ability of each learning model to capture animal behavior, we computed the 

likelihood of every left vs right choice taken at each hex by each rat, using the value 

estimates provided by the same dualcomponent hex learner. We assumed the following 

softmax choice rule:

P cℎex = c ∈ L, R ∝ exp βV sc + bpersistenceI(c, lastcℎoice(ℎex))

where β is an inverse temperature and V(sc) is the value of the hex that would be arrived 

at next given a left or right choice, under the learning model. To capture the rats’ tendency 

to repeat their previous choice, we also included a term bpersistence acting as a bias towards 

the choice made on the most recent visit to the same hex, where I(s, lαstchoice(hex)) is a 

binary indicator which is one for the choice made previously, zero for the other. We limited 

our analysis to binary choices encountered by the rats – times when rats entered a three-way 

intersection and exited through one of the two hexes to the rats’ right or left.
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Hex-state value TD(λ) learner.: We also considered an alternative model for learning 

hex-state values, based on TD(λ). This algorithm maintained an eligibility trace of recently 

visited hex-states to propagate updates backwards at each timestep. By optimizing the trace 

decay parameter, λ, to fit the observed DA at each timestep, we could estimate the spatial 

extent of value updates, on average. Value learning was implemented according to the 

following rules:

e(state) λγe(state) for all states

At non‐port ℎexes:e statet 1

Learning rule at eacℎ ℎex transition:V (state) V (state) + αe(state)δt for all states

witℎ:δt = γV statet + 1 − V statet

Learning rule upon port entry:V ( state ) V (state) + αe(state)δt for all states

witℎ:δt = Rt − V statet

Upon reacℎing port:e(state) 0 for all states

Dopamine regression:  We combined each learning model with a linear regression 

observation function to model the dopamine timeseries, i.e. DAt  =  β0  +  βV V statet   +  ϵt
with noise ϵt Normal 0,  σ2 . Here, the parameter βV captures any covariation between 

modeled value and the measured dopamine timeseries.

Model fitting:  We optimized the free parameters of the learning algorithms by embedding 

each of them within a hierarchical model to allow parameters to vary from session-to-

session. Session-level parameters were themselves modeled as arising from a distinct 

population-level Gaussian distribution over sessions for each rat. We estimated the model, 

to obtain best fitting session- and population-level parameters to minimize the negative 

log likelihood of the data using an expectation-maximization algorithm with a Laplace 

approximation to the session-level marginal likelihoods in the M step.73 For hypothesis 

testing on population-level parameters (βV), we computed an estimate of the information 

matrix over the population-level parameters, taking account of the so-called “missing 

information” due to optimization in the E-step,74 itself approximated using the Hessian 

of a single Newton-Raphson step. For the behavioral choice model, fitting was performed 
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similarly to DA regression in order to maximize the likelihood of observed choices (using 

the same learning model as for DA, but re-estimating all free parameters to fit the choices).

For the value-iteration algorithm, which only sought to estimate the discount factor, γ, we 

used a simpler function-minimization protocol. On a session-by-session basis, we found 

the minimum of the negative log likelihood function of the DA data, given γ. As this was 

a simple scalar function, we used the minimize_scalar function from the SciPy package 

in Python. Parameter search was unbounded using Brent’s algorithm, but γ values were 

rescaled between 0 and 1.

Model comparison:  To isolate the contributions of each independent learning component, 

we created two nested models: one with αTD and γMF both set to 0 (MB update only), 

and another with αMB, αT, and γMBall set to 0 (TD update only), and we compared 

each of these to the full model. In order to compare models with different numbers of 

free parameters, correcting for any bias due to overfitting, we computed a cross-validated 

approximation to the negative log marginal likelihood for each session.36 Specifically, we 

used leave-one-session-out cross validation for the population-level prior parameters and 

a Laplace approximation for the per-session parameters: for each session, we refit the 

population-level model omitting that session, then conditional on that prior, we computed 

a Laplace approximation to that session’s log marginal likelihood. We aggregated these 

per-session scores to obtain a total score for each rat and model. Finally, we use paired 

tests on these scores across rats, between models, to formally test whether any model fit 

consistently better over the population of rats. We depict relative fit subtracting out the 

dual-component model fit scores, so that positive values indicate superior dual-component 

model fit.

Data Analyses.

Port-choice analyses.: The frequencies of port visits and path choices were calculated using 

a five-trial rolling mean. To compute changes in visit frequency, we subtracted the mean 

frequency from the five trials prior to a block change from the frequencies after a block 

change. Note that paths here, and in most analyses, are defined by port visits (e.g., running 

from port A to port B), rather than specific sequences of hexes. “Better” and “Worse” ports 

were defined as those where the reward probability increased or decreased, respectively, 

compared to the prior block. This included changes from 10% reward probability to 50% 

reward probability, so the “Better” port was not necessarily the highest reward probability 

port in the maze. Similarly, “Longer” and “Shorter” paths were defined relative to the 

previous block, and paths whose length did not change were not included in this analysis.

All mixed-effects regression analyses were performed in R using the package lme4. 

Random effects were estimated over the levels of rat and session-within-rat. To identify 

any significant contributions of reward probability and path length on choice, we used a 

logistic mixed-effects regression of the following form:

log P(choose left)/(1 − P(choose left)) = β0 + β1(P(reward)left − P(reward)right) + β2 * (distance left
− distance right),
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where the intercept captured any variation due to turn-direction bias. “Left” was defined 

on a trial-by-trial basis as the left of the two available ports, when oriented away from 

the previously visited port. For example, if the top port had just been visited, the bottom 

right port would be left, and the bottom left would be right. To avoid periods when rats are 

learning the probabilities of reward, we only included data from the second halves (> trial 

25) of each block. Both probability differences and length differences were scaled between 

zero and one to compare effects in common units.

To isolate any effects of inference on port choice, we ran a similar logistic mixed-effects 

regression of port choice:

log P(choose left)/(1 − P(choose left)) = β0 + β1 * Rt−1 + β2 * Rt−2 + β3 * Rt−3 + β4 * Rt − 4 + β5 * Rt−5,

where “t-n” denotes prior trials where the left port was visited, and R denotes the reward 

outcome on that trial. Critically, we ran this regression for two subsets of data: trials where 

the rat took the same path to the goal port the last time it was visited, and trials where the rat 

last took an alternative path to the goal port. Paths, here, were defined based on the start and 

end ports, not the specific sequence of individual hexes traversed.

In addition, we sought to avoid possible confounds that arise due to decaying reward 

representations over time. For example, for a port that has not been visited in 10 trials, 

memory of the last outcome may have decayed, or uncertainty may have increased, 

compared to a port visited one trial ago (i.e., when a rat has been running back and forth 

between two ports and ignoring the other). To control for variations in the trial-lag length 

between traversals to the port of interest (the left option), we only included trials where the 

left available port was visited exactly two trials prior. This way, we are not comparing results 

from recent same-path reward to older alternative-path rewards, or vice versa.

Ramp analyses.: Ramp slopes were estimated by fitting a linear regression model to the 

hex-level DA along the last 15 hexes traversed before port entry, in each session. The single 

rat that did not show significant positive ramping was not included in remaining analyses of 

DA ramping and value coding.

To scale and remove average ramps from individual-trial DA traces, we first calculated the 

average ramp over the last 10 hexes traversed for each rat. Because we were interested 

in scaling the entire ramp as a function of estimated gain, we needed to remove any 

negative values. To do this, we first rescaled each rat’s average ramp between 0.1 and 

0.9 (we refer to this as the control ramp, for clarity). For each path traversal of interest, 

we then fit a linear regression of the observed DA data to that rat’s control ramp. An 

intercept captured remaining broad directional differences in the ramp (e.g., when the initial 

portion of the observed DA ramp was negative). We then scaled the control ramp by 

the estimated regression coefficient, added the intercept to the scaled control ramp, and 

subtracted this result from the DA trace. We were left with residual DA values, which we 

used for visualization in Fig. 4L. To assess which portions of the observed propagating 

bump are significantly different than what can be expected by chance, we performed a 

permutation analysis. We computed null residuals along each path by shuffling the sequence 
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of traversals, using equal numbers of traversals along the same paths as in the observed 

residual analysis. To estimate null distributions at each distance from the port, we computed 

1000 shuffled null residual traces, and assessed the distribution at each distance (in hexes) 

from the destination port. Comparing observed residuals to the upper 95% confidence 

interval bounds allowed us to identify distances where residuals were significantly above 

chance.

Barrier-change dopamine analyses.: To analyze discovery of a barrier change (either 

newly available or newly blocked) we aligned signals on first-detected entry into a hex 

immediately adjacent to the changed hex. At these hex transitions, the changed hex is 

readily visible. Initial new-hex exposures where the rat subsequently entered the new path 

were defined as those where the rat entered the newly available hex directly following its 

discovery.

DA regression analyses.: We needed to isolate the hexes where values will differ 

depending on experience-based versus inference-based updates. To this end, we excluded 

all overlapping hexes between the same and alternative paths to the goal port. In other 

words, we only included the hexes prior to the first choice point on each trial where the rat 

has the opportunity to choose between the two available ports (see Fig. 6).

To assess whether DA reflected the last reward outcome at the goal port following a 

traversal of the same path-dependent hexes and/or an alternative sequence of hexes, we ran a 

mixed-effects regression of the following form:

Path‐dependent DA = β0 + β1 * Rt−1 + β2 * Rt−2 + β3 * Rt−3 + β4 * Rt−4 + β5 * Rt−5,

where “t-n” denotes prior trials where the goal port was visited, and R denotes the reward 

outcome on that trial. Similar to the port-choice analysis, we ran this regression for two 

subsets of data: trials where the rat previously took the same path to the goal port, and trials 

where the rat took an alternative path to the goal port. Again, to control for biases that can 

arise due to differences in the number of trials since the port was last visited, we exclusively 

analyzed trials where the goal port was visited two trials ago. The inclusion of the prior five 

outcomes at the goal port controlled for DA scaling effects due to earlier rewards at the same 

port.

Quantification and Statistical Analyses.

Statistical tests and results are reported with any text introducing quantifications of 

results, both in the Results section and in figure legends. Unless otherwise specified, we 

treated individual rats as the unit of analysis, rather than, e.g., fiber recording locations. 

Plots of aggregated data show mean +/− SEM, unless otherwise specified in the figure 

legends. Inclusion criteria for specific analyses are stated in both the Methods and Results 

sections. In general, rats were excluded from the dataset if their choice preferences did not 

significantly scale with expected reward or distance cost. Behavioral sessions were excluded 

if rats did not perform at least 100 trials. dLight fiber photometry recordings were excluded 

if a recording failure occurred at any point during the session, such as an optical fiber 
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becoming broken or unplugged. We did not expect sufficient power to assess sex differences 

in this study, but we included both males (n=7) and females (n=3) in order to better identify 

findings that were robust across sexes. Rats were not assigned to separate experimental 

groups, so no blinding was performed. No sample size precalculation was performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Accumbens dopamine scales with the evolving values of maze locations.

• Dopamine place values propagate between sequentially experienced locations.

• Maze knowledge allows inference of updated values even without direct 

experience.

• The discovery of novel path opportunities elicits dopamine transients.
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Fig. 1. Adaptive behavior in the spatial foraging task.
A, Bird’s-eye view of the maze. Permanent barriers (black columns) divide the area into 

49 hexagon-shaped choice points (“hexes”). Additional movable barriers (absent here) 

determine the available paths to the reward ports at each corner. Once visited, a port’s 

reward probability becomes zero until another port is visited. B, Probability of choosing 

an available port as a function of the difference between that port’s and the alternative 

port’s reward probabilities. Grey traces are individual-rat logistic curves fit to the data, 

and the black line shows the mean relationship. C, Same as B, but a function of the 

difference between path lengths to the available ports. D, Results of logistic multiple 

regressions run for each individual rat, showing the positive influence of reward probability 

and the negative influence of path length on choices. Significance asterisks are from the 

mixed-effects regression analysis. For B-D, only the second half of each block (trial number 

> 25) was included to allow rats time to adapt to changes (n = 10 rats, 82 sessions, 9079 

trials). E, Example of a reward probability change. Red circles indicate hexes containing a 
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movable barrier, dots show the rat’s detected positions (color coded by occupation density; 

second halves of blocks). Empty white hexes indicate the positions of the permanent barriers 

shown in A. F, Example of a barrier change. Dark red circle with a pink outline shows the 

moved barrier. G, Mean change in port choice probability following increases (solid line) 

or decreases (dashed line) in reward probability (n = 10 rats, 36 sessions, 134 blocks; error 

bands indicate +/− SEM). H, Mean change in port choice probability following increases 

(solid line) or decreases (dashed line) in the path length to get there (n = the same 10 rats, 46 

sessions, 162 blocks; error bands indicate +/− SEM).”Trials” in G and H include only those 

where the rat had the opportunity to choose the port in question.
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Fig. 2. Dopamine pulses at rewards and novel path opportunities.
A, Example trace of dLight, isosbestic (405nm) control signal, and running speed over 

three trials. Red “R”s indicate reward deliveries, blue “O”s indicate reward omissions, 

upon port entry. Vertical scale bars indicate 2Z for fluorescence signals and 20cm/s for 

speed. Horizontal scale bar indicates 2s of time. B, Left, cartoon of rat arriving at port. 

Right, average DA (Z-scored) aligned to port entry, pooled by the destination port’s reward 

probability (“high”, 80 or 90%; medium, 50%; “low”, 10% or 20%). Traces are separated 

into rewarded (red) or omissions (blue) following port entry, and error bands indicate +/− 

SEM (n=10 rats). Inset shows close-up of the first 1s after port entry. Only the second half 

of each block (trial number > 25) was included (82 sessions, 9079 trials). C, Mean change 

in DA as a function of port reward probability, separated by rewarded (red) and unrewarded 
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(blue) trials. Changes in DA measured as: peak DA within 0.5s following reward, and 

minimum DA within 1s following omission, subtracting instantaneous DA at port entry. 

D, Example trace of dLight and running speed across three trials, including when the rat 

discovered a newly available path (pink star). Scale bars as in A. E, Left, cartoon of rat 

discovering the absence (top) or presence (bottom) of a barrier. Right, mean DA on each of 

these trial types; error bands indicate +/− SEM. DA signal is aligned on entry into the hex 

adjacent to the newly changed hex (pink, newly available; black, newly blocked; each n = 10 

rats, 106 events). F, Mean change in DA (peak DA within 1s following novel hex discovery 

– DA 1s before novel hex discovery) was significantly higher for newly available versus 

newly blocked hexes (available vs blocked: p = 9.76*10−4, one-tailed paired Wilcoxon 

Signed Rank test; available vs 0: p = 1.95*10−3, two-tailed Wilcoxon Signed Rank test; 

blocked vs 0: p = 0.014, two-tailed Wilcoxon Signed Rank test). Individual rat means are 

plotted as dots. Bars represent means over rats. * indicates p<0.05, ** indicates p<0.01, *** 

indicates p <0.001.
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Fig. 3. DA ramps reflect dynamic expectations of upcoming reward.
A, Mean hex-level running speed (top) and DA (bottom) as rats approached the reward 

ports (n = 10 rats, 82 sessions, 15918 trials), as a function of distance. B, Mean hex-level 

running speed (top) and DA (bottom) during port approach, pooled by p(reward) of the 

destination port. Only the second half (trial number > 25) of each block was included (n = 

9 rats, 70 sessions, 7,614 trials). C, Examining the effects of reward on DA ramping along 

successive runs to the same port. Dashed lines indicate the prior run to the port (t-1), and 

solid lines indicate the current run to the port (t). Top, mean DA over successive runs to 

the same port, where reward was omitted two visits ago (t-2), but reward was delivered 

the prior visit (t-1; n=9 rats, 1935 sequences). Red asterisks indicate a significant increase 

in hex-level DA (p < 0.05, one-tailed Wilcoxon signed rank test). “R” and “O” denote 
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rewards and omissions, respectively, on the t-n previous visits to the port. Bottom, same as 

top but examining the effects of a reward omission on the last visit. Blue asterisks indicate 

significant DA decrease (p < 0.05, one-tailed Wilcoxon signed rank test; n=9 rats, 1909 

sequences). D, top, maze cartoon illustrating the chosen, other, and previous reward ports for 

an example trajectory through the maze. Bottom, multiple-regression weights for the prior 

reward outcome at the chosen, other, and previous reward ports as effects on the DA signal 

(n = 9 rats, 13,448 trials; regressions performed independently for each rat; plot shows mean 

effect over rats). Middle, fraction of rats with significant relationships (non-zero regression 

coefficient, two-tailed t-test) between prior reward and DA. All error bands show +/− SEM. 

E, Example of one session showing trial-by-trial evolution of port (Q) values. Numbers at 

the top indicate nominal reward probabilities for the three ports (each in a different color to 

represent [top : bottom left : bottom right] ports), while tick marks indicate reward outcome 

on each trial (tall = rewarded, short = omission). F, Example value-iteration result from 

a single trial, spatially discounting the destination port’s Q value over all hexes. Arrows 

point towards the destination port, and values are defined at entry into a specific hex from a 

specific direction. G, Predicted value (left) and observed DA (right) during two runs through 

the maze in one block from the session in panel E. Top example uses the same value map 

as F. H, Regression coefficients for hex value from a mixed-effects regression predicting 

hex-level DA (n = 9 rats, 77 sessions, 13381 trials, 230,252 hex entries). Bar shows fixed 

effect over rats; diamonds show fixed effect for each rat over sessions. I, Regression model’s 

coefficients of partial determination for value and running speed. * indicates p<0.05, ** 

indicates p<0.01, *** indicates p <0.001.
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Figure 4. Progressive propagation of DA signals across space.
A, Cartoon contrasting propagating versus simultaneous value-update algorithms. Left, in 

TD(0) the impact on value coding of a single reward progressively moves back along 

the state sequence over subsequent runs along the same path. Right, in TD(1) a single 

reward immediately updates values for all states experienced during that trial. B, Illustrative 

outcome sequence for successive runs to the same port, with a single reward among a 

series of omissions. C, Value function from a simulated TD(0) learner over the final three 

traversals of the sequence in B. Solid lines indicate value function during the current run; 

dashed lines show value function during the previous run, to illustrate changes. D, Value 

function from a TD(1) learner over the same three sequential traversals. E, F, Analyzing 

the distance from the reward port at which prior rewards have their strongest impact (linear 

regression weight) on state value. Top: Multiple regressions of state value to a path’s prior 

five reward outcomes, at each distance. Bottom: Average distance from the port where each 

prior reward outcome has the strongest effect on value. E, Predictions from the TD(0) 

algorithm over 1000 simulated successive traversals of the same path, with rewards delivered 

randomly at 50% probability. F, Same analysis as E, but for TD(1). G, Observed mean DA 

traces for the trial order corresponding to C; 9 rats, n = 247 groups of trials; error bands 

indicate +/− SEM). H, Results from the same analysis as E/F, but for DA over all successive 
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traversals of the same path irrespective of reward outcome (n = 9 rats, 13,427 trials, 235,524 

hexes; binned by units of two hexes for clear visualization of effect). Bar plot shows mean 

effect over rats +/− SEM. Bottom inset, correlation between the distance of the peak reward 

effect on DA (in hexes) and the prior traversal number (1–5 previous traversals). Bar shows 

mean over rats; diamonds show individual rat coefficients (p = 0.00195, two-tailed Wilcoxon 

Signed Rank test; statistical significance is maintained over a range of hex bin sizes). I, 

Predicted value function for a linear combination of TD(0) and TD(1) value updates, over 

the final three traversals shown in F. J, Same as E/F but for the combined TD(0) and TD(1) 

simulations. K/L, Examination of deviations from a smooth ramp. K, Illustration of an 

individual-trial DA trace (green), the fitted average ramp for subtraction (black), and the 

remaining DA residuals for analysis. L, Observed mean DA residuals over the same three 

traversals as in C. Red asterisks indicate hexes where observed mean residual DA was higher 

than 95% of a shuffled null distribution at that hex (see Methods).
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Fig. 5. Model-based inference globally updates DA place values and guides choices.
A, Cartoon of two distinct routes a rat could have taken on the previous visit to a reward 

port (top of triangle). Portions of each route are distinct based on the starting location (path-

dependent hexes; solid line), while other portions overlap (dotted line). B, The probability 

of choosing the left (counterclockwise) of the two available ports after a reward compared 

to an omission. Analysis was separated by trials where, the last time that port was visited, 

the rat took either the same or alternative path. Bars show aggregate means, points show 

individual rat values (n=10; 2823 rewarded trials along same path, 2439 omission trials 

along same path, 1799 rewarded trials along alternative path, 1433 omission trials along the 

alternative path). C, DA magnitude in path-dependent hexes following a reward compared 

to an omission, the last time the destination port was visited from either the same (n = 9 
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rats, 2500 rewarded, 1752 omission trials) or alternative path (n = 9 rats, 1790 rewarded, 

1337 omission trials). * indicates p<0.05, ** indicates p<0.01, *** indicates p <0.001. There 

was no difference between Same and Alternative conditions for either choice or DA (paired 

two-tailed Wilcoxon signed rank test, p=0.275 and 0.570 respectively). D, DA ramps when 

rats previously took the same path to the destination port. Left, mean DA over successive 

path traversals to the same port, where reward was omitted two visits ago (t-2), but reward 

was delivered the prior visit (t-1; n=9 rats, 1087 trials). Red asterisks indicate a significant 

increase in hex-level DA (p < 0.05, one-tailed Wilcoxon signed rank test). “R” and “O” 

denote rewards and omissions, respectively, on the t-n previous visits to the port. Right, 
same as left but examining the effects of a reward omission the last time the path was taken. 

Blue asterisks indicate a significant DA decrease (p < 0.05, one-tailed Wilcoxon signed rank 

test; n=9 rats, 1079 trials). E, Same as D, but examining trials where rats previously took 

the alternative path to the destination port. Left, same as D left, but where the rat previously 

took the alternative path to the destination port (n=9 rats, 592 trials). Right, same as D right, 

but where the rat previously took the alternative path to the destination port (n=9 rats, 583 

trials).
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Fig. 6. A combined local and global value-update model accounts for hex-level DA.
A, Illustration of the dual-component hex-value RL model’s local and global learning 

algorithms. Left, TD(0) updates the value of the rats’ experienced hex-state at each hex 

transition. Right, upon port entry, a model of the maze’s structure (the hexes that both led 

and could have led to the goal port) is used to globally update hex-value estimates. The 

model is updated each trial as a weighted sum of previously traversed paths to the chosen 

port; see Methods for details. B, Gain or loss of model fit to hex-level DA when each 

learning component is removed from the dual-component model. Positive values indicate 

superior dual-component performance (negative log likelihood, “nLL”), compared to single-

component. Bars show mean fit comparison over all rats together, diamonds show model 

comparisons for individual rats. Removing either the TD or global components provided a 

significantly worse relationship to observed DA signals (global only: p = 0.0005, two-tailed 

one-sample t-test, t-statistic = 5.70; local only: p = 0.0010, two-tailed one-sample t-test, 

t-statistic = 5.032). C, same as B, but assessing the likelihood of each left-right choice 

between hexes in the maze. Removing either the local or global components provided a 

significantly worse relationship to observed hex-level choice behavior (global only: p = 

0.0033, two-tailed one-sample t-test, t-statistic = −3.962; local only: p = 0.0021, two-tailed 

one-sample t-test, t-statistic = −4.28).
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Calbindin Swant Cat# CB38a

anti-GFP Abcam Cat# ab13970

Bacterial and virus strains

AAVDJ-CAG-dLight1.3b Vigene N/A

Software and algorithms

Custom code Berke lab DOI: 10.5281/zenodo.8172780

Expectation Maximization code Daw lab https://github.com/ndawlab/em

AirPLS photometry processing algorithm Martianova et al., 2019 https://github.com/katemartian/Photometry_data_processing

LabView National Instruments https://www.ni.com/en-us.html

Bonsai Bonsai Foundation https://bonsai-rx.org/

Matlab Mathworks https://www.mathworks.com/products/matlab.html

Deposited Data

Processed (isosbestic-controlled) photometry and 
behavioral data

Mendeley Data
DOI: 10.17632/m59zdjpm9h.1
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