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ABSTRACT OF THE THESIS 

Geometric Control of Confined Active Flow 

by 

by Piyush Prakash 

Master of Science in Engineering Sciences (Mechanical Engineering) 

 

University of California, San Diego, 2018 

 

Professor David Saintillan, Chair 

 

 Active fluids, such as suspensions of swimming microorganisms, have been shown to 

spontaneously create flow. Controlling active flows could provide advantages for those 

designing microfluidic devices. Therefore, we looked into geometric control of active fluids 

confined in a ring. Primarily focusing on the effect on bacterial flow, we used a sawtooth 

perturbation to determine factors useful in guiding and controlling active flows. It was found 

that the amplitude, asymmetry, and size of the sawtooth affected the total bacterial flow 
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created by the geometry. Additionally, optimization methods were developed to determine a 

shape that creates maximum bacterial flux.  
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Introduction 

Active fluids are an area of interest for fluid dynamists due to their potential for 

widespread use in microfluidic devices and other biomedical applications. In both theory and 

experiments, it has been shown that active fluids may spontaneously create large scale flow 

patterns with no external influence. The propensity for active fluids to spontaneously create 

organized flow patterns has been shown to exists in both bulk flow [3] and within confined 

containers [11].  Simulations and experiments have found a region of fluid properties where 

there is both laminar flow and net pumping of fluid [11,14].  

This property has experimentally been shown to be a useful tool for microfluidic 

devices as a method to transfer particles or energy across a system [15,17]. However, while 

there has been research to show that active fluid flow can be used to do work, there has 

been less work in optimizing the flow through passive means. 

Using the numerical model used in [11] optimization of container shape was 

performed in order to control the fluid motion. Primarily, we aimed to maximize the net 

pumping in an annulus, however slowing and changing the direction of the flow is also 

possible by manipulating the geometry of the annulus. 
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Chapter 1: Background 

Bacterial Motion:  

 Active fluids are suspensions of microparticles that often begin to display emergent 

collective motion when the active particles are found in high enough concentration. For these 

fluids, the energy in the system (usually chemical energy) is enough to cause the particles to 

move, which causes hydrodynamic interactions between particles that eventually creates a 

self-sustaining flow. Suspensions of bacteria in particular have been studied in the past, but 

non-living matter such as colloidal rollers, kinesin motors, and other cellular extracts also 

display similar dynamics.   

Microorganisms have two common methods of locomotion: beating flagella or 

undulation of a ciliated membrane. The two methods create movement in different ways. 

Undulating cilia essentially creates a slip velocity along the particle boundary and is 

described using a squirmer model [8]. Flagella-based movement instead can be described as 

a force dipole. The microorganisms can be further categorized as either a pusher or puller 

depending on the effect of the dipole on the external fluid [3]. 

 

Figure 1: Diagram of swimming forces on pusher and puller microorganisms [3] 

Pullers move by way of a stroke-like motion of their flagella, creating a force in the 

anterior (towards swimming direction) of the swimmer. In pullers, the propulsive force and the 
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drag force point towards each other, creating a contractile flow around the bacteria. Pushers 

move by beating their flagella, which creates a force in the posterior of the bacteria. As 

shown in the schematic diagram, in pushers the propulsive force and the drag force point 

away from each other creating an extensile fluid flow around the bacteria.   

Flow caused by swimmers in an initially isotropic bacterial suspension relies on 

instabilities caused by the swimming of the bacteria. Pushers reliably create flows above a 

threshold concentration because the flow pattern of the swimming forces results in increasing 

perturbations that result in the large-scale flows seen in previous work [11].  

In suspensions of pullers, flow is generally not found even in highly concentrated 

suspensions due to the stabilizing effect of the pullers’ swimming forces. For example, it has 

been shown that suspensions of pullers increase the viscosity of the suspension [9]. The 

effect of the swimming forces can be seen in fig 1 [9], where the pullers’ forces are working 

opposite the flow while the pushers are working in line with the flow. For this reason, only 

pushers are investigated in this research. 

Analytical solutions 

The swimming forces on a single bacterium result to leading order in a force dipole. 

Analysis of fluid flow around the particle shows that the fluid velocity around the 

microorganism scales as 
1

𝑟2 in terms of distance r from the particle center. A general form of 

the fluid velocity can be shown as follows: 

𝒖𝑑(𝒓|𝒑) = 𝑺(𝒑): 𝛻𝑱(𝒓)  ( 1) 

J(r) is the fundamental solution of the Stokes equation, which is decays as 
1

𝑟
. The 

stresslet S(p) is a function of swimming orientation, p, and has magnitude 𝜎0 which 

characterizes the general flow of a bacterial suspension. A positive 𝜎0 describes flow around 

a puller while a negative 𝜎0  describes flow around a pusher [3].  
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While the previous equation details the effect of a singular bacterium, a suspension 

has many bacteria which must be taken into account to determine the overall movement of 

the suspension. The composition of the suspension can be described by a probability density 

function, Ψ, that describes the chance that a particle is at any given position and swimming 

direction for any time. In order to ensure conservation of particles within the system, Ψ must 

satisfy the Smoluchowski equation. Ψ can be approximated in terms of concentration, 

polarization, swimming orientation p, and nematic order, which are all defined in terms of 

position x, and time t [11].  

𝜳(𝒙, 𝒑, 𝑡) ≈
1

2𝜋
[𝑐(𝒙, 𝑡) + 2𝒑 ∙ 𝒎(𝒙, 𝑡) + 4𝒑𝒑: 𝑫(𝒙, 𝑡)]( 2) 

The Smoluchowski equation is a special case of the Fokker-Planck equation for a 

probability density function of Brownian particles used to determine the positional and 

orientational distribution of the bacteria in a given system. The three contributions come from  

𝛿𝑡Ψ, the time evolution of Ψ, and the divergence of  Ψ in both the positions and orientational 

domains [4].  

𝛿𝑡𝜳 + 𝛻𝑟 ⋅ (𝒓̇𝜳) + 𝛻𝑝 ⋅ (𝒑̇𝜳) = 0( 3) 

The concentration, c, polarization, m, and nematic order, D, are found by taking the 

first three orientational moments of Ψ respectively. Polarization describes the average 

direction of the suspension, similar to the swimming direction. Nematic order describes the 

orderliness of particles within the suspension. For example, the concentration indicates the 

number of particles within any given cell, the polarization describes the direction the particles 

are pointing, and the nematic order describes the alignment of the particle in the suspension 

irrespective of their swimming direction. 

These three quantities are enough to determine the state of the suspension. These 

parameters are defined by taking integrals of Ψ over the unit circle. From the definitions it is 
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clear that the concentration is the zeroth moment, polarization is the first moment, and 

nematic order is the second moment of Ψ:  

𝑐(𝒙, 𝑡) =  ∫ 𝜳(𝒙, 𝒑, 𝑡)𝑑𝒑
𝑐

 ( 4) 

𝒎(𝒙, 𝑡) =  ∫ 𝒑𝜳(𝒙, 𝒑, 𝑡)𝑑𝒑
𝑐

  ( 5) 

𝑫(𝒙, 𝑡) =  ∫ (𝒑𝒑 −
𝑰

2
)𝜳(𝒙, 𝒑, 𝑡)𝑑𝒑

𝑐
  ( 6) 

Using these definitions, we are able to take the first three orientational moments of Ψ 

to determine the following relations for the flux of the concentration, polarization, and nematic 

order. E and W are the rate of strain and vorticity tensors in the fluid.   

𝛿𝑡𝒄 =  −𝛻 ⋅ 𝑭𝑐  ( 7) 

𝛿𝑡𝒎 =  −𝛻 ⋅ 𝑭𝑚 +
1

2
𝜁𝑬 ⋅ 𝒎 − 𝑾 ⋅ 𝒎 − 𝒎  ( 8) 

𝛿𝑡𝑫 =  − 𝛻 ⋅ 𝑭𝐷 + 𝜁𝑐𝑬 + 𝑫 ⋅ 𝑾 − 𝑾 ⋅ 𝑫 − 4𝑫( 9) 

Dimensional analysis on the equations was performed using the following 

parameters: 𝜌, Newtonian fluid density; 𝜇 shear viscosity; 𝑉𝑠, swimming velocity; 𝑑𝑟, rotational 

diffusivity; 𝑑𝑡, translational diffusivity; and H, characteristic length (in this case channel 

width). From the dimensional analysis, two rdimensional parameters relevant to this 

investigation were found: the swimming Peclet, 𝑃𝑒𝑠 =
𝑉𝑠

𝑑𝑟𝐻
, and the swimming propulsion 

parameter, Λ =
𝑑𝑡𝑑𝑟

𝑉𝑠
2 . 𝑃𝑒𝑠 is the ratio of the persistence length of the swimmer trajectory to the 

size of the domain and Λ is a ratio of the strength of the the diffusive processes to the 

strength of self-propulsion and is unique to each type of swimmer [11].   

After nondimensionalizing and isolating the flux terms, the fluxes are shown as 

functions of concentration, polarization, and nematic order as shown in equations 10-12 [11].   
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From these equations, it is clear there are three contributions to the fluxes. The first 

term describes the advective contribution, the second describes the contribution from the 

swimming motion, and the third describes the contribution from translational diffusion. 

𝑭𝑐 = 𝒖𝑐 + 𝑃𝑒𝑠𝒎 − 𝛬𝑃𝑒𝑠
2𝛻𝑐 ( 10) 

𝐹𝑚 = 𝒖𝒎 + 𝑃𝑒𝑠 (𝑫 + 𝑐
𝑰

2
) − 𝛬𝑃𝑒𝑠

2𝛻𝒎( 11) 

𝑭𝐷 = 𝒖𝑫 + 𝑃𝑒𝑠 (𝑻 − 𝒎
𝑰

2
) − 𝛬𝑃𝑒𝑠

2𝛻𝑫( 12) 

T is the third orientational moment and is approximated as:  𝑇𝑖𝑗𝑘 =
1

4
(𝑚𝑖𝛿𝑗𝑘 + 𝑚𝑗𝛿𝑖𝑘 + 𝑚𝑘𝛿𝑖𝑗), 

which allows closure of the equations.  
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Chapter 2: Methods 

Bacterial Flow Solver 

A hybrid finite-difference finite volume framework is used to solve the governing 

equations [11]. For each time step, the diffusive terms are solved implicitly, the advective 

terms are solved using a semi-Lagrangian method, and all coupling terms are solved 

explicitly. The polarization and nematic order are solved at the nodes, but the concentration 

is solved at the cell center in order to better preserve mass throughout the simulation. No flux 

boundary conditions are applied for all three orientational moments [11].   

The initial state is set to an isotropic state with a uniform concentration and no 

moments or flow. The initial numerical errors create instabilities that propagate and ultimately 

drive larger flow patterns. 

Level Set Method 

 Description 

The level set method is used to define the boundary of the domain. In the level set 

method, the boundary of the domain is defined using an isocontour of a continuous function, 

𝜙, where the function value is equal to 0. Both the inner and outer boundary is defined by 

different functions, with the fluid domain corresponding to the positive values between the 

inner and outer boundaries [10].  

A quadtree discretization structure is used to create the mesh for the numerical 

analysis. In the quadtree method, each cell is split into 4 equally sized smaller cells per level 

of refinement. The refinement starts at level 0 with a cell spanning the entire 2-dimensional 

domain. The refinement is increased based on the following criteria.  

First, the maximum refinement is used near the domain boundary, with multiple layers 

of fully refined cells being used around the interface to ensure the best approximation of the 



   
 

8 

 

level set curves. This is primarily enforced by manipulating the Lipschitz constant, which 

“splits any cell whose edge length exceeds its distance to the interface” [10] as shown in 

equation 13.  

𝑚𝑖𝑛
𝑣∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶)

|𝜙(𝑣)| ≤ 𝐿𝑖𝑝(𝜙) ⋅ 𝑑𝑖𝑎𝑔_𝑠𝑖𝑧𝑒(𝐶)( 13) 

Secondly, additional refinement is used when the cell bacterial concentration is above 

a defined critical value. The reasoning is that areas with higher concentrations of bacteria are 

likely areas with higher changes in local flow parameters and increasing refinement should 

be used to capture these gradients.  

Finally, additional refinement is used when the vorticity is above a defined critical 

value. The refinement in this case allows for complex flow patterns to be captured accurately.  

Application 

In the optimization runs, we analyze flows inside an annular geometry between two 

boundaries defined by two separate functions. The inner boundary was defined to be a circle 

of radius equaling 1. The outer boundary was defined as a 3rd order Taylor series as shown 

in equation 14 where r is the distance from the center. With n = 3, there are 6 parameters 

that can be changed in order to create complex shapes. When 𝐴𝑛 and 𝐵𝑛 are equal to 0 for 

all n, the outer boundary is a circle with radius 
𝐴0

2
.  

𝑟 =  𝑓(𝜃) =
𝐴0

2
+ ∑ (𝐴𝑛 𝑐𝑜𝑠(𝑛𝜃) + 𝐵𝑛 𝑠𝑖𝑛(𝑛𝜃))𝑛

1 ( 14) 

𝜙  was taken to be the maximum of the inner and outer boundary functions as shown 

in equation 15. The first term defines the inner boundary, and the second defines the outer 

boundary. Radius and 𝜃 are the coordinates of each point in polar coordinates. f(θ), as 

described in equation 14, is the definition of the Fourier series perturbation. The area 
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adjustment parameter, 𝛾,  will be explained in the following section. The curves for which 𝜙 

equals 0 determines the location of the boundaries. 

𝜙 =  𝑀𝑎𝑥(−𝑅𝑚𝑖𝑛 + 𝑟𝑎𝑑𝑖𝑢𝑠, −(𝑅𝑚𝑖𝑛 + 1) + 𝛾 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑓(𝜃)) ( 15) 

This thesis documents attempts to maximize bacterial flow in enclosed systems 

through manipulation of the container’s external boundaries. We assume that the 

concentration per unit area in the initial time step is constant across the entire domain, which 

means that for larger domains, more bacteria are present in the run. Therefore, the area of 

each test geometry is maintained to be that of an unperturbed ring in order to standardize the 

number of bacteria in each run to remove that factor in the flux magnitude optimization.  

Area normalization is done through an iterative method where the external boundary 

is scaled until the domain areas match within tolerance. For each iteration, an area ratio is 

calculated as the square root of ratio between the standard area and the test geometry 

domain. If the area residual (difference between test and standard areas) is above the 

tolerance, then a new area adjustment parameter is created by dividing the previous 

iteration’s area adjustment parameter by the area ratio. Then a new geometry is created by 

scaling the previous external boundary by the area adjustment parameter.  This process is 

repeated until the residual is below the accepted area tolerance.  

Optimization Methods 

We considered three different optimization methods for the optimization of the geometry, 

which we describe here: 

Steepest Descent Method 

The Steepest descent method is a gradient optimization method which involves 

determining the gradient of the function to be optimized with respect to the parameters 

before making an optimization step against the gradient [13].  
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The algorithm begins with the calculation of the gradient. Equation 16 shows an 

example gradient for a 2-dimensional problem. As shown, N+1 function solves must be done 

in order to estimate a linear gradient [5]. 

𝛻𝑓 ≅ [
𝑓(𝑥𝑖+𝛥𝑥)−𝑓(𝑥𝑖)

𝛥𝑥
,

𝑓(𝑦𝑖+𝛥𝑦)−𝑓(𝑦𝑖)

𝛥𝑦
]( 16) 

Once the gradient is determined, the next parameter guess is given by subtracting 

the gradient from the current parameters. Equation 17 shows this step for 𝑥𝑖+1, with a similar 

equation for 𝑦𝑖+1. 

𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝛻𝑓( 17) 

𝛾 controls the step size between each parameter estimation at each step of the 

method. Oftentimes 𝛾 can be made a function of the size of the gradient, providing smaller 

steps in quickly changing areas and larger steps in flatter terrain.  This operation ensures the 

solution gradually moves towards better solutions while attempting to minimize any 

overstepping [5].  

Nelder-Mead Simplex Method 

The second optimization method pursued was a simplex method first proposed by 

J.A. Nelder and R. Mead in 1965 [12]. As a simplex method, the primary strategy is to use an 

N+1 pointed simplex to determine the direction of the geometric evolution in each 

optimization step. 

The Nelder-Mead method requires N+1 points in order to optimize for N number of 

parameters, which creates a simplex in N dimensional space. Central to the method is the 

calculation of the centroid of a modified version of the simplex in which the worst performing 

point is omitted. Then a new N+1 dimensional simplex is created by reflecting, expanding, 

contracting the worst point across the centroid.  In this way the simplex is able to walk across 

the domain and eventually shrink towards a local minimum.  
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Figure 2: Reflection (A) and Expansion (B) of a simplex [18] 

The initial step in every optimization step is reflection, where the worst performing 

node is reflected across the previously calculated centroid [12]. The new point is calculated 

by taking a weighted difference of the centroid and worst performing node. Essentially, this 

moves the node across the centroid in a straight line of some magnitude. The magnitude of 

the reflection is controlled by a coefficient of reflection, alpha, as shown in equation 18.  

𝑃∗ = (1 + 𝛼)𝑃̅ − 𝛼𝑃ℎ( 18) 

Expansion occurs if the reflected point performs better than any of the other points on 

the simplex.  In this case, the new point is found by taking a weighted sum of the reflected 

point and the centroid.  The magnitude of the expansion is controlled by a coefficient of 

expansion, 𝛾, as shown in equation 19.  

𝑃∗∗ = 𝛾𝑃∗ + (1 − 𝛾) 𝑃̅( 19) 

Contraction can occur in multiple cases in the Nelder-Mead method depending on the 

value of the reflected point and the worst performing node. In each contraction, the new node 

is calculated by taking a weighted difference between two nodes.  The net result is the 

simplex volume is reduced [12]. 

𝑃∗∗ = 𝛽𝑃ℎ + (1 − 𝛽) 𝑃̅( 20) 
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• Inside Contraction 

For the inside contraction, the simplex is contracted between the centroid and the 

worst performing node. The new node is then located on the line segment between the 

centroid and the worst performing node. The simplex is therefore shrunk along that axis. This 

procedure is used if the reflected node performed worse than the previous step’s worst 

performing node.  

• Outside contraction 

For the outside contraction, the simplex is contracted between the centroid and the 

reflected node. The new node is then located on the line segment between the centroid and 

the reflected node. The simplex is then rotated and shrunk along that axis. This method is 

used if the reflected node performs better than the worst node but is still worse than the rest 

of the nodes.  

• Shrinking 

In the case in which none of the test nodes improve the performance of the simplex, 

then the entire simplex is shrunk. When shrinking, the two nodes used are the best 

performing node and every one of the other nodes. This can drastically cut the volume of the 

simplex and increases the resolution of the optimization around the best performing node.  

 

Figure 3: Simplex nodes after Outside Contraction (A), Inside Contraction (B), and 

Shrinking (C) [18]. 
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Assessing the Minimum 

There are two ways to determine that the method has converged. One is based on the 

simplex size, with the other based on the variance in function values across the simplex. 

• Simplex based 

Simplex based convergence criteria determine the minimum size of the simplex to 

determine convergence.  At the minimum size, the differences between the function values at 

each point of the simplex is assumed to be a within an acceptable range such that the best 

performing node is the calculated minimum.  

In a simplex, every node is connected to the other node which means that the size of the 

simplex can be quantified by looking at the length of each edge of the simplex.  

• Function value Based 

The function value-based convergence criteria determine the minimum variation 

between the function values at each node [12]. Once the variation reaches below the 

minimum threshold, the optimization terminates.  Variation is defined by the standard 

deviation of the function values.  

Shape Derivative Optimization  

 A level set based shape optimization method was also theoretically developed to 

optimize asymptotic bacterial flow [1]. We begin with the asymptotic flow moment equations, 

0 =  𝛻 ⋅ 𝑭𝑐( 21) 

0 =  𝛻 ⋅ 𝑭𝑚 + 𝒎( 22) 

0 =  𝛻 ⋅ 𝑭𝐷 + 4𝑫( 23) 

and their fluxes with a zero normal flux boundary condition. 
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𝑭𝑐 = 𝑃𝑒𝑠𝒎 − 𝛬𝑃𝑒𝑠
2𝛻𝑐 ( 24) 

𝐹𝑚 = 𝑃𝑒𝑠 (𝑫 + 𝑐
𝑰

2
) − 𝛬𝑃𝑒𝑠

2𝛻𝒎( 25) 

𝑭𝐷 = 𝑃𝑒𝑠 (𝑻 − 𝒎
𝑰

2
) − 𝛬𝑃𝑒𝑠

2𝛻𝑫( 26) 

The equations can be made into matrix form by defining vector 𝑴 = (𝑐, 𝒎, 𝑫) and 

 𝐹(𝑴) = ( 𝑭𝒄, 𝑭𝑚, 𝑭𝐷). 

𝛻 ⋅ 𝑭 + 𝐴𝑀 = 0( 27) 

A is defined as operator: 𝐴𝑀 = (0, 𝒎, 4𝑫)  

The Flux Operator and boundary condition is therefore: 

𝑭(𝑀) = (𝑭𝑐 , 𝑭𝑚, 𝑭𝐷) = 𝑩𝑴 − 𝛻𝑴 ( 28) 

𝐹(𝑀) ⋅ 𝑛 = 0   𝑜𝑛 𝛿𝛺( 29) 

B is a matrix defined by the flux equations. 

 To derive the optimization, we follow the method used by Allaire [1]. We begin with an 

arbitrary cost function. 

𝜯(𝛺) =  ∫ 𝑗(𝑴)
 

𝛺
 ( 30) 

We define a Lagrangian operator L:  

𝐿(𝛺, 𝑵, 𝑃) =  ∫ 𝑗(𝑵) − 
 

𝛺 ∫ (𝛻 ⋅ 𝑭(𝑵) + 𝐴𝑁) ⋅ 𝑃
 

𝛺
+ ∫ 𝑭(𝑵)𝒏 ⋅ 𝑃 

 

𝛿𝛺
( 31) 

For any direction 𝜙 at stationary point (M,Q), we find: 

⟨
𝛿𝐿

𝛿𝑄
(𝛺, 𝑀, 𝑄)|𝜙⟩ = 0 =  − ∫ (𝛻 ⋅ 𝑭(𝑴) + 𝐴𝑀)𝜙

 

𝛺
+ ∫ 𝑭(𝑵)𝒏 ⋅ 𝜙 

 

𝛿𝛺
 ( 32) 
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⟨
𝛿𝐿

𝛿𝑁
(𝛺, 𝑀, 𝑄)|𝜙⟩ = 0 =   ∫ 𝑗′(𝑀) ⋅ 𝜙 

 

𝛺
−  ∫ (𝛻 ⋅ 𝑭(𝜙) + 𝐴𝜙) ⋅ 𝑄

 

𝛺
+ ∫ 𝑭(𝜙)𝒏 ⋅ 𝑄 

 

𝛿𝛺
( 33) 

Due to the diagonality of matrix A, equation 33 simplifies down to: 

⟨
𝛿𝐿

𝛿𝑁
(𝛺, 𝑀, 𝑄)|𝜙⟩ = 0 =   ∫ 𝑗′(𝑀) ⋅ 𝜙 

 

𝛺
−  ∫ (𝛻 ⋅ 𝑭(𝜙)) ⋅ 𝑄) + 𝐴𝑄 ⋅ 𝜙

 

𝛺
+ ∫ 𝑭(𝜙)𝒏 ⋅ 𝑄 

 

𝛿𝛺
( 34) 

The boundary integral disappears after solving by parts, to leave: 

⟨
𝛿𝐿

𝛿𝑁
(𝛺, 𝑀, 𝑄)|𝜙⟩ = 0 =   ∫ 𝑗′(𝑀) ⋅ 𝜙 

 

𝛺
−  ∫ (𝛻 ⋅ 𝑭(𝜙)) ⋅ 𝑄) + 𝐴𝑄 ⋅ 𝜙

 

𝛺
( 35) 

We may integrate once more by parts and substitute equation 28 for F to obtain: 

⟨
𝛿𝐿

𝛿𝑁
(𝛺, 𝑀, 𝑄)|𝜙⟩ = 0 =   ∫ 𝑗′(𝑀) ⋅ 𝜙 

 

𝛺
−  ∫ (𝐵𝑇𝛻𝑄 + 𝛻 ⋅ 𝛻𝑄 + 𝐴𝑄) ⋅ 𝜙 +

 

𝛺 ∫ 𝛻𝑸𝒏 ⋅ 𝜙 
 

𝛿𝛺
( 36) 

Taking 𝜙 with compact support provides an adjoint equation and a Neumann 

boundary condition: 

𝑩𝑇𝛻𝑸 + 𝛻 ⋅ 𝛻𝑸 + 𝑨𝑸 = 𝑗′(𝑴)( 37) 

𝛻𝑸 ⋅ 𝒏 = 0  ∀ 𝑥 ∈ 𝛿𝛺( 38) 

j’(M) must now be found. We begin by defining the cost function as the bacterial flux 

around the ring. The flux is dependent on the swimming velocity of the active particles. The 

swimming bacterial velocity is defined as the swimming Peclet number multiplied by the local 

polarization divided by the local concentration. The swimming velocity includes both the 

movement of the bacteria through self-propulsion. 

𝑣𝑠𝑤𝑖𝑚𝑚𝑖𝑛𝑔 = 𝑣𝑓𝑙𝑢𝑖𝑑 +  
𝑃𝑒𝑠⋅𝑚

𝑐
 ( 39) 

The net flux depends on the azimuthal component of the bacterial velocity since it is 

the component that allows the bacteria to flow around the ring. However, simply summing the 
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azimuthal velocities across the domain would be insufficient as the regions further from the 

center of the ring would contribute more due to the higher r value in those regions. Therefore, 

the flux is approximated as the sum of the azimuthal bacterial velocity normalized by the 

radius over the entire domain.  

𝐹𝑙𝑢𝑥 =  ∫
𝑣𝜃

𝑟
𝑑𝛺

 

𝛺
( 40) 

In this case, the flux is the cost function of the optimization. Therefore, by comparing 

the cost function to the flux, we are able to see that in this case 𝑗(𝑀) =  
𝑣𝜃

𝑟
=

1

𝑟2 (
𝑃𝑒𝑠⋅𝑚𝑥⋅𝑦

𝑐
+

𝑃𝑒𝑠⋅𝑚𝑦⋅𝑥

𝑐
)  .  

j’(M) can then be calculated by taking the 
𝑑𝑗

𝑑𝑀
, giving: 

𝑗′(𝑀) =  〈
−𝑃𝑒𝑠

𝑟2𝑐2 (𝑚𝑥 ⋅ 𝑦 + 𝑚𝑦 ⋅ 𝑥 ),
𝑃𝑒𝑠⋅𝑦

𝑟2𝑐
,

𝑃𝑒𝑠⋅𝑥

𝑟2𝑐
, 0,0,0,0 〉.( 41) 

Which may be used to find the adjoint.  

The Shape Derivative can then be found from the relation: Τ(Ω) =   𝐿(Ω, 𝑀(Ω), 𝑃(Ω)) 

After taking the derivative of Τ: 

𝛵′(𝛺) =
𝛿𝐿

𝛿𝛺
+

𝛿𝐿

𝛿𝑁

𝛿𝑁

𝛿𝛺
+  

𝛿𝐿

𝛿𝑃

𝛿𝑃

𝛿𝛺
 ( 42) 

from which 
𝛿𝐿

𝛿𝑛
 and 

𝛿𝐿

𝛿𝑃
 are 0 at the stationary point, giving: 

𝛵′(𝛺) =
𝛿𝐿

𝛿𝛺
(𝛺, 𝑀, 𝑄)( 43) 

From Allaire, we can combine with the previous equation to find the shape derivative 

direction equation:  

⟨𝛵′(𝛺)|𝜙⟩ =   ∫ 𝜃 ⋅ 𝑛(𝑗(𝑀) − (𝛻 ⋅ 𝐹(𝑀) + 𝐴𝑀) ⋅ 𝑄) 
 

𝛿𝛺
+ ∫ 𝜃 ⋅ 𝑛(𝛻(𝐹(𝑀)𝑛 ⋅ 𝑄)𝑛 + 𝜅𝐹(𝑀)𝑛 ⋅ 𝑄) 

 

𝛿𝛺
 

( 44) 
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Where the second term is equal to zero due to the boundary condition, giving a final 

equation. The method for the level set shape optimization can then be summarized as: 

1. Compute M from solver 

𝑴 = (𝑐, 𝒎, 𝑫) 

2. Compute j’(M) 

𝑗′(𝑀) =  〈
−𝑃𝑒𝑠

𝑟2𝑐2 (𝑚𝑥 ⋅ 𝑦 + 𝑚𝑦 ⋅ 𝑥 ),
𝑃𝑒𝑠 ⋅ 𝑦

𝑟2𝑐
,
𝑃𝑒𝑠 ⋅ 𝑥

𝑟2𝑐
, 0,0,0,0 〉 

3. Compute Adjoint 

𝐁T∇𝑸 + ∇ ⋅ ∇𝑸 + 𝑨𝑸 = 𝑗′(𝑴) 

∇𝑸 ⋅ 𝒏 = 0  ∀ 𝑥 ∈ 𝛿Ω 

4. Compute Optimization direction 

⟨Τ′(Ω)|𝜃⟩ =  ∫ 𝜃 ⋅ 𝒏(𝑗(𝑀) +  ∇(𝑭(𝑴)𝒏 ⋅ 𝑄)𝒏)
 

δΩ
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Chapter 3: Results 

Optimization Validation 

In order to test my optimization codes, I ran linear and nonlinear test cases.  A 

sample set of data in shown in Table 1 using 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 and 𝑓(𝑥, 𝑦) = sin(𝑥) +

sin (𝑦)cos (𝑦) as the two test cases. 

Table 1: Number of Optimization Steps until Convergence 

 𝑥2 + 𝑦2 sin(𝑥) + sin (𝑦)cos (𝑦) 

Steepest Descent 30 68 

Nelder-Mead 43 38 

 

As the Table shows, the Nelder-Mead method converged faster than the steepest 

descent method in the tested nonlinear case. The faster convergence and lesser number of 

function solves per optimization step led to my decision to use the Nelder-Mead method in 

the Flux optimization tests.  

Flow Control 

Optimizing flow in a confined fluid requires the ability to control the flow. Without a 

definitive method to ensure the flow is in the required direction, active fluids would not be an 

effective tool in medical devices. Therefore, we begin by investigating the use of periodic 

perturbations in directing the bacterial flux. 

For the first geometry series, we use a sawtooth perturbation along the exterior of the 

ring. Yariv and Schnitzer provided theoretical proof that sawtooth are able to direct flow along 

a linear unit cell [16]. In his theoretical work, increased skewness and amplitude of the 



   
 

19 

 

sawtooth correlated with higher bacterial flow in linear channels. We would expect similar 

results in a sawtooth perturbation on a ring.  

We use Yariv’s formulation to create the sawtooth exterior boundary as shown in 

equation 45 [16]. L and M determine the location and amplitude of the perturbation 

respectively; R is the radius of the ring at any given angle 𝜃; and  𝜃0 defines the sawtooth 

period across the ring.  

𝑅 =  {
𝜃 < 𝐿                    1 − 𝑀 + 2 ⋅

𝑀𝜃

𝐿
 

𝜃 > 𝐿        2 + 𝑀 − 2 ⋅ 𝑀 ⋅
𝜃−𝐿

𝜃0−𝐿

 ( 45) 

 

Figure 4: Yariv Defintion of sawtooth (A) and implementation as annulus outer 
boundary as defined in equation 45 (B) 

Sawtooth Results - L Dependency 

We began by testing the sensitivity of the active flow to changes in L. Changing L 

changes the position of max amplitude of the sawtooth shape, effectively changing its 

symmetry.  
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Figure 5: Flux results for 8 tooth sawtooth at M = 0.5 and varying L. 

The direction of the flux changed depending on whether L was higher or lower than 

half the period of the sawtooth, 
𝑝𝑒𝑟𝑖𝑜𝑑

2
. Additionally, changing L increased the magnitude of 

the flux as the teeth became more asymmetric ( 𝐿 −
𝑝𝑒𝑟𝑖𝑜𝑑

2
≫ 0). At 𝐿 =

𝑝𝑒𝑟𝑖𝑜𝑑

2
, the teeth were 

symmetric and the net flux was 0. This is consistent with expectations as without a break in 

symmetry, there is no geometric reason for the net flux to favor any direction. These trends 

were consistent for all tested numbers of teeth.  

 

Figure 6: Flux results for varying L and number of teeth, M = 0.5. 
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Sawtooth Results - M Dependency 

We then tested sensitivity of the flux to changes in M. Changing M changes the 

amplitude of each sawtooth. Essentially, this parameter controls the size of the sawtooth 

perturbation. 

 

Figure 7: Flux Results for 8 tooth sawtooth at varying L and M. 

M was found to be directly correlated with increased flux for every L position, except 

for the symmetric case where the flux was still 0.  

Sawtooth Results - Period Dependency 

 

Figure 8: Flux Results for varying period size.  
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 We finally tested the sensitivity of the period size on the net flux.  

We found that for highly skewed teeth, longer periods improved the net flux, but the 

difference in magnitude of the net flux decreased as the teeth were made more symmetric.  

The parameter sensitivities, when taken together, provide a general trend pointed to 

larger, highly skewed teeth providing higher net flux.  

 

Figure 9: Example Sawtooth flow patterns: Symmetric (A) and Asymmetric (B) 

The flow patterns suggest that the reason behind this trend is the creation of vortices 

by the sawtooth as shown in figure 9. Symmetric sawteeth have two counter rotating vortices 

of equal size and strength that nullify the overall net flow within the ring. However, as the 

teeth become more skewed, the size difference between the vortices changes, causing the 

net flux in the ring.  
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Fourier Definition & Results 

In order to create a robust definition for the external boundary, I decided to generalize 

the level set definition of the external boundary as a Fourier series. With such a formulation, 

the optimization will go towards any arbitrary shape while also possibly closely approximating 

the verified trends determined by the sawtooth parameter sensitivity tests previously run.  

𝑓(𝜃) =
𝐴0

2
+  ∑ (𝐴𝑛 𝑐𝑜𝑠(𝑛𝜃) + 𝐵𝑛 𝑠𝑖𝑛(𝑛𝜃))𝑛

1 ( 46) 

Fourier Sawtooth Formulation 

We tested the Fourier formulation by approximating the sawtooth formulation as a 

Fourier series. We solved the following equations to determine the correct Fourier 

coefficients: 

𝐴0 =
1

𝜋
 ∫ 𝑓(𝑥)𝑑𝑥 

2𝜋

0
=  

1

𝜋
 [∫ (

2𝑀𝑥

𝑙
+ 4 − 𝑀) 𝑑𝑥 + 

𝑙

0 ∫ (4 + 𝑀 − 2𝑀
𝑥−1

2𝜋−𝑙
)  𝑑𝑥 

2𝜋

𝑙
( 47) 

𝐴𝑛 =
1

𝜋
 ∫ 𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥  

2𝜋

0

 

=
1

𝜋
 [∫ (

2𝑀𝑥

𝑙
+ 4 − 𝑀) 𝑐𝑜𝑠(𝑛𝑥) 𝑑𝑥 

𝑙

0

+ ∫ (4 + 𝑀 − 2𝑀
𝑥 − 1

2𝜋 − 𝑙
) 𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥

2𝜋

𝑙

] 

=    
1

𝜋
 [ ∫  (

2𝑀𝑥

𝑙
+ 4 − 𝑀) 𝑐𝑜𝑠(𝑛𝑥)  𝑑𝑥

𝑙

0
+ ∫ (4 + 𝑀 − 2𝑀

𝑥−1

2𝜋−𝑙
) 𝑐𝑜𝑠(𝑛𝑥) 𝑑𝑥 ]   

2𝜋

𝑙
( 48) 

𝐵𝑛 =
1

𝜋
 ∫ 𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥

2𝜋

0

 

=
1

𝜋
 [ ∫ (

2𝑀𝑥

𝑙
+ 4 − 𝑀) 𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥 +  ∫ (4 + 𝑀 − (2𝑀

𝑥−1

2𝜋−𝑙
))

2𝜋

𝑙

𝑙

0
𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥]  ( 49) 
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The new formulation was checked for fit at different number for modes. We decided to 

check between the three mode and seven mode Fourier series to determine which number of 

modes we would use for a generalized optimization study. 

 

Figure 10: Fourier Series fit to the linear sawtooth formulation. 

We swept through L values for an 8 teeth sawtooth boundary to confirm the Fourier 

defined sawtooth boundary resulted in similar flow patterns and flux values.   



   
 

25 

 

 

Figure 11: Flux comparison for 8 tooth sawtooth at M = 0.5 and varying L between linear and 
Fourier boundary formulations. 

The Fourier series formulations were able to approximate the original formulation 

fairly well. The 7 mode Fourier Series matched the original formulation within 7%. The 3 

mode Fourier series matched the general trends as the original but had higher deviation. We 

chose to use the 3 mode Fourier series in our optimization because it required less 

parameters to optimize, allowing us to optimize using the 6 coefficients instead of the 14 

coefficients necessary to optimize the 7 mode Fourier series.  

Numerical Optimization 

Our initial optimization test ran the optimization with no constraints on the coefficients. 

However, the shapes created from the optimization quickly became unrealistic with the outer 

boundary intersecting the inner boundary and breaking the channel. The resulting optimized 
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shape before the broken geometries is shown in figure 12, which is reminiscent of a 2 teeth 

sawtooth.  

 

Figure 12: Vector plot of intermediate shape found during unbounded optimization. 

In order to fix this issue, the Fourier Coefficients were bounded in order to prevent 

unfeasible shapes with sections that were too thin for realistic use. Bounding the coefficients 

made sure that the external boundary would never obstruct the channel by intersecting the 

inner boundary. 

 

Bounded Optimization Case 1: 

For this optimization case, we began the optimization from a ring defined using the 

first three frequencies in the Fourier series.  In order to optimize only the coefficients that 

changed the shape of the perturbation, 𝐴0 was set to be constant to maintain the outer radius 

value of 2 used in the base ring. Therefore, there were 6 parameters that were optimized 

from the perturbation function (equation 50) for this run.  
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𝑓(𝜃) = 2 +  ∑ (𝐴𝑛 𝑐𝑜𝑠(𝑛𝜃) + 𝐵𝑛 𝑠𝑖𝑛(𝑛𝜃))3
1 ( 50) 

Using the simplex method, a converged shape was found within 15 maximum flow 

shapes as shown in figure 13. The net maximum flux was calculated to be 0.117, 

approximately 35% higher than the highest flux found in previous tests. 

 

Figure 13: Convergence Plot for optimization case 1. 

The ring shape evolved towards the shape shown in figure 14.  The overall shape has 

two lobes of two different sizes. Each lobe contains two vortices that redirects the flow 

around the ring. The flow pattern fits the general trend of larger, longer “teeth” correlating 

with higher flux values.  
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Figure 14: A) Vector Plot of converged solution of optimization case 1. B) Streamline Plot of 

converged solution of optimization case 1. 

 

Bounded Optimization Case 2: 

In order to see how a different set of frequencies changes what the optimal shape is, 

we then defined the external boundary with a Fourier series using the second through fourth 

frequencies.  Once again, in order to optimize only the coefficients that changed the shape of 

the perturbation, 𝐴0 was set to be constant to maintain the outer radius value of 2 used in the 

base ring. Therefore, there were 6 parameters that were optimized from the perturbation 

function (equation 51) for this run. 

𝑓(𝜃) = 2 +  ∑ (𝐴𝑛 𝑐𝑜𝑠(𝑛𝜃) + 𝐵𝑛 𝑠𝑖𝑛(𝑛𝜃))4
2 ( 51) 

The simplex method converged within 15 maximum flow shapes as shown in the 

convergence plot (figure 15). The net maximum flux was calculated to be 0.068, which did 

not improve upon the optimal shape from case 1, nor did it improve from the maximum found 

with the sawtooth boundary. This trend is consistent with the results from the sawtooth 

parameter sweeps where the longer period sawtooth shapes (equivalent to lower frequency) 

provided more bacterial flux than the shorter period sawtooth shapes. 
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Figure 15: Convergence Plot for optimization case 2. 

The ring shape evolved to the shape shown in figure 16.  The overall shape has three 

lobes, with each lobe having at least one vortex creating a recirculating zone, similar to what 

was found in the sawtooth tests.   

 

Figure 16: A) Vector Plot of converged solution of optimization case 2. B) Streamline Plot of 

converged solution of optimization case 2. 
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Chapter 4: Conclusion 
Spontaneous flows have been found to occur in suspensions of active fluids. This 

phenomenon has the potential for use in medical devices, in particular microfluidic devices, 

where flow is required. A method to determine geometric methods to control and amplify 

active bacterial flow was created for this reason.  

A 2-dimensional active fluid solver was used to determine the flow of various 

geometries containing active fluids. The level set method was used to define the fluid 

domain.  

Multiple Optimization schemes were investigated. The steepest descent method 

relied upon computing gradients to find an optimal value at a zero-gradient point. The Nelder-

Mead simplex method is a heuristic that searches for an optimal point through the geometric 

manipulation of a simplex defined by N test coordinates in a N-dimensional space. The final 

method investigated was a level set optimization method that relied on the determination of a 

shape derivative to evolve towards an optimal shape.  

For the external boundary, the fluid response to a linear sawtooth geometry was 

investigated. It was found that the bacterial flux increased when increasing the period, the 

asymmetry, and the amplitude of the sawtooth shape. Additionally, a Fourier series definition 

of the external boundary was created. The Fourier series definition was shown to provide 

similar results as the linearly defined sawtooth.  

The ring was optimized using the simplex method in order to determine an optimal 

shape to create optimal bacterial flux. A more effective shape was found by optimizing the 

coefficients of the first three modes of the Fourier series definition of the external boundary.  
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Throughout all the tested geometries, it was shown that larger, more skewed 

sawtooth-type geometries improved the bacterial flux of the fluid. The most effective shapes 

had similar flow patterns. Generally, the more effective shapes had vortices emerge from the 

flow that increased the movement of the bacteria around the ring.  
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